平行四边形的判定的说课稿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(封面)
平行四边形的判定的说课稿
授课学科:
授课年级:
授课教师:
授课时间:
XX学校
一、教材的地位和作用
本节课的内容是实验教材几何分册第四章《四边形》的第二章节《平行四边形》的第三节课,是在学生学习了平行四边形的定义、性质,对平行四边形有了初步的认识的基础进行的。
本节课主要探讨平行四边形的判定方法以及判定定理的初步运用。在学生习得平行四边形的判定方法的同时,还应注重培养学生主动学习的能力和主动探索发现的能力。平行四边形是常见的一种几何图形。平行四边形的对边、对角和对角线的特征是平行四边形的最基本知识,也是探讨、推导平行四边形判定方法的出发点,另外,在探讨、严密地推导平行四边形判定方法的过程中,能培养严密的数学逻辑推理论证的科学态度。因此,它在初中的数学教学中占有重要的地位。
二、学生情况
八年级的学生刚刚进入论证几何的学习阶段,他们的数学表达能力和抽象思维能力有限,逻辑推理能力还不强,推导平行四边形的判定方法有一定难度。根据初中学生的心理生理特点,运用直观生动的形式,吸引他们的注意力,激发学生探究新知的兴趣,所以教学中安排学生动手画草图,在画草图的过程中得出合理的猜测,在推理论证过程中,提高学生的逻辑推理能力。另一方面数学教学中应积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。
三、教学目标
按照新课程标准的教学目标的要求,根据学生的认知规律,心理
特点和教材的特点制定以下教学目标:
1、掌握平行四边形的判定方法。
2、会运用平行四边形的判定定理,对有关平行四边形的几何习题进行证明。3 、通过实验操作、说理,推理论证,养成用数学语言规范表达的数学素养。4、感受以前学习的实验几何和现在学习的论证几何的本质不同,体会到学习论证几何的重要意义。领悟“实验操作——合理的猜测——严密的推理论证——得出数学结论——运用数学结论”的数学探究方法。5、在几个平行四边形的判定定理的推导过程中,体会化归的数学思想。6、养成一种勇于探索、勇于质疑的精神;在实验操作的基础上,进行合理的猜测,进行严密的数学逻辑推理论证的科学态度。
教学重点:平行四边形的判定方法的推导;在判定定理的推导过程中,体会化归的数学思想。会初步运用判定定理,进行有关平行四边形习题的证明。
教学难点:1通过实验操作,猜测出平行四边形的几种判定方法,并给予严密的推理论证。
2感受以前学的实验几何和现在学的论证几何的异同,体会到学习论证几何的重要意义。领悟“实验操作——合理的猜测——严密的推理论证——得出数学结论——运用数学结论”的数学探究方法。
四、教学设计思路
整堂课的设计思路是“画图操作——得出合理猜测——进行严密的推理论证——得出平行四边形的判定方法——运用平行四边形的判定方法”。几次小组交流的安排,既注重学生小组间的交流,又注
重不同小组间的课堂交流,体现“师生互动,生生互动”。
教学过程简介
在复习了平行四边形的性质等知识后,出示本节课的第一个探究的问题:符合什么条件的四边形是平行四边形?——即平行四边形的判定方法。创设问题情景,激发学生的学习热情。这时出示画图操作题:如图,已知,平行四边形的一组邻边AB、BC以及它们的夹角∠ABC。请同学们以AC为对角线,把这个平行四边形ABCD补画完整。每个学生画出草图后,先在小组内及时交流、讨论。然后,用实物投影仪展示学生所画的草图。
在学生画出草图后,教师适时提问:从以上画图过程中,你可以得出什么结论?请用命题形式写出。学生分别得出命题:
两组对边分别平行的四边形是平行四边形(这是平行四边形的定义)。
命题1:两组对边分别相等的四边形是平行四边形。
命题2:一组对边平行且相等的四边形是平行四边形。
命题3:对角线互相平分的四边形是平行四边形。
命题4:两组对角分别相等的四边形是平行四边形。
以上命题是通过画图操作后,猜测得出的,至于这些命题是否正确,我们必须经过严密的推理论证,才能得出这些命题是真命题。命题的证明,我们应该根据命题,画出图形,写出已知、求证,然后,进行推理证明。
学生口述,老师板演命题的证明过程,老师适时点评。接下来,