九年级数学配方法
数学华师大版九年级上册配方法课件
半 当 趣味抢答比一比
的二 平次
(1)x²+10x+
5²=(x+
5
)²
配 方 :
方项 。系
数 为 时 , 加 上 一 次 项
1
(2)x²-12x+ 6²=(x- 6
(3)x²+
5x+
5 2
2
=(x+
5 2
2
(4)x²-
2
x+
3
=(x-
3
1 3
)² )² )²
系
数
一
它们之间有什么关系?
号右边,得: x2+6x = 7
第二步:在方程两边同时加上“一次项系数一半的平方”9,得: x2+6x+9= 7+9
第三步:方程左边写成完全平方式,得: (x+3) 2 = 16
第四步:用直接开平方法解方程,得 x+3=±16
再算出x的值,得: x1=7,x2= -1 上述解方程的方法,我们称之为“配方法”。
让它载着我们…… 驶向理想的
谈谈你的收获! 谈谈你的收获!
拓展延伸
用配方法解下列方程
x2+px+q=0
方程4x²- 12x - 1 = 0能用配方法解吗? 若能,要求解; 若不能,请说明理由。
配方法解一元二次方程的步骤:
• 化 :将方程化为一般式 • 化系数为1 :将方程两边都除以二次项系数 • 移项 :把常数项移到方程的右边 • 配方: 方程两边都加上一次项系数绝对值一半的平方 • 整理: 将上式写成﹙x+m﹚²=p(p为非负数)的情势 • 开方 :根据平方根意义,方程两边开平方 • 定解 :解两个一元一次方程,得出原方程的解.
人教版九年级数学上册:21.2.1配方法(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“配方法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
对于难点(2),指导学生如何处理二次项系数不为1的情况,如方程2x^2 + 4x - 1 = 0,需要先将系数化为1,再进行配方。
对于难点(3),通过实际例题,如“一个长方形的长比宽多3厘米,面积为18平方厘米,求长和宽”,引导学生如何构建方程并配方求解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《配方法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决一元二次方程的情况?”(如面积计算、速度问题等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索配方法的奥秘。
2.培养学生数学建模和直观想象的核心素养,使学生能够运用配方方法解决实际问题,并培养从具体到抽象的数学思维能力;
3.培养学生运算能力和数据分析的核心素养,通过配方练习,提高学生的运算速度和准确性,培养学生对数据敏感度和分析能力;
4.培养学生团队合作和表达交流的核心素养,让学生在小组讨论和分享中,加深对配方方法的理解,提高数学表达和交流能力。
-配方步骤的应用:在具体操作过程中,学生可能会在系数化为1或加平方项时出错,这是配方的难点。
-配方在实际问题中的应用:如何从实际问题中抽象出一元二次方程,并将其配方求解,是学生需要克服的难点。
九年级数学配方法
小球何时能达到10m高?
随堂练习2
• 3.将下列各方程写成(x+m)2=n的形式 • (1)x2-2x+1=0 • (2)x2+8x+4=0 • (3)x2-x+6=0 • 4.将下列方程两边同时乘以或除以适当的
数,然后再写成(x+m)2=n的形式 • (1)2x2+3x-2=0 • (2)x2+x-2=0
• 例:解方程: 3x2+8x-3=o
分析:将二次项系数化为1后,用配方法
解此方程。
解:两边都除以3,得: 移项,得:x2 8 x 1
x
2
8 3
x
1
Байду номын сангаас
0
3
配方,得:
x2
8 3
x
4 2 3
1
4 2 3
(方
程两边都加上一次项系数一半的平方)
即: 所以:
x 4 2 5 2
3 3
x1
1 3
小结:
w 用配方法解一元二次方程的步骤: 1.移项:把常数项移到方程的右边; 2.配方:方程两边都加上一次项系数绝对值一
半的平方; 3.变形:方程左分解因式,右边合并同类; 4.开方:根据平方根意义,方程两边开平方; 5.求解:解一元一次方程; 6.定解:写出原方程的解.
• P58 • 1、2、3
xx22
3、 解 方 程:
用配方法解一元二次方程的步骤:
1.移项:把常数项移到方程的右边; 2.配方:方程两边都加上一次项系数绝对值一
半的平方; 3.变形:方程左分解因式,右边合并同类; 4.开方:根据平方根意义,方程两边开平方; 5.求解:解一元一次方程; 6.定解:写出原方程的解.
九年级上册数学配方法
配方法是一种在数学中解决二次方程的解法。
其基本思想是通过恒等变形,把一个解析式利用配方,配成一个完全平方式,然后利用平方的非负性,得到一个最简方程,进而求出原方程的解。
具体来说,对于一元二次方程ax²+bx+c=0(a,b,c为常数,a≠0),可以通过配方将其转化为(x+b/2a)²=(b²-4ac)/4a²的形式,然后通过平方的非负性求出x的解。
配方法通常分为以下步骤:
1. 将二次项系数化为1,即将方程化为x²+bx+c=0的形式;
2. 找到方程的两根x1和x2,令x1+x2=-b/a,x1*x2=c/a;
3. 将方程的右边化为0,即方程化为x²+bx+c=0的形式;
4. 将方程的左边配方,即方程化为(x+b/2a)²=(b²-4ac)/4a²的形式;
5. 通过平方的非负性求出x的解,即(x+b/2a)²=(b²-4ac)/4a²≥0,解得x=-b/2a±√(b²-4ac)/2a。
需要注意的是,当b²-4ac<0时,方程没有实数解。
此外,配方法也可以用于解高次方程或不等式等问题。
九年级数学配方法解方程
九年级数学配方法解方程《神奇的配方法解方程》小朋友们,今天我要给你们讲一个超级神奇的数学方法,叫做配方法解方程。
比如说,有一个方程x² + 6x + 5 = 0 。
我们来看看怎么用配方法解决它。
呢,我们要在方程两边加上一个数,让左边变成一个完全平方的形式。
那加多少呢?就加 9 。
为什么加 9 呢?因为 6 除以 2 等于3 ,3 的平方就是 9 。
(x + 3)² = 4 ,那 x + 3 就等于 2 或者 2 。
所以 x 就等于 1 或者 5 。
是不是很神奇呀?《一起来学配方法解方程》小朋友们,今天咱们来一起学习一个好玩的数学技巧——配方法解方程。
假设我们有个方程x² + 4x 12 = 0 。
那我们就在方程两边加上 4 ,因为 4 是 4 除以 2 的平方。
这样方程就变成了(x + 2)² 16 = 0 。
然后(x + 2)² = 16 ,那 x + 2 就是 4 或者 4 。
算一算,x 就是 2 或者 6 。
就像搭积木一样,一步一步来,是不是很有趣?《用配方法解开方程的秘密》小朋友们,你们知道吗?数学里有个很厉害的方法叫配方法,可以帮助我们解开方程的秘密。
比如说方程x² 8x + 7 = 0 。
我们在方程两边加上 16 ,这是因为 8 除以 2 是 4 ,4 的平方是 16 。
于是方程变成了(x 4)² 9 = 0 。
接着(x 4)² = 9 ,那 x 4 就是 3 或者 3 。
算出 x 是 7 或者 1 。
学会这个方法,就像有了一把神奇的钥匙,可以打开数学的大门哦!《轻松学会配方法解方程》小朋友们,咱们来一起探索配方法解方程的奇妙世界。
想象有个方程x² + 10x + 21 = 0 。
我们要给它加点“魔法”,在方程两边加上 25 ,因为 10 除以2 是 5 ,5 的平方是 25 。
方程就变成了(x + 5)² 4 = 0 。
人教版数学九年级上册22.2.1《配方法》教学设计1
人教版数学九年级上册22.2.1《配方法》教学设计1一. 教材分析《配方法》是人教版数学九年级上册第22.2.1节的内容,主要介绍了配方法的概念、意义和应用。
配方法是一种解决二次方程问题的方法,通过将二次方程转化为完全平方形式,使问题更易于解决。
这一节内容是学生学习二次方程解决实际问题的基础,对于培养学生的数学思维能力和解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的代数基础,对于解决一些简单的数学问题已经有了一定的方法。
但是在解决复杂的二次方程问题时,还需要进一步引导和培养。
在教学过程中,教师需要关注学生的学习情况,针对不同学生的特点进行有针对性的教学,帮助学生理解和掌握配方法。
三. 教学目标1.理解配方法的概念和意义,掌握配方法的基本步骤。
2.能够运用配方法解决一些简单的二次方程问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.配方法的概念和意义的理解。
2.配方法的基本步骤的掌握。
3.运用配方法解决实际问题的能力的培养。
五. 教学方法1.讲解法:教师通过讲解配方法的概念、意义和步骤,帮助学生理解和掌握。
2.案例教学法:教师通过举例讲解,引导学生运用配方法解决实际问题。
3.小组合作学习:学生分组讨论,共同解决问题,培养学生的合作意识和解决问题的能力。
六. 教学准备1.教学课件:教师准备相关的教学课件,帮助学生直观地理解和掌握配方法。
2.练习题:教师准备一些相关的练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入配方法的概念,激发学生的兴趣和好奇心。
2.呈现(10分钟)教师讲解配方法的概念、意义和步骤,通过举例讲解,让学生理解和掌握。
3.操练(10分钟)学生分组讨论,共同解决问题,教师巡回指导,帮助学生巩固学习效果。
4.巩固(10分钟)教师出示一些相关的练习题,学生独立完成,教师点评和讲解。
5.拓展(10分钟)教师引导学生运用配方法解决一些实际问题,培养学生的解决问题的能力。
九年级数学配方法
3 、 解 方
用配方法解一元二次方程的步骤:
1.移项:把常数项移到方程的右边; 2.配方:方程两边都加上一次项系数绝对值一
半的平方; 3.变形:方程左分解因式,右边合并同类; 4.开方:根据平方根意义,方程两边开平方; 5.求解:解一元一次方程; 6.定解:写出原方程的解.
例题讲析:
• 例:解方程: 3x2+8x-3=o
随堂练习1
• 1.用配方法解方程x2+2x-1=0时 • ①移项得__________________ • ②配方得__________________ • 即(x+__________)2=__________ • ③x+__________=__________或
x+__________=__________ • ④x1=__________,x2=__________ • 2.用配方法解方程2x2-4x-1=0 • ①方程两边同时除以2得__________ • ②移项得__________________ • ③配方得__________________ • ④方程两边开方得__________________ • ⑤x1=__________,x2=__________
用配方法解一元二次方程的步骤:
(1)把二次项系数化为1; (2)移项:方程的一边为二次项和一次项,
九年级数学(上)第二章 一元二次方程 一元二次方程的解法: 配方法(2)
永安中学: 王建国
回顾与复习
我们通过配成完全平方式的方法,得 到了一元二次方程的根,这种解一元
二次方程的方法称为配方法
1、平方根的意义: 如果x2=a,那么x= a.
2、完全平方式:式子a2±2ab+b2叫完全平方式 ,且a2±2ab+b2 =(a±b)2.
人教版数学九年级上册22.2.2《配方法》教案1
人教版数学九年级上册22.2.2《配方法》教案1一. 教材分析《配方法》是初中数学九年级上册的教学内容,主要目的是让学生掌握配方法的基本原理和应用。
配方法是一种解决二次方程问题的方法,通过将二次方程转化为完全平方形式,从而简化问题的求解过程。
本节课的内容是在学生已经掌握了二次方程的基本概念和求解方法的基础上进行讲解的,为后续学习更复杂的二次方程问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了二次方程的基本概念和求解方法,具备了一定的数学基础。
但是,对于配方法的理解和应用还需要进一步的引导和培养。
学生的学习兴趣和学习积极性较高,对于新的学习内容有一定的好奇心和求知欲。
三. 教学目标1.让学生掌握配方法的基本原理和应用。
2.培养学生解决二次方程问题的能力。
3.培养学生的逻辑思维能力和创新思维能力。
四. 教学重难点1.配方法的基本原理的理解和应用。
2.配方法在解决二次方程问题中的应用。
五. 教学方法采用问题驱动的教学方法,通过引导学生自主探究和合作交流,让学生在解决实际问题的过程中掌握配方法的基本原理和应用。
同时,运用案例教学法,结合具体的例子进行讲解,使学生更好地理解和掌握配方法。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备教学课件和教学素材。
七. 教学过程导入(5分钟)通过一个实际问题引入本节课的主题,例如:已知一个二次方程的解为x1=3和x2=4,求原方程。
让学生尝试解决这个问题,引发学生对配方法的好奇心和兴趣。
呈现(10分钟)讲解配方法的基本原理和步骤。
通过具体的例子进行讲解,让学生理解和掌握配方法的基本原理和应用。
同时,引导学生进行思考和讨论,巩固学生的理解。
操练(10分钟)让学生进行配方法的练习。
提供一些配方法的练习题,让学生独立完成。
在学生完成练习的过程中,进行巡视指导和解答学生的疑问。
巩固(10分钟)通过一些综合性的题目,让学生应用配方法解决实际问题。
引导学生进行合作交流,共同解决问题,巩固学生对配方法的理解和应用。
人教版初中九年级上册数学《配方法》精品课件
配方,得 即
由此可得
移项和二次项系数 化为1这两个步骤能 不能交换一下呢?
方程的二次项系 数不是1时,为便于 配方,可以将方程 各项的系数除以二 次项系数.
3 3x2 6x 4 0.
解:移项,得
二次项系数化为1,得
为什么方程两 边都加12?
即a=0,b=2.
当堂练习
1.解下列方程: (1)x2+4x-9=2x-11;(2)x(x+4)=8x+12;
解:x2+2x+2=0,
解:x2-4x-12=0,
(x+1)2=-1.
(x-2)2=16.
此方程无解;
x1=6,x2=-2;
(3)4x2-6x-3=0;
解:x2 3 x 3 0, 24
如:已知x2-2mx+16是一个完全平方式,所以
一次项系数一半的平方等于16,即m2=16,
m对=于±含4.有多个未知数的二次式的等式,求未知数
的值,解题突破口往往是配方成多个完全平方式
构成非负数 和的形式
得其和为0,再根据非负数的和为0,各项均为0,
从而求解.如:a2+b2-4b+4=0,则a2+(b-2)2=0,
(x 3)2 21. 4 16
(4) 3x2+6x-9=0. 解:x2+2x-3=0, (x+1)2=4.
x1 3 4 21 ,
x2
3 4
21 ;
x1=-3,x2=1.
2.如图,在一块长35m、宽26m的矩形地面上,修建同样宽 的两条互相垂直的道路,剩余部分栽种花草,要使剩余部 分的面积为850m2,道路的宽应为多少?
人教版数学九年级上册教案21.2.1《配方法》
人教版数学九年级上册教案21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21章第2节的内容,本节课主要让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。
教材通过引入“完全平方公式”的概念,引导学生探索如何将一个二次多项式转化为完全平方形式,从而引出配方法。
学生在学习过程中,需要理解并掌握配方法的基本步骤,以及如何判断一个多项式是否可以配成完全平方形式。
二. 学情分析学生在学习本节课之前,已经学习了二次方程的解法、完全平方公式等知识,对于二次多项式的基本概念和性质有一定的了解。
但学生在运用配方法解决实际问题时,可能会遇到一些困难,如判断多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
因此,在教学过程中,教师需要关注学生的学习情况,引导学生积极参与课堂活动,提高学生运用配方法解决问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握配方法的原理和步骤,能够运用配方法将一个二次多项式转化为完全平方形式。
2.过程与方法目标:通过小组合作、讨论交流等学习活动,培养学生探索问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。
四. 教学重难点1.重点:配方法的原理和步骤。
2.难点:如何判断一个多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
五. 教学方法1.启发式教学:教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣。
2.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。
3.案例教学:教师通过举例子,让学生理解并掌握配方法的运用。
六. 教学准备1.准备相关教案和教学资料。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备一些实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)教师通过提出一个实际问题,引导学生思考如何解决。
例如:已知一个二次多项式 f(x) = x^2 - 6x + 9,请问如何将其转化为完全平方形式?2.呈现(10分钟)教师引导学生回顾二次方程的解法和完全平方公式,然后引导学生探索如何将 f(x) = x^2 - 6x + 9 转化为完全平方形式。
人教版九年级上册数学《配方法》一元二次方程PPT教学课件
将常数项移到右边,含未 2 2 -3=-1
知数的项移到左边
一移
移项
二化
二次项系数 左、右两边同时除以二次 2 - =
化为1
项系数
三配
配方
左、右两边同时加上一次
项系数一半的平方
利用平方根的意义直接开
平方
四开
开平方
五解
解两个一元 移项,合并
一次方程
2
3 1
即 x
4 16
★ 用配方法解方程
探究交流
怎样解方程x2+6x+4=0?
1.把方程变成(x+n)2=
x2+6x+4=0
移项
二次项系数为1的完全平方式:
x2+6x=-4
常数项等于一次项系数一半的平方.
两边都加上9
x2+6x+9=-4+9
配方
(x+3)2=5
2.用直接开平方法解方程(x+3)2=5
(x+3)2=5
开方
x x
1
2
例1 利用直接开平方法解下列方程:
(1) x2=25;
(1) x2=25,
解:
直接开平方,得 x 5,
x1 5 ,x2 5.
(2) x2-900=0.
(2)移项,得 x2=900.
直接开平方,得 x=±30,
∴x1=30, x2=-30.
★ 用直接开平方法解方程
对照例1中解方程的方法,你认为怎样解方程(x+2)2=25?
解:x2+2x-3=0,
(x+1)2=4.
x1=-3,x2=1.
5.如图,在R
九年级数学《二次函数(配方法)》课件
上平移;当 <0时,向下平移)得到的.
21.2 二次函数
——配方法
1 说出二次函数 y 4(x 2)2 1 图象的 开口方向,对称轴,顶点坐标,增减 性
2 它是由y=-4x2怎样平移得到的
学习目标
1 使学生掌握通过配方确定抛物线的开口方 向,对称轴,顶点坐标及最值
2 理解二次函数 y ax2 bx c 的性质
自主学习,b2
2a
4a
1的开不口画方图向象,,对直称接轴说,出顶点y 坐12标x2,增2x减 3性
2 不画图象,直接说出 y 2x2 4x 1
的开口方向,对称轴,顶点坐标,增减性
1 求下列抛物线的开口方向,顶点坐标,对称轴, 增减性,最值
(1) y x2 2x 2 (2) y 2x2 8x (3) y 2x2 4x 8
y ax2 bx c
a x2 b x c a
a
x2
b a
x
b 2a
2
b 2a
2
c
a
x
b 2a
2
b2 4a2
c
a x
b
2
4ac
b2
.
2a 4a
二次函数y=ax2+bx+c(a≠0)的图象和性质
抛物线
y=ax2+bx+c(a>0)
y=ax2+bx+c(a<0)
顶点坐标
b 2a
,
4ac 4a
b2
对称轴
直线x b 2a
开口方向 增减性
向上
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
最值
当x b 时,最小值为4ac b2
九年级数学上册配方法计算题
九年级数学上册配方法计算题
九年级数学上册涉及到配方法计算题的内容主要包括一元二次方程的配方法解题、配方法求解不等式、配方法求解二次函数的顶点等。
配方法是解决一元二次方程的常用方法之一,通过配方法可以将一元二次方程转化为完全平方的形式,从而更容易求解方程。
在配方法计算题中,学生需要掌握完全平方公式,即
(a+b)²=a²+2ab+b²和(a-b)²=a²-2ab+b²,以及利用这些公式将一元二次方程转化为完全平方的形式。
通过配方法,可以将一元二次方程转化为(x±a)²=b的形式,从而求得方程的解。
此外,学生还需要掌握如何利用配方法来解决不等式,以及如何利用配方法求解二次函数的顶点和对称轴等问题。
在解题过程中,学生需要注意化简表达式、正确运用完全平方公式、准确地进行计算和代入等步骤,确保解题过程的准确性和完整性。
另外,学生还需要理解配方法的原理和应用场景,从而能够灵活运用配方法解决实际问题。
总之,九年级数学上册的配方法计算题涉及到一元二次方程的配方法解题、配方法求解不等式、配方法求解二次函数的顶点等内
容,学生需要掌握相关的基本概念和方法,灵活运用配方法解决各种类型的数学问题。
希望这些信息能够帮助你更好地理解九年级数学上册配方法计算题的内容。
九年级数学上册《配方法》教案、教学设计
1.通过导入实际问题,激发学生对配方法的学习兴趣,引导学生主动探究配方法的应用。
2.采用讲解、示范、讨论等教学方法,帮助学生掌握配方法的步骤和要领。
3.设计丰富的例题和练习题,让学生在实际操作中巩固所学知识,提高解题能力。
4.引导学生总结配方法的使用规律,培养学生的抽象思维和归纳能力。
难点:引导学生从实际问题中抽象出一元二次方程,并运用配方法进行求解。
3.重点:通过小组讨论,培养学生的合作意识和团队协作能力。
难点:引导学生学会倾听、表达、交流,形成良好的讨论氛围,提高讨论效果。
(二)教学设想
1.针对重点和难点,采用以下教学策略:
a.讲解与示范:以生动的语言和具体的例题,阐述配方法的原理和应用,让学生在模仿中掌握配方法。
3.引入新课:在学生尝试解决问题的基础上,引入配方法的概念,告诉学生今天我们将学习一种解决这类问题的方法——配方法。
(二)讲授新知
1.配方法的定义:介绍配方法的概念,即通过添加和减去同一个数,使一元二次方程的左边成为一个完全平方公式,从而求解方程。
2.配方法的步骤:
a.将一元二次方程写成标准形式:ax^2 + bx + c = 0。
b.选择一道实际问题时,运用配方法求解,并将解题过程和答案写在作业本上。
c.总结配方法的步骤和要领,以书面形式提交。
2.选做题:
a.完成课后拓展题:根据已学的配方法,尝试解决更复杂的一元二次方程,如含参方程、分式方程等。
b.针对课堂所学,设计一道与实际生活相关的一元二次方程问题,并运用配方法求解。
3.小组合作作业:
b.变式练习:设计不同类型的练习题,让学生在解题过程中灵活运用配方法,巩固所学知识。
人教版九年级数学上册一元二次方程的解法(二)配方法课件
例1.解下列方程:
2
1
x
8x 1 0
解:移项,得 x2-8x=-1,
配方,得 x2-8x+42=-1+42 ,
即 (x-4)2=15
由此可得 x 4 15,
x1 4 15, x2 4 15.
例1.解下列方程:
2
2
2
x
1 3x
解:移项,得 2x2-3x=-1,
二次项系数化为1,得
2
配方,得
3 3
1 3
x x ,
2 4
2 4
2
2
即
由此可得
3
1
x x ,
22
2
2
3 1
x ,
4 16
3
1
x ,
4
4
1
x1 1, x 2 .
2
例1.解下列方程:
3x
3
2
6x 4 0
1.理解配方法的概念.
2.掌握用配方法解一元二次方程及解决有关问题.(重点)
3.探索直接开平方法和配方法之间的区分和联系.(难点)
1.用直接开平方法解下列方程:
(1)4x2=1
;
1
2
x=
解:
4
直接开平方,得
1
x ,
2
1
1
x1 ,x2
2
2
(2)(x-1)2=3.
解:(x-1)2=± 3
加其他数行吗?
x2+6x=-4
2
两边都加上9(即( ) )
x2+6x+9=-4+9
九年级数学配方法解一元二次方程
左边写成完全平方的形式
(x 3)2 5
开平方
变成了(x+h)2=k 的形式
x3 5
x3 5,x3 5 得: x1 3 5, x2 3 5
用配方法解一元二次方程的步骤
1、 常数项 移到方程右边. 2、将方程左边配成一个 完全平方 式。 (两边都加上 一次项系数一半的平方 ) 3、用 直接开平方法 解出原方程的解。
根据平方根的定义,可解得 x1 a,x2 a
这种解一元二次方程的方法叫做直接开平方
法. 2.把一元二次方程的左边配成一个完全平方
式,然后用开平方法求解,这种解一元二次方程的 方法叫做配方法.
注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.
21.2 解一元二次方程 21.2.2 公式法复习题
1. 证明:代数式x2+4x+ 5的值不小于1.
2. 证明:代数式-2y2+2y-1的值不大于
1 2
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
1.一般地,对于形如x2=a(a≥0)的方程,
答:道路宽1米
课堂练习
3.若实数x、y满足(x+y+2)(x+y-1)=0,
则x+y的值为( D ).
(A)1
(B)-2
(C)2或-1 (D)-2或1
4.对于任意的实数x,代数式x2-5x+10的值
是一个( B )
(A)非负数 (B)正数
(C)整数 (D)不能确定的数
综合应用
例题3. 用配方法解决下列问题
人教版九年级数学上册配方法课件
1.一般地,对于形如x²=a(a≥0)的方程,根据平方根 的定义,可解得这种解一元二次方程的方法叫做直接开 平方法.
2.把一元二次方程的左边配成一个完全平方式,然
后用开平方法求解,这种解一元二次方程的方法叫做配 方法.
注意:配方时,等式两边同时加上的是一次项系数
一半的平分. 3.用配方法解形如x²+bx+c=0的一元二次方程的一般
什么是完全平方式? 式子a²±2ab+b²叫做完全平方式 且a²±2ab+b²=(a±b)².
1、如果一个数的平方等于9,则这个数是 ±3 ,
若一个数的平方等于5,则这个数是x 5, 。
一个正数有几个平方根,它们具有怎样的关系?什么
是平方根?
如果x2=a,那么x= a.
2、用字母表示完全平方公式。
5.如果x²- 4x+y²+6y+ z +213=0,求 xyz 的值.
用配方法解二次项系数不是1的一元二次方程的一 般步骤:
1.化1: 二次项系数化为1,(方程两边都除以二次项 系数)
2.移项: 把常数项移到方程的右边, 3.配方:方程两边都加上一次项系数一半的平分, 4.变形:义,方程两边开平方, 6.求解:解一元一次方程, 7.定解:写出原方程的解是.
填一填
(1) x2 2x __1_2__ (x __1_)2
(2) x2 8x __4_2__ (x__4 _)2 (3) y2 5y (__52_)_2 _ ( y _52__)2
(4)
y2
1 2
y
(__14_)2_
(
y
__14 _)2
注意:左边常数项是一次项系数一半的
平方,右边是一次项系数的一半。
人教版数学九年级上册解一元二次方程-配方法课件
一、复习回顾
用直接开平方法解下列方程:
(1)x 2 121
解:(1)x 121
x 11
x1= -11,x2=-11
(2)
解:(2)
(14x) 2 49
14x 7
1
x
2
二、探索新知
填一填(根据 a 2ab b (a b) )
2
2
5 ( x __)
即 k2-4k+5>0
1、配方法:
像这样,把方程的左边配成含有x的完全平方情势,右边是非负数,
从而可以用直接开平方法来解方程的方法就做配方法。
2、用配方法解一元二次方程的步骤:
①移项
②化1
③配方
④开平方
⑤降次
⑥定解
注意:配方时,方程两边同时加上的是一次项系数一半的平方.
布置作业
解下列方程:
1 2 + 10 + 9 = 0;
这个最小值.
解:对原式进行配方,则原式=(a+1)2+17
∵(a+1)2≥0,
∴当a=-1时,原式有最小值为17.
状元成才路
5.用配方法说明:无论k取何实数,多项式k2-4k+5的值必定大于零.
解:k2-4k+5
=k2-4k+4+1
=(k-2)2+1
∵无论k取何实数,(k-2)2≥0
∴(k-2)2+1>0
3
x
3
b 2
( )
2
5213源自( x __)2
(5) x bx ___ ( x __)
2
b
2
2
二、探索新知
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tt平台作假
[单选]TXB2减少见于()A.血栓前状态B.糖尿病C.心肌梗死D.脑血栓形成E.服用阿司匹林类药物 [多选]桁架结构包括的构件有()。A.上弦B.下弦C.腹杆D.支架 [填空题]回转窑密封装置的基本型式有()、()、()和()四种。 [单选]混凝土在硬化过程中,由于水泥水化生成物的固相体积,小于水化前反应物的总体积,从而致使混凝土产生体积减缩,这种现象称为()。A.干湿变形B.徐变C.温度变形D.化学收缩 [多选]商品混凝土和易性是一项综合性能,它包括下列哪些方面的含义?()A、流动性B、粘聚性C、保水性D、耐久性 [单选]患者女,23岁,风湿性心脏病二尖瓣狭窄合并心房颤动,有活动性气短,查体:心界增大,心率130次/min,心律绝对不齐,双下肢水肿。ECG示快速心房颤动,最佳治疗是()A.阿替洛尔B.口服地高辛C.静脉注射西地兰D.口服胺碘酮E.静脉注射美托洛尔 [单选]关于骨产道,下述哪项是正确的().A.骨盆是由骶骨、耻骨、尾骨组成B.真骨盆两侧为髂骨翼,后面为第五腰椎C.骨盆入口平面为骶岬、髂耻线与耻骨联合上缘D.骨盆出口平面是由骶尾关节、两侧坐骨棘、耻骨联合下缘围绕的骨盆腔最低平面E.中骨盆平面横径为坐骨结节间径 [单选]性病性淋巴肉芽肿的治疗可选用下列哪些药物,除了()A.多西环素B.红霉素C.氯霉素D.大观霉素 [单选]关于昏迷,哪项不正确A.有哈欠、吞咽等反射动作,提示尚无损害脑干功能B.意识消失、呼吸、瞳孔反应和眼球活动仍正常,提示代谢抑制或药物中毒C.昏迷伴上肢肘部呈屈曲位肌强直者,提示双大脑半球功能障碍,但脑干无损害D.昏迷伴上下肢均呈伸直位肌强直提示双上位脑干结构损害 [单选,A1型题]生活制度对儿童主要影响作用,不含有()A.保障儿童生理及生活的需要B.防止疲劳C.增强机体抵抗力D.培养儿童良好的性格E.促进生长发育 [单选]卵巢交界性浆液性囊腺瘤哪项描述是错误的()A.多为双侧中等大小B.较少乳头状生长在囊内C.细胞核轻度异型D.核分裂象<3/HPFE.无间质浸润 [单选,A2型题]于残疾状态下所消耗的平均寿命,从而得到无残疾状态下的预期平均生存年数指的是()A.减寿人年数B.无残疾期望寿命C.活动期望寿命D.伤残调整生命年E.健康期望寿命 [多选]在社会与个人的关系上,认为个体行动是能动的社会学家有()A.韦伯B.涂尔干C.布鲁默(符号互动)D.吉登斯(类意识) [()A、FMGC1控制1号发动机,FMGC2控制2号发动机B、FMGC1控制两台发动机C、FMGC2控制两台发动机D、飞行控制和发动机仅由一台FMGC控制 [填空题]《水质色度的测定》(GB/T11903—1989)中规定,色度测定的是水样经()mim澄清后样品的颜色。 [单选]患者男性,65岁,3周前因脑血管意外导致左侧肢体瘫痪。患者神志清楚,说话口齿不清,大小便失禁。护士协助患者更换卧位后,在身体空隙处垫软枕的作用是A.促进局部血液循环B.减少皮肤受摩擦刺激C.降低空隙处所受压强D.降低局部组织所承受的压力E.防止排泄物对局部的直接刺激 [单选,A1型题]有关检查胎位的四步触诊法,哪项是错误的()A.用以了解子宫的大小、胎先露、胎方位B.第三步是双手置于耻骨联合上方,弄清先露部是胎头还是胎臀C.第一步是双手置于子宫底部,了解宫高度,井判断是胎头还是胎臀D.第二步是双手分别置于腹部两侧,辨别胎背方向E.第四步双 [单选]气体保护焊采用左焊法的特点之一是()A、不易焊偏B、焊缝成形良好C、熔池不易观察D、焊缝较窄而凸 [判断题]冷沉淀融化后需放置室温2小时后输用。A.正确B.错误 [单选,案例分析题]男性,23岁。不规则发热1月余,伴双手指关节肿痛,四肢关节肌肉痛,口腔溃疡就诊。化验:RF(+),尿液检查蛋白尿(+++)。该患者在体检时,除哪项体征外余均可能出现()A.面部蝶形水肿性红斑B.关节畸形、肌肉萎缩C.胸腔积液D.贫血面容E.雷诺现象 [单选]()不是按月领取基本养老保险的条件之一A、达到法定退休年龄B、办理了退休手续C、个人缴费至少满15年D、工龄满30年 [问答题]北京某工程据统计混凝土实物工作量约为23000m3,混凝土为(商混)不考虑现场搅拌,混凝土养护用水定额取700L/m3;拟定结构及前期阶段施工工期为300d;每天按照1.5个工作班计算。其中:K1=1.1,Q1=23000m3,N1=7501/m3,T1=120d,t=1.5班,K2=1.5。生活区高峰人数为500人, [单选]有关检查胎位的四步触诊法,下述哪项是错误的()A.用以了解子宫的大小,胎先露、胎方位B.第一步是双手置于子宫底部了解宫底高度,并判断是胎头还是胎臀C.第二步是双手分别置于腹部两侧,辨别胎背方向D.第三步是双手置于耻骨联合上方,弄清先露部是头还是臀E.第四步双手 [单选]余师愚的代表著作是:().A.《广温疫论》B.《疫疹一得》C.《温疫论》D.《伤寒温疫条辨》 [填空题]教育行政部门负责学校卫生工作的行政管理。卫生行政部门负责对学校卫生工作的()指导。 [单选]Web服务器建设方式不包括()A.整机托管B.租用网页空间C.委托IAPD.租用网页空间 [填空题]地球已经是一个40多亿年的老寿星了,她起源于()星云。 [单选,A1型题]提出"理性情绪疗法"的心理学家是()A.艾里斯B.贝克C.迈切鲍姆D.艾森克E.拉扎勒斯 [单选]煤矿职工因行使安全生产权利而影响工作时,有关单位不得扣发其工资或给予处分,由此造成的停工、停产损失,应由()负责。A.该职工B.企业法人C.责任者D.工会 [单选]下列的会计恒等式,不正确的是()。A.资产=权益=债权人权益+所有者权益B.资产=负债+所有者权益C.所有者权益=资产+负债D.收入一费用=利润 [单选]最易并发咯血的疾病是()A.支气管扩张B.支气管内异物C.良性支气管瘤D.慢性支气管炎E.支气管哮喘 [判断题]泵站内轴流泵的电机应采用保护接零,剩水泵的电机应采用保护接地。A.正确B.错误 [单选,A2型题,A1/A2型题]高钠血症的诊断标准为血清钠是()A.>150mmol/LB.>160mmol/LC.>165mmol/LD.135mmol/L~145mmol/LE.125mmol/L~135mmol/L [单选,A2型题,A1/A2型题]最常见的外风证候是()A.咳嗽,喉痒,鼻塞B.风疹,肤痒,麻木C.面浮,肢肿,少尿D.恶风,微热,汗出E.眩晕,抽搐,震颤 [单选]卧式车床最大回转直径参数在型号中是以什么折算系数表示的。()A.1B.1/10C.1/100D.1/1000 [名词解释]非法阻挡(HOLDING) [单选]胃癌最好发的部位是()A.幽门管B.胃窦大弯侧C.胃体大弯侧D.胃窦小弯侧E.贲门小弯侧 [多选]按照《建设工程质量管理条例》,工程竣工验收应当具备的条件有()。A.有完整的技术档案和施工管理资料B.部分工程的质量必须优良C.有施工单位签署的工程保修书D.有勘察、设计、监理单位共同签署的质量合格文件E.已经办理竣工结算 [单选,A1型题]新生儿化脓性脑膜炎,脑膜刺激征不明显的原因是()A.机体的反应能力差B.脑膜炎症不如年长儿严重C.颅缝及前囟未闭,对颅内压升高起缓冲作用D.颈肌尚不发达E.大脑处于抑制状态 [填空题]导体通电后在磁场中所受电磁力的方向由()确定,而导线在磁场作切割磁力线运动时产生的感应电动势的方向由()来确定。