人教版高中数学必修四 平面向量导学案
高中数学 第二章《平面向量》导学案 新人教A版必修4
第二章《平面向量》导学案(复习课)【学习目标】1.理解向量、零向量、向量的模、单位向量、平行向量、反向量、相等向量、两向量的夹角等概念.2.了解平面向量基本定理.3.向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接).4.了解向量形式的三角形不等式:||a |-|b |≤|a ±b |≤|a |+|b |(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a |2+|b |2)=|a -b |2+|a +b |2.5.了解实数与向量的乘法(即数乘的意义).6.向量的坐标概念和坐标表示法.7.向量的坐标运算(加、减、实数和向量的乘法、数量积).8.数量积(点乘或内积)的概念,a ·b =|a ||b |cos θ=x 1x 2+y 1y 2,注意区别“实数与向量的乘法、向量与向量的乘法”.【导入新课】向量知识,向量观点在数学、物理等学科的很多分支中有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直.新授课阶段例1 已知(3,0),(,5)a b k ==r r ,若a 与b 的夹角为43π,则k 的值为_______.解析:例2 对于任意非零向量a 与b ,求证:||a |-|b ||≤|a ±b |≤|a |+ |b |. 证明:例3 已知O 为△ABC 内部一点,∠AOB=150°,∠BOC=90°,设OA =a ,OB =b ,OC =c ,且|a |=2,|b |=1,| c |=3,用a 与b 表示c ,i ,j . 解:例4 下面5个命题:①|a ·b |=|a |·|b |②(a ·b )2=a 2·b2③a ⊥(b -c ),则a ·c =b ·c ④a ·b =0,则|a +b |=|a -b |⑤a ·b =0,则a =0或b =0,其中真命题是( )A .①②⑤ B.③④ C.①③ D.②④⑤ 解析:例 5 已知向量(3,4)OA =-u u u r ,(6,3)OB =-u u u r ,(5,(3))OC m m =--+u u u r,(1)若点A 、B 、C 能构成三角形,求实数m 应满足的条件; (2)若ABC ∆为直角三角形,且A ∠为直角,求实数m 的值. 解:例6 已知在△ABC 中,)3,2(=,),,1(k =且△ABC 中∠C 为直角,求k 的值. 解:课堂小结本章主要内容就是向量的概念、向量的线性运算、向量知识解决平面几何问题;掌握向量法和坐标法,以及用向量解决平面几何问题的步骤.作业 见同步练习 拓展提升 一、选择题1.在矩形ABCD 中,O 是对角线的交点,若e e 则213,5===( )A .)35(2121e e +B .)35(2121e e -C .)53(2112e e - D .)35(2112e e - 2.化简)]24()82(21[31--+的结果是( )A .b a -2B .a b -2C .a b -D .b a -3.对于菱形ABCD ,给出下列各式:①=;②||||=;③||||+=-; ④222||||4||,AC BD AB +=u u u ru u u ru u u r其中正确的个数为 ( )A .1个B .2个C .3个D .4个4.在 ABCD 中,设====,,,,则下列等式中不正确的是( )A .=+B .=-C .=-D .=-5.已知向量与反向,下列等式中成立的是( ) A .||||||-=- B .||||-=+ C .||||||-=+D .||||||+=+6.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为( )A .(1,5)或(5,-5)B .(1,5)或(-3,-5)C .(5,-5)或(-3,-5)D .(1,5)或(-3,-5)或(5,-5)7.下列各组向量中:①)2,1(1-=e )7,5(2=e ②)5,3(1=e )10,6(2=e ③)3,2(1-=e )43,21(2-=e 其中能作为表示它们所在平面内所有向量的基底的是 ( )A .①B .①③C .②③D .①②③8.与向量)5,12(=d 平行的单位向量为 ( )A .)5,1312(B .)135,1312(--C .)135,1312(或)135,1312(--D .)135,1312(±±9.若32041||-=-b a ,5||,4||==b a ,则b a 与的数量积为( )A .103B .-103C .102D .1010.若将向量)1,2(=a 围绕原点按逆时针旋转4π得到向量b ,则b 的坐标为( ) A .)223,22(--B .)223,22(C .)22,223(-D .)22,223(-11.已知||22p =u r ,||3q =r ,,p q u r r 的夹角为4π,如图,若52AB p q =+u u u r u r r ,3AC p q =-u u u r u r r ,D 为BC 的中点,则||AD uuu r为( ).A .215B .215C .7D .18二、填空题12.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 . 13.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 .14.已知)2,3(=a ,)1,2(-=b ,若b a b a λλ++与平行,则λ= . 15.已知e 为单位向量,||a =4,e a 与的夹角为π32,则e a 在方向上的投影为 .三、解答题16.已知非零向量b a ,满足||||b a b a -=+,求证: b a ⊥.17.设21,e e 是两个不共线的向量,2121212,3,2e e e e e k e -=+=+=,若A 、B 、D 三点共线,求k 的值.参考答案 例1解析:如图1,设a OA =,43π=∠AOC ,直线l 的方程为5=y ,设l 与OC 的交点为B ,则OB 即为b , 显然()5,5-=b ,5-=∴k . 例2证明:(1)两个非零向量a 与b 不共线时,a +b 的方向与a ,b 的方向都不同,并且 |a |-|b |<|a ±b |<|a |+|b |;(2)两个非零向量a 与b 共线时,①a 与b 同向,则a +b 的方向与a .b 相同且|a +b |=|a |+|b |.②a 与b 异向时,则a +b 的方向与模较大的向量方向相同,设|a |>|b |,则|a +b |=|a |-|b |.同理可证另一种情况也成立.例3解:建立平面直角坐标系xoy ,其中i , j 是单位正交基底向量, 则B (0,1),C (-3,0),设A (x ,y ),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A (1,-3),也就是=-3, =, =-3.所以-3=33+,即=3-33.例4解析:根据向量的运算可得到,只有①③对,故选择答案 C 例 5解:(1)若点A 、B 、C 能构成三角形,则这三点不共线,∵(3,4)OA =-u u u r ,(6,3)OB =-u u u r ,(5,(3))OC m m =--+u u u r, ∴(3,1)AB =u u u r ,(1,)BC m m =---u u u r,而AB u u u r 与BC uuur 不平行,xy ABOCab图1即31m m -≠--,得12m ≠, ∴实数12m ≠时满足条件. (2)若ABC ∆为直角三角形,且A ∠为直角,则AB AC ⊥u u u r u u u r,而(3,1)AB =u u u r ,(2,1)AC m m =--u u u r,∴3(2)(1)0m m -+-=,解得74m =. 例6解:(1,)(2,3)(1,3),BC AC AB k k =-=-=--u u u ru u u ru u u rQ0(1,)(1,3)0C RT AC BC AC BC k k ∠∠⇒⊥⇒⋅=⇒⋅--=u u u r u u u r u u u r u u u rQ 为2313130.k k k ±⇒-+-=⇒=拓展提升 题号 1 2 3 4 5 6 7 8 9 10 11 答案 ABCBCDACABA11.提示:A 11()(6)22AD AC AB p q =+=-u u u r u u u r u u u r ur r ,∴222211||||(6)361222AD AD p q p p q q ==-=-+u u u r u u u r u r r u r u r r r g2211536(22)12223cos 3242π=⨯-⨯⨯⨯+=. 二、填空题:12. 120° 13. 矩形 14、 1± 15. 2- 三、解答题: 16.证:()()22b a b a b a b a -=+⇒+=+⇒-=+Θ2222220.a ab b a ab b ab ⇒++=-+⇒=r r r r r r r r r r,a b r rQ 又为非零向量,.a b ∴⊥r r17.()121212234,BD CD CB e e e e e e =-=--+=-u u u r u u u r u u u r u r u u r u r u u r u r u u rQ若A ,B ,D 三点共线,则与共线,,AB BD λ∴=u u u r u u u r设即121224.e ke e e λλ+=-u r u u r u r u u r 由于12e e u r u u r 与不共线,可得: 11222,4.e e ke e λλ==-u r u ru u r u u r故2,8.k λ==-。
人教A版《必修4》“2.5平面向量应用”导学案
高一数学《必修4》导学案 2.5 平面向量数量积的几何、物理背景及应用【课前导学】1.向量在平面几何中的应用:平面向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:(2)证明垂直问题,常用数量积的运算性质:a b ⊥⇔ ⇔ .(3)求夹角问题,利用夹角公式:cos ____________________________a b θθ==(是与的夹角)____________.2.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是 ,它们的分解与合成与向量的 相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,这是力F 与位移s 的数量积.即__________W F s F s θ=⋅=(是与的夹角).【课内探究】变式:如图,在正方形ABCD 中,E ,F 分别为AB ,BC 的中点.求证:AF ⊥DE (利用向量证明).变式2:已知作用于同一物体的两个力1F 、2F ,大小分别是5 N 、3 N ,1F 、2F 所成的角为60°,则合力F 的大小为________;合力F 与1F 的夹角的余弦值为________.【总结提升】 平面向量作为一种运算工具,经常与函数、不等式、三角函数、数列、解析几何等知识结合,当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式.【课后作业】1.已知在△ABC 中,AB →=a ,AC →=b ,且a ·b <0,则△ABC 的形状为( ).A .钝角三角形B .直角三角形C .锐角三角形D .等腰直角三角形2.已知作用于原点的两个力F 1=(3,4),F 2=(2,-5),现增加一个力F ,使这三个力F 1,F 2,F 的合力为0,则F =________.3.在平面直角坐标系中,正方形OABC 的对角线OB的两端点分别为O (0,0),B (1,1),则AB →·AC →=________.4.已知点A (1,0),直线l :y =2x -6,点R 是直线l 上的一点,若RA →=2AP →,求点P (,)x y 的坐标中,x y 的关系式.宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
人教A版高中数学必修4第二章 平面向量2.1 平面向量的实际背景及基本概念导学案(1)
【学习目标】1. 通过对物理中有关概念的分析,了解向量的实际背景,进而深刻理解向量的概念;2. 掌握向量的几何表示;理解向量的模、零向量与单位向量的概念.3. 在理解向量和平行向量的基础上掌握相等向量和共线向量的概念. 【学习过程】 一、自主学习 (一)知识链接:复习:有一类量如长度、质量、面积、体积等,只有 没有 ,这类量我们称之为数量. 而力是常见的物理量,重力、浮力、弹力等都是既有 又有 的量;那这样的量叫什么呢? (二)自主探究:(预习教材P74-P77)探究一:向量的概念:数学中,我们把这种既有 ,又有 的量叫做向量. 问题1:数量和向量的异同点有哪些? 探究二:向量的表示法问题2:向量有几种表示方法?⑴我们常用 来表示向量,线段按一定比例画出,它的长短表示向量的大小,箭头的指向表示向量的方向.⑵以A 为起点,B 为终点的有向线段记作 ,线段AB 的长度称为模,记作AB u u u r .有向线段包含三个要素:⑶有向线段也可用字母如a r , ,L 表示.探究三:几个特殊的向量零向量:长度为 的向量;单位向量:长度等于 的向量.平行向量(共线向量):方向相同或相反的非零向量. 若向量a r,b r 平行,记作://a b r r. 因为任一组平行向量都可以移动到同一条直线上,因此,平行向量也叫做共线向量问题3:如何理解零向量的方向?探究四:相等向量:长度相等且 的向量叫做相等向量,用有向线段表示的向量a r 与b r 相等,记作:a b =r r.二、合作探究1、在如图所示的坐标纸中,用直尺和圆规画出下列向量: ⑴3OA =u u u r ,点A 在点O 的正北方向; ⑵22OB =u u u r,点B 在点O 南偏东60o方向.2、教材P75例1学法指导:请将教材上的空白处填好。
先用刻度 尺量出图上距离,再算出实际距离。
≈AB ;≈AC 。
u u u rOE u u u r , OF u u u r相等的向量.变式:(1)与AB u u u r相等的向量有哪些?(2)OA 与EF 相等吗?OB 与AF 相等吗?三、目标检测(A 组必做,B 组选做) A 组:1、下列说法正确的是( ).A .向量AB u u u r 与向量BA u u u r的长度不等 B .两个有共同起点长度相等的向量,则终点相同 C .零向量没有方向 D .任一向量与零向量平行 2、在四边形ABCD 中,AB DC =u u u r u u u r,则相等的向量是( ) .A.AD u u u r 与CB u u ur B.OB u u u r 与OD u u u r C.AC u u u r 与BD u u u rD.AO u u u r 与OC u u u r3、边长为3的等边ABC ∆的底边BC 上的中线向量AD u u u r 的模AD u u u r为 .4、四边形ABCD 和ABDE 都是平行四边形.⑴与向量ED u u u r相等的向量有哪些?⑵若3AB =u u u r ,则向量EC u u u r的模等于多少?B 组:1、若AB AD=u u u r u u u r ,且BA CD =u u u r u u u r ,则四边形ABCD 的形状为( ).A.平行四边形B.菱形C.矩形D.等腰梯形 2、下列命题中,说法正确的有①若a b =r r ,b c =r r ,则a c =r r ;②若//a b r r ,//b c r r ,则//a c r r ; ③若a b=r r ,则a b =r r 或a b =-r r ;④若AB DC =u u u r u u u r ,则A ,B ,C ,D 是一个平行四边形的四个顶点.3、在正方体''''ABCD A B C D -中,与AB u u u r 平行的向量有哪些?四、课后作业 五、课后反思BA D CE OCDB班级: 组别: 组号:___________ 姓名:§2.2.1向量的加法运算及其几何意义 【学习目标】1. 通过实际例子,掌握向量的加法运算,并理解向量加法的平行四边形法则和三角形法则及几何意义。
人教A版《必修4》“2.4.2平面向量数量积坐标表示、模、夹角”导学案
高一数学《必修 4》导教案平面向量的数目积的坐标表示、模、夹角【课前导学】(一)复习引入:1.平面向量数目积(内积)的定义:a b __________ ,此中|a | cos 叫做 _________________. 2.两个向量的数目积的重要性质:(1)a b ________ ;(2)a a _____ 或|a| _____ ;(3)cos __________3.研究:已知两个非零向量 a (x ,y ),1 1 b (x ,y ) ,试用a 和b 的坐标表示a b .2 2提示:若直角坐标系中,x 轴方向的单位向量为i ,y 轴方向上的单位向量为j ,则向量a,b 用i, j 可以表示为a ,b ;此中i i ,j j ,i j故:a b =(二)新课学习(阅读课本 P106~107 后,达成以下内容)1、平面两向量数目积的坐标表示:若两个非零向量a (x1 ,y1) 、b (x2 ,y2 ) ,则a b _________即,两个向量的数目积等于它们对应坐标的________________.2. 平面内两点间的距离公式:(1)设a ( x, y) ,则2a ____ _________,故 | a| _________.(2)假如A(x ,y ) 、B(x2 ,y2) ,那么AB _____________,1 1A、B 间的距离| AB | ___________________ (平面内两点间的距离公式)3、向量垂直的判断:设a (x1,y1) 、b (x2 ,y2 ) ,则a ⊥b a b ____ _____________ .4、两向量夹角的余弦:已知两个非零向量a (x1,y1 ) ,b (x2 ,y2 ) ,a 与b 之间的夹角为,则cos _____________________.【预习自测】1、已知a ( 3, 4) ,b (5, 2) ,则a b _________ ,| a | _______ ,|b | _______ .2、已知a (3 ,2) ,b (2,3) ,a 与b 之间的夹角为,则cos ______.3、若BA ( 2, 2) ,BC (1,1) ,则ABC _________.【典例剖析】例1、已知a ( 3, 4), b (6, 8), 求 a b a b 及|a b|的值.例 2、已知A( 1, 4), B (5,2), C (3,4) ,先作图察看△ABC 的形状,而后给出证明.第 3 页变式:若a (3 ,4),b a,且 b的起点坐标为 (1,2),终点坐标为 ( x,3x ), 则b _______.例3、(1)已知a (1, 3),b ( 2,2 3),求a 与b的夹角 .(2)设a (1, 2),b ( 2, 3 ),又c 2a b ,d a mb ,且c与d 的夹角为 45 ,务实数m 的值.【总结提高】1、掌握平面向量数目积的坐标表示,即两个向量的数目积等于它们对应坐标的乘积之和;2、要学会运用平面向量数目积的坐标表示解决相关长度、角度及垂直问题 .【课后作业】1、已知a (2,3), b ( 2, 4), c ( 1, 2) ,则(1)b ______, a b ______ ;(2)求a b a b ,a (b c).2、求证:A(1,0), B (5, 2), C (8,4), D (4,6) 为极点的四边形是一个矩形 .3、(1)已知||a 3, b=(1,2), 且a //b, 求a的坐标..(提示:设a的坐标为 ( x, y) )(2)已知a (4, 2), 求与 a垂直的单位向量 e的坐标 .4、(选做)课本 P108 B组第 2 题第 4 页。
人教A版高中数学必修4第二章平面向量2.3.1平面向量基本定理导学案
2.3.1.平面向量基本定理学习目标.1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.知识点一.平面向量基本定理思考1.如果e 1,e 2是两个不共线的确定向量,那么与e 1,e 2在同一平面内的任一向量a 能否用e 1,e 2表示?依据是什么?答案. 能.依据是数乘向量和平行四边形法则.思考2.如果e 1,e 2是共线向量,那么向量a 能否用e 1,e 2表示?为什么? 答案. 不一定,当a 与e 1共线时可以表示,否则不能表示.梳理.(1)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二.两向量的夹角与垂直思考 1.平面中的任意两个向量都可以平移至起点,它们存在夹角吗?若存在,向量的夹角与直线的夹角一样吗? 答案. 存在夹角,不一样.思考2.△ABC 为正三角形,设AB →=a ,BC →=b ,则向量a 与b 的夹角是多少? 答案.如图,延长AB 至点D ,使AB =BD ,则BD →=a ,∵△ABC 为等边三角形,∴∠ABC =60°,则∠CBD =120°,故向量a 与b 的夹角为120°. 梳理.(1)夹角:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角(如图所示).当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向. (2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a ⊥b .类型一.对基底概念的理解例1.如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是(..) ①λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. A.①② B.②③ C.③④ D.② 答案.B解析.由平面向量基本定理可知,①④是正确的;对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个,故选B.反思与感悟.考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来. 跟踪训练1.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是(..) A.e 1-e 2,e 2-e 1 B.2e 1-e 2,e 1-12e 2C.2e 2-3e 1,6e 1-4e 2D.e 1+e 2,e 1-e 2答案.D解析.选项A 中,两个向量为相反向量,即e 1-e 2=-(e 2-e 1),则e 1-e 2,e 2-e 1为共线向量;选项B 中,2e 1-e 2=2(e 1-12e 2),也为共线向量;选项C 中,6e 1-4e 2=-2(2e 2-3e 1),为共线向量.根据不共线的向量可以作为基底,只有选项D 符合. 类型二.向量的夹角例2.已知|a |=|b |=2,且a 与b 的夹角为60°,设a +b 与a 的夹角为α,a -b 与a 的夹角是β,求α+β.解.如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA 、OB 为邻边作▱OACB , 则OC →=a +b ,BA →=OA →-OB →=a -b , BC →=OA →=a .因为|a |=|b |=2,所以△OAB 为正三角形, 所以∠OAB =60°=∠ABC , 即a -b 与a 的夹角β=60°.因为|a |=|b |,所以平行四边形OACB 为菱形, 所以OC ⊥AB ,所以∠COA =90°-60°=30°, 即a +b 与a 的夹角α=30°, 所以α+β=90°.反思与感悟.(1)求两个向量夹角的关键是利用平移的方法使两个向量起点重合,作两个向量的夹角,按照“一作二证三算”的步骤求出.(2)特别地,a 与b 的夹角为θ,λ1a 与λ2b (λ1、λ2是非零常数)的夹角为θ0,当λ1λ2<0时,θ0=180°-θ;当λ1λ2>0时,θ0=θ.跟踪训练2.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.答案.90°解析.由AO →=12(AB →+AC →)知,O ,B ,C 三点共线,且O 是线段BC 的中点,故线段BC 是圆O 的直径,从而∠BAC =90°,因此AB →与AC →的夹角为90°.类型三.平面向量基本定理的应用例3.如图所示,在▱ABCD 中,E ,F 分别是BC ,DC 边上的中点,若AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →.解.∵四边形ABCD 是平行四边形,E ,F 分别是BC ,DC 边上的中点,∴AD →=BC →=2BE →,BA →=CD →=2CF →,∴BE →=12AD →=12b ,CF →=12BA →=-12AB →=-12a .∴DE →=DA →+AB →+BE →=-AD →+AB →+BE → =-b +a +12b =a -12b ,BF →=BC →+CF →=AD →+CF →=b -12a .引申探究若本例中其他条件不变,设DE →=a ,BF →=b ,试以a ,b 为基底表示AB →,AD →. 解.取CF 的中点G ,连接EG . ∵E 、G 分别为BC ,CF 的中点,∴EG →=12BF →=12b ,∴DG →=DE →+EG →=a +12b .又∵DG →=34DC →=34AB →,∴AB →=43DG →=43(a +12b )=43a +23b .又∵AD →=BC →=BF →+FC →=BF →+12DC →=BF →+12AB →,∴AD →=BC →=b +12(43a +23b )=23a +43b . 反思与感悟.将不共线的向量作为基底表示其他向量的方法有两种:一种是利用向量的线性运算及法则对所求向量不断转化,直至能用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解.跟踪训练3.如图所示,在△AOB 中,OA →=a ,OB →=b ,M ,N 分别是边OA ,OB 上的点,且OM →=13a ,ON →=12b ,设AN →与BM →相交于点P ,用基底a ,b 表示OP →.解.OP →=OM →+MP →,OP →=ON →+NP →. 设MP →=mMB →,NP →=nNA →,则 OP →=OM →+mMB →=13OA →+m (OB →-OM →)=13a +m (b -13a )=13(1-m )a +m b , OP →=ON →+nNA →=12OB →+n (OA →-ON →)=12b +n (a -12b )=12(1-n )b +n a . ∵a ,b 不共线, ∴⎩⎪⎨⎪⎧ 13(1-m )=n ,12(1-n )=m ,即⎩⎪⎨⎪⎧n =15,m =25.∴OP →=15a +25b .1.下列关于基底的说法正确的是(..)①平面内不共线的任意两个向量都可作为一组基底; ②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的. A.① B.② C.①③ D.②③ 答案.C解析.零向量与任意向量共线,故零向量不能作为基底中的向量,故②错,①③正确. 2.在直角三角形ABC 中,∠BAC =30°,则AC →与BA →的夹角等于(..) A.30° B.60° C.120° D.150°答案.D解析.由向量夹角定义知,AC →与BA →的夹角为150°.3.已知向量e 1,e 2不共线,实数x ,y 满足(2x -3y )e 1+(3x -4y )e 2=6e 1+3e 2,则x =________,y =________. 答案.-15.-12解析.∵向量e 1,e 2不共线,∴⎩⎪⎨⎪⎧2x -3y =6,3x -4y =3,解得⎩⎪⎨⎪⎧x =-15,y =-12.4.如图所示,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则当以a ,b 为基底时,AC →可表示为________,当以a ,c 为基底时,AC →可表示为________.答案.a +b .2a +c解析.由平行四边形法则可知,AC →=AB →+AD →=a +b ,以a ,c 为基底时将BD →平移,使点B 与点A 重合,再由三角形法则和平行四边形法则即可得到.5.已知在梯形ABCD 中,AB ∥DC ,且AB =2CD ,E ,F 分别是DC ,AB 的中点,设AD →=a ,AB →=b ,试用a 、b 为基底表示DC →,BC →,EF →.解.连接FD ,∵DC ∥AB ,AB =2CD ,E ,F 分别是DC ,AB 的中点, ∴DC 綊FB .∴四边形DCBF 为平行四边形. 依题意,DC →=FB →=12AB →=12b , BC →=FD →=AD →-AF → =AD →-12AB →=a -12b ,EF →=DF →-DE →=-FD →-DE →=-BC →-12DC →=-⎝ ⎛⎭⎪⎫a -12b -12×12b =14b -a .1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件.(2)零向量与任意向量共线,故不能作为基底.2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.课时作业一、选择题1.设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是(..)A.e1+e2和e1-e2B.3e1-4e2和6e1-8e2C.e1+2e2和2e1+e2D.e1和e1+e2答案.B解析.B中,∵6e1-8e2=2(3e1-4e2),∴(6e1-8e2)∥(3e1-4e2),∴3e1-4e2和6e1-8e2不能作为基底.2.若向量a与b的夹角为60°,则向量-a与-b的夹角是(..)A.60°B.120°C.30°D.150°答案.A3.如图所示,用向量e1,e2表示向量a-b为(..)A.-4e1-2e2B.-2e1-4e2C.e1-3e2D.3e1-e2答案.C解析.如图,由向量的减法得a -b =AB →.由向量的加法得AB →=e 1-3e 2.4.设向量e 1和e 2是某一平面内所有向量的一组基底,若3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2,则实数y 的值为(..) A.3 B.4 C.-14 D.-34答案.B解析.因为3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2, 所以(3x -4y +7)e 1+(10-y -2x )e 2=0,又因为e 1和e 2是某一平面内所有向量的一组基底,所以⎩⎪⎨⎪⎧3x -4y +7=0,10-y -2x =0,解得⎩⎪⎨⎪⎧x =3,y =4,故选B.5.若OP →1=a ,OP →2=b ,P 1P →=λPP →2(λ≠-1),则OP →等于(..) A.a +λb B.λa +(1-λ)b C.λa +b D.11+λa +λ1+λb 答案.D解析.∵P 1P →=λPP 2→,∴OP →-OP →1=λ(OP →2-OP →),∴(1+λ)OP →=OP →1+λOP →2, ∴OP →=11+λOP →1+λ1+λOP →2=11+λa +λ1+λb .6.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为(..) A.165 B.125 C.85 D.45 答案.C解析.∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.7.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →等于(..)A.14a +12b B.12a +14b C.23a +13b D.12a +23b 答案.C解析.如图,设CF →=λCD →,AE →=μAF →,则CD →=OD →-OC →=12b -12a ,故AF →=AC →+CF →=(1-12λ)a +12λb .∵AF →=1μAE →=1μ(AO →+OE →)=1μ(12a +14b )=12μa +14μb , ∴由平面向量基本定理,得⎩⎪⎨⎪⎧1-12λ=12μ,12λ=14μ,∴⎩⎪⎨⎪⎧λ=23,μ=34,∴AF →=23a +13b ,故选C.二、填空题8.已知e 1,e 2不共线,a =e 1+2e 2,b =2e 1+λe 2,要使a ,b 能作为平面内的一组基底,则实数λ的取值范围为______________. 答案.(-∞,4)∪(4,+∞)解析.若能作为平面内的一组基底,则a 与b 不共线.a =e 1+2e 2,b =2e 1+λe 2,由a ≠k b ,即得λ≠4.9.若|a |=|b |=|a -b |=r (r >0),则a 与b 的夹角为________. 答案.60°解析.作OA →=a ,OB →=b ,则BA →=a -b ,∠AOB 为a 与b 的夹角,由|a |=|b |=|a -b |知△AOB 为等边三角形,所以∠AOB =60°.10.如图,在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.答案.43解析.设AB →=a ,AD →=b ,则AE →=12a +b ,AF →=a +12b ,又∵AC →=a +b ,∴AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43.三、解答题11.判断下列命题的正误,并说明理由:(1)若a e 1+b e 2=c e 1+d e 2(a 、b 、c 、d ∈R ),则a =c ,b =d ;(2)若e 1和e 2是表示平面内所有向量的一组基底,那么该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.解.(1)错,当e 1与e 2共线时,结论不一定成立.(2)正确,假设e 1+e 2与e 1-e 2共线,则存在实数λ,使e 1+e 2=λ(e 1-e 2),即(1-λ)e 1=-(1+λ)e 2.因为1-λ与1+λ不同时为0, 所以e 1与e 2共线,这与e 1,e 2不共线矛盾.所以e 1+e 2与e 1-e 2不共线,即它们可以作为基底,该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.12.如图,平面内有三个向量OA →,OB →,OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.解.如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,则OC →=OD →+OE →.在Rt△OCD 中,∵|OC →|=23,∠COD =30°,∠OCD =90°,∴|OD →|=4,|CD →|=2,故OD →=4OA →,OE →=2OB →,即λ=4,μ=2,∴λ+μ=6.13.在梯形ABCD 中,AB →∥CD →,M ,N 分别是DA ,BC 的中点,且DC AB=k .设AD →=e 1,AB →=e 2,以e 1,e 2为基底表示向量DC →,BC →,MN →.解.方法一.如图所示,∵AB →=e 2,且DC AB=k , ∴DC →=kAB →=k e 2.又∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-DA →=-AB →+DC →+AD →=e 1+(k -1)e 2.又∵MN →+NB →+BA →+AM →=0,且NB →=-12BC →,AM →=12AD →, ∴MN →=-AM →-BA →-NB →=-12AD →+AB →+12BC → =k +12e 2. 方法二.如图所示,过C 作CE ∥DA ,交AB 于点E ,交MN 于点F .同方法一可得DC →=k e 2.则BC →=BE →+EC →=-(AB →-DC →)+AD →=e 1+(k -1)e 2,MN →=MF →+FN →=DC →+12EB →=DC →+12(AB →-DC →) =k +12e 2. 方法三.如图所示,连接MB ,MC .同方法一可得DC →=k e 2,BC →=e 1+(k -1)e 2.由MN →=12(MB →+MC →),得MN →=12(MA →+AB →+MD →+DC →)=12(AB →+DC →)=k +12e 2. 四、探究与拓展14.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为________.答案.90°解析.由题意可画出图形,在△OAB 中,因为∠OAB =60°,|b |=2|a |,所以∠ABO =30°,OA ⊥OB ,即向量a 与c 的夹角为90°.15.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2.(1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式;(3)若4e 1-3e 2=λa +μb ,求λ,μ的值.(1)证明.若a ,b 共线,则存在λ∈R ,使a =λb ,则e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线,得⎩⎪⎨⎪⎧ λ=1,3λ=-2⇒⎩⎪⎨⎪⎧ λ=1,λ=-23.∴λ不存在,故a 与b 不共线,可以作为一组基底.(2)解.设c =m a +n b (m ,n ∈R ),则3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2)=(m +n )e 1+(-2m +3n )e 2.∴⎩⎪⎨⎪⎧ m +n =3,-2m +3n =-1⇒⎩⎪⎨⎪⎧ m =2,n =1.∴c =2a +b . (3)解.由4e 1-3e 2=λa +μb ,得 4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2) =(λ+μ)e 1+(-2λ+3μ)e 2. ∴⎩⎪⎨⎪⎧ λ+μ=4,-2λ+3μ=-3⇒⎩⎪⎨⎪⎧λ=3,μ=1. 故所求λ,μ的值分别为3和1.。
高一数学人教A版必修4《平面向量复习》专题复习导学案
平面向量专题复习与练习导学案知识点1.向量共线及平面向量基本定理(1)共线向量定理:向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa .共线向量定理是证明平行的主要依据,也是解决三点共线问题的重要方法.特别地,平面内一点P 位于直线AB 上的条件是存在实数x ,使AP =x AB ,或对直线外任意一点O ,有OP =x OA +y OB (x +y =1).(2)平面向量基本定理:如果向量e 1,e 2不共线,那么对于平面内的任一向量a ,有且只有一对实数 λ1,λ2,使a =λ1e 1+λ2e 2.其中e 1,e 2是平面的一组基底,e 1,e 2分别称为基向量.[典例1] 如图,梯形ABCD 中,AB ∥CD ,点M 、N 分别是DA 、BC 的中点,且DCAB =k ,设AD =e 1,AB =e 2,以e 1、e 2为基底表示向量DC 、BC 、MN .[对点训练]1.设e 1,e 2是两个不共线的向量,已知AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2. (1)求证:A ,B ,D 三点共线;(2)若BF →=3e 1-ke 2,且B ,D ,F 三点共线,求k 的值.2.(2015高考新课标2)设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________.3.(2015高考北京)在ABC △中,点M ,N 满足2AM MC =,BN NC =.若MN xAB y AC =+, 则x = ;y = . 4.在△ABC 中,AN →=14NC →,若P 是直线BN 上的一点,且满足AP →=mAB →+25AC →,则实数m 的值为( ) A .-4 B .-1 C .1 D .4知识点2.平面向量的坐标运算若a =(a 1,a 2),b =(b 1,b 2),则①a +b =(a 1+b 1,a 2+b 2);②a -b =(a 1-b 1,a 2-b 2);③λa =(λa 1,λa 2);④a ·b =a 1b 1+a 2b 2;⑤a ∥b ⇔a 1=λb 1,a 2=λb 2(λ∈R),或a 1b 1=a 2b 2(b 1≠0,b 2≠0); ⑥a ⊥b ⇔a 1b 1+a 2b 2=0;⑦|a |=a ·a =a 21+a 22; ⑧若θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=a 1b 1+a 2b 2a 21+a 22b 21+b 22 .[典例2] (1)已知点A (1,3),B (4,-1),则与向量AB 同方向的单位向量为( )A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35C.⎝⎛⎭⎫-35,45D.⎝⎛⎭⎫-45,35 (2)已知向量a =(1,m ),b =(m,2), 若a ∥b, 则实数m 等于( )A .- 2 B. 2 C .-2或 2 D .0(3)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB 在CD 方向上的投影为( )A.322B.3152 C .-322 D .-3152 [对点训练](1)若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( )A .13 B .-13 C .9 D .-9 (2)已知向量a =(1,2),b =(-2,-4),|c |=5,若(c -b )·a =152,则a 与c 的夹角为( ) A .30° B .60° C .120° D .150°知识点3、平面向量的数量积;两个向量的数量积是a ·b =|a ||b |cos θ,θ为a 与b 的夹角,[典例3] 已知c =m a +n b ,c =(-23,2),a ⊥c ,b 与c 的夹角为2π3,b·c =-4,|a |=22,求实数m ,n 的值及a 与b 的夹角θ.[对点训练](1)已知单位向量a ,b 的夹角为π3,则|a -2b |=________.(2)已知e 为单位向量,|a |=4,a 与e 的夹角θ=2π3,则a 在e 方向上的投影为________.(3)已知在△ABC 中,∠A =π2,AB =2,AC =4,AF = 12AB ,CE =12CA ,BD =14BC ,则DE ·DF 的值为________.专题突破专题一 有关向量共线问题有关向量平行或共线的问题,常用共线向量定理:a ∥b ⇔a =λ b (b ≠0)⇔x 1y 2-x 2y 1=0. [例1] 已知a =(1,2),b =(-3,2),若k a +2b 与2a -4b 平行,求实数k 的值.[变式训练] 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =m b +n c 的实数m 、n ; (2)若(a +k c )∥(2b -a ),求实数k .专题二 有关向量的夹角、垂直问题非零向量a =(x 1,y 1),b =(x 2,y 2)的夹角为θ,则a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0, cos θ=a·b|a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 21 . [例2] 已知向量a ,b 满足|a |=3,|b |=2,|a +b |=13,求向量a +b 与a -b 的夹角θ的余弦值.[变式训练] (1)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A.π4B.π2C.3π4 D .π (2)(2016·全国Ⅰ卷)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =________.专题三 有关向量的模的问题利用数量积求解长度问题是数量积的重要应用,要掌握此类问题的处理方法: (1)|a |2=a 2=a·a ; (2)|a ±b |2=a 2±2a·b +b 2;(3)若a =(x ,y ),则|a |= x 2+y 2; (4)应用三角形或平行四边形法则.[例3] (1)设点M 是线段BC 的中点,点A 在直线BC 外,BC →2=16,|AB →+AC →|=|AB →-AC →|,则|AM →|=( ) A .8 B .4 C .2 D .1(2)设向量a =(0,-1),向量b =(cos x ,sin x ),则|a +b |的取值范围为________.[变式训练] 已知向量a 和b 的模都是2,其夹角为60°,又知OP →=a +2b ,OQ →=-2a +b ,则|PQ →|=________.巩固练习1.若向量a =(2,0),b =(1,1),则下列结论正确的是( ) A .a ·b =1 B .|a |=|b | C .(a -b )⊥b D .a ∥b2.已知向量a ,b 不共线,若AB →=λ1a +b ,AC →=a +λ2b ,且A ,B ,C 三点共线,则关于实数λ1,λ2一定成立的关系式为( )A .λ1=λ2=1B .λ1=λ2=-1C .λ1λ2=1D .λ1+λ2=13.(AB →+MB →)+(BO →+BC →)+OM →化简后等于( ) A.BC → B.AB → C.AC → D.AM →4.设非零向量a ,b 满足|a +b |=|a -b |,则( ) A .a ⊥b B .|a |=|b | C .a ∥b D .|a |>|b |5.已知OA →=(2,2),OB →=(4,1),OP →=(x ,0),则当AP →·BP →最小时,x 的值是( )A .-3B .3C .-1D .16.设点A (-1,2),B (2,3),C (3,-1),且AD →=2AB →-3BC →,则点D 的坐标为( )A .(2,16)B .(-2,-16)C .(4,16)D .(2,0)7.设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A. AD →=-13AB →+43AC →B. AD →=13AB →-43AC →C. AD →=43AB →+13AC →D. AD →=43AB →-13AC →8.若四边形ABCD 满足AB →+CD →=0,(AB →-AD →)·AC →=0,则该四边形一定是( ) A .正方形 B .矩形 C .菱形 D .直角梯形9.设D 为边长是2的等边△ABC 所在平面内一点,BC →=3CD →,则AD →·AC →的值是( )A.143 B .-143 C.43D .4 10.在△ABC 中,AB =4,∠ABC =30°,D 是边BC 上的一点,且AD →·AB →=AD →·AC →,则AD →·AB →的值等于( ) A .-4 B .0 C .4 D .811.定义平面向量之间的一种运算“⊙”如下:对任意的a =(m ,n ),b =(p ,q ),令a ⊙b =mq -np .下面说法错误的是( )A .若a 与b 共线,则a ⊙b =0B .a ⊙b =b ⊙aC .对任意的λ∈R ,有(λa )⊙b =λ(a ⊙b )D .(a ⊙b )2+(a ·b )2=|a |2|b |212.已知A ,B ,C 是锐角△ABC 的三个内角,向量p =(sin A ,1),q =(1,-cos B ),则p 与q 的夹角是( ) A .锐角 B .钝角 C .直角 D .不确定 13.已知|a |=4,|b |=8,a 与b 的夹角是120°.(1)计算:①|a +b |,②|4a -2b |; (2)当k 为何值时,(a +2b )⊥(k a -b ).14.设e 1,e 2是正交单位向量,如果OA →=2e 1+m e 2,OB →=n e 1-e 2,OC →=5e 1-e 2,若A ,B ,C 三点在一条直线上,且m =2n ,求m ,n 的值.15.已知向量a =⎝⎛⎭⎫cos 3x 2,sin 3x 2,b =⎝⎛⎭⎫cos x 2,-sin x 2,且]3,6[ππ-∈x (1)求a·b 及|a +b |; (2)若f (x )=a·b -|a +b |,求f (x )的最大值和最小值.16.在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.。
人教A版高中数学必修4第二章2.3.1平面向量基本定理导学案
第3页 第4页探究三、有关向量夹角的计算例3 已知两个非零向量a 与b 的夹角为ο60,试求下列向量的夹角 (1)a 与b -;(2)b a 32与【课堂检测】1.下列向量 1e 和2e 可作为基底的是 ( ) A. 1e =-2e , 2e =2e B. 1e =,b a - 2e =,b a + C. 1e =e ,2e = e 2 D. 1e =,b a +- 2e =,a b -2.若O E F ,,是不共线的任意三点,则以下各式中成立的是 ( )A .EF OF OE =+u u u r u u u r u u u rB .EF OF OE=-u u u r u u u r u u u rC .EF OF OE =-+u u u r u u u r u u u rD .EF OF OE =--u u u r u u u r u u u r3.已知D 是△ABC 的边AB 上的中点,则向量CD =u u u r( ).A 12BC BA -+u u u r u u u r .B 12BC BA --u u u r u u u r.C 12BC BA -u u u r u u u r .D 12BC BA +u u u r u u u r4.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+u u u r u u u r u u u r u u u r u u u r,,则λ=( )A .23B .13C .13-D .23-5.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2AO OB OC =+u u u r u u u r u u u r,那么( )A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u rC.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r二、填空题7.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD交于点F .若AC =u u u r a ,BD =u u u r b ,则AF =u u u r8.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=u u u r u u u r ,则OC =u u u r9.已知向量12,e e u r u u r 不共线,实数x 、y 满足1212(34)(23)63x y e x y e e e -+-=+u r u u r u r u u r,则则x -y 的值等于。
【新导学案】高中数学人教版必修四:25《平面向量应用举例》.doc
2.5《平面向量应用举例》导学案【学习目标】1.运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决平面几何和解析儿何中直线或线段的平行、垂直、相等、夹角和距离等问题.2.运用向量的有关知识解决简单的物理问题.【学法指导】预习《平面向量应用举例》,体会向量是一种处理几何问题、物理问题等的工具•,建立实际问题与向量的联系。
【知识链接】阅读课本内容,整理例题,结合向量的运算,解决实际的儿何问题、物理问题。
另外,在思考一下儿个问题:例1如果不用向量的方法,还有其他证明方法吗?利用向量方法解决平面几何问题的“三步曲”是什么?例3中,⑴&为何值时,最小,最小值是多少?⑵尺|能等于|G|吗?为什么?提出疑惑疑惑点疑惑内容【学习过程】探究•一:( 1 )向量运算与几何中的结论”若a = b,贝叽方冃引,且方Z所在直线平行或重合”相类比,你有什么体会?(2 )举岀几个具有线性运算的几何实例.例1.证明:平行四边形两条对角线的平方和等于四条边的平方和. 己知:平行四边形ABCD.求证:AC2 + BD2 = AB2 + BC2 + CD2 + DA2.试用儿何方法解决这个问题利用向量的方法解决平面几何问题的“三步曲”?(1)建立平面儿何与向量的联系,(2)通过向量运算,研究儿何元素Z间的关系,(3)把运算结•果“翻译”成儿何关系。
变式训练:\ABC中,D、E、F分别是AB、BC、CA的中点,BF与CD交于点0,设AB = a, AC = b.(1)证明A、0、E三点共线;(2) ffl a.b.表示向量AO。
例2,如图,平行四边形ABCD'I',点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、:T两点,你能发现AR、RT、7T之间的关系吗?探究二:两个人提一个旅行包,夹和越大越费力•在单杠上做引体向上运动,两臂夹和越小•越省力. 这些力的问题是怎么回事?例3.在日常生活中,你是否冇这样的经验:两个人共提-个旅行包,夹角越大/ :解释这种现象吗?'鸞巴软吁作引体向上运动’两臂的夹角越小越省力•你能从数学的角度F请同学们结合刚才这个问题,思考下面的问题:(1)0为何值吋,丨只丨最小,最小值是多少?⑵1尺|能等于|G|吗?为什么?例4如图,一•条河的两岸平行,河的宽度d二500/7/, 一艘船从A 处出发到河对岸.己知船的速度|p,|=10km/h,水流的速度|v2|=2km/h,问行驶航程最短时,所用的时间是多少(精确到0.1 min)?变式训练:两个粒子A、B从同一源发射岀来,在某一时刻,它们的位移分别为» =(4,3),» =(2,10) ,(1)写出此时粒子B相对粒子A的位移s; (2)计算s在》方向上的投影。
【新导学案】高中数学人教版必修四:231《平面向量的基本定理》.doc
2. 3. 1《平面向量的基本定理》导学案【学习目标】1、知道平面向量基木定理;2、理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步应用向量解决实际问题;3、能够在具体问题中适当地选取基底,使其他向量都能够用基底来表示.【重占聊占】1.教車重兀平面向量基本定理2.教学难点:平面向量基本定理的理解与应用【学法指导】:通过回顾复习向量的线性运算,提出新的疑惑.为新授内容做好铺梨.【知识链接】(一)复习回顾1.实数与向量的积:实数入与向量刁的积是一个向量,记作:x a(1)| _________ 5 |= ;____________________________ (2)入>0时入方与方方向 ___ ;入<0时入力与力方向;入=0时入2.运算定律结合律:入(卩方)= ______ ;分配律:(入+p)N= _____ , ^(a+b)= _________ .3•向量共线定理向量方与非零向量万共线的充要条件是:有且只有一个非零实数入, 使 .(二)阅读教材,提出疑惑:如何通过向量的线性运算来表示出平面内的任意向量?【学习过程】(一)定理探究:平面向量基本定理:____________________________________________________________________ 探究:⑴ 我们把不共线向量6、°叫做一表示这一平面内所有向量的______________________ ;(2)_______________________ 基底不惟一,关键是;(3)由定理可将任一向量a在给出基底e】、£.2的条件下进行分解;⑷ 基底给定时,分解形式_________ .即X,入2是被石唯一确定的数量(二)例•题讲解■ • - » •例1己知向量引,e2求作向量2.5勺+3e2 .例2、如图占B0的两条对角线交于点M,且AB=a. AD=b ,用万,方表示胚4, MB ,D C例3己知AB£p的两条对角线AC与BD交于E, O是任意一点,求证:OA + OB-^OC + OD=4OE例4 (1)如图,OA, 0B 不共线,AP=xAB(t 04,方表示0?.(2)设刃、西不共线,.点P在O、A、B所在的平面内,且OP = (l-t)OA + tOB(te R).求证:A、B、P三点共线.例5已知a=2e r3e2f b= 2ei+3e2,其中引,血不共线,向量c=2e l-9e2f问是否存在这样的实数2、",使2 =航+加与c共线.【学习反思】【拓展提升】1.设°、02是同一平面内的两个向量,则有()A.®、02—定平行B©、02的模相等C.同一平面内的任一向量a都有。
高中数学必修4 第二章平面向量最优完整版导学案
(2)有向线段包含三个要素: 、 、
3.向量的表示
(1)几何表示:向量可以用有向线段表示,此时有向线段的方向就是向量的方向.
(2)字母表示:通常在印刷时用黑体小写字母 a,b,c…表示向量,书写时用→a ,→b ,→c …
表示向量;也可以用表示向量的有向线段的起点和终点字母表示,
平行四边形法则:
①适用于两个不共线向量求和,且两向量要共起点;
②力的合成可以看作向量加法平行四边形法则的物理模型.
4
三、应用举例 例 1 如图 5,已知向量 a、b,求作向量 a+b
作法 1(三角形法则):
b a
图5
作法 2(平行四边形法则):
探究合作: ||a|-|b||,|a+b|,|a|,|b|存在着怎样的关系?
| a |-| b |;若| a |<| b |,则 a + b 的方向与 b 相同,且| a + b |
ab
结论:一般地:
| a b || a | | b |
四、练习巩固: 教材 84 页 1、2 题
| b |-| a |.
5
2.2.2 向量的减法运算及其几何意义 一、 复习:向量加法的法则:三角形法则与平行四边形法则,向量加法的运算定律:
(1)当向量 a 与 b 不共线时,| a + b |
| a |+| b |;
(2)当 a 与 b 同向时,则 a + b 、 a 、 b
(填同向或反向),且| a + b |
| a |+| b |;当 a 与 b 反向时,若| a |>| b | ,则 a + b 的方 向与 a 相同,且| a + b |
新人教A版必修4高中数学2.3.3平面向量的坐标运算导学案
1高中数学 2.3.3平面向量的坐标运算导学案新人教A 版必修4【学习过程】 一、自主学习(一)知识链接:复习:⑴向量()122,0e e e ≠是共线的两个向量,则12,e e 之间的关系可表示为 .⑵向量12,e e 是同一平面内两个不共线的向量,a 为这个平面内任一向量,则向量a 可用12,e e 表示为 。
(二)自主探究:(预习教材P96—P97) 探究:平面向量的坐标运算问题1:已知()11,a x y =,()22,b x y =,能得出a b +,a b -,a λ的坐标吗?1、已知:==1122(,),(,)a x y b x x ,λ为一实数+a b =__________________________ _。
-a b =___________。
这就是说,两个高量和(差)的坐标分别等于__________________ ____。
λa =_______________这就是说,实数与向量的积的坐标等于:________________________。
问题2:如图,已知()11,A x y ,()22,B x y ,则怎样用坐标表示向2量AB 呢?2、若已知(,)A x y 11,(,)B x y 22,则AB =_____________=___________________ 即一个向量的坐标等于此向量的有向线段 的________________________。
问题3:你能在上图中标出坐标为()2121,x x y y --的P 点吗?标出P 点后,你能发现向量的坐标与点的坐标之间的联系吗?二、合作探究1、已知()2,8a b +=-,()8,16a b -=-,求a 和b .2、已知平行四边形ABCD 的顶点()1,2A --,()3,1B -,()5,6C ,试求:(1)顶点D 的坐标.(2)若AC 与BD 的交点为O ,试求点O 的坐标.3、已知△ABC 中,A (7,8),B (3,5),C (4,3),M 、N 是AB 、AC 的中点,D 是BC 的中点,MN 与AD 交于点F ,求DF →.3三、目标检测(A 组必做,B 组选做)A 组1. 若向量()2,3a x =-与向量()1,2b y =+相等,则( )A .1,3x y == B.3,1x y == C.1,5x y ==- D.5,1x y ==-2. 已知(),AB x y =,点B 的坐标为()2,1-,则OA 的坐标为( ) A.()2,1x y -+ B.()2,1x y +- C.()2 1x y ---, D.()2,1x y ++3. 已知()3,1a =-,()1,2b =-,则32a b --等于( )A.()7,1B.()7,1--C.()7 1-,D.()7,1-4. 设点()1,2A -,()2,3B ,()3,1C -且AD =2AB 3BC -,求D 点的坐标。
必修4 第二章 平面向量导学案
第二章平面向量2。
1 向量的概念及表示【学习目标】1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量的概念;并会区分平行向量、相等向量和共线向量;2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别;3。
通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力。
【学习重难点】重点:平行向量的概念和向量的几何表示;难点:区分平行向量、相等向量和共线向量;基础梳理1。
向量的定义:__________________________________________________________;2。
向量的表示:(1)图形表示:(2)字母表示:3。
向量的相关概念:(1)向量的长度(向量的模):_______________________记作:______________(2)零向量:___________________,记作:_____________________(3)单位向量:________________________________(4)平行向量:________________________________(5)共线向量:________________________________(6)相等向量与相反向量:_________________________思考:(1)平面直角坐标系中,起点是原点的单位向量,它们的终点的轨迹是什么图形?____ (2)平行向量与共线向量的关系:____________________________________________ (3)向量“共线”与几何中“共线”有何区别:__________________________________ 【典型例题】例1。
判断下例说法是否正确,若不正确请改正:(1)零向量是唯一没有方向的向量;(2)平面内的向量单位只有一个;(3)方向相反的向量是共线向量,共线向量不一定是相反向量;(4)向量a和b是共线向量,//b c,则a和c是方向相同的向量;(5)相等向量一定是共线向量;例2。
高中数学 第二章 平面向量复习导学案 新人教版必修4
必修4 第二章§2-3、4平面向量【课前预习】阅读教材P93-112完成下面填空1.平面向量的基本定理: 如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =(2)平面向量的坐标运算: 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差;一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。
若),(),,(2211y x B y x A ,则AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.(3)向量共线的两种判定方法:a ∥b(0≠r b )12210x y x y λ⇔=⇔-= a b 。
2.平面向量的数量积(1)平面向量数量积的定义:已知两个非零向量a 与b,它们的夹角是θ,则数量|a ||b |cos θ叫a 与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π)。
并规定0与任何向量的数量积为0。
注意:两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.(2)向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.(3)两个向量的数量积的性质:设a 、b 为两个非零向量,e 是单位向量;1︒ e ⋅a = a ⋅e =|a |cos θ;2︒ a ⊥b ⇔ a ⋅b = 0;3︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别地a ⋅a = |a |2或||=a 4︒ cos θ =||||⋅a b a b 5︒ |a ⋅b | ≤ |a ||b |。
(4)向量的数量积满足下列运算律已知向量a b c r r r ,,与实数λ。
人教A版高中数学必修四 2.4《平面向量的数量积》导学案
2.4《平面向量的数量积》导学案【学习目标】1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.掌握向量垂直的条件.【导入新课】复习引入:1. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa .2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =4.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=. 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=5.a ∥b (b ≠)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比. 8. 点P 的位置与λ的范围的关系:①当λ>0时,P 1与2PP 同向共线,这时称点P 为21P P 的内分点.②当λ<0(1-≠λ)时,P 1与2PP 反向共线,这时称点P 为21P P 的外分点.9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1=a,2OP =b, 可得=b a b a λλλλλ+++=++1111. 10.力做的功:W = |F |⋅|s |cos θ,θ是F 与s 的夹角.新授课阶段1.两个非零向量夹角的概念已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向;(3)当θ=2π时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0︒≤θ≤180︒2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.⋅探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.C(2)两个向量的数量积称为内积,写成a ⋅b ;今后要学到两个向量的外积a ×b ,而a ⋅b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a ≠0,且a ⋅b =0,则b =0;但是在数量积中,若a ≠0,且a ⋅b =0,不能推出b =0.因为其中cos θ有可能为0.(4)已知实数a 、b 、c (b ≠0),则ab=bc ⇒ a=c .但是a ⋅b = b ⋅c a =c如右图:a ⋅b = |a ||b |cos β = |b ||OA|,b ⋅c = |b ||c |cos α = |b ||OA|⇒ a ⋅b = b ⋅c 但a ≠ c显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |.4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||4︒ cos θ =||||b a b a ⋅ 5︒ |a ⋅b | ≤ |a ||b |例1 已知|a |=5, |b |=4, a 与b 的夹角θ=120o ,求a ·b .例2 已知|a |=6, |b |=4, a 与b 的夹角为60o 求(a+2b)·(a -3b).例3 已知|a |=3, |b |=4, 且a 与b 不共线,k 为何值时,向量a+kb 与a-kb 互相垂直. 例4 判断正误,并简要说明理由.①a·0=0;②0·a=0;③0-=;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2.解:评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律.例5 已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.解:评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a∥b时,有0°或180°两种可能.课堂小结(略)作业(略)拓展提升1.已知向量(3,1)a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b = ( )A .12)B .(12C .(14)D .(1,0) 2. 设B A ,两点的坐标分别为)0,1(),0,1(-.条件甲:0AC BC ⋅=;条件乙:点C 的坐标是方程122=+y x 的解.则甲是乙的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.已知||22,||3,p q p ==与q 的夹角为4π,则以52,3a p q b p q =+=-为邻边的平行 四边形的较短的对角线长为 ( )B.15C.14D.164.把点(2,2)A 按向量(2,2)-平移到点B ,此时点B 在OC 的延长线上,且||2||OB BC =, 则点C 的坐标为 .5.把函数5422+-=x x y 的图象按向量a平移,得到22x y =的图象,且a b ⊥,)1,1(-=c ,4=⋅c b ,则 =b . 6.不共线向量a ,b 的夹角为小于120的角,且||1,||2a b ==,已知向量2c a b =+,求||c 的取值范围.7. 已知向量,a b 满足||||1a b ==,且||3||a kb ka b -=+,其中0k >.(1)试用k 表示a b ⋅,并求出a b ⋅的最大值及此时a 与b 的夹角θ的值;(2)当a b ⋅取得最大值时,求实数λ,使||a b λ+的值最小,并对这一结果作出几何解释.8. 已知向量33(cos ,sin ),(cos ,sin ),[,]222264x x x x a b x ππ==-∈. (1)求a b ⋅及;||a b +;(2)求函数()()(||a b f x R a b λλ⋅=∈+且0)λ≠的最小值.参考答案例1 (略)例2 (略)例3 (略)例4解:上述8个命题中只有③⑧正确;对于①:两个向量的数量积是一个实数,应有0·a=0;对于②:应有0·a=0; 对于④:由数量积定义有|a·b|=|a|·|b|·|cos θ|≤|a||b|,这里θ是a与b的夹角,只有θ=0或θ=π时,才有|a·b|=|a|·|b|;对于⑤:若非零向量a、b垂直,有a·b=0;对于⑥:由a·b=0可知a⊥b可以都非零;对于⑦:若a与с共线,记a=λс.则a·b=(λс)·b=λ(с·b)=λ(b·с),∴(a·b)·с=λ(b·с)с=(b·с)λс=(b·с)a若a与с不共线,则(a·b)с≠(b·с)a.评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律.例5解:①当a∥b时,若a与b同向,则它们的夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18;若a与b反向,则它们的夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18;②当a⊥b时,它们的夹角θ=90°,∴a·b=0;③当a与b的夹角是60°时,有a·b=|a||b|cos60°=3×6×21=9 评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a∥b时,有0°或180°两种可能.拓展提升1 提示:设(,)(0)b x y y =≠y +=221(0)x y y +=≠.2 提示:设点C 的坐标为(,)x y . 0AC BC ⋅=⇔ 2(1)(1)0x x y +-+=,∴0AC BC ⋅=⇔122=+y x ,∴甲是乙的充要条件.3 提示:经验证,知以a b +为对角线时,其长度较短,6a b p q +=-.4 (0,2)提示:点B 的坐标为(0,4),设点C 的坐标为(,)x y ,则2O B B C =-,可求得点C 的坐标为(0,2).5 )1,3(- 提示:由函数 5422+-=x x y 的图象按向量a平移,得到22x y =的图象,可得(1,3)a =--; 设(,)b m n =,由a b ⊥和4=⋅c b 得:304m n m n --=⎧⎨-=⎩,解之得3,1m n ==-.6 解:2222|||2|||44||178cos c a b a a b b θ=+=+⋅+=+(其中θ为a 与b 的夹角).∵0120θ<<, ∴1cos 12θ-<<, ||5c <<, ∴||c 的取值范围为. 7解:(1)2221||3||()3()(0)4k a kb ka b a kb ka b a b k k+-=+⇒-=+⇒⋅=->. ∴111()42a b k k ⋅=-+≤-,此时1cos 2θ=-,23πθ=. ∴21(0)4k a b k k+⋅=->,a b ⋅的最大值为12-,此时a 与b 的夹角θ的值为23π. (2)由题意,12a b ⋅=-,故22213||1()24a b λλλλ+=-+=-+, ∴当12λ=时,||a b λ+的值最小,此时1||02a b b +⋅=,这表明当1()2a b b +⊥. 8解:(1)333cos cos sin sin cos()cos 2222222x x x x x x a b x ⋅=-=+=;33|||(cos cos ,sin sin )|2222x x x x a b +=+-=2cos x ==.(2)cos 21()(cos )2cos 2cos x f x x x x λλ==-, ∵[,]64x ππ∈, ∴1cos 2cos x x-是减函数, ①当0λ>时,()f x 的最小值为()04f π=;②当0λ<时,()f x 的最小值为()6f π=.综上,当0λ>时,()f x 的最小值为0;当0λ<时,()f x 的最小值为6λ.。
[精品]新人教版必修四高中数学2.3.1《平面向量的基本定理》导学案
231《平面向量的基本定理》导案【习目标】 1、知道平面向量基本定理;2、理解平面里的任何一个向量都可以用两个不共线的向量表示,初步应用向量解决实际问题;3、能够在具体问题中适当地选取基底,使其他向量都能够用基底表示 【重点难点】1 教重点:平面向量基本定理 []2 教难点:平面向量基本定理的理解与应用【法指导】通过回顾复习向量的线性运算提出新的疑惑为新授内容做好铺垫【知识链接】 (一)复习回顾1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa[] (1)|λa|= ;(2)λ>0时λa与a方向 ;λ<0时λa与a方向 ;λ=0时λa= 2.运算定律结合律:λ(μa )= ;分配律:(λ+μ)a = , λ(a +b)=3 向量共线定理 向量b 与非零向量a共线的充要条件是:有且只有一个非零实数λ,使 (二)阅读教材提出疑惑如何通过向量的线性运算表示出平面内的任意向量?【习过程】 (一)定理探究:平面向量基本定理:探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的 ;(2) 基底不惟一,关键是 ;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式 即λ1,λ2是被a,1e ,2e 唯一确定的数量(二)例题讲解例1 已知向量1e ,2e 求作向量 251e +32e例2、如图 ABD 的两条对角线交于点M ,且=a ,=b ,用a ,b表示,MB,MC和MD例3已知ABD的两条对角线A与BD交于E,O是任意一点,求证:+++=4例4(1)如图,,不共线,=t (t∈R)用,表示(2)设OA、OB不共线,点P在O、A、B所在的平面内,且=-+∈求证:A、B、P三点共线(1)()OP t OA tOB t R例5 已知a=2e1-3e2,b= 2e1+3e2,其中e1,e2不共线,向量c=2e1-9e2,问是否存在这样的实数,d a bλμλμ、使与c共线=+【习反思】[]【拓展提升】1设e1、e2是同一平面内的两个向量,则有( )A e1、e2一定平行B e1、e2的模相等同一平面内的任一向量a都有a =λe1+μe2(λ、μ∈R)D若e1、e2不共线,则同一平面内的任一向量a都有a =λe1+u e2(λ、u∈R)2已知向量a = e1-2e2,b =2e1+e2,其中e1、e2不共线,则a+b与c =6e1-2e2的关系A不共线B共线相等 D无法确定3已知向量e1、e2不共线,实数、y满足(3-4y)e1+(2-3y)e2=6e1+3e2,则-y的值等于( )A3 B-3 0 D24已知a、b不共线,且c =λ1a+λ2b(λ1,λ2∈R),若c与b共线,则λ1= 5已知λ1>0,λ2>0,e1、e2是一组基底,且a =λ1e1+λ2e2,则a与e1_____,a与e2_________(填共线或不共线)。
最新人教A版高中数学必修4第二章平面向量章末复习课导学案
第二章 平面向量学习目标.1.回顾梳理向量的有关概念,进一步体会向量的有关概念的特征.2.系统整理向量线性运算、数量积运算及相应的运算律和运算性质.3.体会应用向量解决问题的基本思想和基本方法.4.进一步理解向量的“工具”性作用.1.向量的运算:设a =(x 1,y 1),b =(x 2,y 2).2.两个定理(1)平面向量基本定理①定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.②基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.(2)向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 3.向量的平行与垂直a ,b 为非零向量,设a =(x 1,y 1),b =(x 2,y 2),类型一.向量的线性运算例1.如图所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案.311解析.设BP →=λBN →,则BP →=BA →+AP →=-AB →+mAB →+211AC →=(m -1)AB →+211AC →.BN →=BA →+AN →=-AB →+14AC →.∵BP →与BN →共线,∴14(m -1)+211=0,∴m =311.反思与感悟.向量共线定理和平面向量基本定理是进行向量合成与分解的核心,是向量线性运算的关键所在,常应用它们解决平面几何中的共线、共点问题.跟踪训练1.在△ABC 中,E 为线段AC 的中点,试问在线段AC 上是否存在一点D ,使得BD →=13BC→+23BE →,若存在,说明D 点位置;若不存在,说明理由.解.假设存在D 点,使得BD →=13BC →+23BE →.BD →=13BC →+23BE →⇒BD →=13BC →+23(BC →+CE →)=BC →+23CE →⇒BD →-BC →=23CE →⇒CD →=23CE →⇒CD →=23×⎝ ⎛⎭⎪⎫12CA →⇒CD →=13CA →.所以当点D 为AC 的三等分点⎝⎛⎭⎪⎫CD →=13CA →时,BD →=13BC →+23BE →.类型二.向量的数量积运算例2.已知a =(cos α,sin α),b =(cos β,sin β),且|k a +b |=3|a -k b |(k >0). (1)用k 表示数量积a ·b ;(2)求a ·b 的最小值,并求出此时a 与b 的夹角θ的大小. 解.(1)由|k a +b |=3|a -k b |, 得(k a +b )2=3(a -k b )2,∴k 2a 2+2k a ·b +b 2=3a 2-6k a ·b +3k 2b 2. ∴(k 2-3)a 2+8k a ·b +(1-3k 2)b 2=0.∵|a |=cos 2α+sin 2α=1,|b |=cos 2β+sin 2β=1, ∴k 2-3+8k a ·b +1-3k 2=0, ∴a ·b =2k 2+28k =k 2+14k.(2)a ·b =k 2+14k =14(k +1k).由函数的单调性可知,f (k )=14(k +1k )在(0,1]上单调递减,在[1,+∞)上单调递增,∴当k =1时,f (k )min =f (1)=14×(1+1)=12,此时a 与b 的夹角θ的余弦值cos θ=a ·b |a ||b |=12,∴θ=60°.反思与感悟.数量积运算是向量运算的核心,利用向量数量积可以解决以下问题: (1)设a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔x 1y 2-x 2y 1=0, a ⊥b ⇔x 1x 2+y 1y 2=0.(2)求向量的夹角和模的问题 ①设a =(x 1,y 1),则|a |=x 21+y 21. ②两向量夹角的余弦(0≤θ≤π)cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 跟踪训练2.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-(3+m )). (1)若点A ,B ,C 能构成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值. 解.(1)若点A ,B ,C 能构成三角形,则这三点不共线, ∵OA →=(3,-4),OB →=(6,-3), OC →=(5-m ,-(3+m )),∴AB →=(3,1),BC →=(-m -1,-m ), ∵AB →与BC →不平行,∴-3m ≠-m -1,解得m ≠12,∴当实数m ≠12时满足条件.(2)若△ABC 为直角三角形,且∠A 为直角,则AB →⊥AC →,而AB →=(3,1),AC →=(2-m ,1-m ), ∴3(2-m )+(1-m )=0,解得m =74.类型三.向量坐标法在平面几何中的应用例3.已知在等腰△ABC 中,BB ′,CC ′是两腰上的中线,且BB ′⊥CC ′,求顶角A 的余弦值的大小.解.建立如图所示的平面直角坐标系,设A (0,a ),C (c ,0),则B (-c ,0),OA →=(0,a ),BA →=(c ,a ),OC →=(c ,0),BC →=(2c ,0).因为BB ′,CC ′为AC ,AB 边上的中线, 所以BB ′—→=12(BC →+BA →)=⎝ ⎛⎭⎪⎫3c 2,a 2,同理CC ′—→=⎝ ⎛⎭⎪⎫-3c 2,a 2.因为BB ′—→⊥CC ′—→,所以BB ′—→·CC ′—→=0, 即-9c 24+a 24=0,化简得a 2=9c 2,又因为cos A =AB →·AC→|AB →||AC →|=a 2-c 2a 2+c 2=9c 2-c 29c 2+c 2=45.即顶角A 的余弦值为45.反思与感悟.把几何图形放到适当的坐标系中,就赋予了有关点与向量具体的坐标,这样就能进行相应的代数运算和向量运算,从而解决问题.这样的解题方法具有普遍性.跟踪训练3.如图,半径为3的扇形AOB 的圆心角为120°,点C 在AB 上,且∠COB =30°,若OC →=λOA →+μOB →,则λ+μ等于(..)A. 3B.33C.433D.2 3 答案.A解析.由题意,得∠AOC =90°,故以O 为坐标原点,OC ,OA 所在直线分别为x 轴,y 轴建立平面直角坐标系,则O (0,0),A (0,3),C (3,0),B (3×cos 30°,-3×sin 30°),因为OC →=λOA →+μOB →,所以(3,0)=λ(0,3)+μ(3×32,-3×12), 即⎩⎪⎨⎪⎧3=μ×3×32,0=3λ-3×12μ,则⎩⎪⎨⎪⎧μ=233,λ=33,所以λ+μ= 3.1.在菱形ABCD 中,若AC =2,则CA →·AB →等于(..) A.2 B.-2C.|AB →|cos A D.与菱形的边长有关答案.B解析.如图,设对角线AC 与BD 交于点O ,∴AB →=AO →+OB →.CA →·AB →=CA →·(AO →+OB →) =-2+0=-2.2.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4.若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于(..) A.20 B.15 C.9 D.6答案.C解析.▱ABCD 的图象如图所示,由题设知,AM →=AB →+BM →=AB →+34AD →,NM →=13AB →-14AD →,∴AM →·NM →=⎝ ⎛⎭⎪⎫AB →+34AD →·⎝ ⎛⎭⎪⎫13AB →-14AD →=13|AB →|2-316|AD →|2+14AB →·AD →-14AB →·AD →=13×36-316×16=9. 3.已知向量a =(2,3),b =(-1,2),若m a +4b 与a -2b 共线,则m 的值为(..) A.12 B.2 C.-12 D.-2 答案.D解析.m a +4b =(2m -4,3m +8),a -2b =(4,-1). ∵m a +4b 与a -2b 共线,∴(2m -4)×(-1)-(3m +8)×4=0,解得m =-2.4.若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________. 答案.2 5解析.由题意可知,△AOB 是以O 为直角顶点的等腰直角三角形,且腰长|OA →|=|OB →|=10,由勾股定理得|AB →|=20=2 5.5.平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,若存在不同时为0的实数k 和t ,使x =a +(t 2-3)b ,y =-k a +t b ,且x⊥y ,试求函数关系式k =f (t ). 解.由a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,得a·b =0,|a |=2,|b |=1,由x ⊥y ,得[a +(t 2-3)b ]·(-k a +t b )=0, -k a 2+t a·b -k (t 2-3)a·b +t (t 2-3)b 2=0, 即-4k +t 3-3t =0,所以k =14(t 3-3t ),令f (t )=14(t 3-3t ),所以函数关系式为k =f (t )=14(t 3-3t ).1.由于向量有几何法和坐标法两种表示方法,它的运算也因为这两种不同的表示方法而有两种方式,因此向量问题的解决,理论上讲总共有两个途径,即基于几何表示的几何法和基于坐标表示的代数法,在具体做题时要善于从不同的角度考虑问题.2.向量是一个有“形”的几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析判断求解,这是研究平面向量最重要的方法与技巧.课时作业一、选择题1.下列命题中正确的是(..) A.OA →-OB →=AB → B.AB →+BA →=0 C.0·AB →=0 D.AB →+BC →+CD →=AD → 答案.D解析.OA →-OB →=BA →;AB →,BA 是一对相反向量,它们的和应该为零向量,即AB →+BA →=0;0·AB →=0.2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →等于(..) A.5 B.4 C.3 D.2 答案.A解析.∵四边形ABCD 为平行四边形,∴AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1),∴AD →·AC →=2×3+(-1)×1=5.3.设向量a =(2,4)与向量b =(x ,6)共线,则实数x 等于(..) A.2 B.3 C.4 D.6 答案.B解析.∵a ∥b ,∴2×6-4x =0,∴x =3.4.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于(..) A.(-3,6) B.(3,-6) C.(6,-3) D.(-6,3)答案.A解析.设b =k a =(k ,-2k ),k <0,而|b |=35,则5k 2=35,∴k =-3,b =(-3,6).5.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于(..) A.-4 B.-3 C.-2 D.-1 答案.B6.在△ABC 中,若AB →2-AB →·AC →=BA →·BC →-CA →·BC →,则△ABC 是(..) A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形答案.C解析.由已知,得AB →·(AB →-AC →)-BC →·(BA →-CA →)=0, ∴AB →·CB →-BC →·BC →=0,∴BC →·(-AB →-BC →)=0,即-BC →·AC →=0,BC →⊥AC →, ∴BC ⊥AC ,∴△ABC 为直角三角形.故选C.7.若a ,b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角θ的大小为(..) A.π6 B.π3 C.2π3D.5π6答案.B解析.∵a 2-2a ·b =0,b 2-2a ·b =0, ∴a 2=b 2,|a |=|b |,又∵cos θ=a ·b |a ||b |=12a 2|a |2=12,θ∈[0,π],∴θ=π3.8.如图所示,在△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于点F .设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为(..)A.⎝ ⎛⎭⎪⎫12,12B.⎝ ⎛⎭⎪⎫23,23C.⎝ ⎛⎭⎪⎫13,13 D.⎝ ⎛⎭⎪⎫23,12 答案.C解析.令BF →=λBE →.由题可知,AF →=AB →+BF →=AB →+λBE →=AB →+λ⎝ ⎛⎭⎪⎫12AC →-AB →=(1-λ)AB →+12λAC →.令CF →=μCD →,则AF →=AC →+CF →=AC →+μCD →=AC →+μ⎝ ⎛⎭⎪⎫12AB →-AC →=12μAB →+(1-μ)AC →.由⎩⎪⎨⎪⎧1-λ=12μ,12λ=1-μ,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以AF →=13AB →+13AC →,故选C.二、填空题9.若|a |=1,|b |=2,a 与b 的夹角为60°,若(3a +5b )⊥(m a -b ),则m 的值为________. 答案.238解析.由题意知(3a +5b )·(m a -b )=3m a 2+(5m -3)a·b -5b 2=0,即3m +(5m -3)×2×cos 60°-5×4=0,解得m =238.10.已知向量a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________. 答案.711.在△ABC 中,点O 在线段BC 的延长线上,且|BO →|=3|CO →|,当AO →=xAB →+yAC →时,x -y =________. 答案.-2解析.由|BO →|=3|CO →|,得BO →=3CO →, 则BO →=32BC →,所以AO →=AB →+BO →=AB →+32BC →=AB →+32(AC →-AB →)=-12AB →+32AC →.所以x =-12,y =32,所以x -y =-12-32=-2.12.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________. 答案.1解析.∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1.13.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.答案.712解析.∵AP →⊥BC →,∴AP →·BC →=(λAB →+AC →)·(AC →-AB →)=-λAB →2+(λ-1)AB →·AC →+AC →2=-9λ+(λ-1)×3×2×(-12)+4=0, ∴λ=712. 三、解答题14.若OA →=(sin θ,-1),OB →=(2sin θ,2cos θ),其中θ∈[0,π2],求|AB →|的最大值. 解.∵AB →=OB →-OA →=(sin θ,2cos θ+1)⇒|AB →|=sin 2θ+4cos 2θ+4cos θ+1=3cos 2θ+4cos θ+2= 3(cos θ+23)2+23, ∴当cos θ=1,即θ=0时,|AB →|取得最大值3.四、探究与拓展15.已知OA →=(1,0),OB →=(0,1),OM →=(t ,t )(t ∈R ),O 是坐标原点.(1)若A ,B ,M 三点共线,求t 的值;(2)当t 取何值时,MA →·MB →取到最小值?并求出最小值.解.(1)AB →=OB →-OA →=(-1,1),AM →=OM →-OA →=(t -1,t ).∵A ,B ,M 三点共线,∴AB →与AM →共线, ∴-(t -1)-t =0,∴t =12. (2)∵MA →=(1-t ,-t ),MB →=(-t ,1-t ),∴MA →·MB →=2t 2-2t =2⎝ ⎛⎭⎪⎫t -122-12,易知当t =1 2时,MA→·MB→取得最小值-12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 平面向量1 向量和差作图全攻略两个非零向量的和差作图,对同学们是一个难点,这里对其作图方法作出细致分析,以求尽快掌握.一、向量a 、b 共线例1 如图,已知共线向量a 、b ,求作a +b . (1)a 、b 同向;(2)a 、b 反向,且|a |>|b |; (3)a 、b 反向,且|a |<|b |.作法 在与a 平行的同一条直线上作出三个向量OA →=a ,AB →=b ,OB →=a +b ,具体作法是:当a 与b 方向相同时,a +b 与a 、b 的方向相同,长度为|a |+|b |;当a 与b 方向相反时,a +b 与a 、b 中长度长的向量方向相同,长度为||a |-|b ||.为了直观,将三个向量中绝对值最大的向量沿与a 垂直的方向稍加平移,然后分别标上a ,b ,a +b .作图如下:例2 如图,已知共线向量a 、b ,求作a -b . (1)a 、b 同向,且|a |>|b |; (2)a 、b 同向,且|a |<|b |; (3)a 、b 反向.作法 在平面上任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b .事实上a -b 可看作是a +(-b ),按照这个理解和a +b 的作图方法不难作出a -b ,作图如下:二、向量a 、b 不共线如果向量不共线,可以应用三角形法则或平行四边形法则作图.例3 如图,已知向量a 、b . 求作:(1)a +b ;(2)a -b . 作法1 (应用三角形法则)(1)一般情况下,应在两已知向量所在的位置之外任取一点O .第一步:作OA →=a ,方法是将一个三角板的直角边与a 重合,再将直尺一边与三角板的另一直角边重合,最后将三角板拿开,放到一直角边过点O ,一直角边与直尺的一边重合的位置,在此基础上取|OA →|=|a |,并使OA →与a 同向.第二步:同第一步方法作出AB →=b ,一定要保证方向相同且长度相等.(此处最易错的是把AB →作成与b 的方向相反.)第三步:作OB →,即连接OB ,在B 处打上箭头,OB →即为a +b . 作图如下:(2)第一步:在平面上a ,b 位置之外任取一点O ; 第二步:依照前面方法过O 作OA →=a ,OB →=b ; 第三步:连接AB ,在A 处加上箭头,向量BA →即为a -b . 作图如下:点评 向量加法作图的特点是“首尾相接,首尾连”;向量减法作图的特点是“共起点,连终点,箭头指被减”.作法2 (应用平行四边形法则)在平面上任取一点A ,以点A 为起点作AB →=a ,AD →=b ,以AB ,AD 为邻边作▱ABCD ,则AC →=a +b ,DB →=a -b .作图如下:点评 向量的平行四边形法则和三角法则在本质上是一样的,但在解决某些问题时平行四边形法则有一定的优越性,因此两种法则都应熟练掌握.向量和差作图,要注意的是保证所作向量与目标向量“方向相同,长度相等”,最忌讳的是“作法不一”,比如作法中要求的是作AB →=b ,可实际上作的是AB →=-b .只要作图的过程与作法的每一步相对应,一定能作出正确的图形.2 向量线性运算的应用平面向量的线性运算包括加法、减法以及数乘运算,在解题中具有广泛的应用.在对向量实施线性运算时,要准确利用对应的运算法则、运算律,注意向量的大小和方向两个方面. 一、化简例1 化简下列各式: (1)(2AB →-CD →)-(AC →-2BD →); (2)124[3(2a +8b )-6(4a -2b )]. 解 (1)(2AB →-CD →)-(AC →-2BD →)=2AB →-CD →-AC →+2BD →=2AB →+DC →+CA →+2BD → =2(AB →+BD →)+(DC →+CA →)=2AD →+DA →=AD →. (2)124[3(2a +8b )-6(4a -2b )] =124(6a +24b -24a +12b )=124(-18a +36b ) =-34a +32b .点评 向量的基本运算主要有两个途径:一是基于“形”,通过作出向量,运用平行四边形法则或三角形法则进行化简;二是基于“数”,满足“首尾相接且相加”或“起点相同且相减”的两个向量进行化简,解题时要注意观察是否有这两种形式出现,同时注意向量加法法则、减法法则的逆向应用.数乘运算,可类比实数积的运算方法进行,将向量a ,b ,c 等看成一般字母符号,其中向量数乘之间的和差运算,相当于合并同类项或提取公因式,这里的“同类项”与“公因式”指的是向量. 二、求参数例2 如图,已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m =________.解析 如图,因为MA →+MB →+MC →=0,即MA →=-(MB →+MC →), 即AM →=MB →+MC →, 延长AM ,交BC 于D 点,所以D 是BC 边的中点,所以AM →=2MD →, 所以AD →=32AM →,所以AB →+AC →=2AD →=3AM →,所以m =3. 答案 3点评 求解含参数的向量线性运算问题,只需把参数当作已知条件,根据向量的加法、减法及数乘运算将问题中所涉及的向量用两个不共线的向量表示,列出向量方程,对比系数求参数的值. 三、表示向量例3 如图所示,在△ABC 中,AD →=23AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于点N ,设AB →=a ,AC →=b ,用向量a ,b 表示AE →、BC →、DE →、DN →、AM →.解 因为DE ∥BC ,AD →=23AB →,所以AE →=23AC →=23b ,BC →=AC →-AB →=b -a ,由△ADE ∽△ABC ,得DE →=23BC →=23(b -a ),又M 是△ABC 底边BC 的中点,DE ∥BC , 所以DN →=12DE →=13(b -a ),AM →=AB →+BM →=a +12BC →=a +12(b -a )=12(a +b ).点评 用已知向量表示另外一些向量,应尽量将所求向量转化到平行四边形或三角形中,利用向量共线条件和平面几何知识的一些定理、性质,如三角形中位线性质,相似三角形对应边成比例等,再利用向量加法、减法法则,即可用已知向量表示所求向量.3 平面向量的基本定理应用三技巧技巧一 构造某一向量在同一基底下的两种不同的表达形式,用“若e 1,e 2为基底,且a =x 1e 1+y 1e 2=x 2e 1+y 2e 2,则用⎩⎪⎨⎪⎧x 1=x 2y 1=y 2来求解.例1 在△OAB 的边OA ,OB 上分别取点M ,N ,使|OM →|∶|OA →|=1∶3,|ON →|∶|OB →|=1∶4,设线段AN 与BM 交于点P ,记OA →=a ,OB →=b ,用a ,b 表示向量OP →. 解 ∵B ,P ,M 共线,∴存在常数s ,使BP →=sPM →, 则OP →=11+s OB →+s 1+s OM →.即OP →=11+s OB →+s 3(1+s )OA →=s 3(1+s )a +11+sb .①同理,存在常数t ,使AP →=tPN →, 则OP →=11+t a +t 4(1+t )b .②∵a ,b 不共线,∴⎩⎨⎧11+t =s 3(1+s )11+s =t4(1+t ),解之得⎩⎨⎧s =92t =83,∴OP →=311a +211b .点评 这里选取OA →,OB →作为基底,构造OP →在此基底下的两种不同的表达形式,再根据相同基底的系数对应相等得到实数方程组,最后进行求解.技巧二 构造两个共线向量在同一基底下的表达形式,用“若e 1,e 2为基底,a =x 1e 1+y 1e 2,b =x 2e 1+y 2e 2,且a ∥b ,则x 1y 2-x 2y 1=0”来求解.例2 如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b .(1)用a 、b 表示OM →;(2)已知在线段AC 上取一点E ,在线段BD 上取一点F ,使EF 过M 点,设OE →=pOA →,OF →=qOB →,求证:17p +37q =1.(1)解 设OM →=m a +n b ,则 AM →=(m -1)a +n b ,AD →=-a +12b .∵点A 、M 、D 共线,∴AM →与AD →共线, ∴12(m -1)-(-1)×n =0,∴m +2n =1.①而CM →=OM →-OC →=(m -14)a +n b ,CB →=-14a +b .∵C 、M 、B 共线,∴CM →与CB →共线, ∴-14n -(m -14)=0.∴4m +n =1.②联立①②可得m =17,n =37,∴OM →=17a +37b .(2)证明 EM →=(17-p )a +37b ,EF →=-p a +q b ,∵EF →与EM →共线, ∴(17-p )q -37×(-p )=0. ∴17q -pq =-37p ,即17p +37q=1. 点评 这里多次运用构造一组共线向量的表达形式,再根据共线向量基底的系数关系建立方程组求解.技巧三 将题目中的已知条件转化成λ1e 1+λ2e 2=0的形式(e 1,e 2不共线),根据λ1=λ2=0来求解.例3 如图,已知P 是△ABC 内一点,且满足条件AP →+2BP →+3CP →=0,设Q 为CP 的延长线与AB 的交点,令CP →=p ,试用向量p 表示CQ →.解 ∵AP →=AQ →+QP →,BP →=BQ →+QP →, ∴(AQ →+QP →)+2(BQ →+QP →)+3CP →=0, ∴AQ →+3QP →+2BQ →+3CP →=0,又∵A ,B ,Q 三点共线,C ,P ,Q 三点共线, ∴AQ →=λBQ →,CP →=μQP →, ∴λBQ →+3QP →+2BQ →+3μQP →=0, ∴(λ+2)BQ →+(3+3μ)QP →=0.而BQ →,QP →为不共线向量,∴⎩⎪⎨⎪⎧λ+2=0,3+3μ=0.∴λ=-2,μ=-1.∴CP →=-QP →=PQ →. 故CQ →=CP →+PQ →=2CP →=2p .点评 这里选取BQ →,QP →两个不共线的向量作为基底,运用化归与转化思想,最终变成λ1e 1+λ2e 2=0的形式来求解.4 直线的方向向量和法向量的应用直线的方向向量和法向量是处理直线问题的有力工具.由于直线和平面向量的学习分散在必修2和必修4先后进行,学习中对它们的认识还不到位,重视程度还不够,下面对直线的方向向量和法向量的灵活应用结合例子加以剖析. 一、直线的方向向量 1.定义设P 1,P 2是直线l :Ax +By +C =0上的不同两点,那么向量P 1P 2→以及与它平行的非零向量都称为直线l 的方向向量,若P 1(x 1,y 1),P 2(x 2,y 2),则P 1P 2→的坐标为(x 2-x 1,y 2-y 1);特别当直线l 与x 轴不垂直时,即x 2-x 1≠0,直线的斜率k 存在时,那么(1,k )是它的一个方向向量;当直线l 与x 轴平行时,方向向量可为(1,0);而无论斜率存在与否,其方向向量均可表示为(-B ,A ). 2.应用 (1)求直线方程例1 已知三角形三顶点坐标分别为A (2,-3),B (-7,9),C (18,9),求AB 边上的中线、高线方程以及∠C 的内角平分线方程. 解 ①求中线方程由于CB →=(-25,0),CA →=(-16,-12),那么AB 边上的中线CD 的方向向量为CB →+CA →=(-41,-12),也就是⎝⎛⎭⎫1,1241,因而直线CD 的斜率为1241, 那么直线CD 的方程为y -9=1241(x -18),整理得12x -41y +153=0. ②求高线方程 由于k AB =9+3-7-2=-43,因而AB 的方向向量为⎝⎛⎭⎫1,-43, 而AB 边上的高CE ⊥AB , 则直线CE 的方向向量为⎝⎛⎭⎫1,34, 那么高线CE 的方程为y -9=34(x -18),整理得3x -4y -18=0. ③求∠C 的内角平分线方程 CB →|CB →|=(-1,0),CA →|CA →|=⎝⎛⎭⎫-45,-35, 则∠C 的内角平分线的方向向量为 CB →|CB →|+CA →|CA →|=⎝⎛⎭⎫-95,-35,也就是⎝⎛⎭⎫1,13, 因而内角平分线CF 的方程为y -9=13(x -18),整理得x -3y +9=0.点评 一般地,经过点(x 0,y 0),与直线Ax +By +C =0平行的直线方程是A (x -x 0)+B (y -y 0)=0;与直线Ax +By +C =0垂直的直线方程是B (x -x 0)-A (y -y 0)=0. (2)求直线夹角例2 已知l 1:x +3y -15=0与l 2:y -3mx +6=0的夹角为π4,求m 的值.解 直线l 1的方向向量为v 1=(-3,1), 直线l 2的方向向量为v 2=(1,3m ), ∵l 1与l 2的夹角为π4,∴|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|=|3m -3|9+1·1+9m 2=22, 化简得18m 2+9m -2=0.解得m =-23或m =16.点评 一般地,设直线l 1:y =k 1x +b 1,其方向向量为v 1=(1,k 1),直线l 2:y =k 2x +b 2,其方向向量为v 2=(1,k 2),当1+k 1k 2=0时,两直线的夹角为90°;当1+k 1k 2≠0时,设夹角为θ,则cos θ=|v 1·v 2||v 1|·|v 2|=|1+k 1k 2|1+k 21·1+k 22;若设直线l 1:A 1x +B 1y +C 1=0,其方向向量为(-B 1,A 1),直线l 2:A 2x +B 2y +C 2=0,其方向向量为(-B 2,A 2),那么cos θ=|A 1A 2+B 1B 2|A 21+B 21·A 22+B 22.二、直线的法向量 1.定义直线Ax +By +C =0的法向量:如果向量n 与直线l 垂直,则称向量n 为直线l 的法向量.因此若直线的方向向量为v ,则n ·v =0,从而对于直线Ax +By +C =0而言,其方向向量为v =(B ,-A ),则由于n ·v =0,于是可取n =(A ,B ). 2.应用(1)判断直线的位置关系例3 已知直线l 1:ax -y +2a =0与直线l 2:(2a -1)x +ay +a =0. (1)若l 1⊥l 2,求实数a 的值; (2)若l 1∥l 2,求实数a 的值.解 直线l 1,l 2的法向量分别为n 1=(a ,-1),n 2=(2a -1,a ),(1)若l 1⊥l 2,则n 1·n 2=a (2a -1)+(-1)×a =0,解得a =0或a =1.∴a =0或1时,l 1⊥l 2. (2)若l 1∥l 2,则n 1∥n 2,∴a 2-(2a -1)×(-1)=0.解得a =-1±2,且a 2a -1=-1a ≠2.∴a =-1±2时,l 1∥l 2.点评 一般地,设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,它们的法向量分别为n 1=(A 1,B 1),n 2=(A 2,B 2),当n 1⊥n 2,即A 1A 2+B 1B 2=0时,l 1⊥l 2,反之亦然;当n 1∥n 2,即A 1B 2-A 2B 1=0时,l 1∥l 2或l 1与l 2重合. (2)求点到直线的距离例4 已知点M (x 0,y 0)为直线l :Ax +By +C =0外一点. 求证:点M (x 0,y 0)到直线l 的距离d =|Ax 0+By 0+C |A 2+B 2.证明 设P (x 1,y 1)是直线Ax +By +C =0上任一点,n 是直线l 的一个法向量,不妨取n =(A ,B ).则M (x 0,y 0)到直线l :Ax +By +C =0的距离d 等于向量PM →在n 方向上投影的长度,如图所示.d =|PM →|·|cos 〈PM →,n 〉| =|PM →·n ||n |=|(x 0-x 1,y 0-y 1)·(A ,B )|A 2+B 2=|A (x 0-x 1)+B (y 0-y 1)|A 2+B 2=|Ax 0+By 0-(Ax 1+By 1)|A 2+B2. ∵点P (x 1,y 1)在直线l 上,∴Ax 1+By 1+C =0,∴Ax 1+By 1=-C , ∴d =|Ax 0+By 0+C |A 2+B 2.点评 同理应用直线的法向量可以证明平行直线l 1:Ax +By +C 1=0与直线l 2:Ax +By +C 2=0(A 2+B 2≠0且C 1≠C 2)的距离为d =|C 2-C 1|A 2+B 2.证明过程如下:设P 1(x 1,y 1),P 2(x 2,y 2)分别为直线l 1:Ax +By +C 1=0,直线l 2:Ax +By +C 2=0上任意两点,取直线l 1,l 2的一个法向量n =(A ,B ),则P 1P 2→=(x 2-x 1,y 2-y 1)在向量n 上的投影的长度,就是两平行线l 1、l 2的距离.d =|P 1P 2→||cos 〈P 1P 2→,n 〉|=|P 1P 2,→·n ||n |=|(x 2-x 1,y 2-y 1)·(A ,B )|A 2+B 2=|A (x 2-x 1)+B (y 2-y 1)|A 2+B 2=|(Ax 2+By 2)-(Ax 1+By 1)|A 2+B 2=|C 2-C 1|A 2+B2 .5 向量法证明三点共线平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力.下面就一道习题的应用探究为例进行说明. 典例 已知OB →=λOA →+μOC →,其中λ+μ=1.求证:A 、B 、C 三点共线. 思路 通过向量共线(如AB →=kAC →)得三点共线.证明 如图,由λ+μ=1得λ=1-μ,则OB →=λOA →+μOC →=(1-μ)OA →+μOC →.∴OB →-OA →=μ(OC →-OA →),∴AB →=μAC →, ∴A 、B 、C 三点共线.思考 1.此题揭示了证明三点共线的又一向量方法,点O 具有灵活性;2.反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满足OB →=λOA →+μOC →,且λ+μ=1.揭示了三点共线的又一个性质;3.特别地,λ=μ=12时,OB →=12(OA →+OC →),点B 为AC →的中点,揭示了△OAC 中线OB 的一个向量公式,应用广泛. 应用举例例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且BN =13BD .利用向量法证明:M 、N 、C 三点共线.思路分析 选择点B ,只须证明BN →=λBM →+μBC →,且λ+μ=1.证明 由已知BD →=BA →+BC →,又点N 在BD 上,且BN =13BD ,得BN →=13BD →=13(BA →+BC →)=13BA →+13BC →.又点M 是AB 的中点,∴BM →=12BA →,即BA →=2BM →.∴BN →=23BM →+13BC →.而23+13=1.∴M 、N 、C 三点共线. 点评 证明过程比证明MN →=mMC →简洁.例2 如图,平行四边形OACB 中,BD =13BC ,OD 与AB 相交于E ,求证:BE =14BA .思路分析 可以借助向量知识,只需证明:BE →=14BA →,而BA →=BO →+BC →,又O 、D 、E 三点共线,存在唯一实数对λ、μ,且λ+μ=1,使BE →=λBO →+μBD →,从而得到BE →与BA →的关系.证明 由已知条件,BA →=BO →+BC →,又B 、E 、A 三点共线,可设BE →=kBA →,则 BE →=kBO →+kBC →,①又O 、E 、D 三点共线,则存在唯一实数对λ、μ, 使BE →=λBO →+μBD →,且λ+μ=1. 又BD →=13BC →,∴BE →=λBO →+13μBC →,②根据①②得⎩⎪⎨⎪⎧k =λ,k =13μ,λ+μ=1,解得⎩⎪⎨⎪⎧k =14,λ=14,μ=34.∴BE →=14BA →,∴BE =14BA .点评 借助向量知识,充分运用三点共线的向量性质解决问题,巧妙、简洁.6 平面向量中的三角形“四心”问题在三角形中,“四心”是一组特殊的点,它们的向量表达形式具有许多重要的性质,在近年高考试题中,总会出现一些新颖别致的问题,不仅考查了向量等知识点,还培养了考生分析问题、解决问题的能力.现就“四心”作如下介绍: 1.重心三角形三条中线的交点叫重心,它到三角形顶点距离与该点到对边中心距离之比为2∶1.在向量表达形式中,设点G 是△ABC 所在平面内的一点,则当点G 是△ABC 的重心时,有GA →+GB →+GC →=0或PG →=13(P A →+PB →+PC →)(其中P 为平面任意一点).反之,若GA →+GB →+GC →=0,则点G 是△ABC 的重心.在向量的坐标表示中,若G ,A ,B ,C 分别是三角形的重心和三个顶点,且坐标分别为G (x ,y ),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则有x =x 1+x 2+x 33,y =y 1+y 2+y 33. 例 已知△ABC 内一点O 满足关系OA →+2OB →+3OC →=0,试求S △BOC ∶S △COA ∶S △AOB 的值. 解 如图,延长OB 至B 1,使BB 1=OB ,延长OC 至C 1,使CC 1=2OC ,连接AB 1,AC 1,B 1C 1.则OB 1→=2OB →,OC 1→=3OC →. 由条件,得OA →+OB 1→+OC 1→=0, ∴点O 是△AB 1C 1的重心.从而S △B 1OC 1=S △C 1OA =S △AOB 1=13S ,其中S 表示△AB 1C 1的面积.∴S △COA =19S ,S △AOB =16S ,S △BOC =12S △B 1OC =12×13S △B 1OC 1=118S .于是S △BOC ∶S △COA ∶S △AOB =118∶19∶16=1∶2∶3. 点评 本题条件OA →+2OB →+3OC →=0与三角形的重心性质GA →+GB →+GC →=0十分类似,因此我们通过添加辅助线,构造一个三角形,使点O 成为辅助三角形的重心,而三角形的重心与顶点的连线将三角形的面积三等分,从而可求三部分的面积比.引申推广 已知△ABC 内一点O 满足关系λ1OA →+λ2OB →+λ3OC →=0,则S △BOC ∶S △COA ∶S △AOB =λ1∶λ2∶λ3. 2.垂心三角形三条高线的交点叫垂心,它与顶点的连线垂直于对边.在向量表达形式中,若H 是△ABC 的垂心,则HA →·HB →=HB →·HC →=HC →·HA →或HA →2+BC →2=HB →2+CA →2=HC →2+AB →2.反之,若HA →·HB →=HB →·HC →=HC →·HA →,则H 是△ABC 的垂心. 3.内心三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点I 是△ABC 的内心,则有|BC →|·IA →+|CA →|·IB →+|AB →|·IC →=0.反之,若|BC →|·IA →+|CA →|·IB →+|AB →|·IC →=0,则点I 是△ABC 的内心. 4.外心三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等.在向量表达形式中,若点O 是△ABC 的外心,则(OA →+OB →)·BA →=(OB →+OC →)·CB →=(OC →+OA →)·AC →=0或|OA →|=|OB →|=|OC →|.反之,若|OA →|=|OB →|=|OC →|,则点O 是△ABC 的外心.。