焊接电弧特性
电弧焊-基础知识

27
(二)电子的发射
(2)场致发射
当阴极表面空间有强电场存在时,金属 电极内的电子在电场静电库仑力的作用下, 从电极表面飞出的现象称为场致发射。
冷阴极电弧正是主要依靠这种方式获得足 够的电子以维持电弧稳定燃烧的。
28
(二)电子的发射
(3)光发射
当金属电极表面接受光辐射时,电极表面的 自由电子能量增加,当电子的能量达到一定值时 能飞出电极的表面,这种现象称为光发射。
9
(一)气体的电离
(1)电离与激励
电离能通常以电子伏(eV)为单位, 1电子伏就是1个电子通过1V电位差的空间所 获得的能量,其数值为1.6×10-19J。为了便 于计算,常把以电子伏为单位的能量转换为 数值上相等的电压来处理,单位为伏(V), 此电压称为电离电压。电弧气氛中常见气体 的电离电压如表1-1所示。
(1)热发射 金表面承受热作用而产生电子发射的现象称 为热发射。金属电极内部的自由电子受到热作用 以后,热运动加剧,动能增加,当自由电子的动 能大于该金属的电子逸出功时,就会从金属电极 表面飞出,参加电弧的导电过程。电子发射时从 金属电极表面带走能量,故能对金属产生冷却作 用。当电子被另外的同种金属表面接受时,将释 放能量,使金属表面加热。
二、焊接电弧的导电特性
其中,暗放电和辉光放电的电流较小,电 压较高,发热发光较弱,而电弧放电的电流最 大,电压最低,温度最高、发光最强。正是因 为电弧具有这样的特点,因此在工业中广泛用 来作为热源和光源,在焊接技术中成为一种不 可缺少的能源。 综上所述,从电弧的物理本质来看,它是一种 在具有一定电压的两电极之间的气体介质中所 产生的电流最大、电压最低、温度最高、发光 最强的自持放电现象。
第一章电弧焊基础知识
焊接电弧及其电特性

编辑ppt
10
1.2.1、焊接电弧的结构及压降分布
电弧沿着其长度方向分为三个区域,如图1-2所示。 电弧与弧焊电源正极所接的一端称阳极区,与负极 相接的那端称阴极区。阴极区和阳极区之间的部分 称弧柱区,或称正柱区、电弧等离区。阴极区的宽 度约为10-5~10-6cm, 而阳极区的宽度仅约10-3 ~10-4cm, 因此,电弧长度可以视为近似等于弧柱长 度。弧柱部分的温度高达5000~50000K。
编辑ppt
20
1.3.1 交流电弧的特点
电弧周期性地熄灭和引燃 交流电流每当经过零点并改变 极性时,电弧熄灭、电弧空间温度下降。
电弧电压和电流波形发生畸变。 热惯性作用较为明显 。
编辑ppt
21
埋弧焊电弧电压和电流波形图
图1-9 埋弧焊电弧电压和电流波形图 a)不连续燃烧 b)连续燃烧
编辑ppt
图1-3 高频和脉冲引弧示意图 a)引弧器接入方式 b)高频高压引弧电压波形 c)高压脉冲引弧电压波形
u yh — 编引辑弧pp电t 压 t— 时间
9
1.2 焊接电弧的结构和伏安特性
前面分析了焊接的物理本质和形成。现在介绍它的结构和 电特性,即伏安特性,包括静特性和动特性。直流电弧和 交流电弧是焊接电弧的两种最基本的形式。
电子发射是引弧和维持电弧稳定燃烧的一个很重要的因素。 按其能量来源的不同,可分为热发射,光电发射,重粒子 碰撞发射和强电场作用下的自发射等。
编辑ppt
6
1.1.2 焊接电弧的引燃
图1-1 引弧过程电压、电流变化曲线图
a) 接触引弧
b) 非接触引弧
b) U0- 空载电压 Uf- 电弧电压 if- 电弧电流
焊接电弧也是气体放电的一种形式。它与其他气体放电的 区别在于它的阴极压降低、电流密度大,而气体的电离和 电子发射是电弧中最基本的物理现象。
电弧特性

滑擦引弧
Electrode
(+)
Rubbing direction
接触引弧 电弧引燃 非接触引弧
短路引弧 Workpiece (-)
现 代 焊 接电 源 及 其 计 算 机 控 制
短路引燃电弧: 短路——空载——燃弧 接触——拉开——燃弧
弧焊电源 电能 接触 电阻热 金属熔化、蒸发
电能
电弧燃烧
弧长的影响:
弧长增加,弧柱长度增加,电弧电压提高;即电弧静特性曲线形状不变,但曲 线整体上移;这表明电弧电流一定时,电弧电压随弧长的增加而增加。
电极直径的影响:
主要影响阴极斑点面积 SK 和弧柱截 面SC;电极直径减小, SK、 SC减小,则 曲线整体左移;同理,电极直径增大,电 弧静特性曲线则将向电流增加的方向移动 (向右移动)。
A 段:电弧电压随电流的增加而下降,是下降特性段(负阻区)。 B 段:呈等压特性,即电弧电压 不随电流的变化而变化,是平特 性段(零阻区) C 段:电弧电压随电流的增加 而上升,是上升特性段(正阻 区)
电弧静特性曲线 U/V
A
B
C
Uf
I/A
现代焊接电源及其计算机控制
焊接电弧静特性曲线的构成
U U U U f A C K
高压脉冲引弧波形
电能
电弧燃烧
电能
不接触、高电压 工件与钨极 距离2-4mm 左右
碰撞电离、发射
场致发射
电弧引燃
应用场合:钨极氩弧焊和等离子弧焊。
现代焊接电源及其计算机控制
2.2 焊接电弧的结构以及伏安特性
一、焊接电弧的结构以及压降分布
三个区域:阳极区、阴极区、弧柱区
总的电弧电压:
焊接电弧特性

焊接电弧特性焊接电弧的电特性包括焊接电弧的静态伏安特性(静特性)和动态伏安特性(动特性)。
一、电弧静特性曲线图1-1普通电阻静特性与电弧静特性曲线1—普通电阻静特性曲线2—电弧静特性曲线一定长度的电弧在稳定燃烧状态下,电弧电压与电弧电流之间的关系称为焊接电弧的静态伏安特性,简称伏安特性或静特性,也称为U曲线。
1)电弧静特性曲线。
焊接电弧是焊接回路中的负载,它与普通电路中的普通电阻不同,普通电阻的电阻值是常数,电阻两端的电压与通过的电流成正比(U=IR),遵循欧姆定律,这种特性称为电阻静特性,为一条直线,如图1-1中的曲线1所示。
焊接电弧也相当于一个电阻性负载,但其电阻值不是常数。
电弧两端的电压与通过的焊接电流不成正比关系,而呈U形曲线关系,如图1-1中的曲线2所示。
电弧静特性曲线分为三个不同的区域,当电流较小时(图1-1中的ab区),电弧静特性属下降特性区,即随着电流增加电压减小;当电流稍大时(图1-1中的bc区),电弧静特性属平特性区,即电流变化时,而电压几乎不变;当电流较大时(图1-1中的cd区),电弧静特性属上升特性区,电压随电流的增加而升高。
2)电弧静特性曲线的应用。
由于不同的焊接方法,其焊接中所取的电流范围有限,因此对于特定焊接方法,根据其电流适用范围,其电弧静特性曲线只是整个U曲线的某一部分。
焊条电弧焊、埋弧焊一般工作在静特性的平特性区,即电弧电压只随弧长而变化,与焊接电流关系很小。
◆焊条电弧焊、埋弧焊多半工作在静特性水平段。
◆一般的钨极氩弧焊、等离子弧焊的焊接电弧也工作在水平段,◆当电流很小时,如微束等离子弧焊、微束TIG焊工作在下降段◆细丝熔化极气体保护焊基本上工作在上升段。
二、焊接电弧的动特性在一定的弧长下,当电弧电流以很快速度连续变化时,电弧电压与电流瞬时值之间的关系称为电弧动态伏安特性,简称为电弧动特性。
直角坐标系中的电弧动特性曲线是一闭合曲线,称为电弧动特性闭合曲线。
电弧的动特性:“热惯性”现象1)电流快速减小时,由于电弧电离度较高,电弧电压低于静态值,V-A 特性曲线低于静特性曲线。
焊接电弧及其电特性

为交流电弧的有功功率; 、 分别为电弧电压和电弧电流的瞬时值
2
交流电弧的功率
1.3.4.2 交流电弧的功率因数 交流电弧的功率因数是指交流电弧的有功功率与电弧电压和电弧电流有效值乘积之比值,即:
1、交流电弧功率 与K的关系图
焊接电弧的性质与供电电源的种类、电弧的状态、电弧周围的介质以及电极材料有关。按照不同的方法,可作出如下的分类: 按电流种类可分为:交流电弧、直流电弧和
1.1.1 气体原子的激发、电离和电子发射 焊接电弧也是气体放电的一种形式。它与其他气体放电的区别在于它的阴极压降低、电流密度大,而气体的电离和电子发射是电弧中最基本的物理现象。
1.1.1.1. 气体原子的激发与电离
气体原子的激发 如果气体原子得到了外加的能量, 电子就可能从一个较低的能级跳跃到一个较高能级,这时原子处于“激发”状态,使原子跃至“激发”状态所需的能量,称为激发能。 气体原子的电离 使电子完全脱离原子核的束缚,形成离子和自由电子的过程为电离。由原子形成正离子所需的能量称为电离能。 电离的形式 在焊接电弧中,根据引起电离的能量来源,有如下三种电离形式: (1) 撞击电离; (2) 热电离; (3) 光电离。
01
在用交流电弧进行焊接时,要求能充分利用电弧功率,以获得较高的效率。此外,还希望在弧长略有变化时功率保持稳定,使焊接过程能顺利进行。因此,研究交流电弧功率及功率因数的影响因素和计算方法,也是有必要的。
02
交流电弧的电压和电流时刻都在变化。所以,交流电弧的功率是指交流电弧在半个周期内的平均功率(又称为有功功率),即
1.4.1.2 熔化极焊接电弧
1.4.2 压缩电弧
如果把自由电弧的弧柱强迫压缩,就获得一种比一般电弧温度更高,能量更集中的热源,即压缩电弧 。
焊接电弧的外特性名词解释

焊接电弧的外特性名词解释焊接是一种通过加热材料并使其熔化来连接两个或更多工件的技术。
在焊接过程中,电弧是一种重要的工具,用于加热和熔化焊接材料。
焊接电弧的外特性指的是描述电弧在焊接过程中产生的特定行为和属性的名词。
1. 弧长(Arc Length)弧长是指从电极到焊缝之间的距离。
焊接过程中,弧长的控制对焊接质量十分重要。
过短的弧长会导致焊缝狭窄,焊接质量下降,过长的弧长则会导致电弧不稳定和飞溅增加。
2. 弧压(Arc Voltage)弧压是指焊接电流通过电弧时产生的电压。
弧压的大小直接影响焊接工艺参数的选择和焊缝形态。
通过控制弧压,可以调整焊接电弧的热输入和熔深,从而实现理想的焊接质量。
3. 电弧稳定性(Arc Stability)电弧稳定性描述了电弧在焊接过程中的稳定性能。
电弧稳定性受到焊接电流、电压、电极形状、材料成分等因素的影响。
对于稳定的电弧,可以获得均匀的焊缝形态和良好的焊接质量。
4. 移焊速度(Travel Speed)移焊速度指的是焊接过程中焊接枪或电极的移动速度。
移焊速度决定了焊接电弧的停留时间,从而影响焊接热输入和熔深。
过快的移焊速度会导致焊接质量下降,过慢则可能引起过热和变形。
5. 飞溅(Spatter)飞溅是指电弧在熔化金属时产生的小颗粒或小液滴。
飞溅会对周围区域造成污染,并可能引起焊接质量的下降。
减少飞溅的方法包括控制电弧稳定性、适当选择焊接工艺参数和合适的焊接材料。
6. 粘附力(Adhesion Force)粘附力描述了电弧在焊接过程中与焊缝表面之间的黏附性能。
粘附力的大小与焊接材料的表面性质、电弧功率和熔融材料的液体性质等因素有关。
若粘附力过低,焊接缺陷如气孔和裂纹可能产生。
7. 电弧温度(Arc Temperature)电弧温度是指电弧燃烧区域的温度。
电弧温度的高低直接影响焊接过程中熔池的温度和熔深。
太高的电弧温度可能导致焊接缺陷,如烧穿;太低则会影响焊接质量。
总结:焊接电弧的外特性名词解释涵盖了电弧长度、弧压、电弧稳定性、移焊速度、飞溅、粘附力和电弧温度等关键概念。
焊接电弧的动特性名词解释

焊接电弧的动特性名词解释一、引言焊接电弧是一种在焊接过程中产生的强烈光辐射和高温的等离子体现象,其动特性是指电弧在焊接中所表现出的各种物理和化学特性。
理解电弧的动特性对于掌握焊接工艺和提高焊接质量具有重要意义。
二、电弧长度电弧长度是指焊接电弧的摆动范围,通常以电弧焊接过程中两电极之间的距离衡量。
电弧长度的控制对于焊接过程的稳定性和熔深的控制至关重要。
较大的电弧长度可使焊缝充满,提高焊接质量,但同时也会降低焊接速度。
较小的电弧长度可以加快焊接速度,但有时会导致焊缝不充分的问题。
三、电弧功率密度电弧功率密度是指单位面积上电弧所输出的功率。
它的大小决定了焊接热量的分布和焊接效果。
较高的电弧功率密度可产生较高的焊接温度,有助于更好地熔化焊材和基材,但同时也会带来较大的熔散和气孔的形成。
适当控制电弧功率密度是保证焊接质量的关键。
四、电弧稳定性电弧稳定性是指电弧在焊接过程中的稳定性能。
稳定的电弧有利于焊缝的均匀成形和气孔的排除,其输出的热量也会更加均匀。
电弧的稳定性受到多种因素的影响,如电弧长度、电弧电流和焊接材料的性质等。
良好的焊接参数的选择和提高焊工的操作技术都可以提高电弧的稳定性。
五、电弧形态电弧形态是指焊接电弧在形态上的表现。
电弧形态可以通过感知电弧辉光的形状、颜色和闪烁频率等进行判断。
不同的电弧形态对焊接过程有着不同的影响。
一般来说,稳定的直流等离子体电弧形态有利于均匀的熔化焊材和基材,而闪烁频率高、形态不稳定的电弧则可能导致焊接质量问题。
六、电弧电流电弧电流是指焊接电弧传递的电流大小。
电弧电流的选择直接影响着焊接的热量和熔深。
过大的电弧电流会导致焊接过程中热量过大,容易产生焊缝熔穿等问题,而过小的电弧电流则可能导致焊缝不充分的现象。
合理选择电弧电流是协调熔化和焊接速度的关键。
七、电弧温度电弧温度是指焊接电弧的温度高低。
电弧温度的升高会导致更高的焊接温度,有助于焊接金属的熔化,但同时也可能对金属的组织产生不利影响。
焊接电弧及其电特性

由原子形成正离子所需要的能量称为电离能 由原子形成正离子所需要的能量称为电离能
2.气体原子的电离 (1)撞击电离:在电场中,被加速的带电质点(电子,离子) 撞击电离: 电场中 被加速的带电质点(电子,离子) 和中性质点(原子)碰撞后发生的电离. 和中性质点(原子)碰撞后发生的电离. (2)热电离:在高温下,具有高动能的气体原子(或分子)互 热电离: 高温下 具有高动能的气体原子(或分子) 相碰撞而引起的电离. 相碰撞而引起的电离. (3)光电离:气体原子(或分子)吸收了光射线的光子能而产 光电离:气体原子(或分子)吸收了光射线的光子能而产 光子能 生的电离. 生的电离. 常见气体及元素的电离能E 常见气体及元素的电离能EL(eV)
第二节
焊接电弧的结构以及伏安特性
弧柱区
一,焊接电弧的结构以及压降分布
三个区域: 三个区域:阳极区 阴极区
阴极区:长度极短10 电压较大, 阴极区:长度极短10-510-6cm ,电压较大,E电场强度极高 阳极区:长度也极短10 电压较大, 阳极区:长度也极短10-210-4cm ,电压较大,E极高 弧柱区:长度基本上等于电弧长度, 弧柱区:长度基本上等于电弧长度,E较小
Ⅰ Ⅱ
Ⅲ
Uf
影响电弧静特性的因素: 影响电弧静特性的因素: 电弧长度
Ua
L2 >L1 L2 L1 电弧长度对电弧静特性的影响
周围气体种类
焊接电弧静特性的应用 对于不同的焊接方法,电弧静特性曲线有所不同. 对于不同的焊接方法,电弧静特性曲线有所不同.静特性下 降段电弧燃烧不稳定而很少采用. 降段电弧燃烧不稳定而很少采用. 焊条电弧焊,埋弧焊多半工作在静特性水平段. 焊条电弧焊,埋弧焊多半工作在静特性水平段. 水平段 熔化极气体保护焊,微束等离子弧焊, 熔化极气体保护焊,微束等离子弧焊,等离子弧焊也多半工 作在水平段,当焊接电流很大时才工作在上升段. 作在水平段,当焊接电流很大时才工作在上升段. 水平段 上升段 熔化极气体保护焊和水下焊接基本上工作在上升段. 熔化极气体保护焊和水下焊接基本上工作在上升段. 上升段
焊接电弧的静特性和熔滴过渡的形式

平特性
在B区:电流稍大,电极温度提高,阴极热发射能力增强, 阴极电压降低;阳极蒸发加剧,阳极电压降低。也就是说电弧 中产生和运动等量的电荷不需要更强的电场。 对于弧柱区,电弧等离子气流增强,除电弧表面积增加造成的 热损失外,等离子气流的流动对电弧产生附加的冷却作用,因 此在一定的电弧区间内,电弧电压自动的维持一定的数值,保 证产热和散热的平衡。成平特性。 一般埋弧焊、手工焊、大电流TIG焊等都工作在平特性段。
下降特性
在A区:电流较小,电弧热量较低,电离度低,电弧的导电性 较差,需要有较高的电场推动电荷运动; 电弧阴极区,由于电极温度低,电子提供能力较差,不能实现 大量的电子发射,会形成比较强的阴极电压降。所以电流越小 电压越高。 弧柱区在小电流范围内电流密度基本不变,弧柱截面随电流的 增加按比例增加,但弧柱周长增加的少,产热多,散热少,电 弧温度提高,电离程度提高,电弧电场强度降低,弧压降低, 所以电弧成负阻特性。
上升特性
在C区:电流更大时, 金属蒸汽的发射及等离子流的冷却作用进一步加强,同时由于电 磁力的作用,电弧截面不能成比例增加,电弧的电导率减小,要 保证较大的电流通过相对比较小的截面,需要更高的电场。 MIG焊的电弧一般工作在上升段。
电弧电压决定于电弧长 度和焊接电流值
不同电弧长度的电弧静特性曲线
仰焊 横焊
重力
表面张力 气体吹力
电磁力 斑点压力
有利于熔滴过渡的打√,阻碍熔滴过渡的打×
斑点压力
斑点压力:斑点受到带电粒子的撞击,或金属蒸汽的反作用而对 斑点产生的压力,称为斑点力,或斑点压力。 阴极斑点力大于阳极斑点力
不论是阴极斑点力还是阳极 斑点力,其方向总是与熔滴 过渡方向相反,如图所示。 但由于阴极斑点力大于阳极 斑点力,所以熔化极气体保 护焊可通过采用直流反接减 小对熔滴过渡的阻碍作用, 减少飞溅。
焊接电弧的能量特性以及电弧力

2 焊接电弧的温度分布
2)焊接电弧径向温度分布 在焊接电弧的横断面内,温度沿径向的
分布是不均匀的,中心轴温度最高,离开中心轴 的温度逐渐降低,如图1-7所示。这主要是由 于外围散热快造成的。
焊接电流越大,电弧中心的温度越高。
12
2 焊接电弧的温度分布
图1-7电弧径向温度分布示意图 a)W-Cu电极间电弧等温线,电流200A,电压
10
2 焊接电弧的温度分布
反之,如果介质中含有电离能较高的物质,特 别是存在负电性元素氟时,能显著地提高弧柱区的 温度。例如,用含氟的焊剂进行埋弧焊时,弧柱区 的温度可高达7850K。含氟越多,温度越高。其 原因是:氟易与电子在电弧周边容易结合形成负离 子F-,使得电弧周边难以导电,电弧电流主要从电 弧中心流过,这相当于对电弧产生了压缩作用, 因而使弧柱的温度提高。
6
2 焊接电弧的温度分布
1)焊接电弧轴向温度分布 焊接电弧沿轴向的温度分布如图1-6所示。
图中还给出了能量密度与电流密度是相对应的, 即阴极区和阳极区的电流密度和能量密度均高于 弧柱区。
7
2 焊接电弧的温度分布
图1-6 电弧的温度、电流密度和能量密度的轴向分布示意图
8
2 焊接电弧的温度分布
许多研究表明,一般电弧焊时,阴极和阳极产生 的热量相近,但由于阴极发射电子消耗的能量较多,故 其温度比阳极低一些。阴极温度约为2200-3500K, 而阳极温度约为2400-4200K。在相同的产热情况 下,电极的温度受电极材料的种类、导热性、电极的 几何尺寸影响较大。一般来说,材料的沸点越低、导 热性越好、电极的尺寸越大,电极的温度越低,反之, 则越高。弧柱区的温度受电流大小、电极材料、气 体介质、弧柱的压缩程度等因素的影响较大。
电弧的基本特性

第一讲 电弧的基本特性
按电弧状态,可分为自由电弧(如焊条电弧焊电弧)、压缩电弧(如等离子弧)。 按电极材料,可分为熔化极电弧(如CO2气体保护焊电弧)、非熔化极电弧(如钨极氩弧焊电弧)。 焊接电弧的产生 一般情况下,气体不含有带电粒子(电子、正离子、负离子),是由中性的分子或原子组成的。要使气体产生电弧导电,必须使气体分子或原子电离成带电粒子——气体电离;同时,为了使电弧维持“燃烧”,还必须不断的输送电能给电弧,以补充气体电离时所消耗的电能,即电弧的阴极要不断的发射电子。综上所示,气体电离和阴极发射电子是电弧产生的必要条件。 气体电离
熔滴冲击力 当采用较大电流进行熔化极氩弧焊时,熔滴呈射流过渡,在等离子流力的作用下,熔滴以极大的加速度连续沿轴向射向熔池,使焊缝极易形成指状熔深。
短路爆破力 电弧从燃烧状态过渡到短路状态,电弧电流迅速上升,熔滴温度急剧升高,使液柱汽化爆断,产生较大的冲击力,导致飞溅产生。
影响电弧力的因素
第一讲 电弧的基本特性
图7-1 焊接电弧导电示意图
焊接电弧不是一般的燃烧现象,它是在一定条件下电荷通过两极间气体空间的一种导电过程(如图7-1),也可以说是一种气体放电现象。焊接电弧是电弧焊的热源,而弧焊电源是为焊接电弧提供能量的设备。 一、焊接电弧的种类 ★按焊接电流种类,可分为交流电弧、直流电弧、脉冲电弧。
a—阴极压降与阳极压降之和(V); b—单位长度弧柱压降(V/mm); —弧柱长度(mm)。
焊接电弧的特性
电特性
热特性
力学特性
第一讲 电弧的基本特性
四、焊接电弧的特性 (一)焊接电弧的电特性 焊接电弧的电特性即伏安特性,包括静态伏安特性(静特性)和动态伏安特性(动特性)。 1.焊接电弧的静特性
焊接电弧

2. 减少或防止电弧偏吹的方法
(1)对于因气体流动过强引起的电弧偏吹,应首先根据具 )对于因气体流动过强引起的电弧偏吹, 体情况查明气流来源、方向,再采取相应措施。 体情况查明气流来源、方向,再采取相应措施。 (2)在操作时适当调整焊条角度,使焊条向偏吹的一侧倾 )在操作时适当调整焊条角度, 斜。 (3)采用短弧焊接及小电流焊接,对减小电弧偏吹也能起 )采用短弧焊接及小电流焊接, 一定作用。 一定作用。 (4)为防止磁偏吹的影响,在条件许可的情况下应尽量使 )为防止磁偏吹的影响, 用交流电焊接。 用交流电焊接。
二、焊接电弧的构造及温度分布
1. 焊接电弧的构造
焊接电弧可根据其物理 特征,沿长度方向划分为三 个区域,即阴极区、阳极区 和弧柱区。 阴极区——靠近阴极的 一层很薄的区域,厚度大约 只有10-5~10-6 cm。 阳极区——靠近阳极的 一层很薄的区域,但它的厚 度比阴极区,约10-3~10-4 cm。
由上述可知,电弧作为热源,其特点是温度很高, 由上述可知,电弧作为热源,其特点是温度很高, 热量相当集中。因此,用于焊接时金属熔化非常快。 热量相当集中。因此,用于焊接时金属熔化非常快。 使金属熔化的热量主要集中产生于两极; 使金属熔化的热量主要集中产生于两极;弧柱温度 虽高,但大部分热量被散失于周围气体中, 虽高,但大部分热量被散失于周围气体中,对金属 熔化并不起重要作用。 熔化并不起重要作用。
第三节
返回
返回
返回
六、焊接电弧的偏吹
电弧轴线偏离焊条轴线方向的现象,称它为电弧的偏吹。 电弧轴线偏离焊条轴线方向的现象,围气流的干扰 图2-9 (2)焊条偏心度过大 磁场的影响(磁偏吹) 图2-10 (3)磁场的影响(磁偏吹) 总之, 总之,引起焊接电弧产生磁偏吹现象的根本原因是由于 电弧周围磁场分布不均匀, 电弧周围磁场分布不均匀,而这种情况只有在使用直流电源 焊接时才明显发生,并且焊接电流越大, 焊接时才明显发生,并且焊接电流越大,电弧磁偏吹现象越 严重。 严重。
焊接电弧的名词解释

焊接电弧的名词解释焊接电弧是一种通过高电压和电流产生的气体放电现象,通常用于焊接过程中加热和熔化金属。
在焊接中,焊极和焊件之间产生的电弧能量被用于使焊件表面升高到足够的温度以实现材料熔化和连接。
1. 电弧的形成焊接电弧的形成是通过在电极和焊件之间建立电流通路,利用电流经过气体空气中的阻抗,产生高温和高能量的现象。
当电流通过电极,并遇到空气中的阻抗时,电子的能量会从电流中释放出来,形成电弧。
2. 电弧的特性焊接电弧具有多种特性,其中包括:2.1 高温:焊接电弧的温度可以达到数千度,使得金属能够熔化并形成连接。
2.2 高能量密度:焊接电弧能够提供高能量密度,将焊件的表面加热到足够的温度。
2.3 高亮度:焊接电弧本身是明亮且具有强光的。
2.4 强风:焊接电弧产生的气流可以对周围的环境产生干扰,需要注意安全和舒适度。
3. 焊接电弧的应用焊接电弧是现代工业中广泛应用的一种技术。
其主要应用有:3.1 金属焊接:通过焊接电弧,可以将金属件进行连接,如钢铁结构、汽车制造和航空航天部件的制造等领域。
3.2 焊接修复:焊接电弧广泛应用于金属修复领域,能够修复和加固破损的金属件。
3.3 电弧切割:焊接电弧可以用于金属切割,通过在金属表面生成高温电弧,将金属融化并切割。
3.4 表面处理:焊接电弧也可以用于改变金属表面的特性,如表面硬化和改变金属结构等。
4. 焊接电弧的不同类型焊接电弧可以根据其形成的方式和材料使用进行分类。
以下是一些常见的焊接电弧类型:4.1 气体保护焊电弧:在焊接过程中,通过向电弧周围提供气体保护,以避免氧化和污染现象。
4.2 电弧焊接:传统的电弧焊接使用焊条或焊丝作为电极,并通过电弧加热和熔化焊件的表面。
4.3 电弧气体化学焊接:通过在电弧中引入反应性气体,实现金属熔化和连接。
4.4 感应电弧焊接:利用电磁感应的原理,在工件中产生电流并生成电弧。
5. 焊接电弧的安全注意事项在使用焊接电弧过程中,必须注意以下安全事项:5.1 穿戴个人防护设备,如护目镜、手套和耳塞。
1.1焊接电弧及其特性

(二)电子的发射
表1-2
金属种类 纯金 属 金属 氧化 物
几种金属及其氧化物的逸出功
W Fe Al Cu K Ca Mg
4.54 4.48
4.25
4.36
2ห้องสมุดไป่ตู้02
2.12
3.78
逸出功 (eV)
3.92
3.9
3.85
0.46
1.8
3.31
16
(二)电子的发射
根据外加能量的不同形式,电子发射有以 下几种: (1)热发射 金属表面承受热作用而产生电子发射 的现象称为热发射。电子发射时从金属电极 表面带走能量,故能对金属产生冷却作用。 当电子被另外的同种金属表面接受时,将释 放能量,使金属表面加热。
17
(二)电子的发射
(2)电场发射
当阴极表面空间有强电场存在时,金属 电极内的电子在电场静电库仑力的作用下, 从电极表面飞出的现象称为电场发射。
冷阴极电弧正是主要依靠这种方式获得足 够的电子以维持电弧稳定燃烧的。
18
(二)电子的发射
(3)光发射
当金属电极表面接受光辐射时,电极表面的 自由电子能量增加,当电子的能量达到一定值时 能飞出电极的表面,这种现象称为光发射。
电子 发射 表面的束缚而飞到电弧空间的现象称为电子发射。
电极表面接受一定外加能量作用,使其内部的电子冲破电极
只有从阴极发射出的电子,在电场作用下才参加导电过程。
一般情况下,电子是不能自由地离开电极表面向外发射的。 要使电子飞出电极表面,必须给电子施予一定的能量,使它 克服电极内部正电荷对它的静电引力。 使一个电子从电极表面飞出所需要的最低外加能量称为逸出 逸出 功(Ww),单位为电子伏。因电子电量e是一个常数,通常以 功 逸出电压Uw=Ww/e来反映逸出功的大小,单位为伏。 几种金属及其氧化物的逸出电压如表1-2所示。由表中可以 看出,当金属表面附有其氧化物时,逸出电压均会减小。
焊接电弧的分类和特性(精)

模块一焊条电弧焊项目1.2 板对接单面平焊双面成形焊接电弧的分类和特性一、焊接电弧的分类焊接电弧的性质与弧焊电源种类、焊接电弧状态、电极材料以及电弧周围的介质等有关。
焊接电弧按弧焊电源种类不同可分为交流电弧、直流电弧和脉冲电弧(含高频脉冲电弧);按电弧状态可分为自由电弧和压缩电弧;按电极材料可分为熔化极电弧和非熔化极电弧。
二、焊接电弧的静特性以一定电弧长度稳定燃烧的电弧,其电弧电压U f与电弧电流I f之间的关系,称为焊接电弧的静态伏安特性,简称焊接电弧的静特性。
表示它们关系的曲线U f=f(I f),称为焊接电弧的静特性曲线,见图1所示。
焊接电弧作为焊接回路中的负载是非线性负载,即电弧电压与电弧电流之间不成正比例关系。
当电弧电流从小到大在很大范围内变化时,焊接电弧的静特性近似呈U形曲线,故也称为U形特性。
U形静特性曲线可看成由三段(I、II、III)组成。
在小电流的I段,电弧电压随电流的增加而下降,是下降特性段;在正常焊接的II段,呈等压特性,即电弧电压不随电流而变化,而取决于电弧的长度,电弧的长度愈长则电弧电压愈大,是平特性段;在大电流的Ⅲ段,图1焊接电弧的静特性曲线电弧电压随电流增加而上升,是上升特性段。
对于不同的弧焊方法,由于采用的电极材料、气体介质以及电弧燃烧条件和焊接电流的使用范围不同,因而它们的焊接电弧静特性曲线也有所不同,而且在其正常使用范围内,并不包括电弧静特性曲线的所有段,仅工作在U形特性的某一段。
如焊条电弧焊多半工作在静特性的水平段,即电弧电压只随弧长而变化,与焊接电流关系很小。
静特性的下降段由于电弧燃烧不稳定而很少采用。
三、焊接电弧的稳定性如前所述,焊接电弧的稳定性就是电弧不产生断弧、飘移、偏吹而保持稳定燃烧的程度,电弧燃烧稳定与否,对焊接的质量影响很大,从而也影响产品质量。
影响电弧稳定性的因素有以下几方面:1.焊接电源焊接电源种类和极性都会影响电弧的稳定性。
直流电焊接的电弧要比交流电的电弧稳定;空载电压较高的焊接电源其电弧燃烧比空载电压低的稳定;有良好动特性的焊机容易保证电弧稳定燃烧。
焊接电弧及其特性

热电离 —— 在高温下,具有高动能的气体原子(或分子)互相碰撞而引起的电离。
01
物质的固体或液体表面受热后电子动能增大,其中某些电子动能大于逸出功时将逸出到表面外的空间中去的现象称为“热发射”。
02
钨极氩弧焊过程中“热发射”作用明显。
物质的固体或液体表面接受光射线的能量而释放出自由电子的现象称为“光电发射”。
K
4.34
0.30
2.22
N
14.53
0.54
Mo
7.10
1.3
4.29
Na
5.14
0.35
2.33
H
13.600
B
8.30
0.3
4.30
O
13.61
2.0
Fe
7.87
0.85
4.40
F
17.42
3.62
/
固态物质表面电子发射所需的能量称为 “逸出功WY ” 。逸出功一般只为电离能的 一半 。
电弧周期性地熄灭和引燃 电流过零 — 电弧熄灭 — 电弧空间温度下降 — 带电质点中和 — 导电能力下降 — 当U0 > Uyh 时,电弧再次引燃。 电流过零时间越长,电弧再引燃越困难。
电弧电压和电流波形发生畸变 由于电弧电阻随弧柱温度发生交变,因此电弧电压及焊接电流都不再按正弦规律变化。
品牌推广规划
BRAND PLANING
商业产品部
第一章 焊接电弧及其特性
第一节 焊接电弧的物理本质和引燃 第二节 焊接电弧的结构和伏安特性 第三节 交流电弧 第四节 焊接电弧的分类及其特点
第一节 焊接电弧的物理本质和引燃
电弧是一段导体
导体?
电弧是一种气体放电现象
第1章 焊接电弧及其电特性

第1章焊接电弧及其电特性1 气体原子的电离使电子完全脱离原子核的束缚,形成离子和自由电子的过程为电离。
由原子形成正离子所需的能量称为电离能。
2 电离的形式在焊接电弧中,根据引起电离的能量来源,有如下三种电离形式:(1) 撞击电离; (2) 热电离; (3) 光电离。
2 电子发射在阴极表面的原子或分子,接受外界的能量而释放出自由电子的现象称为电子发射。
电子发射是引弧和维持电弧稳定燃烧的一个很重要的因素。
按其能量来源的不同,可分为热发射,光电发射,重粒子碰撞发射和强电场作用下的自发射等3 焊接电弧的引燃 1 接触引弧即是在弧焊电源接通后,电极(焊条或焊丝)与工件直接短路接触,随后拉开,从而把电弧引燃起来。
这2 非接触引弧它是指在电极与工件之间存在一定间隙,施以高电压击穿间隙,使电弧引燃。
4 交流电弧的特点;电弧周期性地熄灭和引燃交流电流每当经过零点并改变极性时,电弧熄灭、电弧空间温度下降。
电弧电压和电流波形发生畸变。
热惯性作用较为明显。
5影响交流电弧稳定燃烧的因素z 空载电压z 引燃电压z 电路参数z 电弧电流--z 电源频率 fz 电极的热物理性能和尺寸6 提高交流电弧稳定性的施z 为了提高交流电弧的稳定性,在焊接电源方面除了焊接回路要有足够大的电感量之外,还可以采用如下措施:(1)提高弧焊电源频率;(2)提高电源的空载电压;但不应该太高(3)改善电弧电流的波形;如改为矩形波(4)叠加高压电。
7交流电弧的分类(1)按电流种类可分为:交流电弧、直流电弧和脉冲电弧(包括高频脉冲电弧)。
(2)按电弧状态可分为:自由电弧和压缩电弧。
(3)按电极材料可分为:熔化极电弧和不熔化极电弧。
第2章对弧焊电源的基本要求1弧焊工艺对弧焊电源的要求(1)保证引弧容易;(2)保证电弧稳定;(3)保证焊接规范稳定;(4)具有足够宽的焊接规范调节范围。
2 “电源一电弧”系统的稳定性(1)系统在无外界因素干扰时,能在给定电弧电压和电流下,维持长时间的连续电弧放电,保持静态平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2 焊接电弧特性电弧特性是指电弧在导电行为方面表现出的一些特征,其中的电弧电特性与电弧热平衡、电弧稳定性等有很深的联系,是很重要的事项。
焊接电弧静特性焊接电弧动特性阴极斑点和阳极斑点电弧的阴极清理作用最小电压原理电弧的挺直性与磁偏吹1. 焊接电弧静特性1)电弧静特性曲线变化特征(与金属电阻对应理解)电弧的电流·电压特性左图概念性示出稳定状态下焊接电弧的电流·电压特性,称作电弧静特性曲线。
静特性曲线是在①某一电弧长度数值下,在②稳定的保护气流量和③电极条件下(还应包括其他稳定条件),改变电弧电流数值,在电弧达到稳定燃烧状态时所对应的电弧电压曲线。
呈现3个区段的变化特点下降特性区(负阻特性区)平特性区上升特性区3个特性区域的特点是由于电弧自身性质所确定的,主要和电弧自身形态、所处环境、电弧产热与散热平衡等有关在小电流区:电弧电压随电流的增大而减小,呈现负阻特性。
原因如下:电流小时,电弧热量低,导电性差,需要较高的电场推导电荷运动;电弧极区(特别是阴极区),温度低,提供电子能力差,会形成较强的极区电场;电流增大:电弧中产生和运动等量的电荷不再需要更高的电场;电弧自身性质具有保持热量动态平衡的能力当电流稍大时:焊条金属将产生金属蒸气的发射和粒子流。
消耗能量,故E不用降低当电流进一步增大时,金属蒸气的发射和等离子流的冷却作用进一步增强,同时由于电磁收缩力的作用,电弧断面不能随电流的增加而成比例的增加,电弧电压降升高,电弧静特性呈正特性。
埋弧焊电弧静特性曲线埋弧焊电弧的散热损失小,且电弧中基本没有GTA、GMA那样的等离子流存在,采用粗焊丝大电流,电弧特性呈下降趋势。
电弧特性反应了电弧的导电性能和变化特征,电弧种发生的许多现象都与静特性有关,也可以用于对比解释各种电弧焊方法的差别③电极条件非熔化电极情况下,电极成分对电弧电压会有一定程度的影响④母材情况母材热导率影响所形成的熔池大小以及母材热输入量中散失热量的快慢,对电流产生间接的冷却作用。
⑤保护气流量、环境温度、焊接电流的形式对电弧燃烧构成影响的调节,都将对电弧电压产生影响。
2. 焊接电弧动特性电弧动特性是指焊接电流随时间以一定形式变化时电弧电压的表现,反应的是电弧导电性能对电流变化的响应能力。
1)直流电弧的动特性直流电弧的动特性是采用一定形式的变动电流进行焊接时的电流-电压关系曲线,恒定直流电弧没有动特性问题。
变动电流的形式是多种多样的,比如脉冲电流、高频电流、脉动电流等。
a)b)直流变动电弧的动特性示例:a)直流变动焊接电流;b)电弧动特性直流高频电弧动特性对于频率1kHz以上的直流电弧,近似于电阻特性。
电流、电压非单值对应关系,是由于电弧等离子体的热惯效应在发挥作用。
电弧先前处于相对低温状态,电流的增加需要较高的电场驱动,表现出电压增加;在电流下降的过程,电弧处于高温,电弧等离子体的热惯性不能马上对电流的降低做出反应,导电性很强,从而形成回线状的电弧动特性。
如果电弧电流变化很快,与电弧等离子体的形成、消失的时间常数相比,等离子体的状态跟随不上电流的变化,与电流相位无关,而维持一定的状态,呈现近阻特性。
高频电弧的维护电流可以达到零值,电弧仍能维持燃烧2)交流电弧的动特性交流焊条电弧焊电流、电压之间的关系交流电弧情况下,电弧的状态亦即等离子体的温度、导电率、阴极压降的状态等时刻在变化着,在极性转换时,电弧电流一旦达到零值,必须使转换前的阳极表面迅速形成阴极。
P所对应的为再点弧电压3. 阴极斑点和阳极斑点电弧斑点是电弧燃烧中产生的一种现象,其形成主要与电极及熔池的区域导电性能有关1)阴极斑点根据阴极材料性质及所处状态的不同,在某些场合下,电弧导电通道将主要集中在一个较小的区域,该区域电流密度、温度、发光强度远高于其他区域,称为阴极斑点。
因具体条件的不同电流流入阴极表面的情况可能有三种:第一种情况是在阴极表面上电流导入的面积与弧柱的断面相近,在阴极上没有明显的收缩;第二种情况是在阴极上的电流导入面积比弧柱的断面显著减小,在阴极上有显著的收缩;第三种情况是阴极上的电流是通过许多微小的斑点导入的,这些斑点上的电流密度很高,成为阴极斑点。
①当采用熔点较高的材料做阴极(C、W),并用较大的电流时阴极温度很高,仅依靠其热发射就可以为弧柱提供足够的电子,弧柱与阴极相接外不产生收缩,阳极上的电流密度与弧柱的相近。
阴极端部的加热面积很大、均匀,不形成阴极斑点②当电流较小、阴极(C、W)温度较低阴极温度降低,热发射不占主要地位,靠电场发射或等离子流型伴随导电区域的自动收缩③阴极材料熔点低、沸点低,导热性能很强(冷阴极型)即使阴极温度达到材料的沸点还是蒸发,此温度也不足以产生充足的电子来维持电弧的稳定燃烧,阴极将进一步自动缩小其导电面积热发射不占主要地位,面积缩小提高电流密度和产生足够的强的电场发射此时阴极将形成面积更小,电流密度更大的斑点来导通电流,为阴极斑点通常存在三种情况:非熔化极材料做阴极;低熔点材料做阴极(焊丝);惰性气体保护下母材做阴极一是非熔化极材料作为阴极、惰性气体保护时,在电流值较小的情况下出现阴极斑点。
多说是由于电极直径较大、电极尖端角度接近于钝角、电极表面不平滑或存在有污染物,电子发射面积减小。
二是低熔点材料作为阴极(焊丝)时,冷阴极,使用氧化性气氛作为保护气,保护气对电弧有强烈的冷却作用,电场强度高,电弧趋于集中。
三是惰性气体保护下母材作为阴极,受母材尺寸大、导热量大等条件的影响,表面上更易形成阴极斑点。
这些分离的斑点在阴极斑点区内以很高的速度跳动,自动选择最有利于部分电场发射和部分热发射条件的点,电弧通过这些点进入阴极时消耗最低的能量。
形成斑点压力,阻碍熔点下落阴极斑点的形成要求一定的条件,首先该点应具有可能发射电子的条件,其次是电弧通过该点时弧柱的能量消耗较小具备上述的条件的点产生新的阴极斑点,失去上述条件的点则阴极斑点自动消失这也是阴极斑点高速跳动的原因阴极斑点有自动跳向温度高、热发射强物质上的性能,如果金属表面有低逸出功的氧化膜存在,阴极斑点会自动寻找氧化膜的倾向。
2)阳极斑点当采用低熔点材料做阳极,且电流较小,阳极表面个别点有熔化和蒸发时,该处更容易产生热电离生成正离子流,电子流更容易从这里进入阳极,而形成阳极斑点。
由于有金属蒸气的蒸发,阳极斑点也有斑点压力,但是由于电流密度比阴极小,所以斑点压力也小。
并且也象阴极斑点一样有“粘着”作用。
熔化极焊接焊丝接阳极时,阻止熔滴过渡的作用力较小,而焊丝接阴极时阻力较大。
这是MIG焊时多采用反接的主要原因之一。
由于阳极斑点的形成需要金属的蒸发,而大多数金属氧化物的熔点和沸点都高于纯金属,因此阳极斑点与阴极斑点相反,有自动寻找纯金属表面而避开氧化膜的倾向。
因此,铝合金氩弧焊当工件为阳极时没有去处氧化膜的作用。
4. 电弧的阴极清理作用a) TIG 焊b) MIG 焊惰性气体中的电弧在以金属板(丝)作为阴极的情况下,阴极斑点在金属板(丝)上扫动,除去金属表面上的氧化膜,使其露出清洁金属面,称作电弧的阴极清理作用或氧化膜破碎作用。
铝材料焊接中的氧化膜清理①阴极压降高,正离子冲击②阴极斑点5. 最小电压原理在给定电流和周围条件的情况下,电弧稳定燃烧时,其导电区的半径(或温度)应使电弧电场强度具有最小的数值。
就是说电弧具有保持最小能量消耗的特性。
如果电弧断面大于或小于自动确定的断面,都会引起E增大,即散失能量要增大。
利用最小电压原理可以解释电弧过程中的一些现象。
例如,电弧被周围介质强烈冷却时,要求电弧产生更多的热量来补偿。
最小电压原理也决定着电弧其他区域(阴极区、阳极区)的电场强度E、温度及导电断面的自行调节作用,以达到在某一定条件下向外界散失热量最小。
6. 电弧的挺直性与磁偏吹1)电弧的挺直性电弧挺直性电弧挺直性产生原因电弧挺直性指电弧作为柔性导体具有抵抗外界干扰、力求保持焊接电流沿电极轴线方向流动的性能。
当电极产生倾斜后,电弧的指向亦随之倾斜,电弧中心线沿着电极的倾斜方向伸展。
2)电弧的磁偏吹电弧磁偏吹起因示意图电弧的挺直性是由于电弧中流动着的电流受到其自身磁场的作用而表现出的现象。
只有电弧周围的磁场是均匀的、磁力线分布相对电弧轴线是对称的,电弧才能保持轴向对称。
如果某种原因使磁力线分布的均匀性受到破坏,使电弧中的电荷受力不均匀,就会使电弧偏向一侧。
①导线接线位置引起的磁偏吹地线接线位置产生的磁偏吹②电弧附近的铁磁性物质引起的磁偏吹电弧一侧铁磁性物体引起的磁偏吹③电弧处于工件端部时产生的磁偏吹电弧在工件端部产生的磁偏吹④平行电弧间的磁偏吹平行电弧间产生的磁偏吹消除和减少磁偏吹的方法采用较短弧长进行焊接,电弧越短磁偏吹越小对工件采取分布式接地的办法,比如两侧接地或多点接地操作中调整焊枪或焊条角度避免铁磁性物质的影响考虑使用脉冲焊或高频电弧焊考虑使用交流焊接§1.3 电弧焊中的保护气保护气种类与纯度保护气的分解及在金属中的溶解混合气体的选择及作用保护气气流与保护效果电弧焊中的保护气有几个方面的作用:向电弧空间提供气体介质;保护作用,保护电弧、保护电极、保护被焊件受到大气的侵蚀H2 N2 O2 H2O高温液态金属对气体的溶解是无法避免的。
焊缝金属中即使含有很少量的氧原子、氮原子、氢原子,对焊缝的机械性能就会发生影响,产生气孔及非金属夹杂物。
采取措施:熔化金属与大气隔绝,加入适量的脱氧剂以及精炼物质。
高纯Ar、He气,惰性。
可以采用与母材成分接近的焊丝。
即使保护气体>99.9%的纯度,也不可能完全排除有害气体。
有可能产生气孔。
气孔产生的条件是焊缝金属的凝固速度大于气泡的上浮速度。
高的热输入,气孔少平焊和横焊,气泡排出困难铝合金MIG焊中气孔主要是氢低碳钢及高强钢主要是CO和N3)混合气体的选择及使用在一种气体中加入一定量另一种或两种气体后,可以分别在减少飞溅、提高电弧稳定性、改善成形和熔深、提高电弧温度、提高焊接生产率等方面获得满意的结果。
①Ar+HeHe 传热系数大,和Ar 相比,相同弧长下,电弧电压高,电弧温度高其优点:电弧温度高,母材热输入量大Ar的优点:电弧燃烧稳定,熔化极焊时焊丝金属容易呈轴向射流过渡,飞溅小Ar 、Ar+He 、He 三种保护气体下的焊缝断面形状(直流反接)大厚铝:铜及铜合金:改善润湿性钛、锆:镍基:②Ar+H2利用Ar+H2混合气体的还原性,可用于焊接镍及其合金,可以抑制和消除焊缝中CO气孔,但H2的含量必须低于6%,否则会导致产生H2气孔。
③Ar+N2电弧温度比纯Ar要高,主要用于焊接铜及铜合金,混合比为Ar/N2=80/20焊接奥氏体不锈钢时,加入少量的N2(1%~4%),可提高电弧的挺直性以及改善焊缝成形④Ar+O2一种含O2量较低,1%~5%,用于焊接不锈钢等高合金及级别较高的高强钢;另一种为O2含量高,可达20%,用于焊接低碳钢及低合金结构钢用Ar+20%O2,进行高强钢的窄间隙垂直焊(立焊),可减少焊缝金属产生树枝状晶间裂纹的倾向。