弧长和扇形面积同步练习含答案
人教版 数学九年级(上)学期 :24.4弧长和扇形面积同步练习卷含详解
24.4 弧长和扇形面积同步练习卷一.选择题(共10小题).1.若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3πB.4πC.5πD.6π2.已知圆锥的底面半径为6cm,母线长为10cm,则这个圆锥的全面积是()A.60πcm2B.96πcm2C.132πcm2D.168πcm23.如图,用一个半径为6cm的定滑轮拉动重物上升,滑轮旋转了120°,假设绳索粗细不计,且与滑轮之间没有滑动,则重物上升了()A.πcm B.2πcm C.3πcm D.4πcm4.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2cm,绕AC所在直线旋转一周,所形成的圆锥侧面积是()A.16πcm2B.8πcm2C.4πcm2D.2πcm25.如图,点A、B、C、D都在边长为1的网格格点上,以A为圆心,AE为半径画弧,弧EF经过格点D,则扇形AEF的面积是()A.B.C.πD.6.如图,从一块半径为20cm的圆形铁皮上剪出一个圆心角是60°的扇形ABC,则此扇形围成的圆锥的侧面积为()A.200πcm2B.100πcm2C.100πcm2D.50πcm27.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为3m,那么花圃的面积为()A.6πm2B.3πm2C.2πm2D.πm28.如图,长方形ABCD中,AB=3BC,且AB=9cm,以点A为圆心,AD为半径作圆交BA 的延长线于点M,则阴影部分的面积等于()A.(π+9)cm2B.(π+18)cm2C.(π+9)cm2D.(π+18)cm2二.填空题9.弧长等于半径的圆弧所对的圆心角是度.10.一个周长确定的扇形,要使它的面积最大,扇形的圆心角应为度.11.已知扇形的弧长为6π,它的圆心角为120°,则该扇形的半径为.12.已知圆弧所在圆的半径为6,所对圆心角为60°,则这条弧的长为.13.扇形的半径为6cm,弧长为10cm,则扇形面积是.14.已知一个圆锥形零件的母线长为13cm,底面半径为5cm,则这个圆锥形的零件的侧面积为cm2.(结果用π表示).15.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为18cm,BD 的长为9cm,则纸面部分BDEC的面积为cm2.16.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C作OA的平行线分别交两弧点D、E,则阴影部分的面积为.三.解答题17.计算下图中扇形AOB的面积(保留π)18.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,求该圆锥的高h的长.19.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,求扇形OAB的弧长,周长和面积.(结果保留根号及π).20.如图,在半径为6cm的⊙O中,圆心O到弦AB的距离OE为3cm.(1)求弦AB的长;(2)求劣弧的长.21.在扇形OAB中,C是弧AB上一点,延长AC到D,且∠BCD=75°.(1)求∠AOB的度数;(2)扇形OAB是某圆锥的侧面展开图,若OA=12,求该圆锥的底面半径.22.如图所示,现有一圆心角为90°、半径为80cm的扇形铁片,用它恰好围成一个圆锥形的量筒;如果用其它铁片再做一个圆形盖子把量筒底面密封.(接缝都忽略不计).求:(1)该圆锥盖子的半径为多少cm?(2)制作这个密封量筒,共用铁片多少cm2.(注意:结果保留π)参考答案一.选择题1.解:∵扇形的半径为6,圆心角为120°,∴此扇形的弧长==4π.故选:B.2.解:根据题意,这个圆锥的全面积=×2π×6×10+π×62=60π+36π=96π(cm2).故选:B.3.解:根据题意,重物的高度为=4π(cm).故选:D.4.解:∵∠ACB=90°,∠BAC=30°,BC=2cm∴AB=4,则圆锥的底面周长=4π,旋转体的侧面积=×4π×4=8π,故选:B.5.解:由题意,扇形的半径AD==,∠EAF=45°,∴扇形AEF的面积==.故选:A.6.解:作OD⊥AB于D,如图,则AD=BD,∵∠OAD=∠BAC=30°,∴OD=OA=10,AD=OD=10,∴AB=2AD=20,∴扇形围成的圆锥的侧面积==200π(cm2).故选:A.7.解:∵扇形花圃的圆心角∠AOB=120°,半径OA为3cm,∴花圃的面积为=3π,故选:B.8.解:阴影部分的面积=扇形MAD的面积+矩形ABCD的面积﹣△CMB的面积=+3×9﹣×3×12=(π+9)cm2,故选:C.二.填空题9.解:设圆的半径为r,弧长等于半径的圆弧水对的圆心角是n°,根据题意得r=,即得n=,即弧长等于半径的圆弧所对的圆心角是度.10.解:设扇形的半径为r,周长为C,圆心角为n°,面积为S,S=(C﹣2r)r=﹣r2+r=﹣(r﹣)2+,∴当r=C时,S取得最大值,∴C=4r,∴=4r﹣2r,解得,n=,故答案为:.11.解:设扇形的半径为r,6π=,解得,r =9,故答案为:9.12.解:l ==2π, 故答案为2π.13.解:根据题意得,S 扇形=lR ==30(cm 2). 故答案为30cm 2.14.解:圆锥的底面周长=2π×5=10π,圆锥形的零件的侧面积=×10π×13=65π,故答案为:65π.15.解:S =S 扇形BAC ﹣S 扇形DAE =﹣=π(cm 2). 故答案是:π16.解:连接OE ,如图,∵CE ∥OA ,∴∠BCE =90°,∵OE =4,OC =2,∴CE =OC =2,∴∠CEO =30°,∠BOE =60°,∴S阴影部分=S 扇形BOE ﹣S △OCE ﹣S 扇形BCD =﹣×2×2﹣=π﹣2.故答案为π﹣2三.解答题17.解:如图,因为∠ACO=60°,OC=OA=4cm,所以△ACO是等边三角形,所以∠AOC=60°,所以∠AOB=120°,=π(cm2)答:扇形AOB的面积是πcm2.18.解:如图,由题意得:2πr=,而r=2,∴AB=6,∴由勾股定理得:AO2=AB2﹣OB2,而AB=6,OB=2,∴AO=4.即该圆锥的高为4.19.解:由图形可知,∠AOB=90°,∴OA=OB==2,∴扇形OAB的面积==2π,弧AB的长是:=π∴周长=弧AB的长+2OA=π+4.综上所述,扇形OAB的弧长是π,周长是π+4,面积是2π.20.解:(1)∵OE⊥AB,∴E为AB的中点,即AE=BE,在Rt△AOE,OA=6cm,OE=3cm,根据勾股定理得:AE==3cm,则AB=2AE=6cm.(2)在直角△OAE中,OA=6cm,OE=3cm,则OA=2OE,所以∠OAE=30°,∴∠AOE=∠BOE=60°,∴∠AOB=120°,∴劣弧的长是:=4π(cm).21.解:(1)作出所对的圆周角∠APB,∵∠APB+∠ACB=180°,∠BCD+∠ACB=180°,∴∠APB=∠BCD=75°,∴∠AOB=2∠APB=150°;(2)设该圆锥的底面半径为r,根据题意得2πr=,解得r=5,∴该圆锥的底面半径为5.22.解:(1)圆锥的底面周长是:=40πcm .设圆锥底面圆的半径是r ,则 2πr =40π.解得:r =20cm ;(2)S =S 侧+S 底=×π×802+400π=2000π(cm 2). 答:共用铁片2000πcm 2.。
人教版九年级数学上册《弧长和扇形面积》学案及同步作业(含答案)
24.4弧长和扇形面积(第1课时)【学习目标】了解扇形的概念,理解 n?°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.【学习重点】n°的圆心角所对的弧长 L= n R,扇形面积S扇= n R2及其它们的应用.180360【学习过程】(教师寄语:勤动脑,多动手,体验收获!)自主探究(教师寄语:学会独立思考,自主学习是最重要的!)一、任务一:探究弧长公式1、圆的周长公式是什么?什么叫弧长?2、圆的周长可以看作 ______度的圆心角所对的弧.1°的圆心角所对的弧长是 _______; 2°的圆心角所对的弧长是 _______;4°的圆心角所对的弧长是 _______;n°的圆心角所对的弧长是 _______。
任务二:探究扇形面积公式3、圆的面积公式是什么?什么叫扇形?4、圆的面积可以看作度圆心角所对的扇形的面积;设圆的半径为R,1°的圆心角所对的扇形面积S 扇形 =_______; 2°的圆心角所对的扇形面积 S 扇形=_______; 5°的圆心角所对的扇形面积S 扇形=_______;n °的圆心角所对的扇形面积S 扇形 =_______。
5、比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?二、合作学习(教师寄语:学会与别人合作是一种能力!)例 1、(教材 121 页例 1)例 2:如图,已知扇形 AOB的半径为 10,∠ AOB=60°,求AB的长( ?结果精确到 0.1)和扇形 AOB的面积结果精确到 0.1)三、课时小结(教师寄语:及时总结能使人不断进步!)四、自我测评(教师寄语:细心思考,必定成功!)1、已知扇形的圆心角为120°,半径为6,则扇形的弧长是().A . 3B . 4C . 5D . 62、如图所示,把边长为 2 的正方形 ABCD的一边放在定直线L 上,按顺时针方向绕点 D 旋转到如图的位置,则点 B 运动到点 B′所经过的路线长度为()A.1B.C.2D.2B C(A')B'AlD C'A BCO(第 2 题图)(第 3 题图)(第 4 题图)(第 6 题图)3、如图所示, OA=30B,则AD的长是BC的长的 _____倍.4、如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB 为120,OC 长为8cm, CA 长为12cm,则阴影部分的面积为。
人教版九年级数学上册《24.4弧长和扇形面积》同步测试题及答案
人教版九年级数学上册《24.4弧长和扇形面积》同步测试题及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.在半径为1的⊙O 中,120°的圆心角所对的弧长是 () A .3π B .23π C .πD .32π 2.用一个圆心角为150°,半径为12的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( ) A .2.5B .5C .6D .103.将一半径为6的圆形纸片,沿着两条半径剪开形成两个扇形.若其中一个扇形的弧长为5π,则另一个扇形的圆心角度数是多少?( ) A .30B .60C .105D .2104.若圆锥的底面直径为6cm ,侧面展开图的面积为215πcm ,则圆锥的母线长为( ) A .5cm 2B .2cm 5C .3cmD .5cm5.如图,在⊙ABC 中,AB=AC=,BC=2,以A 为圆心作圆弧切BC 于点D ,且分别交边AB 、AC 于E 、F ,则扇形AEF 的面积是( )A .B .C .D .6.用一个圆心角为120°,半径为4的扇形,做一个圆锥的侧面,则这个圆锥的全面积(侧面与底面面积的和)为( ) A .563πB .643πC .569πD .649π二、填空题7.已知扇形的弧长为6π,它的圆心角为120,则该扇形的半径为 . 8.圆锥底面圆的半径2cm r =,母线长为6cm ,则圆锥全面积为 .9.如图,扇形OAB 的圆心角为30︒,半径为1,将它在水平直线上向右无滑动滚动到'''O A B 的位置时,则点O 到点'O 所经过的路径长为 .10.如图,O 的直径6AB =,圆内接ACD 中,AC=CD ,30CAD ∠=︒则阴影部分的面积为 .三、解答题11.(本小题满分10分)如图,已知扇形的半径为15cm ,⊙AOB=120°.(1)求扇形的面积;(2)用这扇形围成圆锥的侧面,求该圆锥的高和底面半径.12.如图,AB 是⊙O 的直径,BC 切⊙O 于点B ,OC 交⊙O 于点D 的半径为3 20C ∠=︒.(1)求A ∠的度数;(2)求AD 的长.(结果保留π)参考答案题号 1 2 3 4 5 6 答案BBDDB D1.【答案】B【分析】根据弧长公式可知弧长. 【详解】解: l =120121803ππ⨯=. 故选B . 2.【答案】B【分析】根据弧长公式先计算出扇形的弧长,再根据圆锥的底面周长等于这个扇形的弧长即可求解. 【详解】解:由题意知:扇形的弧长=1501210180ππ⨯= 设圆锥的底面半径为R ,圆锥的底面周长等于扇形的弧长 ⊙2πR =10π ∴R =5 故选:B .【点睛】本题考查了扇形的弧长公式及圆锥的展开图,属于基础题,熟练掌握扇形弧长的计算公式是解题的关键. 3.【答案】D【分析】根据题意可知两个扇形的弧长之和就是圆的周长,则可以求得另一个扇形的弧长,再根据弧长公式求解即可.【详解】解:由题意可求得圆的周长2612C ⨯==ππ 其中一个扇形的弧长15L =π,则另一个扇形的弧长21257L -==πππ 设另一个扇形的圆心角度数为n ︒ 根据弧长公式:180n rL =π,有: 67180n ⨯=ππ,解得210n = 故选:D .【点睛】本题考查弧长的计算,解题关键是理解题意,正确应用弧长公式进行计算.【分析】已知圆锥底面圆的半径可求出侧面展开图的弧长,根据侧面展开图的面积即可求解. 【详解】如图所示⊙圆锥的底面直径为6cm ⊙圆锥的底面半径为3cm⊙圆锥的底面圆周长是2π6πC r == ⊙侧面展开图的面积为215πcm⊙侧面展开图的面积116π15π22S l C l ==⨯=⊙圆锥的母线长为5l = 故选:D .【点睛】本题主要考查圆锥侧面展开图的面积,理解掌握面积公式的计算方法是解题的关键. 5.【答案】B【详解】试题分析:先判断出⊙ABC 是等腰直角三角形,从而连接AD ,可得出AD=1,直接代入扇形的面积公式进行运算即可. ⊙AB=AC=,BC=2⊙AB 2+AC 2=BC 2⊙⊙ABC 是等腰直角三角形 连接AD ,则AD=BC=1则S 扇形AEF =故选B .考点:1.扇形面积的计算;2.等腰直角三角形.【分析】先求出圆锥的侧面积和底面半径,再求圆锥的表面积,由此即可求出这个圆锥的表面积. 【详解】解:圆锥的侧面积=π×42×120?360?=163π圆锥的底面半径=2π×4×120?360?÷2π=43圆锥的底面积=π×(43)2=169π圆锥的表面积=侧面积+底面积=1616=39649πππ+. 故选:D .【点睛】本题考查圆锥的表面积,解题时要认真审题,掌握扇形面积、圆锥底面半径的计算方法是解题的关键. 7.【答案】9【分析】知道弧长,圆心角,直接代入弧长公式L=180n rπ即可求得扇形的半径. 【详解】解:⊙扇形的圆心角为120°,它所对应的弧长6π ⊙6π=120180rπ 解得:r=9. 故答案为9.【点睛】此题主要考查了扇形弧长的应用,要掌握弧长公式:L=180n rπ才能准确的解题. 8.【答案】216πcm【分析】圆锥的全面积是底面圆的面积与侧面扇形的面积,由此即可求解. 【详解】解:如图所示,圆锥底面圆的半径2cm r =,母线长为6cm⊙底面圆的周长为2π2π24πcm r =⨯=,底面圆的面积为222ππ24πcm r ==,侧面扇形的面积为214π612πcm 2⨯= ⊙圆锥的全面积为24π12π16πcm +=故答案为:216πcm .【点睛】本题主要考查立体几何图形的面积,掌握圆锥面积是底面圆面积与侧面扇形的面积之和是解题的关键. 9.【答案】76π【分析】点O 到点O ′所经过的路径长分三段,先以A 为圆心,1为半径,圆心角为90度的弧长,再平移了AB 弧的长,最后以B 为圆心,1为半径,圆心角为90度的弧长.根据弧长公式计算即可. 【详解】解:⊙扇形OAB 的圆心角为30°,半径为1 ⊙AB 弧长=301180π⨯⨯=6π⊙点O 到点O ′所经过的路径长=90172=18066πππ⨯⨯⨯+ 故答案为:76π. 【点睛】本题考查了弧长公式,旋转的性质和圆的性质,理解点O 到点O ′所经过的路径长分三段是解题的关键.10.【答案】9332π 【分析】连接OC 、OD ,交AD 与点K ,根据AC CD =,30CAD ∠=︒得到1230∠=∠=︒ AOC ∆ COD ∆为等边三角形,证明出四边形ACDO 为菱形,,进而求出阴影部分的面积. 【详解】解:连接OC 、OD ,交AD 与点K ,如图所示:⊙AC CD = 30CAD ∠=︒ ⊙1230∠=∠=︒⊙32260∠=∠=︒ 42160∠=∠=︒ ⊙AO OC OD ==⊙AOC ∆,COD ∆为等边三角形 ⊙OA OD OC AC CD ==== ⊙四边形ACDO 为菱形⊙CO AD ⊥ ⊙360∠=︒ ⊙530∠=︒⊙AB 为圆O 直径为6 ⊙3AO = ⊙1322OK AO == ∴22333()322AK =-= 23CO KO ==∴233AD AK ==⊙19322ACDO S AD CO =⋅=菱形312033360AOD S ππ=⨯⨯=扇形 ⊙9332S π=阴 【点睛】本题考查了求扇形阴影部分的面积,正确作出辅助线是解题的关键. 11.【答案】(1)150π平方厘米(2)r=10cm ;5cm 【分析】(1)根据扇形的面积公式S=2360n r π,代值计算即可(2)利用弧长公式可求得扇形的弧长,除以2π即为圆锥的底面半径,再利用勾股定理求得高即可.【详解】解:(1)⊙S=2360n r π ⊙S=224015360π⨯=150πcm 2(2)⊙弧长=24015180π⨯=20π ⊙2πr=20π,r=10cm⊙圆锥的高221510-55cm )【点睛】本题考查了扇形的面积公式以及圆锥有关计算,解本题的关键是掌握圆锥的侧面展开图的弧长等于圆锥的底面周长.12.【答案】(1) 35A ∠=︒;(2) 弧AD 的长为116π. 【分析】(1)由切线性质结合已知得70BOD ∠=︒,根据⊙OAD 是等腰三角形即可计算出⊙A =35°.(2)由(1)可知⊙AOC =110°,根据弧长公式即可计算. 【详解】解:(1)BC 是⊙O 的切线90B ∴∠=︒.又⊙⊙C =20°.902070BOC ∴∠=︒-︒=︒⊙OA =OD ⊙⊙A =⊙ADO1 352A BOC ∴∠=∠=︒(2)180AOC BOC ∠=︒-∠18070110AOC ∴∠=︒-︒=︒∴弧AD 的长为110111806ππ=. 【点睛】本题考查了切线的性质,等腰三角形的性质,弧长的计算等知识点,能求出⊙BOC 的度数是解此题的关键,注意:圆的切线垂直于过切点的半径.。
浙教新版九年级上册《3.8弧长及扇形的面积》2024年同步练习卷(3)+答案解析
浙教新版九年级上册《3.8弧长及扇形的面积》2024年同步练习卷(3)一、选择题:本题共5小题,每小题3分,共15分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若扇形的圆心角为,半径为6,则该扇形的弧长为()A. B. C. D.2.如图,半径是1,A、B、C是圆周上的三点,,则劣弧的长是()A.B.C.D.3.如图是两个同心圆的一部分,已知,则的长是的长的()A.B.2倍C.D.4倍4.如图,在的正方形网格中,若将绕着点A逆时针旋转得到,则的长为()A.B.C.D.5.如图,内接于,,若,则的长为()A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。
6.已知弧的长为,弧的半径为6cm ,则圆弧的度数为______.7.一块等边三角形木板,边长为1,现将木板沿水平线翻滚,如图所示,若翻滚了40次,则B 点所经过的路径长度为______.8.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为2,则该莱洛三角形的周长为______.9.在半径为6cm 的圆中,的圆心角所对的弧长为______10.如图,在的正方形网格中,每个小正方形的边长为以点O 为圆心,4为半径画弧,交图中网格线于点A 、B ,则的长为______.11.已知一个半圆形工件,搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为6m ,则圆心O 所经过的路线长是______结果用表示三、计算题:本大题共1小题,共6分。
12.如图,已知四边形ABCD 内接于圆O ,连接BD ,,求证:;若圆O 的半径为3,求的长.四、解答题:本题共2小题,共16分。
解答应写出文字说明,证明过程或演算步骤。
13.本小题8分一段铁丝长,把它弯成半径为160cm的一段圆弧,求铁丝两端间距离.14.本小题8分如图,在矩形ABCD中,将矩形ABCD在直线l上按顺时针方向不滑动地每秒转动,转动3s后停止,则顶点A经过的路程为多长?答案和解析1.【答案】B【解析】解:弧长故选:根据弧长公式进行求解即可.本题考查了弧长的计算,解答本题的关键是掌握弧长公式:2.【答案】B【解析】解:连OB,OC,如图,,,劣弧的长故选连OB,OC,根据圆周角定理得到,然后根据弧长公式计算劣弧的长.本题考查了弧长公式:也考查了圆周角定理.3.【答案】A【解析】解:设,,则,,的长是的长的故选:利用弧长公式计算即可.本题考查了弧长公式:弧长为l,圆心角度数为n,圆的半径为熟记公式是解题的关键.4.【答案】A【解析】解:根据图示知,,的长为:故选根据图示知,所以根据弧长公式求得的长.本题考查了弧长的计算、旋转的性质.解答此题时采用了“数形结合”是数学思想.5.【答案】A【解析】【分析】本题考查圆周角定理,弧长公式,等腰直角三角形的性质的等知识,解题的关键是熟练掌握基本知识,属于常考题.连接OB,OC,首先证明是等腰直角三角形,求出OB即可解决问题.【解答】解:连接OB,,,,,的长为,故选:6.【答案】【解析】解:设圆心角为n,则即圆弧的度数的把数量关系对应代入弧长公式,即可求解.主要考查了弧长公式:本题是利用弧长公式作为相等关系求圆心角的度数,即弧度.7.【答案】【解析】解:从图中发现:B点从开始至结束所走过的路径长度为两段弧长即第一段,第二段故B点翻滚一周所走过的路径长度,三次一个循环,……1,若翻滚了40次,则B点所经过的路径长度为故答案为:B点翻滚一周所走过的路径长度为两段弧长,一段是以点C为圆心,BC为半径,圆心角为,第二段是以A为圆心,AB为半径,圆心角为的两段弧长,依弧长公式计算即可.本题考查了旋转的性质,等边三角形的性质,弧长公式等知识,求出两次旋转的角度是解题的关键.8.【答案】【解析】解:该莱洛三角形的周长故答案为:直接利用弧长公式计算即可.本题考查了弧长的计算,等边三角形的性质,熟练掌握弧长的计算公式是解题的关键.9.【答案】【解析】解:半径为6cm的圆中,的圆心角所对的弧长为:故答案为:直接利用弧长公式求出即可.此题主要考查了弧长公式的应用,正确记忆弧长公式是解题关键.10.【答案】【解析】解:如图,,,,,的长,故答案为:如图,根据直角三角形的性质得到,根据三角形的内角和定理得到,根据弧长公式计算即可.本题考查了弧长的计算、解直角三角形等知识,解题的关键是正确寻找直角三角形解决问题,属于中考常考题型.11.【答案】【解析】解:由图形可知,圆心先向前走的长度即圆的周长,然后沿着弧旋转圆的周长,最后向右平移50米,所以圆心总共走过的路程为圆周长的一半即半圆的弧长加上50,由已知得圆的半径为3,设半圆形的弧长为l,则半圆形的弧长,故圆心O所经过的路线长故答案为:根据弧长的公式先求出半圆形的弧长,即根据弧长的公式先求出半圆形的弧长,即半圆作无滑动翻转所经过的路线长,把它与沿地面平移所经过的路线长相加即为所求.本题主要考查了弧长公式,同时考查了旋转的知识.解题关键是得出半圆形的弧长=半圆作无滑动翻转所经过的路线长.12.【答案】证明:四边形ABCD内接于圆O,,,,;解:连接OB、OC,,,由圆周角定理得,,的长【解析】根据圆内接四边形的性质求出,根据等腰三角形的判定定理证明;连接OB、OC,根据圆周角定理求出,根据弧长公式计算即可.本题考查的是圆内接四边形的性质、弧长的计算,掌握圆内接四边形的对角互补、弧长公式是解题的关键.13.【答案】解:设半径为160cm的一段圆弧的角度为n,则解得所以铁丝两端间距离为【解析】由半径为160cm的一段圆弧的长度为一段铁丝长,求得圆弧的角度,进一步利用勾股定理求得结论即可.此题考查弧长计算公式的运用,以及.勾股定理的运用,注意利用特殊的角度直接解决问题14.【答案】解:由勾股定理得矩形ABCD的对角线长为10,从A到,,路线长为;从到,,路线长为;从到,,路线长为;所以顶点A经过的路程为【解析】由勾股定理得矩形ABCD的对角线长为10,从A到是以B点为圆心AB为半径的弧,从到是以C为圆心AC为半径的弧,从到是以D为圆心AD为半径的弧,利用弧长公式即可求出顶点A经过的路线长.本题主要考查圆的弧长公式,旋转的性质以及勾股定理的运用,此题正确理解题意也很重要.。
专题3弧长和扇形面积(专项练习含答案
专题3.24 弧长和扇形面积(专项练习1)一、单选题知识点一、求弧长1.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,若OA =2,⊙P =60°,则AB 的长为( )A .23πB .πC .43πD .53π 2.如图,在扇形AOB 中,AC 为弦,140AOB ∠︒=,60CAO ∠︒=,6OA =,则BC 的长为( )A .43πB .83πC .D .2π 3.如图,半径为1的⊙O 与正五边形ABCDE 相切于点A ,C ,则劣弧AC 的长度为( )A .25π B .23π C .34π D .45π 知识点二、求半径4.一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为( )A .6厘米B .12厘米C .厘米D 厘米 5.若扇形的圆心角为90︒,弧长为3π,则该扇形的半径为( )A B .6 C .12 D .,圆心角是150,则它的半径长为()6.已知一个扇形的弧长为5cmA.6cm B.5cm C.4cm D.3cm 知识点三、求圆心角7.已知扇形半径为3,弧长为π,则它所对的圆心角的度数为()A.120°B.60°C.40°D.20°8.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°9.有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是()A.90°B.120°C.180°D.135°知识点四、求点的运动路径长10.如图,在边长为1的正方形组成的网格中,⊙ABC的顶点都在格点上,将⊙ABC绕点C 顺时针旋转60°,则顶点A所经过的路径长为()A.10πBC D.π11.如图,四个三角形拼成一个风车图形,若AB=2,当风车转动90°时,点B运动路径的长度为()A.πB.2πC.3πD.4π12.如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为( )A .4π cmB .3π cmC .2π cmD .π cm知识点五、求扇形面积13.如图,AB 为半圆的直径,其中4AB =,半圆绕点B 顺时针旋转45︒,点A 旋转到点A '的位置,则图中阴影部分的面积为( )A .πB .2πC .2πD .4π14.如图,AB 是⊙O 的直径,CD 是弦,⊙BCD=30°,OA=2,则阴影部分的面积是( )A .3πB .23πC .πD .2π15.如图,等边三角形ABC 内接于O ,若O 的半径为2,则图中阴影部分的面积等于( )A .3πB .23πC .43πD .2π知识点六、求旋转扫过的面积16.如图,C 是半圆⊙O 内一点,直径AB 的长为4cm ,⊙BOC =60°,⊙BCO =90°,将⊙BOC 绕圆心O 逆时针旋转至⊙B′OC′,点C′在OA 上,则边BC 扫过的区域(图中阴影部分)的面积为( )A .43πB .πC .4πD 17.在⊙ABC 中,⊙C=90°,BC=4cm ,AC=3cm ,把⊙ABC 绕点A 顺时针旋转90°后,得到⊙A 1B 1C 1(如图所示),则线段AB 所扫过的面积为( )A .2B .254πcm 2C .252πcm 2D .5πcm 218.如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B′,则图中阴影部分的面积是( )A .6πB .5πC .4πD .3π知识点七、求弓形的面积19.如图,在O 中,2OA =,45C ∠=︒,则图中阴影部分的面积为( )A.2πB .πC .22π- D .2π-20.如图,阴影表示以直角三角形各边为直径的三个半圆所组成的两个新月形,若127S S +=,且8AC BC +=,则AB 的长为( )A .6B .7C .8D .1021.如图,某商标是由三个半径都为R 的圆弧两两外切得到的图形,则三个切点间的弧所围成的阴影部分的面积是( )A .(√3﹣12π)R 2B .(√3+12π)R 2C .(√32﹣π)R 2D .(√32+π)R 2知识点八、求不规则图形面积22.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接,AE AF .若6AB =,60B ∠=,则阴影部分的面积为( )A .3πB .2πC .9π-D .6π 23.如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( ).A .2πB .34πC .πD .3π24.如图,菱形ABCD 的边长为4cm ,⊙A =60°,弧BD 是以点A 为圆心,AB 长为半径的弧,弧CD 是以点B 为圆心,BC 长为半径的弧,则阴影部分的面积为( )A .2cm 2B .2C .4cm 2D .πcm 2二、填空题 知识点一、求弧长25.如图,边长为的正六边形螺帽,中心为点O ,OA 垂直平分边CD ,垂足为B ,AB =17cm ,用扳手拧动螺帽旋转90°,则点A 在该过程中所经过的路径长为_____cm .26.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 27.如图,在66⨯的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点,作ABC 的外接圆,则BC 的长等于_____.知识点二、求半径28.已知扇形的圆心角为120°,弧长为6π,则它的半径为________.29.若扇形的圆心角为120°,弧长为18πcm ,则该扇形的半径为_____cm .30.如图,⊙O 的半径为6cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB=OA ,动点P 从点A 出发,以π cm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为______时,BP 与⊙O 相切.知识点三、求圆心角31.一个扇形的弧长是20cm π,面积是2240cm π,则这个扇形的圆心角是___度. 32.如图,点A 、B 、C 在半径为9的⊙O 上,AB 的长为,则⊙ACB 的大小是___.33.若一个扇形的弧长是2πcm ,面积是26πcm ,则扇形的圆心角是__________度.知识点四、求点的运动路径长34.如图,扇形AOB 中,10,36OA AOB =∠=︒.若将此扇形绕点B 顺时针旋转,得一新扇形A O B '',其中A 点在O B '上,则点O 的运动路径长为_______cm .(结果保留π)35.将边长为2的正六边形ABCDEF 绕中心O 顺时针旋转α度与原图形重合,当α最小时,点A 运动的路径长为_____.36.如图,在扇形铁皮AOB中,OA=10,⊙AOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA第5次落在l上时,停止旋转.则点O所经过的路线长为_____.知识点五、求扇形面积37.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.38.一个扇形的半径为3cm,面积为 2cm,则此扇形的圆心角为______.39.如图,矩形ABCD的对角线交于点O,以点A为圆心,AB的长为半径画弧,刚好过点O,以点D为圆心,DO的长为半径画弧,交AD于点E,若AC=2,则图中阴影部分的面积为_____.(结果保留π)知识点六、求旋转扫过的面积40.如图,在⊙ABC 中,⊙ABC =45°,⊙ACB =30°,AB =2,将⊙ABC 绕点C 顺时针旋转60°得⊙CDE ,则图中线段AB 扫过的阴影部分的面积为_____.41.如图,在⊙ABC 中,AB =5,AC =3,BC =4,将⊙ABC 绕点A 逆时针旋转30°后得到⊙ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为________.42.如图,将ABC 绕点A 逆时针旋转120︒得ADE ,已知4AB =,1AC =,那么图中阴影部分的面积是________.(结果保留π)知识点七、求弓形的面积43.如图,⊙O 的半径为2,点A ,B 在⊙O 上,⊙AOB =90°,则阴影部分的面积为________.44.如图,点A 、B 、C 在⊙O 上,若⊙BAC =45°,OB =2,则图中阴影部分的面积为_____.45.如图,点C 是以AB 为直径的半圆O 的三等分点,2AC = ,则图中阴影部分的面积是 _______.知识点八、求不规则图形面积46.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是______.(结果保留π)47.如图,AB 是O 的直径,点E 是BF 的中点,过点E 的切 线分别交AF AB ,的延长线于点D C ,,若C 30∠=,O 的半径是2,则图形中阴影部分的面积是_______.48.如图所示的扇形AOB 中,920,OA B OB AO ∠===︒,C 为AB 上一点,30AOC ∠=︒,连接BC ,过C 作OA 的垂线交AO 于点D ,则图中阴影部分的面积为_______.三、解答题知识点一、求弧长49.如图,PC是⊙O的直径,PA切⊙O于点P,OA交⊙O于点B,连结BC.已知⊙O的半径为2,⊙C=35°(1)求⊙A的度数;(2)求BC的长.知识点二、求半径50.在⊙O中,弦AB所对的圆周角为30°,且5cmAB=,求AB的长.嘉琪的解法如下:⊙弦AB所对的圆周角是30°,AB∴的长为3055(cm) 1806ππ⨯=.请问嘉琪的解法正确吗?如果不正确,请给出理由.知识点三、求圆心角51.若一条圆弧所在圆半径为9,弧长为52π,求这条弧所对的圆心角.知识点四、求点的运动路径长52.如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕点O顺时针旋转180°,试解决下列问题:(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中经过的路径长.知识点五、求扇形面积53.如图,AB是O的直径,点D是AB延长线上的一点,点C在O上,且AC=CD,=.∠︒120ACD()求证:CD是O的切线;1()若O的半径为3,求图中阴影部分的面积.2知识点六、求旋转扫过的面积54.如图所示,在平面直角坐标系中,Rt⊙ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将⊙ABC以点C为旋转中心逆时针旋转90°,画出旋转后对应的⊙A1B1C;(2)图中⊙ABC外接圆的圆心的坐标是,⊙ABC外接圆的面积是平方单位长度.知识点七、求弓形的面积55.如图,以AB为直径的⊙O经过AC的中点D,DE⊙BC于点E.(1)求证:DE是⊙O的切线;(2)当AB=⊙C=30°时,求图中阴影部分的面积(结果保留根号和π).知识点八、求不规则图形面积56.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分⊙DAB;(2)若BE=3,参考答案1.C【解析】试题解析:⊙P A、PB是⊙O的切线,⊙⊙OBP=⊙OAP=90°,在四边形APBO中,⊙P=60°,⊙⊙AOB =120°,⊙OA =2,⊙AB 的长l =12024=1803ππ⨯. 故选C.2.B【分析】连接OC ,根据等边三角形的性质得到80BOC ∠︒=,根据弧长公式计算即可.【详解】连接OC ,60OA OC CAO ∠︒=,=,AOC ∴为等边三角形,60AOC ∴∠︒=,1406080BOC AOB AOC ∴∠∠-∠︒-︒︒===,则BC 的长80681803ππ⨯==, 故选B . 【点拨】本题考查弧长的计算,等边三角形的判定和性质,掌握弧长公式:180n r l π=是解题的关键.3.D【分析】连接OA 、OC ,如图,根据正多边形内角和公式可求出⊙E 、⊙D ,根据切线的性质可求出⊙OAE 、⊙OCD ,从而可求出⊙AOC ,然后根据圆弧长公式即可解决问题.【详解】连接OA 、OC ,如图.⊙五边形ABCDE 是正五边形, ⊙⊙E =⊙D =(52)1805︒-⨯=108°.⊙AE 、CD 与⊙O 相切,⊙⊙OAE =⊙OCD =90°,⊙⊙AOC =(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,⊙劣弧AC 的长为144141805ππ⨯=. 故选D .【点拨】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、圆弧长公式等知识,求出圆弧所对应的圆心角是解决本题的关键.4.A【解析】 l=180n R π⨯, 由题意得,2π=60180R π⨯, 解得:R=6cm .故选A .故选A .【点睛】运用了弧长的计算公式,属于基础题,熟练掌握弧长的计算公式是关键. 5.B 【分析】根据弧长公式180n r l π=可以求得该扇形的半径的长度. 【详解】 解:根据弧长的公式180n r l π=,知 180180390l r n πππ⨯===6, 即该扇形的半径为6.故选:B .【点拨】本题考查了弧长的计算.解题时,主要是根据弧长公式列出关于半径r 的方程,通过解方程即可求得r 的值.6.A【分析】设扇形半径为rcm ,根据扇形弧长公式列方程计算即可.【详解】设扇形半径为rcm , 则150180r π=5π,解得r =6cm . 故选A.【点拨】本题主要考查扇形弧长公式.7.B【解析】【详解】解:根据l=3180180n r n ππ⨯==π, 解得:n=60°,故选B .【点拨】本题考查弧长公式,在半径为r 的圆中,n°的圆心角所对的弧长为l=180n r π. 8.C【解析】【分析】根据圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长得到圆锥的展开图扇形的弧长=2π•10,然后根据扇形的弧长公式l =180n R π 计算即可求出n . 【详解】解:设圆锥的展开图扇形的圆心角的度数为n .⊙圆锥的底面圆的周长=2π•10=20π,⊙圆锥的展开图扇形的弧长=20π,⊙20π=30180n π⋅⋅, ⊙n =120°.故答案选:C .【点拨】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长,母线长等于扇形的半径.也考查了扇形的弧长公式.9.C【分析】根据弧长公式:l =180n R π(弧长为l ,圆心角度数为n ,圆的半径为R ),代入即可求出圆心角的度数.【详解】解:由题意得,2π=2180n π⨯, 解得:n =180.即这条弧所对的圆心角的度数是180°.故选C .【点拨】本题考查了弧长的计算,解答本题关键是熟练掌握弧长的计算公式,及公式字母表示的含义.10.C【详解】如图所示:在Rt⊙ACD 中,AD=3,DC=1,根据勾股定理得:又将⊙ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为=. 故选C.11.A【分析】B 点的运动路径是以A 点为圆心,AB 长为半径的圆的14的周长,然后根据圆的周长公式即可得到B 点的运动路径长度为π.【详解】解:⊙B 点的运动路径是以A 点为圆心,AB 长为半径的圆的14的周长, ⊙9022360,故选:A .【点拨】本题考查了弧长的计算,熟悉相关性质是解题的关键.12.C【分析】点D 所转过的路径长是一段弧,是一段圆心角为180°,半径为OD 的弧,故根据弧长公式计算即可.【详解】解:BD=4, ⊙OD=2⊙点D 所转过的路径长=1802180π⨯=2π. 故选:C .【点拨】本题主要考查了弧长公式:180n r l π=. 13.B【分析】由旋转的性质可得:AB A B BAA S S S S ''+=+阴影半圆半圆扇形,从而可得BAA S S '=阴影扇形,利用扇形面积公式计算即可.【详解】解:半圆AB 绕点B 顺时针旋转45︒,点A 旋转到A '的位置, AB A B S S '∴=半圆半圆,45ABA '∠=︒.AB A B BAA S S S S ''+=+阴影半圆半圆扇形,BAA S S '∴=阴影扇形24542360ππ⨯==. 故选B . 【点拨】本题考查的是旋转的性质,扇形面积的计算,掌握以上知识是解题的关键. 14.B【分析】根据圆周角定理可以求得⊙BOD 的度数,然后根据扇形面积公式即可解答本题.【详解】⊙⊙BCD=30°,⊙⊙BOD=60°,⊙AB 是⊙O 的直径,CD 是弦,OA=2,⊙阴影部分的面积是:236236020ππ⨯⨯=, 故选B .【点拨】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.C【分析】连接OC ,如图,利用等边三角形的性质得120AOC ∠=,AOB AOC SS =,然后根据扇形的面积公式,利用图中阴影部分的面积AOC S =扇形进行计算.【详解】解:连接OC ,如图, ABC 为等边三角形,120AOC ∠∴=,AOB AOC S S =,∴图中阴影部分的面积212024.3603AOC S 扇形ππ⋅⨯===故选C .【点拨】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质.16.B【解析】【分析】根据直角三角形的性质求出OC 、BC ,根据扇形面积公式:2360n r S π=计算即可. 【详解】解:⊙⊙BOC=60°,⊙BCO=90°,⊙⊙OBC=30°,⊙OC=12OB=1,则边BC 扫过的区域的面积为:2212021120111136023602ππ⨯⨯+-- =πcm 2.故答案为B .【点拨】本题主要考查扇形面积公式,三角形的性质.正确计算扇形面积是解题的关键. 17.B【解析】【分析】首先求出AB ,然后根据扇形面积公式计算即可.【详解】解:,⊙线段AB 所扫过的面积为:290525=3604ππ⋅⋅, 故选:B.【点拨】本题主要考查扇形面积计算,熟练掌握扇形面积计算公式是解题关键. 18.A【详解】试题分析:根据题意可得:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB 为直径的半圆的面积=扇形ABB′的面积=26066360ππ⨯=,故选A . 考点:图形旋转的性质、扇形的面积.19.D【分析】根据圆周角定理得出⊙AOB=90°,再利用S 阴影=S 扇形OAB -S ⊙OAB 算出结果.【详解】解:⊙⊙C=45°,⊙⊙AOB=90°,⊙OA=OB=2,⊙S阴影=S扇形OAB-S⊙OAB=29021223602π⋅⋅-⨯⨯=2π-,故选D.【点拨】本题考查了圆周角定理,扇形面积计算,解题的关键是得到⊙AOB=90°.20.A【分析】根据勾股定理得到AC2+BC2=AB2,根据扇形面积公式、完全平方公式计算即可.【详解】解:由勾股定理得,AC2+BC2=AB2,⊙S1+S2=7,⊙12×π×(2AC)2+12×π×(2BC)2+12×AC×BC−12×π×(2AB)2=7,⊙AC×BC=14,AB6,故选:A.【点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.21.A【解析】【分析】由题意知,得到的如图三角形是等边三角形,边长也为R,阴影的部分的面积等于等边三角形的面积减去三个弓形的面积.而一个弓形的面积等于圆心角为60度的半径为R 的扇形的面积减去边长为R的等边三角形的面积.【详解】解:边长为R的等边三角形的面积SΔ=12×sin60°R2=√34R2;半径为R的扇形的面积S扇形=60πR2360=πR26;⊙一个弓形的面积S扇形=πR26−√34R2,⊙阴影的部分的面积=√34R 2−3×(πR 26−√34R 2)=(√3−12π)R 2. 故选:A .【点拨】本题考查了等边三角形的性质和面积的求法,及扇形,弓形的面积的求法. 22.A【分析】连接AC ,根据菱形的性质求出BCD ∠和6BC AB ==,求出AE 长,再根据三角形的面积和扇形的面积求出即可.【详解】连接AC ,⊙四边形ABCD 是菱形,⊙6AB BC ==,⊙60B ∠=,E 为BC 的中点,⊙3CE BE CF ===,ABC ∆是等边三角形,//AB CD ,⊙60B ∠=,⊙180120BCD B ∠=-∠=,由勾股定理得:AE ==⊙11622AEB AEC AFC S S S ∆∆∆==⨯⨯==,⊙阴影部分的面积212033360AEC AFC CEFS S S S ππ∆∆⨯=+-==扇形, 故选A .【点拨】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出AEC ∆、AFC ∆和扇形ECF 的面积是解此题的关键.23.D【分析】由半圆A′B 面积+扇形ABA′的面积-空白处半圆AB 的面积即可得出阴影部分的面积.【详解】解:⊙半圆AB,绕B点顺时针旋转30°,⊙S阴影=S半圆A′B+S扇形ABA′-S半圆AB= S扇形ABA′=2630 360π⋅=3π故选D.【点拨】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式和旋转前后不变的边是解题的关键.24.B【解析】【分析】连接BD,判断出⊙ABD是等边三角形,根据等边三角形的性质可得⊙ABD=60°,再求出⊙CBD=60°,DB=BC=AD,从而确定S扇形BDC=S扇形ABD,然后求出阴影部分的面积=S扇形BDC -(S扇形ABD-S⊙ABD)=S⊙ABD,计算即可得解.【详解】解:如图,连接BD,⊙四边形ABCD是菱形,⊙AB=AD=BC,⊙⊙A=60°,⊙⊙ABD是等边三角形,⊙⊙ADB=60°,AD=DB=BC=4又⊙菱形的对边AD⊙BC,⊙⊙CBD=⊙ADB=60°,⊙S扇形BDC=S扇形ABD⊙S阴影=S扇形BDC-(S扇形ABD-S⊙ABD)=S⊙ABD24cm2.故选B.【点拨】本题考查了菱形的性质,等边三角形的性质和面积,熟记性质并作辅助线构造出等边三角形是解题的关键.25.10π【分析】利用正六边形的性质求出OB的长度,进而得到OA的长度,根据弧长公式进行计算即可.【详解】解:连接OD,OC.⊙⊙DOC=60°,OD=OC,⊙⊙ODC是等边三角形,⊙OD=OC=DC=cm),⊙OB⊙CD,⊙BC=BD cm),⊙OB=3(cm),⊙AB=17cm,⊙OA=OB+AB=20(cm),⊙点A在该过程中所经过的路径长=9020180π⋅⋅=10π(cm),故答案为:10π.【点拨】本题考查了正六边形的性质及计算,扇形弧长的计算,熟知以上计算是解题的关键.26.2π【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.27 【分析】由AB 、BC 、AC 长可推导出⊙ACB 为等腰直角三角形,连接OC ,得出⊙BOC =90°,计算出OB 的长就能利用弧长公式求出BC 的长了.【详解】⊙每个小方格都是边长为1的正方形,⊙AB =AC ,BC ,⊙AC 2+BC 2=AB 2,⊙⊙ACB 为等腰直角三角形,⊙⊙A =⊙B =45°,⊙连接OC ,则⊙COB =90°,⊙OB⊙BC 的长为:90180π⋅=2.【点拨】本题考查了弧长的计算以及圆周角定理,解题关键是利用三角形三边长通过勾股定理逆定理得出⊙ACB 为等腰直角三角形.28.9【分析】根据弧长公式L =180n R π求解即可. 【详解】 ⊙L =180n R π, ⊙R =1806120ππ⨯=9. 故答案为9.【点拨】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L =180n R π. 29.27【解析】【分析】根据弧长公式即可得解.【详解】解:设扇形的半径为r (cm ),则18π=120180r π⨯⨯, 解得:r=27.故答案为27.【点拨】本题考查扇形的弧长公式,l=180n r π,l 是弧长,n 是圆心角的度数,r 是半径. 30.2或10【分析】根据切线的判定与性质进行分析即可.若BP 与⊙O 相切,则⊙OPB=90°,又因为OB=2OP ,可得⊙B=30°,则⊙BOP=60°;根据弧长公式求得弧AP 长,除以速度,即可求得时间.【详解】连接OP⊙当OP⊙PB 时,BP 与⊙O 相切,⊙AB=OA ,OA=OP ,⊙OB=2OP ,⊙OPB=90°;⊙⊙B=30°;⊙⊙O=60°;⊙OA=6cm ,弧AP=606180π⨯=2π, ⊙圆的周长为:12π,⊙点P 运动的距离为2π或12π-2π=10π;⊙当t=2秒或10秒时,有BP 与⊙O 相切.故答案为:2或10【点拨】本题考查的是切线的性质及弧长公式,解答此题时要注意过圆外一点有两条直线与圆相切,不要漏解.31.150【分析】根据弧长公式计算.【详解】 根据扇形的面积公式12S lr =可得: 1240202r ππ=⨯, 解得r =24cm , 再根据弧长公式20180n r l cm ππ==, 解得150n =︒.故答案为:150.【点拨】本题考查了弧长的计算及扇形面积的计算,要记熟公式:扇形的面积公式12S lr =,弧长公式180n r l π=. 32.20°. 【分析】连接OA 、OB ,由弧长公式的92180n ππ⨯⨯=可求得⊙AOB ,然后再根据同弧所对的圆周角等于圆心角的一半可得⊙ACB.【详解】解:连接OA、OB,由弧长公式的92180nππ⨯⨯=可求得⊙AOB=40°,再根据同弧所对的圆周角等于圆心角的一半可得⊙ACB=20°.故答案为:20°【点拨】本题考查弧长公式;圆周角定理,题目难度不大,掌握公式正确计算是解题关键.33.60【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.【详解】解:扇形的面积=12lr=6π,解得:r=6,又⊙6180nlπ⨯==2π,⊙n=60.故答案为:60.【点拨】此题考查了扇形的面积和弧长公式,解题的关键是掌握运算方法.34.4π.【分析】根据弧长公式,此题主要是得到⊙OBO′的度数.根据等腰三角形的性质即可求解.【详解】解:根据题意,知OA=OB.又⊙AOB=36°,⊙⊙OBA=72°.⊙点O 旋转至O′点所经过的轨迹长度=7210180π︒⨯⨯︒=4πcm . 故答案是:4π. 【点拨】本题考查了弧长的计算、旋转的性质.解答该题的关键是弄清楚点O 的运动轨迹是弧形,然后根据弧长的计算公式求解.35.23π . 【详解】试题分析:根据题意α最小值是60°,然后根据弧长公式即可求得.⊙正六边形ABCDEF 绕中心O 顺时针旋转α度与原图形重合,α最小值是60°, ⊙点A 运动的路径长=60221803. 故答案为23π. 考点:轨迹;旋转对称图形.36.60π.【解析】【分析】点O 所经过的路线是2段弧和一条线段,一段是以点B 为圆心,10为半径,圆心 角为90°的弧,另一段是一条线段,和弧AB 一样长的线段,最后一段是以点A 为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】当OA 第1次落在l 上时:点O 所经过的路线长为:90π1036π1090π10216π1012π.180180180180⨯⨯⨯⨯++== 则当OA 第5次落在l 上时:点O 所经过的路线长=12π×5=60π.故答案是:60π.【点拨】本题考查了轨迹:利用特殊几何图形描述点运动的轨迹,然后利用几何性质计算相应的几何量.37.6【分析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式列方程求解计算即可.【详解】解:⊙正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r,⊙2120224360rππ⨯⨯=,2224,3rππ∴=236,r∴=解得r=6.(负根舍去)则正六边形的边长为6.故答案为:6.【点拨】本题考查的是正多边形与圆,扇形面积,掌握以上知识是解题的关键.38.40°.【详解】解:根据扇形的面积计算公式可得:23360n=π,解得:n=40°,即圆心角的度数为40°.考点:扇形的面积计算.39.4π【分析】由图可知,阴影部分的面积是扇形ABO和扇形DEO的面积之和,然后根据题目中的数据,可以求得AB、OA、DE的长,⊙BAO和⊙EDO的度数,从而可以解答本题.【详解】解:⊙四边形ABCD是矩形,⊙OA=OC=OB=OD,⊙AB=AO,⊙⊙ABO是等边三角形,⊙⊙BAO=60°,⊙⊙EDO =30°,⊙AC =2,⊙OA =OD =1,⊙图中阴影部分的面积为:22601301+=3603604ππ⨯⨯⨯⨯π, 故答案为:4π. 【点拨】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键.40.3【分析】作AF ⊙BC 于F ,解直角三角形分别求出AC 、BC ,根据扇形面积公式、三角形面积公式计算即可.【详解】作AF ⊙BC 于F ,⊙⊙ABC =45°,⊙AF =BF =2AB 在Rt⊙AFC 中,⊙ACB =30°,⊙AC =2AF =FC =tan ∠AF ACF , 由旋转的性质可知,S ⊙ABC =S ⊙EDC ,⊙图中线段AB 扫过的阴影部分的面积=扇形DCB 的面积+⊙EDC 的面积﹣⊙ABC 的面积﹣扇形ACE 的面积=扇形DCB 的面积﹣扇形ACE 的面积﹣260360π⨯,.【点拨】本题考查的是扇形面积计算,掌握扇形面积公式S=2360n Rπ是解题的关键.41.25 12π【解析】【详解】由题意得,S⊙AED=S⊙ABC,由题图可得,阴影部分的面积= S⊙AED+S扇形ABD-S⊙ABC,⊙阴影部分的面积= S扇形ABD=2 30525π36012π⨯=.故答案为25 12π.42.5π【分析】根据旋转的性质可以得到阴影部分的面积=扇形DAB的面积-扇形EAC的面积,利用扇形的面积公式即可求解.【详解】解:⊙将ABC绕点A逆时针旋转120︒得ADE,⊙S⊙ABC= S⊙ADE,⊙阴影部分的面积=扇形DAB的面积+S⊙ADE-扇形EAC的面积-S⊙ABC=扇形DAB的面积-扇形EAC的面积⊙阴影部分的面积221205 12041360360πππ⨯⨯⨯=-=⨯,故答案为:5π.【点拨】本题考查了旋转的性质以及扇形的面积公式,根据旋转的性质推出:阴影部分的面积=扇形DAB的面积-扇形EAC的面积是解题关键.43.π-2【解析】【分析】先求出扇形面积,再求三角形面积,阴影面积=扇形面积-三角形面积.【详解】由已知可得,S 阴影=S 扇形OAB -S ⊙OAB =290212223602ππ-⨯⨯=-. 故答案为π-2【点睛】本题考核知识点:扇形面积. 解题关键点:熟记扇形面积公式,用求差法得到阴影面积.44.π﹣2【分析】先根据圆周角定理证得⊙BOC=90°,从而得出⊙OBC 是等腰直角三角形,然后根据S 阴影=S 扇形OBC -S ⊙OBC 即可求得.【详解】解:⊙⊙BAC=45°,⊙⊙BOC=90°,⊙⊙OBC 是等腰直角三角形,⊙OB=2,⊙S 阴影=S 扇形OBC -S ⊙OBC =14π×22-12×2×2=π-2. 故答案为π﹣2【点拨】本题考查的是圆周角定理及扇形的面积公式,熟记扇形的面积公式是解答此题的关键.45.43π【解析】【分析】连接OC,用扇形OBC 的面积减去OBC 的面积即可.【详解】如图:连接OC,点C 是以AB 为直径的半圆O 的三等分点,60,120,AOC BOC ∴∠=∠=,OA OC =OAC ∴是等边三角形,60,2,A OA OC AC ∴∠====S 扇形OBC 2120π24π.3603⨯== 1111122tan 603,22222OBC ABC S S AC BC ==⨯⋅=⨯⨯⨯=则阴影部分的面积为:43π故答案为43π 【点拨】考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.46.π-1【分析】延长DC ,CB 交⊙O 于M ,N ,根据圆和正方形的面积公式即可得到结论.【详解】解:延长DC ,CB 交⊙O 于M ,N ,则图中阴影部分的面积=14×(S 圆O −S 正方形ABCD )=14×(4π−4)=π−1, 故答案为π−1.【点拨】本题考查了圆中阴影部分面积的计算,正方形的性质,正确的识别图形是解题的关键.472π3- 【分析】先根据已知条件证明四边形AOEF 为菱形,再得到ΔEOB 为等边三角形,求出AE 的长,得到弓形的面积,再利用ΔFDE S S S =-阴弓即可求解.【详解】解:连接OE EF ,连接OF 交AE 与点G .连接BE⊙点E 是BF 的中点即=EF BE ,C 30∠=︒.⊙EF BE DAB 60∠==︒,又OF AO =⊙AEC 90ΔAFO ∠=︒,为等边三角形⊙AF AO OE EF ===,即四边形AOEF 为菱形,⊙EF AO ,从而DFE FAO 60∠∠==︒⊙AB 为直径⊙AEB 90∠=︒又⊙CD 为切线⊙OE CD ⊥⊙EOC 60∠=︒又OE OB =,⊙ΔEOB 为等边三角形.⊙BE 2=,EBA 60∠=︒,⊙AEsin EBA sin60AB ∠=︒=,即AE AB sin604=⋅︒==.2AOE AOEF 114π2S S S π22323=-=⨯-⨯⨯=-弓EF 扇菱形即2πS 3=弓在RT⊙FDE 中,DEsin DFE sin60EF ∠=︒=即ED EFsin6022=︒=⨯=⊙DF 1==⊙ΔFDE 12π2πS S S 12323⎛=-=⨯=- ⎝阴弓.2π3-.【点拨】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据图形的特点求出弓形的面积是解题的关键.48.232π- 【分析】先根据题目条件计算出OD ,CD 的长度,判断BOC 为等边三角形,之后表示出阴影面积的计算公式进行计算即可.【详解】在Rt COD 中,30,2AOC OC OA ︒∠===⊙1,CD OD ==⊙90AOB ︒∠=⊙60BOC ︒∠=⊙OB OC =⊙BOC 为等边三角形⊙BOC =COD BOC S S S S +-△△阴影扇形221602122360π⨯=+-232π=-故答案为:232π-【点拨】本题考查了阴影面积的计算,熟知不规则阴影面积的计算方法是解题的关键. 49.(1)⊙A =20°;(2)119π.【分析】(1)根据圆周角定理求出⊙AOP ,根据切线的性质计算,得到答案;(2)根据弧长公式计算即可.【详解】解:(1)由圆周角定理得,⊙AOP =2⊙C =70°⊙P A 切⊙O 于点P ,⊙⊙APO =90°,⊙⊙A =20°;(2)⊙BOC =180°﹣⊙AOP =110°, ⊙1102180BA π==119π. 【点拨】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.50.嘉琪的解法不正确,见解析【分析】连接AO ,OB ,根据圆周角定理可得60AOB ∠=︒,进而得到OAB ∆是等边三角形,然后根据弧长计算公式可得答案.【详解】解:嘉琪的解法不正确,理由如下:如图,连接AO ,OB ,AB 所对的圆周角为30,60AOB ∴∠=︒,AO BO =,OAB ∴∆是等边三角形,5AB cm =,∴AB 的长为:6055()1803cm ππ⨯=. 【点拨】此题主要考查了圆周角定理和弧长计算公式,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意:弧长公式。
人教版九年级数学上册《24.4 弧长和扇形面积》练习题-附参考答案
人教版九年级数学上册《24.4 弧长和扇形面积》练习题-附参考答案一、选择题1.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A.12πB.21πC.27πD.36π2.如图,⊙O的半径为3,AB为弦,若∠ABC=30°,则AC⌢的长为()A.πB.1 C.1.5 D.1.5π3.如图,将边长为3的正方形铁丝框ABCD,变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ADB的面积为()A.3 B.6 C.9 D.3π4.如图,分别以等边三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若等边三角形边长为3cm,则该莱洛三角形的周长为()A.2πB.9 C.3πD.6π5.如图,四边形OABC为菱形,∠AOC=120°,点B、C在以点O为圆心的EF⌢上,若OA=1,∠1=∠2,则扇形OEF的面积为()A.π6B.π4C.π3D.2π36.如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,BC为半径作圆弧BD,再分别以E,F为圆心,BE为半径作圆弧BO,OD,则图中阴影部分的面积为()A.π−1B.π−3C.π−2D.4−π7.如图,四边形ABCD是半径为2的⊙O的内接四边形,连接OA,OC.若∠AOC:∠ABC=4:3,则AC⌢的长为()A.35πB.45πC.65πD.85π8.如图,以矩形ABCD的顶点A为圆心,AD长为半径画弧交边BC于点E,E恰为边BC的中点,AD=4 √3则图中阴影部分的面积为()A.18√3−8πB.18√3−4πC.24√3−8πD.12√6−6π二、填空题9.一个扇形的半径是3cm,圆心角是60°,则此扇形的面积是cm2.10.如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于.11.如图,半径为2的⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2√3,则阴影部分的面积为.⌢围成的图13.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点,则弦AC,AD和CD形(图中阴影部分)的面积S是.三、解答题14.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1,以B为圆心,BA为半径画弧交CB的延长线于点D,求弧AD的长15.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2 √3 ,BF=2,求阴影部分的面积(结果保留π).16.如图,内接于,交于点,交于点,交于点,连接,CF .(1)求证:;(2)若的半径为,求的长结果保留.17.如图,已知AB 是O 的直径,点C 在O 上,D 为O 外一点,且90ADC ∠=︒ 2180B DAB ∠+∠=︒.(1)试说明:直线CD 为O 的切线;(2)若30,2B AD ∠=︒=求阴影部分的面积.1.C2.A3.C4.C5.C6.C7.D8.Aπ9.3210.2π11.8512.2π313.6πcm214.解:∵在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1 ∴AB=2BC=2,∠ABC=90°-∠BAC=60°∴∠ABD=180°-∠ABC=120°∴弧AD=故答案为.15.(1)解:BC与⊙O相切.理由如下:连接OD.∵AD是∠BAC的平分线∴∠BAD=∠CAD.∴∠OAD=∠ODA∴∠CAD=∠ODA∴OD ∥AC∴∠ODB=∠C=90°即OD ⊥BC .又∵BC 过半径OD 的外端点D∴BC 与⊙O 相切;(2)解:设OF=OD=x ,则OB=OF+BF=x+2. 根据勾股定理得: OB 2=OD 2+BD 2 即 (x +2)2=x 2+12 ,解得:x=2 即OD=OF=2∴OB=2+2=4.在Rt △ODB 中,∵OD= 12 OB∴∠B=30°∴∠DOB=60°∴S 扇形DOF = 60π×4360 = 2π3 ,则阴影部分的面积为S △ODB ﹣S 扇形DOF = 12×2×2√3−2π3 = 2√3−2π3 . 故阴影部分的面积为 2√3−2π3 . 16.(1)证明:四边形是平行四边形.(2)解:连接由得∴的长. 17.(1)解:如图,连接OC OB OC =OCB B ∴∠=∠2AOC OCB B B ∴∠=∠+∠=∠2180B DAB ∠+∠=︒180AOC DAB ∴∠+∠=︒.OC AD ∴∥90ADC ∠=︒18090OCD ADC ∴∠=︒-∠=︒即CD OC ⊥,又OC 是O 的半径 ∴直线CD 为O 的切线.(2)如图,连接AC ,作OE BC ⊥,垂足为E ,则2BC BE = 30B ∠=︒260AOC B ∴∠=∠=︒OA OC =OAC ∴是等边三角形60OCA ∴∠=︒906030ACD ∴∠=︒-︒=︒ 12AD AC ∴= 2AD =4AC ∴=,即O 的半径为4 OE BC ⊥BE CE ∴=30,4B OB ∠=︒=2OE ∴=22224223BE OB OE ∴=-=-= 43BC ∴=1432BOC S BC OE ∴=⋅⋅=△ 30,B OB OC ∠=︒=120BOC ∴∠=︒2OBC 12041643433603OBC S S S ππ⨯⨯∴=-=-=-阴影扇△.。
初中数学扇形面积弧长计算练习题(附答案)
初中数学扇形面积弧长计算练习题一、单选题1.矩形ABCD中,5AB=,12AD=,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是( )A.25π2B.13πC.25πD.2522.一个扇形的弧长是10cm,面积是260cm,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°3.如图,在O的内接四边形ABCD中,135B∠=︒,若O的半径为4,则弧AC的长为( )A.4πB.2πC.πD.2π34.如图,在44⨯的正方形网格中,每个小正方形的边长为1,若将ABC△绕着点A逆时针旋转得到AB C'△,则BB'的长为()A.πB.π2C.7πD.6π5.如图,正六边形ABCDEF内接于O,半径为4,则这个正六边形的边心距OM和BC的长分别为( )A.π2,3B.π2π3 D.4π36.如图,矩形ABCD 的边1,AB BE =平分ABC ∠交AD 于点E .若点E 是AD 的中点,以点B 为圆心,BE 长为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A.π24-B.3π24-C.π28-D.3π28- 7.如图,AB 是O 的直径,CD 是弦,30,2BCD OA ∠==°,则阴影部分的面积是( )A.π3B.2π3C.πD.2π 8.如图.从一块直径为2 m 的圆形铁皮上剪出一个圆心角为90︒的扇形,则此扇形的面积为( )A.2πm 2 2m C.2πm D.22πm9.如图,点,,A B C 在O 上,若45,2BAC OB ∠==则图中阴影部分的面积为( )A. π4-B. 2π13- C. π2- D. 2π23- 二、解答题10.如图,已知在Rt ABC △中,30,90B ACB ∠=︒∠=︒.延长CA 到,O 使AO AC =,以点O 为圆心,OA 为半径作O 交BA 的延长线于点,D 连接CD .(1)求证:CD 是O 的切线;(2)若4AB =,求图中阴影部分的面积.三、填空题11.一个扇形的弧长是11πcm ,半径是18cm ,则此扇形的圆心角是 度。
弧长与扇形面积练习题与答案
知识点:1、 弧长公式: l n R(牢记)180在半径是 R 的圆中, 360 度的圆心角多对的弧长就是圆的周长 Cn R2 12、扇形面积公式: S扇形=或 S 扇形= 1lR (牢记) 360 23、圆锥的侧面积和全面积(难点) 圆锥的侧面展开图形是一个扇形,这个扇形的半径是圆锥的母线长R ,扇形的弧长是圆锥底面圆的周长。
典型例题1.已知圆锥的高是 30cm ,母线长是 50cm ,则圆锥的侧面积是 【关键词】圆锥侧面积、扇形面积答案:22000 cm 2;2. (2010 年福建省晋江市) 已知:如图,有一块含 30 的直角三角板 OAB 的直角边长 BO的长恰与另一块等腰直角三角板 ODC 的斜边 OC 的长相等,把该套三角板放置在平面 直角坐标系中,且 AB 3.(1) 若双曲线的一个分支恰好经过点A ,求双曲线的解析式;(2) 若把含 30 的直角三角板绕点 O 按顺时针方向旋转后,斜边 OA 恰好与 x 轴重叠,点 A 落在点 A ,试求图中阴影部分的面积 (结果保留 ).弧长和扇形面积答案:解: (1) 在 Rt OBA 中, AOB 30 , AB 3,OBcot AOB ,AB∴ OB AB cot30 3 3 ,∴点 A 3,3 3设双曲线的解析式为 ykk 0x∴3 3 k, k 9 393 ,则双曲线的解析式为 y3x(2) 在 Rt OBA 中,AOB 30 , AB 3 ,AB3sin AOB , sin30 ,OAOA∴ OA 6.关键词】反比例函数、扇形面积 yBO C AyA由题意得: AOC 60 ,260 62360在 Rt OCD 中, DOC 45 , OC OB 3 3 ,OD OC cos45332 3622212 1 3627.S ODC OD2224S阴=S扇形 AOA'SODC6 2743. (2010 年浙江省东阳市)在如图的方格纸中,每个小方格 都是边长为 1 个单位的正方形, △ABC 的三个顶点 都在 格点上(每个小方格的顶点叫格点) .( 1)如果建立直角坐标系,使点 B 的坐标为(- 5,2 ),点C 的坐标为(- 2, 2),则点 A 的坐标为 ▲ ; (2) 画出 △ABC 绕点P顺时针旋转 90 后的△A 1B1C,并求线段 BC 扫过的面积 .关键词:扇形面积公式 答案:(1)A(-4,4)(2)图略线段 BC 扫过的面积= (4 -1 )= 15444、( 2010 福建德化) 已知圆锥的底面半径是 3cm ,母线长为 6cm ,则侧面积为__________________________________________________________ cm 2.(结果保留 π) 关键词:圆锥侧面积答案: 185、已知圆锥的底面半径为 关键词:圆锥的高 3,侧面积为 15 ,则这个圆锥的高为 ▲ 答案: 4S扇形 AOA'6(2010年门头沟区).如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为 AB 的等腰梯形,上底CD的端点在圆周上,且 CD=10cm.求图中阴影部分的面积.【关键词】圆、梯形、阴影部分面积答案】 解:连结 OC , OD ,过点 O 作 OE ⊥CD 于点 E. ∵OE ⊥CD ,∴CE=DE=5, ∴OE= CO 2CE 2102 52 =5 3,∵∠ OED=9°0 ,DE= 1 OD , ∴∠DOE=3°0 ,∠DOC=6°0 . 2S△ OCD =2·OE ·CD= 25 3 (cm 2)50 2∴S 阴影 = S 扇形 - S △OCD = ( π- 25 3) cm3 50∴阴影部分的面积为 ( 530π- 25 3) cm 2.60102∴ S扇形36050(cm 2)33分7. (2010 年山东省济南市)如图,四边形 OABC 为菱形,点 ⌒B 、C 在以点 O 为圆心的 EF 上,若 OA =1,∠ 1=∠2,则扇形 OEF 的面积为 π π πA. B. C. 6 4 3 【关键词】扇形的面积 【答案】 C D.2πO8. ( 2010年台湾省) 如图(十三),扇形 AOB 中, OA=10, AOB =36 。
人教版九年级数学上24.4弧长和扇形面积同步测试含答案
《24.4 弧长和扇形面积》一、选择题1.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()A.40° B.45° C.60° D.80°2.如图,已知?ABCD的对角线BD=4cm,将?ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()A.4π cm B.3π cm C.2π cm D.π cm3.如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为()A.B.C.D.4.钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是()A.π B.π C.π D.π5.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A.B.C.D.π6.如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为()A.B.C.π+1 D.7.如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A.B.C.D.8.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A.B.C.D.二、填空题9.如图是李大妈跳舞用的扇子,这个扇形AOB的圆心角∠O=120°,半径OA=3,则弧AB的长度为______(结果保留π).。
《弧长及扇形面积》练习题(含答案)
ED6题CBAC 71()题B AC 72()题B ACE D 8题BAEC D10题BA《弧长及扇形面积》练习题1.如图是排水管的横截面,此管道的半径为54㎝,水面以上部分的弓形的弧长为30π㎝,则这段弓形弧所对的圆心角度数为 。
2.阴影部分是某广告标志,已知两弧所在圆的半径为20cm 和10cm,∠AOB=120°,则S 阴= .3.某种商标图案如图所示(阴影部分),已知菱形ABCD 的边长为4,∠A=60°,是以A 为圆心,AB 长为半径的弧,是以B 为圆心,BC 长为半径的弧,则该商标图案的面积为 。
4.如图,四边形OABC 为菱形,点B ,C 在以O 为圆心的上,若OA=3,∠1=∠2,则S 扇形OEF = 。
5.如图,⊙O 2与⊙O 3外切于点C,⊙O 1分别与⊙O 2、⊙O 3内切于A 、B,若⊙O 1的半径为6,⊙O 2、⊙O 3的半径为2,则图中阴影部分的周界长为 ,阴影部分的面积为 。
6.如图,△ABC 中,∠C=90°,AB=12㎝,∠ABC=60°,将△ABC 以点B 为中心顺时针旋转,使点C 旋转到AB 边上的点D 处,则AC 边扫过的图形(阴影部分) 的面积为 。
7.如图,Rt △ABC 中,∠C=90°,AC=3,BC=4,①若⊙C 与AB 相切,则图中阴影部分的面积为 。
②若⊙O 与三角形的三边都相切,则图中阴影部分的面积为 。
8.如图,Rt △ABC 中,∠C=90°,∠A=30°,BC=4,分别以A 、B 为圆心,AC 、BC 长为半径画弧交AB 于D 、E ,则阴影部分的面积为 。
9.如图,矩形ABCD 中,AB=2,BC=2 3 ,以BC 中点E 为圆心,作 切AD 于点H ,与AB 、CD交于M 、N ,则阴影部分的面积为 。
10.如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE ,则五个扇形的面积之和为 。
苏科新版九年级上册《2.7_弧长及扇形的面积》2024年同步练习卷+答案解析
苏科新版九年级上册《2.7弧长及扇形的面积》2024年同步练习卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若扇形的圆心角为,半径为6,则该扇形的弧长为()A.B.C.D.2.一个圆中有三个扇形甲、乙、丙,其中甲、乙所占总面积的百分比如图所示,那么扇形丙的圆心角是() A. B.C.D.3.如图,在中,,,以BC 为直径作半圆,交AB 于点D ,则阴影部分的面积是()A. B.C.D.24.如图,半圆O 的直径,将半圆O 绕点B 顺针旋转得到半圆,与AB 交于点P ,则图中阴影部分的面积为() A. B. C. D.5.如图,半径为10的扇形AOB 中,,C 为弧AB 上一点,,,垂足分别为D ,若图中阴影部分的面积为,则()A. B. C.D.6.如图,将半径为2cm的圆形纸片翻折,使得、恰好都经过圆心O,折痕为AB、BC,则阴影部分的面积为()A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。
7.在圆心角为的扇形AOB中,半径,则扇形OAB的面积为______.8.如图,的半径为2,点A,C在上,线段BD经过圆心O,,,,则图中阴影部分的面积为_______.9.如图,图1是由若干个相同的图形图组成的美丽图案的一部分,图2中,图形的相关数据:半径,则图2的周长为______结果保留10.如图,矩形ABCD的四个顶点分别在扇形OEF的半径和弧上,若,,,则AB的长为______.11.如图,半圆O中,直径,弦,长为,则由与AC,AD围成的阴影部分面积为______.12.如图,的半径为5,A、B是圆上任意两点,且,以AB为边作正方形点D、P在直线AB两侧若AB边绕点P旋转一周,则对角线BD边扫过的面积为______.三、解答题:本题共4小题,共32分。
解答应写出文字说明,证明过程或演算步骤。
13.本小题8分如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为,AB长为30cm,贴纸部分的宽BD为20cm,求贴纸部分的面积纸扇有两面,结果精确到14.本小题8分如图,已知在中,,,,半径为2的分别与AC、BC相切于点E、求证:AB是的切线;求的度数,写出图中阴影部分的面积.15.本小题8分如图,D是等边内的一点,将线段AD绕点A顺时针旋转得到线段AE和扇形EAD,连接CD、BE、若,求阴影部分的面积;结果保留根号和若,求的度数.16.本小题8分如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,,AD、BC的延长线相交于点求证:AD是半圆O的切线;连结CD,求证:答案和解析1.【答案】C【解析】解:该扇形的弧长故选:根据弧长公式计算.本题考查了弧长的计算:弧长公式:弧长为l,圆心角度数为n,圆的半径为2.【答案】B【解析】解:,故选:根据扇形统计图的意义可得,扇形丙的圆心角占的,计算即可得答案.本题考查认识平面图形,掌握扇形统计图的意义是正确解答的前提.3.【答案】D【解析】解:连接CD,是半圆的直径,,在中,,,是等腰直角三角形,,阴影部分的面积,故选:连接CD,根据圆周角定理得到,推出是等腰直角三角形,得到,根据三角形的面积公式即可得到结论.本题考查了扇形的面积的计算,等腰直角三角形的性质,正确的作出辅助线是解题的关键.4.【答案】A【解析】解:由已知可得,,,弓形PB的面积是:,阴影部分的面积是:,故选:根据题意和扇形面积计算公式、三角形的面积公式,可以计算出图中阴影部分的面积,本题得以解决.本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.5.【答案】B【解析】解:连接OC,,,,四边形CDOE是矩形,,在与中,,≌,图中阴影部分的面积=扇形OBC的面积,,,,≌,,,,故选:连接OC,易证得四边形CDOE是矩形,则≌,得到图中阴影部分的面积=扇形OBC的面积,利用扇形的面积公式即可求得,然后根据求得三角形的性质以及平行线的性质即可求得本题考查了扇形的面积,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC的面积等于阴影的面积是解题的关键.6.【答案】C【解析】解:作于点D,连接AO,BO,CO,如图所示:,,同理,,阴影部分的面积面积;故选:作于点D,连接AO,BO,CO,求出,得到,进而求得,再利用阴影部分的面积得出阴影部分的面积是面积的,即可得出结果.本题主要考查了翻折变换的性质、扇形面积以及圆的面积公式等知识;解题的关键是确定7.【答案】【解析】解:圆心角为的扇形AOB中,半径,扇形OAB的面积,故答案为:根据扇形的面积公式即可得到结论.别人看出来扇形的面积的计算,熟练掌握扇形的面积公式是解题的关键.8.【答案】【解析】【分析】本题考查了全等三角形的判定、解直角三角以及扇形的面积公式,解题的关键是找出本题属于基础题,难度不大,解决该题型题目时,根据拆补法将不规则的图形变成规则的图形,再套用规则图形的面积公式进行计算即可.通过解直角三角形可求出,,从而可求出,再通过证三角形全等找出,套入扇形的面积公式即可得出结论.【解答】解:在中,,,,,,同理,可得出:,在和中,有,≌故答案为9.【答案】【解析】解:由图1得:的长的长的长半径,则图2的周长为:,故答案为:先根据图1确定:图2的周长个的长,根据弧长公式可得结论.本题考查了弧长公式的计算,根据图形特点确定各弧之间的关系是本题的关键.10.【答案】2【解析】解:如图,连接OD,,,,,四边形ABCD是矩形,,,在中,,,,,在中,根据勾股定理,得,,解得,故答案为:连接OD,可得,根据已知可得,根据四边形ABCD是矩形,可得,,再根据含30度角的直角三角形可得,根据勾股定理即可求出OB的长,进而可得AB的长.本题考查了矩形的性质,含30度角的直角三角形,勾股定理,解决本题的关键是连接OD得到11.【答案】【解析】解:连接OC,OD,直径,,,,长为,阴影部分的面积为,故答案为:连接OC,OD,根据同底等高可知,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式来求解.本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.12.【答案】【解析】解:连接PD,过点P作与点E,PE交AB于点F,则BD边扫过的面积为以PD为外圆半径、PB为内圆半径的圆环面积,如图所示,,又为的弦,,,在中,易知,,,,,在中,,边扫过的面积为故答案为:连接PD,过点P作与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,利用垂径定理即可得出,进而可得出,再根据圆环的面积公式结合勾股定理即可得出BD边扫过的面积.本题考查了垂径定理、勾股定理、平行线的性质以及圆环的面积公式,结合AB边的旋转,找出BD边旋转过程中扫过区域的形状是关键.13.【答案】解:答:贴纸部分的面积为【解析】扇形面积公式可计算出两个扇形的面积,然后相减即可得.主要考查了扇环的面积求法.一般情况下是让大扇形的面积减去小扇形的面积求扇环面积.14.【答案】证明:连接OE、OD,过点O作,垂足为M,与AC,BC相切于点E、D,,,,,,,,,,,又,是的切线;,,,,、OB分别是、的角平分线,,,,,,,,图中阴影部分的面积为:【解析】根据已知分别与AC、BC相切于点E、D,想到连接OD,OE,可得,要证明AB是的切线,想到过点O作,垂足为M,只要求出即可,然后通过面积法进行计算即可解答;由得,,,,从而可得OA、OB分别是、的角平分线,即可求出的度数,最后利用的面积减去扇形的面积进行计算即可解答.本题考查了切线的判定与性质,勾股定理,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.15.【答案】解:,,是等边三角形,,;是等边三角形,,,线段AD绕点A顺时针旋转,得到线段AE,,,,,在和中,,≌,,,,为等边三角形,,【解析】利用扇形面积公式和三角形面积公式求得即可;由SAS证≌可得,证为等边三角形,则,继而得出答案.本题主要考查扇形面积的计算,旋转的性质,等边三角形的性质和全等三角形的判定与性质等知识;熟练掌握旋转的性质,证得三角形的全等是解题的关键.16.【答案】解:连结OD,BD,是的切线,,即,,,,,,,是半圆O的切线.由知,,,是半圆O的切线,,,是的直径,,,,,,【解析】连接OD,BD,根据圆周角定理得到,根据等腰三角形的性质得到,,根据等式的性质得到,根据切线的判定定理即可得到即可;由AD是半圆O的切线得到,于是得到,根据圆周角定理得到,等量代换得到,即可得到结论.本题考查了切线是性质,弧长的计算,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.。
小学数学扇形试题及答案
小学数学扇形试题及答案1、计算扇形弧长和扇形面积已知扇形半径为r,圆心角为θ(度)扇形弧长= (θ/360) × 2πr扇形面积= (θ/360) × πr²2、练习题一小明制作了一个扇形,半径为5 cm,圆心角为60度。
请计算这个扇形的弧长和面积。
解答:弧长= (60/360) × 2π × 5 = π × 5 = 15.71 cm面积= (60/360) × π × 5² = 0.28π × 25 = 4.36 cm²3、练习题二小红画了一个扇形,半径为8 cm,扇形面积为50.24 cm²。
请计算这个扇形的圆心角和弧长。
解答:扇形面积= (θ/360) × π × 8² = (θ/360) × 64π因为扇形面积为50.24 cm²,所以有:(θ/360) × 64π = 50.24(θ/360) × π = 0.784θ/360 = 0.784/πθ ≈ 0.249 × 360 ≈ 89.64度 (约等于89度)弧长= (89/360) × 2π × 8 ≈ 12.57 c m4、练习题三小华在一张纸上画了一个扇形,扇形面积为28.26 cm²,圆心角为60度。
请计算这个扇形的半径和弧长。
解答:扇形面积= (60/360) × π × r² = (1/6) × π × r²因为扇形面积为28.26 cm²,所以有:(1/6) × π × r² = 28.26r² = (28.26 × 6) / πr² ≈ 53.79r ≈ √53.79 ≈ 7.34 cm弧长= (60/360) × 2π × 7.34 ≈ 7.71 cm5、练习题四小明画了一个扇形,扇形弧长为12.56 cm,圆心角为45度。
圆的弧长与扇形面积练习题
圆的弧长与扇形面积练习题一、选择题1、已知扇形的圆心角为120°,半径为3cm,则扇形的面积是()A 3π cm²B 9π cm²C 6π cm²D 12π cm²2、若扇形的弧长是 16cm,面积是 56cm²,则它的半径是()A 7cmB 8cmC 7cm 或 8cmD 14cm3、一个扇形的半径为 8cm,弧长为16π/3 cm,则扇形的圆心角为()A 60°B 120°C 150°D 180°4、已知一个扇形的面积为12π,圆心角为 120°,则此扇形的半径为()A 6B 9C 12D 155、扇形的圆心角扩大到原来的 2 倍,半径缩小到原来的一半,此时扇形的面积是原来扇形面积的()A 2 倍B 4 倍C 1/2D 1/4二、填空题1、若扇形的半径为 6cm,圆心角为 60°,则扇形的弧长为______cm,面积为______cm²。
2、一个扇形的弧长是20π cm,面积是240π cm²,则扇形的圆心角是______度。
3、扇形的圆心角为 150°,弧长为20π cm,则扇形的半径为______cm,面积为______cm²。
4、已知扇形的半径为 3cm,面积为9π/2 cm²,则扇形的弧长为______cm,圆心角为______度。
5、若扇形的面积为3π,弧长为2π,则扇形的半径为______,圆心角为______度。
三、解答题1、已知扇形的圆心角为 120°,面积为300π,求扇形的半径和弧长。
2、一个扇形的弧长为10π,面积为25π,求扇形的圆心角和半径。
3、扇形的半径为 8,弧长为12π,求扇形的面积和圆心角。
4、已知扇形的面积为18π,圆心角为 60°,求扇形的弧长和半径。
5、扇形的弧长为20π,面积为240π,求扇形的半径和圆心角。
人教版九年级上册数学同步练习《弧长和扇形面积》(习题+答案)
24.4 弧长和扇形面积内容提要1.在半径为r 的圆中,n ︒的圆心角所对的弧长为l ,扇形面积为S ,则有(1)2360180n n rl r ππ=⋅=; (2)2213603602n n r S r lr ππ=⋅==.2.圆锥的侧面展开图是扇形,这个扇形的半径是圆锥的母线长,弧长是圆锥底面圆的周长.3.圆锥的全面积是侧面扇形面积与底面圆的面积之和. 24.4.1 弧长和扇形面积基础训练1.在半径为9cm 的圆中,60︒的圆心角所对的弧长为cm. 2.若一个扇形的弧长为43π,半径为6,则此扇形的面积为.3.已知扇形的圆心角为150︒,它所对的弧长为20πcm ,则扇形的半径为cm ,扇形的面积是2cm .4.已知扇形的弧长是2πcm ,半径为12cm ,则这个扇形的圆心角( ) A .60︒B .45︒C .30︒D .20︒5.如图,一块边长为10cm 的正方形木板ABCD 在水平桌面上绕点D 按顺时针方向旋转到'''A B C D 的位置时,顶点B 从开始到结束所经过的路径长为( )A .20cmB .202cmC .10πcmD .52πcm6.如图所示,扇形AOB 的圆心角为120︒,半径为2,则图中阴影部分的面积为( ) A .433πB .4233π-C .433π D .43π7.如图,正方形ABCD中,分别以B,D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,求树叶图案的周长与面积.8.如图,在O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,BC=cm.∠=︒,弦6OC,30ADB(1)求BC的长度;(2)求图中阴影部分的面积.24.4.2圆锥的侧面积和全面积基础训练1.已知圆锥的底面直径为4,母线长为6,则它的侧面积为,全面积是.2.已知圆锥的母线长是10cm,侧面展开图的面积是2π,则这个圆锥的底面半径是60cmcm.3.小明要用圆心角为120︒,半径是27cm的扇形纸片卷成一个圆锥形纸帽,做成后这个纸帽的底面直径为cm(不计接缝部分,材料不剩余).4.若一个圆锥的底面积为4πcm ,高为42cm ,则该圆锥的侧面展开图的圆心角的度数是( ) A .40︒B .80︒C .120︒D .150︒5.如果一个圆锥的主观图是正三角形,则其侧面展开图的圆心角为( ) A .120︒B .156︒C .180︒D .208︒6.在ABC ∆中,90C ∠=︒,12AC =,5BC =,现在以AC 为轴旋转一周得到一个圆锥,则该圆锥的表面积为( ) A .130πB .90πC .25πD .65π7.如果圆锥的底面圆的半径是8,母线的长是15,求这个圆锥侧面展开图的扇形的圆心角的度数.8.如图,从直径为4cm 的圆形纸片中,剪出一个圆心角为90︒的扇形OAB ,且点O ,A ,B 在圆周上,把它围成一个圆锥,求圆锥的底面圆的半径.能力提高1.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,由凸轮的周长等于.2.如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积( ) A .21712m π B .2176m π C .2254m π D .27712m π3.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm.母线()OE OF 长为10cm ,在母线OF 上的点A 处有一块爆米花残渣,且2FA =cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点,则此蚂蚁爬行的最短距离为cm.4.如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60︒的扇形ABC .那么剪下的扇形ABC (阴影部分)的面积为;用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r =.5.如图,四边形ABCD 是菱形,60A ∠=︒,2AB =,扇形BEF 的半径为2,圆心角为60︒,则图中阴影部分的面积是( ) A .233π B .233πC .3πD .3π6.若圆锥的侧面展开图为半圆,则该圆锥的母线l 与底面半径r 的关系是( ) A .2l r =B .3l r =C .l r =D .32l r =7.如图,矩形ABCD 中,4AB =,3BC =,边CD 在直线l 上,将矩形ABCD 沿直线l 作无滑动翻滚,当点A第一次翻滚到点1A的位置时,(1)画出点A经过的路线;(2)求出点A经过的路线长为多少?8.如图,P,C是以AB为直径的半圆O上的两点,10AB=,CP的长为52π,连接PB交AC于点M,线段MC与弦BC的长度相等吗?为什么?9.如图,在Rt ABC∆中,90C∠=︒,4AC=,2BC=,分别以AC,BC为直径画半圆,求图中阴影部分的面积(结果保留π).10.如图,已知O 的半径为4,CD 是O 的直径,AC 为O 的弦,B 为CD 的延长线上的一点,30ABC ∠=︒,且AB AC =. (1)求证:AB 为O 的切线; (2)求弦AC 的长; (3)求图中阴影部分的面积.内容提要1.如图,正三角形ABC 的边长为1cm ,将线段AC 绕点A 顺时针旋转120︒至1AP ,形成扇形1D ;将线段1BP 绕点B 顺时针旋转120︒至2BP ,形成扇形2D ;将线段2CP 绕点C 顺时针旋转120︒至3CP ,形成扇形3D ;将线段3AP 绕点A 顺时针旋转120︒至4AP ,形成扇形1D ……设n l 为扇形n D 的弧长()1,2,3,n =,回答下列问题: (1)按照要求填表:n1 2 3 4 n l(2n n D (设地球赤道半径为6400km )?2.在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面,他们首先设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切.)(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若要行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.数学应用应用1当四边形ABCD的四个内角满足时,则过A,B,C,D四点能作一个圆.应用2如图,点M,N,C在O上,点A在O外,点B在O内,则A∠∠,B∠,MCN 三个角的大小关系是.应用3已知四边形ABCD,过顶点A,B,C三点作O.①若180∠+∠=︒,则点D在O.B D②若180∠+∠>︒,则点D在O.B D③若180B D∠+∠<︒,则点D在O.整理归纳1.在学习本章内容时,注意结合课本知识和生活周围的一些实例,以加深相关概念的认识,如:圆、圆周角、三角形的内心和外心、圆锥侧面展开图等.2.圆的轴对称性和旋转对称性是理解圆中各类性质与定理的基础,要学会用对称性来分析和解决问题.3.在解决与本章内容有关的问题时,转化思想有着广泛的应用.如:可以将判定点和圆、直线和圆的位置关系等转化为实数大小的比较问题;利用圆心角、弦、弧的关系将角、线段、弧线之间的等量关系进行转化;将不规则图形的计算转化成规则图形的计算等.4.学习中注意前后知识之间的联系,及与其他章节知识的联系,形成综合运用知识的能力.如:利用圆周角和圆心角的关系,寻找(或构造)直角三角形,利用直角三角形的相关知识解决问题;根据圆锥的侧面展开图是扇形的特点,利用扇形的相关计算公式解决问题.5.注意分类讨论,避免答案不全.如:探索圆周角和圆心角的关系时分三种情况;两圆相切时,有内切和外切两种情形等.数学实践圆在凸多边形上无滑动滚动时圆心运动轨迹的研究广州一中实验学校初三实验2班梁家瑜指导老师罗小颖在一次测验中,有下面一道题:半径为R的圆在边长为a的正三角形的边上无滑动滚动一周,求圆心所经过的路程长为多少?当时,我忽略了圆在三角形的角上运动时圆心运动轨迹的特点,所以没有做对,该题答案是圆心运动所经过的路程的长等于等边三角形的周长与圆的周长的和.于是我猜想,圆在一般的三角形中无滑动滚动有没有特殊规律呢?为此我对圆在三角形上无滑动滚动时圆心的运动轨迹作了探讨.1.圆在三角形的边上无滑动滚动时,圆心轨迹如图1.圆心所经过的路程的长为IH ID DE EF FG GH +++++,其中四边形IACH ,DEBA ,FBCG 为矩形,所以IH CA =,DE AB =,GF BC =,3609090180IAD CAB CAB ∠=︒-︒-︒-∠=︒-∠, 3609090180HCG ACB ACB ∠=︒-︒-︒-∠=︒-∠,3609090180FBE ABC ABC ∠=︒-︒-︒-∠=︒-∠.设圆的半径为R ,根据弧长定理得1802360BAC ID R π︒-∠=⋅︒,1802360ABC EF R π︒-∠=⋅︒,1802360ACBHG R π︒-∠=⋅︒.所以()2180180180360RID EF HG BAC ACB ABC π++=⋅︒-∠+︒-∠+︒-∠︒. 因为180BAC ABC ACB ∠+∠+∠=︒, 所以()21801801801802360RID EF HG R ππ++=⋅︒+︒+︒-︒=︒. 由此可以发现,三段弧的长度之和恰好等于圆的周长.所以圆在三角形ABC 边上无滑动滚动时,圆心的运动轨迹的长度为AB AC BC C +++圆.因为AB BC CA C ++=三角形,设圆心轨迹长度为S ,则有S C C =+圆 三角形. 因此圆在一般三角形上的无滑动滚动时,圆心所经过的路程的长也符合圆在等边三角形边上无滑动滚动的规律,既然如此,那么圆在一般四边形中无滑动滚动又有什么规律呢?2.圆在四边形的边上无滑动滚动时,圆心轨迹如图2.圆心所经过的路程的长为EF FG GH HI IJ JK KL LE +++++++.3609090180KDJ CDA CDA ∠=︒-︒-︒-∠=︒-∠, 3609090180LAE DAB DAB ∠=︒-︒-︒-∠=︒-∠, 3609090180FBG ABC ABC ∠=︒-︒-︒-∠=︒-∠, 3609090180ICH BCD BCD ∠=︒-︒-︒-∠=︒-∠.设圆的半径为R ,根据弧长定理得1802360ABC FG R π︒-∠=⋅︒,1802360BCDHI R π︒-∠=⋅︒,1802360CDA JK R π︒-∠=⋅︒,1802360DABLE R π︒-∠=⋅︒,所以FG HI JK LE +++()2180180180180360RABC BCD CDA DAB π=⋅︒-∠+︒-∠+︒-∠+︒-∠︒. 而360ABC BCD CDA DAB ∠+∠+∠+∠=︒, 所以()27203602360RFG HI JK LE R ππ+++=⋅︒-︒=︒. 由此可发现,四段弧的长度之和恰好也等于圆的周长,而AB BC CD DA +++为四边形ABCD 的周长.设圆心运动的距离为S ,则有S C C =+圆 四边形. 3.圆在凸多边形上无滑动滚动的研究既然三角形、四边形圆心运动路程分别为S C C =+圆三角形,S C C =+圆四边形,那么n 边形有什么规律呢?观察前面,不难发现,圆心作直线运动时圆心所走的线段与多边形的边长是平行且相等的,是矩形的对边,由此我们可以得到圆心轨迹中的直的线段之和等于多边形的周长,而圆心所走的总长为线段总长的弧长总长之和.设现有一个n 边形,且这个n 边形的内角为1∠,2∠,…,n ∠.那么n 段弧分别为18012360R π︒-∠⋅︒,18022360R π︒-∠⋅︒,…,1802360n R π︒-∠⋅︒. 设圆弧总长为L ,相加得()218018018012360R L n π=⋅︒+︒++︒-∠-∠--∠︒因为n 边形内角和为()()18023n n ︒⋅-≥, 所以代入得()21801802360R L n n π=⋅︒⋅-︒⋅-⎡⎤⎣⎦︒ ()21802360R n n π=⋅︒⋅-+⎡⎤⎣⎦︒ ()218022360R R ππ=⋅︒⋅=︒. 因此弧长之和为2R π,即圆的周长.设圆心运动距离为S ,则有S =弧长之和+多边形周长,即S C C =+圆多边形.因此,当圆在凸多边形边上无滑动滚动时,圆心运动所经过的路程的长度等于圆的周长与凸多边形的周长之和.学业评价24.4 参考答案:24.4.1 弧长和扇形面积基础训练1.3π 2.4π 3.24 240π 4.C 5.D 6.A 7.周长:a π,面积:2212a a π- 8.(1)43cm π (2)2(433)cm π- 24.4.2 圆锥的侧面积和全面积基础训练1.12π 16π 2.6 3.18 4.C 5.C 6.B 7.192︒ 8.2 能力提高1.π 2.D 3.241 4.2π 3 5.B 6.A 7.(1)如图 (2)6π8.MC BC =(提示:90C ∠=︒,45PBC ∠=︒) 9.542π- 10.(1)图 (2)43 (3)8433π+拓展探究 1.(1)123l π=,243l π=,363l π=,483l π=. (2)6400640000000km cm =,由226400000003n ππ=⨯,91.9210n =⨯. 2.(1)因为扇形的弧长902168360ππ︒=⨯⨯=︒,圆锥底面周长2r π=,所以圆的半径为4cm .由于所给正方形纸片的对角线长为2cm ,而制作这样的圆锥实际需要正方形纸片的对角线长为1642(202)cm ++=+,2042162+>(2)方案二可行.设圆锥底面圆的半径为r cm ,圆锥的母线长为R cm ,则(12)162r R ++=①,224R r ππ=②.由②得4R r =,代入①得(5r +=,所以r ==,所以R = 数学应用应用1 180A C ∠+∠=︒或180B D ∠+∠=︒ 应用2 A MCN B ∠<∠<∠ 应用3 ①上②内 ③外。
苏科版九年级数学上册同步练习:2.7 弧长和扇形的面积(含答案)
2.7 弧长及扇形的面积1,正方形ABCD 内接于⊙O ,AB =2 2,则AB ︵的长是 ( ) A .π B.32π C .2π D.12π图1 图22.如图2,从一块直径为2 m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为 ( )A .π2 m 2B .32π m 2 C .πm 2 D .2π m 23如图3,在△ABC 中,AB =2,BC =4,∠ABC =30°,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( )A .2-π3B .2-π6C .4-π3D .4-π6图3 图44.如图4,分别以等边三角形ABC 的三个顶点为圆心,以其边长为半径画弧,得到的封闭图形是莱洛三角形,若AB =2,则莱洛三角形的面积(即阴影部分面积)为( )A .π+3B .π- 3C .2π-3D .2π-2 35.如图5,在边长为1的小正方形组成的网格中.若将△ABC (点A ,B ,C 均在格点处)绕着点A 逆时针旋转得到△AB ′C ′,则点B 经过的路线长为( )图5A .A.π B.π2C .7πD .6π 二、填空题6.一个扇形的弧长是65π cm ,半径是6 cm ,则此扇形的圆心角是________度.7.若扇形的半径为3 cm ,弧长为2π cm ,则该扇形的面积为________. 8.如图6,图①是由若干个相同的图形(图②)组成的美丽图案的一部分,图②中,半径OA =2 cm ,∠AOB =120°,则图②的周长为_______ cm(结果保留π).图6 图79.如图7,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 长为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是________(结果保留π).10.如图8,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC =60°,∠BCO =90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′的位置,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为________ cm 2.(结果保留π)图8三、解答题11.如图9,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连接BC .(1)求证:AE =ED ;(2)若AB =10,∠CBD =36°,求AC ︵的长.图912. 如图10,点B ,C ,D 在⊙O 上,四边形OCBD 是平行四边形.(1)求证:BC ︵=BD ︵;(2)若⊙O 的半径为2,求BD ︵的长.图1013.如图11,已知AB 是⊙O 的直径,点C ,D 在⊙O 上, ∠D =60°且AB =6,过点O 作OE ⊥AC ,垂足为E .(1)求OE 的长;(2)若OE 的延长线交⊙O 于点F ,求弦AF ,AC 和CF ︵围成的图形(阴影部分)的面积.图1114.如图12,在△ABC 中,AB =AC ,点E 在AC 上,经过A ,B ,E 三点的⊙O 交BC 于点D ,且BD ︵=DE ︵.(1)求证:AB 为⊙O 的直径;(2)若AB =8,∠BAC =45°,求阴影部分的面积.15 方程思想如图13所示,在△ABC中,∠C=90°,AC+BC=9,O是斜边AB上一点,以点O为圆心,2为半径的圆分别与AC,BC相切于点D,E.(1)求AC,BC的长;(2)若AC=3,连接BD,求图中阴影部分的面积(π取3.14).图13答案1.[解析]A 连接OA ,OB. ∵正方形ABCD 内接于⊙O , ∴AB =BC =DC =AD , ∴AB ︵=BC ︵=DC ︵=AD ︵, ∴∠AOB =14×360°=90°.在Rt △AOB 中,由勾股定理,得2AO 2=(2 2)2, 解得AO =2,∴AB ︵的长为90×π×2180=π.故选A .2.[解析]A 连接AC.∵从一块直径为2 m 的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC =90°.∴AC 为⊙O 的直径,即AC =2 m .∵AB =BC ,AB2+BC 2=22,∴AB =BC =2m ,∴阴影部分的面积是90×π×(2)2360=12π(m 2).故选A .3.[解析]A 如图,过点A 作AE ⊥BC 于点E. ∵AB =2,∠ABC =30°,∴AE =12AB =1.又∵BC =4,∴阴影部分的面积是12×4×1-30×π×22360=2-13π.故选A .4.[解析]D 过点A 作AD ⊥BC 于点D.∵△ABC 是等边三角形,∴AB =AC =BC =2,∠BAC =∠ABC =∠ACB =60°.∵AD ⊥BC ,∴BD =CD =1,由勾股定理,得AD =3,∴△ABC 的面积为12BC ·AD =12×2×3=3,S 扇形BAC =60×π×22360=23π,∴莱洛三角形的面积S =3×23×π-2×3=2π-2 3.故选D .5.[解析]A 根据图示知∠BAB ′=45°,∴点B 经过的路线长为45×π×4180=π.故选A .6.[答案] 36[解析] 设扇形的圆心角为n.由题意,得65π=n ×π×6180,解得n =36°.7.[答案] 3πcm 2[解析] 根据扇形面积公式,知S =12lR =12×2π×3=3π(cm 2).8.[答案]8π3[解析] 由图得AO ︵的长+OB ︵的长=AB ︵的长.∵半径OA =2 cm ,∠AOB =120°,则图②的周长为120×π×2180×2=8π3cm .9.[答案] 8-2π[解析] S 阴=S △ABD -S 扇形BAE =12×4×4-45×π×42360=8-2π.10.[答案]14π[解析]∵∠BOC =60°,△B ′OC ′是△BOC 绕圆心O 逆时针旋转得到的, ∴∠B ′OC ′=60°,△BCO ≌△B ′C ′O ,∴∠B ′OC =60°,∠C ′B ′O =30°,∴∠B ′OB =120°. ∵AB =2 cm ,∴OB =OB ′=1 cm ,OC ′=OC =12cm ,∴B ′C ′=32, ∴S 扇形B ′OB =120×π×12360=13π,S 扇形C ′OC =120×π×14360=π12, S 阴影=S 扇形B ′OB +S △B ′C ′O -S △BCO -S 扇形C ′OC =S 扇形B ′OB -S 扇形C ′OC =13π-π12=14π.11.解:(1)证明:∵AB 是⊙O 的直径, ∴∠ADB =90°. ∵OC ∥BD ,∴∠AEO =∠ADB =90°, 即OC ⊥AD ,∴AE =ED. (2)∵AB =10,∴AO =5. ∵OC ⊥AD ,∴AC ︵=DC ︵,∴∠ABC =∠CBD =36°,∴∠AOC =2∠ABC =2×36°=72°, ∴AC ︵的长为72π×5180=2π.12.解:(1)证明:如图,连接OB.∵四边形OCBD 是平行四边形, ∴OC =BD ,OD =BC , 而OC =OD , ∴BD =BC , ∴BC ︵=BD ︵.(2)由(1)知OD =OB =OC =BD =BC , ∴△OBD 和△OBC 均为等边三角形, ∴∠BOC =∠BOD =60°, ∴BD ︵的长为60π×2180=23π.13.解:(1)∵∠D =60°,∴∠B =60°.∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC =30°. 又∵AB =6,∴BC =3.∵OE ⊥AC ,∴OE ∥BC.又∵O 是AB 的中点,∴OE 是△ABC 的中位线,∴OE =12BC =32.(2)连接OC ,则易得△COE ≌△AFE ,故阴影部分的面积=扇形FOC 的面积.∵易知∠EOC =60°,∴S 扇形FOC =60π×32360=32π,∴可得阴影部分的面积为32π.14.解:(1)证明:连接AD. ∵BD ︵=DE ︵,∴∠BAD =∠CAD. 又∵AB =AC , ∴AD ⊥BC ,∴∠ADB =90°, ∴AB 为⊙O 的直径. (2)∵AB 为⊙O 的直径, ∴点O 在AB 上,连接OE ,由圆周角定理,得∠BOE =2∠BAC =90°, ∴∠AOE =90°,∴阴影部分的面积为12×4×4+90π×42360=8+4π.15 解:(1)如图,连接OD ,OC ,OE.∵D ,E 为⊙O 的切点,∴OD ⊥AC ,OE ⊥BC ,OD =OE =2. ∵S △ABC =S △AOC +S △BOC ,AC +BC =9, ∴12AC ·BC =12AC ·OD +12BC ·OE , ∴12AC ×2+12BC ×2=AC +BC =9, 即AC ·BC =18. 又∵AC +BC =9,∴AC ,BC 的长是方程x 2-9x +18=0的两个根, 解得x =3或x =6.∴AC =3,BC =6或AC =6,BC =3.(2)如图,连接DE ,则S 阴影=S △BDE +S 扇形ODE -S △ODE .∵AC=3,∴BC=6.∵OD⊥AC,OE⊥BC,∠ACB=90°,OD=OE,∴四边形OECD是正方形,∴EC=OE=2,∴BE=BC-EC=6-2=4,∴S△BDE =12BE·DC=12×4×2=4,S扇形ODE=14π×22=π,S△ODE=12OD·OE=2,∴S阴影=4+π-2=2+π≈5.14.。
苏科版九年级上册 2.7 弧长及扇形的面积 同步练习(含答案)
初中数学苏科版九年级上册2.7弧长及扇形的面积同步测试一、单选题1.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. B. C. D.2.若扇形的弧长是,半径是18,则该扇形的圆心角是()A. B. C. D.3.圆心角为,弧长为的扇形半径为()A. B. C. D.4.如图,AB为⊙O的直径,AB=30,点C在⊙O上,⊙A=24°,则的长为()A.9πB.10πC.11πD.12π5.如图1,一只蚂蚁从点O出发,以1厘米/秒速度沿着扇形AOB的边缘爬行一周。
设爬行时间为x秒,蚂蚁到点O的距离为y厘米,y关于x的函数图像如图2所示,则扇形的面积为()A.3B.6C.πD.π6.如图,OO是⊙ABC的外接圆,BC=3,⊙BAC=30°,则劣弧的长等于()A. B.π C. D.7.如图,在扇形中,为弦,,,,则的长为()A. B. C. D.8.如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊙AB于点M,PN⊙CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()A. B. C. D.9.如图,半径为2的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于()A.4B.6C.2πD.π+ 410.如图,若弧AB半径PA为18,圆心角为120°,半径为2的⊙,从弧AB的一个端点A (切点)开始先在外侧滚动到另一个端点B(切点),再旋转到内侧继续滚动,最后转回到初始位置,⊙自转的周数是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.4弧长和扇形面积知识点1.在半径为R 的圆中,1°的圆心角所对的弧长是____________,n °的圆心角所对的弧长是______________.2.在半径为R 的圆中,1°的圆心角所对的扇形面积是____________,n °的圆心角所对的扇形面积S 扇形=______________.3.半径为R ,弧长为l 的扇形面积S 扇形=________. 一、选择题1.(2013?潜江)如果一个扇形的弧长是34π,半径是6,那么此扇形的圆心角为() A .︒40B .︒45C .︒60D .︒802.(2013?南通)如图,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为() A .4πcm B .3πcmC.2πcm D .πcm3.(2013?宁夏)如图,以等腰直角△ABC 两锐角顶点A 、B 为圆心作等圆,⊙A 与⊙B 恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为( ) A.4πB.2πC.22πD.2π4.(2013?资阳)钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是() A .12πB .14πC. 18πD .π第2题ABCD O第3题 C ′B ′C BA第5题第8题 5.(2013?荆州)如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB 'C ',点B 经过的路径为弧BB ',若角∠BAC =60°,AC =1,则图中阴影部分的面积是()A .2π B .3π C .4πD .π 6.(2013?恩施州)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD ,将正方形ABCD 沿x 轴的正方向无滑动的在x 轴上滚动,当点A 离开原点后第一次落在x 轴上时,点A 运动的路径线与x 轴围成的面积为( ) A.122π+B.12π+ C.1π+ D.12π+7.(2013?德州)如图,扇形AOB 的半径为1,∠AOB =90°,以AB 为直径画半圆.则图中阴影部分的面积为()A .14πB .π12-C .12D .1142π+ 8.(2013?襄阳)如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E ,B 、E 是半圆弧的三等分点,弧BE 的长为π,则图中阴影部分的面积为( ) A.9πB.39πC.33322π- D.33223π-二、填空题9.(2013?茂名)如图是李大妈跳舞用的扇子,这个扇形AOB 的圆心角120O ∠=o ,半径OA =3,则弧.AB ..的长度为(结果保留π). 10.(2013?遂宁)如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 逆时针旋转到△A ′BC ′的位置,且点A ′、C ′仍落在格点上,则图中阴影部分的面积约是___________.(π≈3.14,结果精确到0.1)O A B第7题 第6题第10题第12题第11题11.(2013?玉林)如图,实线部分是半径为15m 的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长是 _______ m . 12.(2013?眉山)如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E 。
若∠A =60°,BC =4,则图中阴影部分的面积为____________。
(结果保留π)13.(3分)(2013?苏州)如图,AB 切⊙O 于点B ,OA =2,∠OAB =30°,弦BC ∥OA ,劣弧的弧长为 _____ .(结果保留π)14.(2013?青岛)如图,AB 是圆0直径,弦AC =2,∠ABC =30°,则图中阴影部分的面积是_____________15.(2013宜宾)如图,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中弧CD 、弧DE 、弧EF 的圆心依次是A 、B 、C ,如果AB =1,那么曲线CDEF 的长是______________.16.(2013?乐山)如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为 _________ .17.(2013?遵义)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,E 为BC 边上的一点,以A 为圆心,AE 为半径的圆弧交AB 于点D ,交AC 的延长于点F ,若图中两个阴影部分的面积相等,则AF 的长为____________(结果保留根号).18.(2013?宿迁)如图,AB 是半圆O 的直径,且8AB =,点C 为半圆上的一点.将此半圆沿BC 所在的直线折叠,若圆弧BC 恰好过圆心O ,则图中阴影部分的面积是_______.(结果保留π) 三、解答题19.如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°. (1)求∠ABC 的度数; (2)求证:AE 是⊙O 的切线; (3)当BC =4时,求劣弧AC 的长.20.¼13,ABCD AB AD BC E MPNAD ==如图,在矩形中,,以的中点为圆心的与相切于点 第14题 第13题第16题 CA BO 第18题 第15题 第17题第19题.P ,求图中阴影部分的面积21.如图,在⊙O 中,弦BC 垂直于半径OA ,垂足为E ,D 是优弧BC 上一点,连接BD ,AD ,OC ,∠ADB =30°. (1)求∠AOC 的度数;(2)若弦BC =6cm ,求图中阴影部分的面积.22.如图,在正方形ABCD 中,AB =4,O 为对角线BD 的中点,分别以OB ,OD 为直(1)求⊙O 1的半径; (2)求图中阴影部分的面积.23.如图,在平面直角坐标系中,以A (5,1)为圆心,以2个单位长度为半径的⊙A 交x 轴于点B ,C .解答下列问题:(1)将⊙A 向左平移_______个单位长度与y 轴首次相切,得到⊙A ′.此时点A ′的坐标为__________,阴影部分的面积S =__________; (2)求BC 的长.第20题第21题第22题 第23题参考答案知识点 1.180R π180n R π2.2360R π2360n R π3.12lR一、选择题 1.A 2.C 3.B解:∵AC =2,△ABC 是等腰直角三角形, ∴AB =2,∵⊙A 与⊙B 恰好外切,且⊙A 与⊙B 是等圆, ∴两个扇形(即阴影部分)的面积之和=+==πR 2=.4.A5.A6.C 解点A 运动的路径线与x 轴围成的面积=S 1+S 2+S 3+2a =+++2×(×1×1)=π+1.7.C 8.D解:连接BD ,BE ,BO ,EO , ∵B ,E 是半圆弧的三等分点, ∴∠EOA =∠EOB =∠BOD =60°, ∴∠BAC =30°, ∵弧BE 的长为π,第6题第8题∴=π,解得:R=2,∴AB=ADcos30°=2,∴BC =AB =,∴S△ABC =×BC×AC =××3=,∵△BOE和△ABE同底等高,∴△BOE 和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=﹣=﹣.二、填空题9.2π10.7.2解:由题意可得,AB=BB'==,∠ABB'=90°,S'==,S△BB'C'=BC'×B'C'=3,扇形BAB则S阴影=S扇形BAB'﹣S△BB'C'=﹣3≈7.2.11.40π解:如图,连接O1O2,CD,CO2,∵O1O2=C02=CO1=15cm,∴∠C02O1=60°,∴∠C02D=120°,第11题则圆O,O的圆心角为360°﹣120°=240°,则游泳池的周长为=2×=2×=40π(m).故答案为:40π.12.4π3113.π3解:连接OB,OC,∵AB 为圆O 的切线, ∴∠ABO =90°,在Rt △ABO 中,OA =2,∠OAB =30°, ∴OB =1,∠AOB =60°, ∵BC ∥OA ,∴∠OBC =∠AOB =60°, 又OB =OC ,∴△BOC 为等边三角形, ∴∠BOC =60°, 则劣弧长为=π.14.433π-15.4π解:弧CD 的长是=, 弧DE 的长是:=,弧EF 的长是:=2π, 则曲线CDEF 的长是:++2π=4π.故答案是:4π. 16.2-4π 解:由题意得,阴影部分面积=2(S 扇形AOB ﹣S △A 0B )=2(﹣×2×2)=2π﹣4.故答案为:2π﹣4. 17.解:∵图中两个阴影部分的面积相等, ∴S 扇形ADF =S △ABC ,即:=×AC ×BC ,又∵AC =BC =1, ∴AF 2=,第13题第16题∴AF =.故答案为.18.解:过点O作OD⊥BC于点D ,交于点E,连接OC,则点E 是的中点,由折叠的性质可得点O 为的中点,∴S弓形BO=S弓形CO,在Rt△BOD中,OD=DE=R=2,OB=R=4,∴∠OBD=30°,∴∠AOC=60°,∴S阴影=S扇形AOC==.故答案为:.第18题三、解答题19.解:(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°(2)∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∵OA为半径,∴AE是⊙O的切线.(3)连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,20.解:连接PE,∵四边形ABCD是矩形,∵点E 是BC 的中点, ∵AD 切⊙E 于点P ,∴PE ⊥AD . ∵AB ⊥AD ,∴AB ∥PE ,∵AP ∥BE ,∠A =90°,∴四边形ABEP 为矩形, ∴PE =AB =1,∴ME =1. 同理可得,∠CEN =30°,∴∠MEN =180°-∠BEM -∠CEN =180°-30°-30°=120°.221201=.3603603n R S πππ⨯⨯∴==阴21.解:(1)连接OB ,∠AOB =2∠ADB =2×30°=60°, ∴∠AOC =∠AOB =60°.(2)11,6 3.22OE BC BE BC ⊥∴==⨯=Q 在Rt △BOE 中,∠OBE +∠AOB =90°, ∴∠OBE =90°-∠AOB =90°-60°=30°. 22.解:490ABCD AB=AD=A=∠︒(1)在正方形中,,, 23.解:(1)3 (2,1) 6第21题。