最新四年级数学-巧数图形.docx
四年级奥数巧数长方形的个数.doc
第 4 讲巧数长(正)方形的个数数图形时要有次序、有条理,才能不遗漏、不重复,一般步骤应是:仔细观察,发现规律,应用规律。
方形是用“点”或者“ ”来数的,而正方形是用“ ”来数的。
数长方形的公式:长边上的线段和×宽边上的线段和数正方形的公式:1、一个被划分成m× n 的小正方形的方形中共可以数出的正方形的个数是:m× n+( m-1)×(n-1 )+( m-2)×( n-2 )+⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+1×【 n- ( m-1)】(其中m<n)2 、当m=n ,即一个划分成n× n=n2 个小正方形的正方形中,共可以数出正方形的个数是:n2+( n-1 ) 2 +⋯⋯⋯⋯⋯⋯⋯⋯+22+ 12典型例题:1、长方形的构成必须有长和宽,下图中有许多长方形,你能数出它们有多少个分析与解答 :因为长方形的构成与长的线段数有关,也与宽的线段数有关,所以数长方形的个数必须要看长与宽两个因素。
上图上长有 6 条线段,即 3+2+1=6(个)宽边上有 3 条线段,即2+1=3(个)因此,根据数长方形公式:6×3=18(个)答:上图中共有 18 个长方形。
2、下图中共有多少个长方形分析与解答:这道题比例 1 横竖都多了一条线,那么长方形的个数明显增多了,利用公式仍然要数出长边上的线段数和宽边上的线段数即长边上的线段和: 4+3+2+1=10 个宽边上的线段和:3+2+1=6个因此根据数长方形公式:10×6=60 个答:上图中共有60 个长方形。
3、下图中共有多少个正方形分析与解答:我们先来数一数:只含一个正方形的有 9 个(即 3×3=9);含有 4 个正方形的有 4 个(即2×2=4);含有 9 个正方形的有 1 个。
通过刚才的数,我们发现图中正方形的个数为 1×1+2× 2+3× 3=1+4+9=14个,以后我们碰到类似的题目可以用这种方法数出正方形的个数。
四年级数学巧数图形
大工程师:售票员需要准备几种车票 ?
钟楼
易初莲 唐兴
花
路
学校
第36页,共36页。
回顾探究的经历
数线段和 角的个数
先数单一的线段 和角的个数
再数“二合一”线段 和角的个数,然后数 “三合一”线段和角 的个数……,最后个
数相加。
解决了车票设 计问题
数三角形的 个数
数长方形的 个数
第图形各有多少三角形?
12345
5+4+3+2+1= 15 个 6+5+4+3+2+1= 21个
线段总数=端点数× (端点数-1) ÷2同样适用于数角的个数 角总数=基本射线数×(基本射线数-1)÷2
第36页,共36页。
上述两图角总数也可这样计算: 6 ×(6-1) ÷2=15 7×(7-1) ÷2=21
好了吗?
第36页,共36页。
第36页,共36页。
为了让各位候选者们顺利通关 ,候选者们要进入我们的学堂 统一学习,毕业后方能进入我
们的大闯关。
第36页,共36页。
第36页,共36页。
见习工程师:
数一数,下图中有多少个角?
1
11
2
3
4
2
4+3+2+1= 10 个
第36页,共36页。
数线段
35142
第36页,共36页。
闯关三: 数一数,图中有多少个长方形? 15 6
总共15+6-1= 20个 (6+5+4+2+1)× (3+2+1)= 126个
第36页,共36页。
第一讲巧数图形
第一讲巧数图形小朋友,我数学上学了四形,你得他的特点?你是不是做下面的种:中共有()个平行四形属于我奥数里的一个:巧数形,你能迅速的数出来?有没有什么巧妙的法呢?在我一同看一下吧。
一、数段例1数出右中共有多少条段。
方法一:找律数段。
共有3+2+1=6(条)。
方法二:分数段。
共有3+2+1=6(条)。
例2.数出右侧中共有多少条段?剖析:段有一个重要特点:段都是笔直的.因此我在数的候,必然幅分红四个部分,每一部分分采用以段左端点分数的方法,尔后把四部分算得果加起来.第一部分从A到E共有4+3+2+1=10条段.第二部分从G到J共有4+3+2+1=10条段.第三部分是FG一条段.第四部分是JK一条段.10+10+1+1=22(条)例3.一条段上共有10个点,以10个点端点的不相同段共有多少条?剖析:一条段上有10个点,那么我先把段画出来因此,共有段:9+8+⋯+3+2+1=(9+1)×9÷2=45(条):1、找律数段:一般地,若是段上有几个点(其中n是大于或等于2的自然数),那么以n个点端点的段共有:(n-1)+(n-2)+⋯+3+2+1=n×(n-1)÷2;2、分数段:以下形中各有多少条段?(3)二、数角例4.右侧形中有几个角?剖析方法和数段相同()个角()个角三、数三角形例5.数出下面中共有多少个三角形?方法一数三角形个数的方法与数段的方法差不多.方法二我能够,能够抓住底BC来考,底BC中所包含的每一条段都恰巧一个三角形.底左端点是B的三角形共有△BDA、△BEA、△BCA三个.底左端点是D的三角形共有△DEA、△DCA两个.底左端点是E的三角形只有△ECA一个.因此一共有三角形:3+2+1=6(个).方法三我们把图中△ABC、△ACD、△ADE看作基本三角形:由1个基本三角形组成的三角形有△ABC、△ACD、△ADE;由2个基本三角形组成的三角形有△ABD、△ACE;由3个基本三角形组成的三角形有△ABE。
北师大四年级数学巧数图形
数图形第一关下图中有多少条线段?A B C D E分析我们把图中的线段AB、BC、CD、DE看作是基本线段,那么:由1条基本线段构成的线段有________________共______条;由2条基本线段构成的线段有_________________共______ 条;由3条基本线段构成的线段有_________________共_______条;由4条基本线段构成的线段有_________________共_______条。
另外,我们还可以从线段的两个端点出发去数:以A为左端点的线段有________________共______条;以B为左端点的线段有________________共______条;以C为左端点的线段有________________共______条;以D为左端点的线段有________________共______条;解_______________________ 所以图中有______条线段。
拓展:上图的线段条数有______________________________条;第二关下面图形中有几个角?(分析参考第一关)O DCBA由1个基本角构成的角有____________________共______个;由2个基本角构成的角有____________________共______个;由3个基本角构成的角有____________________共______个;我们也可以从角的两条边出发来数:以OD为一边的角有____________________共______个;以OC为一边的角有____________________共______个;以OB为一边的角有____________________共______个;解__________________所以图中有_____个角。
拓展1:上图有________________________个角;拓展2:上图中共有________________个三角形?拓展3:上图中共有________________个三角形?第三关下面图形中有几个长方形?解_______________________ 所以图中有______个长方形。
巧数图形
巧数图形数图形包括:数线段、数角、数长方形、数正方形、数三角形等,这看似简单,其实其中学问可大了.为了能准确地数出结果,我们必须有次序、有条理地数,既不能遗漏,也不能重复.只要我们掌握了数的方法,就能数得又对又快.例1.下图中有多少条线段?(1)思路分析:每条线段均有两个端点,可以根据左端点进行分类.以A为左端点的线段为AB、AC,共有2条;以B点为左端点的线段为BC,只有1条;以C点为左端点的线段不存在.因此共有2+1=3(条).答:图中共有3条线段.(2)这题中左端点是A的线段有:AB、AC、AD、AE,共有4条;左端点是B的线段有BC、BD、BE,共有3条;左端点是C的线段有C D、CE,共有2条;左端点是D的线段有DE;左端点是E的线段不存在.所以共有4+3+2+1=10(条).答:图中共有10条线段.例2.数出下面图中共有多少条线段?思路分析:线段有一个重要特征:线段都是笔直的.所以我们在数的时候,必须将这幅图分成四个部分,每一部分分别采用以线段左端点分类数的方法,然后把四部分算得结果加起来.例题解答:第一部分从A到E共有4+3+2+1=10条线段.第二部分从G到J共有4+3+2+1=10条线段.第三部分是FG一条线段.第四部分是JK一条线段.10+10+1+1=22(条)答:这幅图共有22条线段.方法指导:数线段可以根据左端点将线段分类,数出每一类有多少条线段,然后再相加得出线段的总的条数.例3.一条线段上共有10个点,以这10个点为端点的不同线段共有多少条?思路分析:将这条线段上的10个点从左到右依次标为、、…、、以为左端点的线段为、、、、、、、、共有9条;为左端点的线段为、、、…、,共有8条;…;以为左端点的线段为,只有1条;以为左端点的线段不存在.因此,共有线段:9+8+…+3+2+1=(9+1)×9÷2=45(条)答:一共有45条线段.方法指导:一般地,如果线段上有几个点(其中n是大于或等于2的自然数),那么以这n个点为端点的线段共有:(n-1)+(n-2)+…+3+2+1=n×(n-1)÷2例4.下面图形中有几个角?思路分析:数角的个数为了不遗漏、不重复,也需要按一定的顺序去数,可以采用与数线段相同的方法.以OA为一边的角有:∠AOB、∠AOC、∠AOD,共3个;以OB为一边的角有:∠BOC、∠BOD,共2个.以OC为一边的角有:∠COD,只有1个.3+2+1=6(个)答:图中共有6个角.例5.数出下面图中共有多少个三角形?思路分析:数三角形个数的方法与数线段的方法差不多.以AB为边的三角形有:△ABD、△ABE、△ABC,共有3个.以AD为边的三角形有:△ADE、△ADC,共有2个.以AE为边的三角形有:△AEC,只有1个.所以,图中一共有三角形:3+2+1=6(个).我们还可以发现,可以抓住底边BC来考虑,底边BC中所包含的每一条线段都恰好对应一个三角形.底边左端点是B的三角形共有△BDA、△BEA、△BCA三个.底边左端点是D的三角形共有△DEA、△DCA两个.底边左端点是E的三角形只有△ECA一个.所以一共有三角形:3+2+1=6(个).方法指导:数角的个数和三角形个数这些基本图形时,所采用的方法与数线段的方法相同.即角的个数=射线数×(射线数-1)÷2.即三角形个数就是底边上的线段数.例6.数一数图中共有多少个三角形?思路分析:我们可以将这幅图分成三个部分来数,即下面三幅图.在△ABC中,一共有5+4+3+2+1=15(个)三角形,在△ABD中,一共有5+4+3+2+1=15(个)三角形;在△BDC中,一共有5个三角形.15+15+5=35(个)答:图中共有35个三角形.例7.图中共有多少个不同的三角形?思路分析:将本题分成(1)、(2)两部分来数:第(1)部分中共有三角形:3+2+1=6(个);第(2)部分中共有3+2+1=6(个)三角形.所以,共有三角形6+6=12(个).例8.数出下图中共有多少个三角形?思路分析:这题我们可以采用按基本图形组合的方法来数.把图中最小的一个三角形看作基本图形.由一个基本三角形构成的三角形共有8个;由两个基本三角形构成的三角形共有4个;由四个基本三角形构成的三角形共有4个.因此:8+4+4=16(个),所以,图中共有16个三角形.例9.数出下面图形中共有多少个三角形?思路分析:这题采用把其中最小的三角形作为一个基本图形,然后分类相加的方法.由一个基本三角形构成的三角形共有9个;由四个基本三角形构成的三角形共有3个;由九个基本三角形构成的三角形只有1个.因此9+3+1=13(个),所以,图形中共有13个三角形.例10.下面两幅图中各有多少个长方形?思路分析:(1)中长方形都是竖向的,可以利用对应的方法来数.因为每个长方形都和底边上的一条线段对应,因此用数长边上的线段条数来数长方形的个数.所以,图中长方形共有4+3+2+1=10(个).(2)我们可用按基本图形组合的方法来数.由一个基本长方形构成的长方形共有6个;由两个基本长方形构成的长方形共有7个;由三个基本长方形构成的长方形共有2个;由四个基本长方形构成的长方形共有2个;由六个基本长方形构成的长方形有1个;所以,图中共有长方形6+7+2+2+1=18(个).本题还可以结合数线段的方法,这题中长方形的长被分成了3段,线段总数为3+2+1=6条,宽被分成了2段,线段总数为2+1=3 (条).由此可见,长方形的个数=6×3=18(个).于是,可以整理出数长方形个数的方法:长方形的个数等于原长方形长上的线段数乘以宽上的线段数.例11.数出各图中正方形的个数.思路分析:(1)中最基本的正方形有9个,即边长为1的正方形有9个(9=3×3);由4个基本正方形组成的正方形,即边长为2的正方形有4个(4=2×2);由9个基本正方形组成的正方形,即边长为3的正方形有1个(1=1×1)所以共有正方形9+4+1=14(个).(2)中边长为1的正方形有16个,即16=4×4;边长为2的正方形有9个,即9=3×3;边长为3的正方形有4个,即4=2×2;边长为4的正方形有1个,即1=1×1.所以共有正方形有16+9+4+1=30(个).因此,如果一个正方形的各边被分成几个等份,那么正方形的个数便是1×1+2×2+3×3+…+n×n.方法指导:正确数出图形的个数,首先要弄清图形中包含的基本图形是什么,有多少个.然后再从各图形中所包含基本图形的个数多少出发,依次数出它们的个数,并求出它们的和是多少.有些图形被分成了几个部分,可以先从各部分的基本图形出发,数出所含图形的个数,再求各部分的总和.例12.图中共有多少个正方形?思路分析:将正方形分类,将每一类的总数相加,就可得到所有正方形的个数.由两块小三角形构成的正方形有4个;由四块小三角形构成的正方形有4个;由八块小三角形构成的正方形有1个;由十六块小三角形构成的正方形有1个.由一、三、五、七、六、九、十、十一、十二、十三、十四、十五块小三角形不能构成正方形.所以,图中共有4+4+1+1=10(个)正方形.例13.数出图中共有多少个正方形?思路分析:根据正方形边长的大小,我们将它们分成四类:第1类:边长为1的正方形有24个;第2类:边长为2的正方形有13个;第3类:边长为3的正方形有4个;第4类:边长为4的正方形有1个.所以图中共有24+13+4+1=42(个)正方形.这题如果把四条边长多出的8个小正方形去掉,很容易得出共有1×1+2×2+3×3+4×4=30(个)正方形,添上了去掉的小正方形后,这8个小正方形还能再和其他图形组成4个新的正方形.所以,图中共有30+8+4=42(个)正方形.例14.下图中共有多少个长方形?思路分析:我们可以先将大长方形中的5小块编上号:这5块都是符合要求的长方形.然后数由两小块拼成的长方形,共有4个,即①+②,②+③,③+④,④+⑤;再数由三小块拼成的长方形,共有2个,即①+③+④,③+④+⑤;没有由四小块拼成的长方形;最后数由5小块拼成的长方形只有最大的一个.所以,图中共有5+4+2+1=12(个)长方形.例15.数出下图中共有多少个三角形?思路分析:首先将大三角形中六小块分别编上号.通过观察,我们可以发现这6小块中,④和⑤不是三角形,因此,由一块形成的三角形有4个;由两块拼成的三角形有5个,即分别是①+②,①+③,③+④,②+④,⑤+⑥;由三块拼成的三角形有两个,分别为①+③+⑤,②+④+⑥;由四块拼成的三角形有1个,即是①+②+③+④;没有由五块拼成的三角形;由六块拼成的三角形有1个,即最大的三角形.所以,图中三角形一共有4+5+2+1+1=13(个).方法指导:数长方形、正方形、三角形以及一些不规则的图形都可以采用编号数图形的方法,就是将原来图中的每一小块都编上号,先看每一小块是否符合要求的图形,接着数由两个小块相拼成的图形中有几个是符合要求的图形,再依次数由三小块、四小块……拼成的图形中各有几个是符合要求的图形,最后将每一步数得的结果加起来.。
第一讲:巧数图形
第一讲:巧数图形小朋友,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,其次再数出由基本图形组成的新的图形,最后求出它们的和。
【例题1】数一数,下图中有几条线段?练习1:(1)数出下图中有多少条线段? (2)数出下图中有几个长方形?【例题2】数出图中有几个角?练习2:数出图中有几个角?(1) (2)EABCDDABCODC BA OCBA ED OC BA【例题3】数出下图中共有多少个三角形?练习3:数出图中共有多少个三角形?(1) (2)【例题4】数出下图中有多少个长方形?练习4:(1)数出下图中有多少个长方形?(2)数出下图中有多少个正方形?PDCBAFE D C B AKGI H G FE D C BADCBA DCBA【例题5】有5个同学,每两个人握手一次,一共要握手多少次?练习5:(1)银海学校三年级有9个班,每两个班要比赛拔河一次,这样一共要拔河几次?(2)有1,2,3,4,5,6,7,8等8个数字,能组成多少个不同的两位数?【课后练习】1、数一数下图中各有多少条线段?(2)(3)2、数一数下图中有多少个角。
3、数一数下面图中各有多少个三角形。
4、数一数下面各图中分别有多少个长方形。
5、填空。
⑴有6个小朋友,每2人握一次手,一共要握()次。
⑵从青岛到上海的直达列车,中途停靠5个站,这次列车共有()种不同票价。
(完整版)如何巧数图形
如何巧数图形
1、数线段 1 2 3 4 1 2 3 4 …… n
线段条数:1+2+3+4=10(条) 线段条数:1+2+3+……+n
2、数角
角的个数:1+2+3+4=10(个) 角的个数:1+2+3+……+n
3、数三角形
三角形个数: 1+2+3+4=10(个) 三角形个数: 1+2=3(个) 三角形个数: 1+2+3+4=10 3×2=6(个) 10×4=40(个) 数多层三角形的方法:三角形的个数=一层的个数×层数
4、数长方形、平行四边形
长方形个数:1+2+3+4+5=15(个)
1+2+3+4+5=15 1+2+3+4+5+6=21
长方形个数:15×6=90(个) 平行四边形个数:21×10=210(个)
我们在数角、三角形、长方形、平行四边形的过程中,我们不难发现,当一个图形的组成有一定规律时,我们可以按规律来计数,如果没有明显的规律我们就按一定的顺序数(先一个一个、再两个两个地数的……),这样才能做到不重复、不遗漏。
1 2 3 4 1 2 3 ……
n 1 2 3 4
1 2
2层 1 2 3 4 5 1+2+3=6 1+2+3+4=10
5、数不规则图形。
(1+2+3+4+5+6)×(1+2+3)+(1+2+3)×(1+2+3+4)-(1+2+3)×(1+2+3)=150。
小学奥数--巧数图形
第5讲 巧数图形一、知识要点小朋友,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,其次再数出由基本图形组成的新的图形,最后求出它们的和。
二、精讲精练【例题1】数一数,下图中有几条线段?练习1:(1)数出下图中有多少条线段?(2)数出下图中有几个长方形?【例题2】数出图中有几个角?E A B C D D A B C O DC BA练习2:数出图中有几个角?(1) (2)【例题3】数出下图中共有多少个三角形?练习3:数出图中共有多少个三角形?(1)(2)O C B A EDO C B A PDC B A FE D C B A KGI H G FE D C B A【例题4】数出下图中有多少个长方形?练习4:(1)数出下图中有多少个长方形?(2)数出下图中有多少个正方形?【例题5】有5个同学,每两个人握手一次,一共要握手多少次?练习5:(1)银海学校三年级有9个班,每两个班要比赛拔河一次,这样一共要拔河几次?DC B AD C BA(2)有1,2,3,4,5,6,7,8等8个数字,能组成多少个不同的两位数?三、课后作业1、数一数下图中各有多少条线段?(2)(3)2、数一数下图中有多少个锐角。
3、下列各图中各有多少个锐角?4、数一数下面图中各有多少个三角形。
5、数一数下面各图中分别有多少个长方形。
6、数一数,下面各图中分别有几个长方形?7、数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)。
巧数图形
第一讲巧数图形数出某种图形的个数是一类有趣的图形问题。
数图形虽然很简单,但重复计数和遗漏是经常出现的错误,在细心的同时还要掌握一定的方法和技巧。
几何中的计数问题包括:数线段、数角、数长方形、数正方形、数三角形、数综合图形等。
通过这一讲的学习,可以帮助我们养成按照一定顺序去观察、去思考问题的良好习惯,同时提高我们通过观察、思考去探寻事物规律的能力。
要想有条理、不重复、不遗漏地数出所要图形的个数,最常用的方法就是分类数。
一、数线段我们把直线上两点间的部分称为线段,这两个点称为线段的端点.线段是组成三角形、正方形、长方形、多边形等最基本的元素。
因此,观察图形中的线段,探寻线段与线段之间、线段与其他图形之间的联系,对于了解图形、分析图形是很重要的。
例1、数一数,图中有多少条线段?分析与解:如果我们按照一定的顺序从左往右数,就会发现:以A点为共同端点的线段有:AB AC AD AE AF 5条;以B点为共同端点的线段有:BC BD BE BF 4条;以C点为共同左端点的线段有:CD CE CF 3条;以D点为共同左端点的线段有:DE DF 2条;以E点为共同左端点的线段有:EF 1条;总数为:5+4+3+2+1=15条。
用图示法表示更为直观明了,如右图。
想一想:①由例1可知,一条线段AF上有六个点,就有:总数=5+4+3+2+1条线段。
由此猜想如下规律(见右图):……………………还可以一直找下去,并且通过实际去按顺序数,经过验证后,能从中得出这样一个结论:当一个图形中包含的所有线段都在同一条直线上时,线段总条数是从1开始的一串连续自然数之和,其中最大的自然数比图形中的总端点数少1.②如果我们把相邻两点间的线段叫做基本线段,那么线段的总条数也是从1开始的一串连续自然数之和,其中最大的自然数等于基本线段的条数(见下图)。
基本线段数线段总条数……………………是不是存在这样的规律,同学们可以自己再举些例子试试看。
四年级上册数学试题巧数图形精选全文
可编辑修改精选全文完整版
【拓展内容:巧数线段】知识点引入:
等差数列求和公式:(首项+末项)×项数÷2
等差数列末项公式:末项=首项+(项数-1)×公差等差数列项数公式:项数=(末项-首项)÷公差+1 等差数列
1.计算9+8+7+6+5+4+3+2+1
2.计算100+99+98+97+......+4+3+2+1
【例题】数出右图中共有几条线段?
【变式1】数出下图中有几条线段。
(1)
(2)
A1 A2 A3 A9 A10【变式2】数出下图中共有几条线段。
【变式3】小明在纸上画了一条线段,小红又拿起了笔,在小明画的线段上点了8个点,然后小红问小明:“你知道现在这条线段上又多出了多少条线段吗?”小明数了很长时间也没能数出来,小朋友,你能帮小明回答这个问题吗?
【拓展内容:巧数角】
【例题】数出下图中共有几个角。
【变式1】数出下图中共有几个角
【变式2】右图中有()个角。
A、5
B、6
C、10
D、15
【拓展内容:巧数三角形】【例题】数出下图中共有几个三角形。
(1)(2)
【变式1】数出下图中共有几个三角形。
(1)(2)
【变式2】数出下图中共有几个三角形。
【变式3】数图形。
图中共有()个三角形。
巧数图形详解-小学奥数
题目三:数长方形
总结词
数长方形是巧数图形中的高级题目,主要考 察学生的空间想象力和细致的观察能力。
详细描述
题目通常会给出一张由不同形状组成的图形 ,其中包含长方形。学生需要通过空间想象 和细致的观察,数出长方形的数量。在数长 方形的过程中,学生需要注意长方形的定义 ,即两组相对边等长。此外,学生还需要注 意长方形可能存在不同的方向和旋转,确保
枚举法
总结词
逐一列举所有可能的情况,找出符合条件的结果。
详细描述
枚举法适用于图形数量较少、情况较为简单的问题。在解题时,需要逐一列举出 所有可能的情况,并逐一检验是否符合题目要求。通过排除不符合条件的情况, 最终找出符合条件的结果。
排除法
总结词
通过排除不符合条件的情况,逐步缩小范围,最终找出答案。
常见类型与实例
类型
常见的巧数图形题目包括数线段、数三角形、数正方形、数 立方体等。
实例
如数线段,给定一条直线段,在直线段上任意取n个点,将线 段分成n+1段,求这些小段的线段长度之和。
巧数图形的解题思路
观察
首先观察题目所给的图 形,寻找其中的规律或
特征。
分析
分析图形的构成和数量 关系,确定解进行逻 辑推理,得出正确的答
案。
计算
进行必要的计算,得出 最终答案。
02 巧数图形的解题技巧
观察法
总结词
通过细致观察图形特点,找出规律,解决问题。
详细描述
观察法是解决巧数图形问题的一种常用方法。在解题过程中,首先要仔细观察 图形,注意图形的形状、大小、对称性等特征,以及各图形之间的相互关系。 通过观察找出规律,从而解决问题。
详细描述
排除法是解决巧数图形问题的一种常用方法。在解题过程中,首先根据题目的要求和图形的特征,排除一些不可 能的情况。然后逐步缩小范围,最终找出符合条件的结果。排除法可以有效地减少计算量,提高解题效率。
四年级奥数-巧数图形个数
姓名:巧数图形个数“数图形的个数”是趣味图形问题的一种,由于几何图形千变万化,错综复杂,要想准确地数出图形中所包含的某一个几何图形的个数,关键是要掌握有条理有次序地数图形的方法。
数图形的个数时,既不能同一图形数两次,又不能把有的图形漏掉不数,常用的计算方法有按顺序和分类数两种。
下面举例介绍两种方法的运用规律:例:数一数下面图中有多少条线段。
第一:按含基本线段的顺序去数。
上图一共有5条小线段,这每条小线段就是基本线段,有5条基本线段,包含有两条基本线段的有4条……第二:按端点进行分类去数。
以线段最左边的点为第一个端点,第二个点为第二个端点……为了方便同学们计数,向大家介绍数线段、三角形、角数量的公式:1+2+…+(n-2)+(n-1)=2)1(nn一、试一试,看谁数得又对又快。
一共有()个三角形。
一共有()个角。
二、填空。
1. 算式中有乘法和加、减法,应先算();算式中有除法和加、减法,应先算();算式中有括号的,应先算()。
2. 在计算25+13×2时,先算( )法,再算( )法。
3. 在计算78÷16×3时,先算()法,再算()法。
4. 在算式50-20÷5里,如果要先算减法,那么算式应该是:()。
里填上“<”“>”或“=”。
20×5+×(5+3)48÷6÷÷(6×8)280-37-280-(37+163)60-24÷60-24)÷12小故事明明和沉沉都十分喜欢数学。
一天明明问沉沉:“你最喜欢几?”“我最喜欢9。
”“那你说说从1数到100,要说几次‘9’?”“啊!……这”沉沉被难住了,“这要数一数才能知道,一分钟时间。
”同学们,请你在一分钟内说出从1到100有多少个9?。
24巧数图形
巧数图形月 日 姓 名知识要点:1.巧数图形问题包括:数线段、数三角形、数正方形、数长方形等。
2.数图形的个数,不但要有一双好眼睛,还要善于开动脑筋,仔细观察,按顺序分类去做,做到不重复,不遗漏,这样才能数得又快又准。
通过数线段、数三角形、数角等总结出共用的方法:(n -1)+(n -2)+(n -3)+…+2+1经典例题:例1.(1)图4-1中有多少条线段?(2)图4-2中共有多少个角?(3)数一数图4-3中共有多少个三角形?例2.图4-4中一共有多少条线段?图4-1图4-2图4-3图4-4例3.数一数图4-5有多少个正方形?例4.图4-6中一共有多少个长方形?就地练兵1.如图4-7所示图中共有条线段。
2.数一数图4-8中有多少个三角形?3.如图4-9所示,图中共有多少条线段?4.数一数图4-10中有多少条线段?图4-5图4-6图4-7图4-8123C图4-10图4-95.图4-11中共有多少锐角?6.如图4-12所示,图中共有 线段,共有 个三角形。
7.图4-13中共有 个三角形。
8.(1)数一数图4-14中有多少个正方形。
(2)数一数图4-15中共有多少个正方形?9.数一数图4-16中有多少个长方形?A OC 1 C 2 C 20B图4-11· · · 图4-12C图4-13 图4-14图4-15图4-16课后大考验姓 名 成 绩1.如图4-17中共有 条线段。
2.数一数,图4-18中有多少条线段?3.图4-19中共有多少个角?4.数一数图4-20有多少个正方形?5.图4-21中共有多少个长方形?AB C D EF G图4-172 3 4 56图4-19图4-20图4-21图4-18。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级数学 - 巧数图形四年级数学 -巧数图形
错综复杂四年级数学 -巧数图形可以培养我们
认真,仔细,做事耐心有条理的好习惯 .要想有条理、不重复、不遗漏地数
出所要图形的个数,最常用的方法就是分类数 .
例 1 数出下图中共有多少条线段.
分析与解: 1.我们可以按照线段的左端点的位置分为A,B,C 三类 .如下图
所示,以 A 为左端点的线段有 ______ 条,以 B 为左端点的线段有 ________ 条,
以 C 为左端点的线段有 _______ 条.所以共有 _________ =6(条).
2.我们也可以按照一条线段是由几条小线段构成的来分类.如下图所示, AB ,
BC ,CD 是最基本的小线段,由一条线段构成的线段有_______ 条,由两条
小线段构成的线段有 _______ 条,由三条小线段构成的线段有________ 条.
所以,共有 _____________ =6(条).
由例 1 看出,数图形的分类方法可以不同,关键是分类要科学,所分的类型
要包含所有的情况,并且相互不重叠,这样才能做到不重复、不遗漏.
例 2 下列各图形中,三角形的个数各是多少?
分析与解:因为底边上的任何一条线段都对应一个三角形(以顶点及这条线段
的两个端点为顶点的三角形),
所以各图中最大的三角形的底边所包含的线段的条数就是三角形的总个数.由前面数线段的方法知,
图(1) 中有三角形 1+2= 3(个). 图(2) 中有三角形 ________( 个).图
(3) 中有三角形 _________( 个).
图(4) 中有三角形 _______________ =15( 个 ).
图(5) 中有三角形 ______________=21( 个).
例 3 下列图形中各有多少个三角形?
分析与解: (1) 只需分别求出以 AB ,ED 为底边的三角形中各有多少个三角形 .
以 AB 为底边的三角形 ABC 中,有三角 1+2+3=6(个 ).以 ED 为底边的
三角形 CDE 中,有三角形 ___________( 个 ).
所以共有三角形 ___________________(个).
这是以底边为标准来分类计算的方法.它的好处是可以借助“求底边线段数”而得出三角形的个数 .
我们也可以以小块个数作为分类的标准来计算:图中共有6个小块.
由 1 个小块组成的三角形有 3 个;由 2 个小块组成的三角形有 5 个;
由 3 个小块组成的三角形有 1 个;由 4 个小块组成的三角形有 ________ 个;由
6 个小块组成的三角形有 _________ 个.
所以,共有三角形3+ 5+ 1+ 2+ 1= 12( 个).
(2)如果以底边来分类计算,各种情况较复杂,因此我们采用以“小块个数”为
分类标准来计算:
由 1 个小块组成的三角形有 4 个;由 2 个小块组成的三角形有 ______ 个;由
3 个小块组成的三角形有 ________ 个;
由4 个小块组成的三角形有_______ 个;
由 6 个小块组成的三角形有 ________ 个 .
所以,共有三角形 ___________________=15(个).
例 4 右图中有多少个三角形?
解:假设每一个最小三角形的边长为 1.按边的长度来分类计算三角形的个数.
边长为 1 的三角形,从上到下一层一层地数,有1+ 3+ 5+ 7=16( 个);
边长为 2 的三角形 (由________ 个小三角形组成 )(注意,有一个尖朝下的三角形)有______________7( 个 );边长为 3 的三角形有 ___________( 个);边长为
4 的三角形有 __________个.所以,共有三角形16 +7+3+1=27( 个).
例 5 数出下页左上图中锐角的个数.
分析与解:在图中加一条虚线,如下页右上图.容易发现,所要数的每个角
都对应一个三角形 (这个角与它所截的虚线段构成的三角形 ),这就回到例 2,从
而回到例1 的问题,即所求锐角的个数,就等于从O 点引出的6 条射线将虚线
截得的线段的条数 .虚线上线段的条数有 ________________________
例 6 在下图中,包含“号*”的长方形和正方形共有多少个?
解:按包含的小块分类计数 (如何数一定数量的长方形小块有多少?有规则吗?)包含 1 小块的有 1 个;包含 2 小块的有 ___ 个;
包含 3 小块的有 4 个;包含 4 小块的有 ____ 个;包含 5 小块的有 2 个;
包含 6 小块的有 ___ 个;包含 8 小块的有 4 个;包含 9 小块的有 ____ 个;
包含 10 小块的有 ____ 个;包含 12 小块的有 4 个;包含 15 小块的有 ___ 个.
所以共有 1+4+4+7+2+6+4+3+2+4+2=______( 个).
练习
1.下列图形中各有多少条线段?
2.下列图形中各有多少个三角形?
3. 下列图形中,各有多少个小于180°的角?
4.下列图形中各有多少个三角形?
5.下列图形中各有多少个长方形?
6.下列图形中,包含“ *号”的三角形或长方形各有多少?
7.下列图形中,不含“ *号”的三角形或长方形各有几个?。