专升本高数复习资料全
专升本高数知识点汇总
专升本高数知识点汇总高等数学在专升本考试中占据着重要的地位,对于许多考生来说,掌握好高数的知识点是成功升本的关键之一。
以下是为大家汇总的专升本高数知识点,希望能对大家的学习有所帮助。
一、函数与极限1、函数的概念函数是一种从一个集合(定义域)到另一个集合(值域)的对应关系。
对于定义域内的每一个输入值,都有唯一的输出值与之对应。
2、函数的性质包括奇偶性、单调性、周期性和有界性。
奇函数满足 f(x) = f(x),偶函数满足 f(x) = f(x)。
单调性是指函数在某个区间内是递增或递减的。
周期性函数是指存在一个非零常数 T,使得 f(x + T) = f(x)。
有界性则是指函数的值域在某个范围内。
3、极限的定义极限是指当自变量趋近于某个值时,函数值趋近于的一个确定的值。
4、极限的计算包括利用极限的四则运算法则、两个重要极限(\(\lim_{x \to 0} \frac{\sin x}{x} = 1\),\(\lim_{x \to \infty} (1 +\frac{1}{x})^x = e\))以及等价无穷小代换来计算极限。
5、无穷小与无穷大无穷小是以零为极限的变量,无穷大是绝对值无限增大的变量。
无穷小的性质在极限计算中经常用到。
二、导数与微分1、导数的定义函数在某一点的导数是函数在该点的切线斜率。
2、导数的几何意义导数表示函数在某一点处的变化率,反映了函数图像的斜率。
3、基本导数公式包括常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。
4、导数的四则运算法则加法法则、减法法则、乘法法则和除法法则。
5、复合函数求导通过链式法则进行求导。
6、隐函数求导通过方程两边同时对自变量求导来求解。
7、微分的定义函数的微分等于函数的导数乘以自变量的微分。
8、微分的几何意义微分表示函数在某一点处切线的增量。
三、中值定理与导数的应用1、罗尔定理如果函数 f(x) 满足在闭区间 a,b 上连续,在开区间(a,b) 内可导,且 f(a) = f(b),那么在(a,b) 内至少存在一点ξ,使得 f'(ξ) = 0 。
完整版)专升本高等数学知识点汇总
完整版)专升本高等数学知识点汇总常用的高等数学知识点汇总如下:一、常见函数的定义域总结如下:1) y=kx+b,y=ax^2+bx+c,一般形式的定义域为x∈R。
2) y=1/x,分式形式的定义域为x≠0.3) y=sqrt(x),x根式的形式定义域为x≥0.4) y=log_a(x),对数形式的定义域为x>0.二、函数的性质1、函数的单调性:当x1<x2时,恒有f(x1)<f(x2),f(x)在x1,x2所在的区间上是增加的。
当x1<x2时,恒有f(x1)>f(x2),f(x)在x1,x2所在的区间上是减少的。
2、函数的奇偶性:定义函数y=f(x)的定义区间D关于坐标原点对称,若x∈D,则有- x∈D:1) 偶函数f(x)——对于任意x∈D,恒有f(-x)=f(x)。
2) 奇函数f(x)——对于任意x∈D,恒有f(-x)=-f(x)。
三、基本初等函数1、常数函数:y=c,定义域为(-∞,+∞),图形是一条平行于x轴的直线。
2、幂函数:y=x^u,(u是常数)。
它的定义域随着u的不同而不同。
图形过原点。
3、指数函数:定义y=f(x)=a^x,(a是常数且a>0,a≠1)。
图形过(0,1)点。
4、对数函数:定义y=f(x)=log_a(x),(a是常数且a>0,a≠1)。
图形过(1,0)点。
5、三角函数:1) 正弦函数:y=sin(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。
2) 余弦函数:y=cos(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。
3) 正切函数:y=tan(x),T=π,D(f)={x|x∈R,x≠(2k+1)π/2,k∈Z},f(D)=(-∞,+∞)。
4) 余切函数:y=cot(x),T=π,D(f)={x|x∈R,x≠kπ,k∈Z},f(D)=(-∞,+∞)。
四、极限一、求极限的方法:1、代入法:将x的值代入函数中求得对应的y值。
改写后的文章:高等数学中常用的知识点汇总如下:一、常见函数的定义域总结如下:1) y=kx+b,y=ax^2+bx+c,一般形式的定义域为x∈R。
专转本高数知识点整理
专转本高数知识点整理一、函数。
1. 函数的概念。
- 设x和y是两个变量,D是一个给定的非空数集。
如果对于每个数x∈D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y = f(x),x∈ D。
其中x称为自变量,y称为因变量,D称为函数的定义域。
- 函数的两要素:定义域和对应法则。
2. 函数的性质。
- 单调性:设函数y = f(x)在区间(a,b)内有定义,如果对于(a,b)内任意两点x_1和x_2,当x_1时,有f(x_1)(或f(x_1)>f(x_2)),则称函数y = f(x)在区间(a,b)内是单调增加(或单调减少)的。
- 奇偶性:设函数y = f(x)的定义域D关于原点对称,如果对于任意x∈ D,有f(-x)=f(x),则称y = f(x)为偶函数;如果f(-x)= - f(x),则称y = f(x)为奇函数。
- 周期性:设函数y = f(x)的定义域为D,如果存在一个不为零的数T,使得对于任意x∈ D有(x± T)∈ D,且f(x + T)=f(x)恒成立,则称函数y = f(x)为周期函数,T称为函数的周期。
3. 反函数。
- 设函数y = f(x)的定义域为D,值域为W。
如果对于W中的每一个y值,在D中有且只有一个x值使得y = f(x),则在W上定义了一个函数,称为函数y = f(x)的反函数,记作x = f^-1(y)。
习惯上,将y = f(x)的反函数记作y = f^-1(x)。
二、极限。
1. 极限的定义。
- 数列极限:设{a_n}为一数列,如果存在常数a,对于任意给定的正数varepsilon(不论它多么小),总存在正整数N,使得当n > N时,不等式| a_n-a|都成立,那么就称常数a是数列{a_n}的极限,或者称数列{a_n}收敛于a,记作lim_n→∞a_n=a。
- 函数极限(x→ x_0):设函数f(x)在点x_0的某一去心邻域内有定义。
专升本高数全知识点
专升本高数全知识点一、知识概述《专升本高数全知识点》①基本定义:高等数学就是大学数学,主要研究函数、极限、导数、积分这些东西。
函数就像是一个有输入和输出的“魔法盒子”,你给它一个数,它按照一定规则给你一个结果。
极限有点像你一直朝着一个地方走,快到目的地但还没到那个确切的点时候的情况。
导数呢,就是函数在某一点变化的快慢程度,就像汽车在某个瞬间的速度。
积分和导数相反,就像是知道速度求路程这样。
②重要程度:在专升本学科里那可是相当重要的。
很多专业都要考,而且是筛选人才的重要部分。
高数好的话,在理工科专业学习起来就会很顺利。
③前置知识:你得对基本的代数知识很熟悉,像一元二次方程这些。
还有函数的概念也要清楚,比如一次函数、二次函数的图像性质等。
④应用价值:在工程领域可以用来计算结构强度,在经济领域可以做成本效益分析之类的。
比如说盖房子的时候,通过高数能算出怎么设计结构能承受更大压力。
二、知识体系①知识图谱:整个高数体系像一棵大树,函数是树根,极限是树干,导数和积分就是树枝和树叶。
导数和积分又各自有很多分支。
②关联知识:函数和极限密切相关,有函数才有极限概念。
导数是从极限发展来的,积分又和导数是逆运算关系。
③重难点分析:重难点有极限的计算(有时候要用到很多复杂技巧)、导数的复合函数求导、积分的换元积分法。
关键是要理解概念然后多做练习才能掌握。
④考点分析:在考试里每个部分都可能考。
选择题会考查基本概念,计算题就着重极限、导数、积分的计算等。
应用题可能会把高数知识用在实际场景下考查。
三、详细讲解【理论概念类- 函数】①概念辨析:函数就是一种对应关系,一个自变量x能通过某种法则找到唯一对应的因变量y。
就像每个人(x)对应着自己唯一的身份证号(y)。
②特征分析:主要特征就是有定义域(x能取的值的范围)和值域(y 能取的值的范围)。
单值性是很重要的一点,就是一个x只能对应一个y。
③分类说明:有初等函数像多项式函数(如y = x²+1)、三角函数(如y = sinx)等,还有分段函数,就是在不同区间有不同表达式的函数。
专升本《高等数学》复习题
专升本《高等数学》复习题对于准备专升本考试的同学来说,《高等数学》是一门重要且具有一定难度的学科。
想要在考试中取得好成绩,系统而有效的复习至关重要。
以下为大家整理了一份专升本《高等数学》的复习题,希望能对大家的复习有所帮助。
一、函数与极限1、求函数\(f(x) =\frac{x^2 4}{x 2}\)的定义域。
这道题主要考查函数定义域的概念。
要使分式有意义,分母不能为零。
所以\(x 2 \neq 0\),即\(x \neq 2\)。
因此,函数的定义域为\(x \in (\infty, 2) \cup (2, +\infty)\)。
2、计算\(\lim_{x \to 2} \frac{x^2 4}{x 2}\)这是一个极限问题。
我们可以将分子进行因式分解:\(x^2 4 =(x + 2)(x 2)\),然后约分得到\(x + 2\)。
当\(x \to 2\)时,极限值为\(2 + 2 = 4\)。
3、讨论函数\(f(x) =\begin{cases} x + 1, & x < 0 \\ 0, & x = 0 \\ x 1, & x > 0 \end{cases}\)在\(x = 0\)处的连续性。
要判断函数在某一点的连续性,需要判断函数在该点的极限值是否等于函数值。
左极限为\(\lim_{x \to 0^} f(x) =\lim_{x \to 0^}(x + 1) = 1\),右极限为\(\lim_{x \to 0^+} f(x) =\lim_{x \to 0^+}(x 1) =-1\),函数值为\(f(0) = 0\)。
因为左极限、右极限和函数值都不相等,所以函数在\(x = 0\)处不连续。
二、导数与微分1、求函数\(y = x^3 3x^2 + 2\)的导数。
根据求导公式\((X^n)^\prime = nX^{n 1}\),对函数求导可得:\(y^\prime = 3x^2 6x\)2、求函数\(y =\ln(x +\sqrt{1 + x^2})\)的导数。
《高等数学》(专科升本科)复习资料
《高等数学》(专科升本科)复习资料一、复习参考书:全国各类专科起点升本科教材高等数学(一)第3版 本书编写组 高等教育出版社 二、复习内容及方法:第一部分 函数、极限、连续复习内容函数的概念及其基本性质,即单调性、奇偶性、周期性、有界性。
数列的极限与函数的极限概念。
收敛数列的基本性质及函数极限的四则运算法则。
数列极限的存在准则与两个重要的函数极限。
无穷小量与无穷大量的概念及其基本性质。
常见的求极限的方法。
连续函数的概念及基本初等函数的连续性。
函数的间断点及其分类与连续函数的基本运算性质,初等函数的连续性。
闭区间上连续函数的基本性质,即最值定理、介值定理与零点存在定理。
复习要求会求函数的定义域与判断函数的单调性、奇偶性、周期性、有界性。
掌握数列极限的计算方法与理解函数在某一点极限的概念,同时会利用恒等变形、四则运算法则、两个重要极限等常见方法计算函数的极限。
掌握理解无穷小量与无穷大量的概念及相互关系,在求函数极限的时候能使用等价代换。
理解函数连续性的定义,会求给定函数的连续区间及间断点;;能运用闭区间上连续函数的性质证明一些基本的命题。
重要结论1. 两个奇(偶)函数之和仍为奇(偶)函数;两个奇(偶)函数之积必为偶函数;奇函数与偶函数之积必为奇函数;奇(偶)函数的复合必为偶函数; 2. 单调有界数列必有极限;3. 若一个数列收敛,则其任一个子列均收敛,但一个数列的子列收敛,该数列不一定收敛;4. 若一个函数在某点的极限大于零,则一定存在该点的一个邻域,函数在其上也大于零;5. 无穷小(大)量与无穷小(大)量的乘积还是无穷小(大)量,但无穷小量与无穷大量的乘积则有多种可能6. 初等函数在其定义域内都是连续函数;7. 闭区间上的连续函数必能取到最大值与最小值。
重要公式1. 若,)(lim ,)(lim 0B x g A x f x x x x ==→→则AB x g x f x g x f x x x x x x =⋅=⋅→→→)(lim )(lim )]()([lim 0;BA x g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 000。
专升本高等数学知识点汇总3篇
专升本高等数学知识点汇总第一篇:极限与导数一、极限1.极限概念极限是指函数值在某个自变量取值趋于某个值时的极限值。
用数学符号表示为lim f(x)=A(x->a)。
2.极限的四则运算对于极限值的四则运算涉及到有限值与无限值的关系,具体如下:①有限值加减有限值:lim[f(x)+g(x)]=lim f(x)+lim g(x) (x->a)②有限值乘法有限值:lim[f(x)*g(x)]=lim f(x)*lim g(x) (x->a)③有限值除以有限值:lim[f(x)/g(x)]=lim f(x)/lim g(x) (x->a)④无限值加减无限值:极限不存在。
3.极限的求解求出极限的基本方法:①查找零点②分母分子有理化③将式子化成等价无穷小形式④采用夹逼定理二、导数1.导数概念导数是表示函数一点的切线在该点的斜率,用数学符号表示为f’(x)或df/dx。
2.导数的几何意义导数的几何意义是函数在某一点处的切线的斜率,也就是曲线在该点处的瞬时变化率。
3.导数的求法导数的求法可以使用以下几种方法:①查公式②使用某个函数的导数性质推导出新函数导数的公式③使用导数的四则运算④使用导数的几何性质以上是关于极限与导数的一些基本知识点,通过对这些知识点的学习,我们可以更好地理解数学的基础,从而更好地应用数学知识进行实际问题的解决。
第二篇:微积分中的函数与极限一、函数的概念函数是指一个变量和另一个变量之间的依赖关系,也就是根据一个变量的取值,可以求出另一个变量的值。
二、函数的分类根据函数的定义域和值域的不同,函数分为以下几类:①一次函数:y=kx+b(k,b∈R且k≠0),其中k为斜率,b为截距。
②二次函数:y=ax²+bx+c (a,b,c∈R且a≠0),其中a 为抛物线开口方向和大小的常数,b为对称轴与x轴交点的横坐标,c为抛物线与y轴交点的纵坐标。
③指数函数:y=a的x次方 (a>0且且a≠1),其中a为底数,x为指数。
专升本高等数学复习资料
专升本高等数学复习资料引言高等数学是专升本考试中的重要科目之一,也是很多考生普遍认为较为困难的科目。
为了帮助考生更好地复习高等数学,本文整理了一些复习资料,并提供了一些复习建议和学习方法,以便考生有效提高复习的效果。
知识点梳理1.集合与函数2.极限与连续3.导数与微分4.积分与不定积分5.一元函数微分学应用6.函数积分学应用7.无穷级数8.空间解析几何与向量代数9.多元函数微分学10.重积分11.曲线与曲面积分12.常微分方程复习建议1.制定合理的学习计划:根据自己的实际情况和时间安排,合理分配每天的学习时间,将高等数学的复习安排在日程中。
2.理解概念,掌握基础知识:高等数学是建立在基础知识上的,要牢固掌握集合与函数、极限与连续、导数与微分等基本概念。
3.多进行例题训练:通过做大量的例题,不仅可以巩固基本知识,还能提高解题能力和应对考试的信心。
4.多与他人讨论、交流:在学习过程中,可以与同学或老师进行讨论,互相交流,共同进步。
5.制作思维导图或总结笔记:通过制作思维导图和总结笔记,可以将知识点整理归纳,增强记忆效果。
学习方法制作复习大纲在开始高等数学的复习前,可以先制作一个复习大纲,列出每个章节的主要内容和重点,有助于将知识点整理清楚并有条理地复习。
划分优先级根据复习进度和自己的掌握情况,将知识点划分为重点、难点和易点,并根据优先级合理安排时间。
对于重点和难点的内容,可以多花时间和精力进行深入学习和理解。
多做例题做例题是巩固知识和提高解题能力的有效方法。
可以选择一些习题集进行练习,挑选出一些典型的例题进行反复训练,掌握解题方法和思路。
参考教辅资料在复习过程中,可以选择一些高等数学的教辅资料作为参考,学习其中的例题和解题技巧。
同时,可以寻找一些经典的教材和参考书籍进行参考阅读,扩充知识面。
讨论交流在学习过程中,可以与同学或老师进行讨论和交流。
通过讨论和交流,可以互相答疑解惑,发现自己的不足之处,相互学习和进步。
完整版专升本高等数学知识点汇总
完整版专升本高等数学知识点汇总高等数学是专升本考试的重点科目之一,其课程内容包括微积分、数学分析、线性代数、概率论、数值计算等多方面的知识。
以下就是完整版的专升本高等数学知识点汇总:一、微积分(一)函数的极限和连续性1. 函数极限的定义和计算方法2. 充分条件和必要条件等述和运用3. 连续函数的概念和性质4. 零点定理、介值定理、最大值最小值定理5. 导数和微分6. 黎曼和与积分(二)微分方程1. 基本概念和解的存在唯一性定理2. 分离变量法、齐次方程、线性方程和二阶线性齐次方程3. 变量分离法、常系数齐次线性微分方程和欧拉公式(三)多元函数微积分1. 偏导数、全微分、隐函数定理和函数极值2. 二元函数定积分和变量替换法3. 重积分、累次积分和极坐标下的重积分(四)级数1. 序列极限、级数部分和的极限和级数收敛的定义2. 正项级数收敛判别法和比较判别法3. 极限比值法、根值法、阿贝尔定理和绝对收敛二、线性代数(一)行列式1. 行列式的定义、性质和元素和运算2. 克拉默法则和余子式、代数余子式的定义3. 行列式的计算和逆阵的求法(二)矩阵1. 矩阵的定义和性质2. 矩阵的运算:加法、数乘、乘法3. 矩阵的逆和伴随矩阵4. 线性方程组的解法:高斯消元法、初等变换法、矩阵法(三)向量空间1. 向量空间的定义和性质2. 线性无关、线性相关、秩和基础矩阵3. 子空间、直和空间、坐标系(四)特征值和特征向量1. 特征值的定义、性质和计算2. 特征向量的定义和寻找3. 对角矩阵和相似变换三、概率论(一)随机事件和随机变量1. 随机事件和概率的定义和性质2. 条件概率和乘法公式3. 随机变量的定义、分布函数和密度函数(二)随机变量的分布1. 常见离散型分布:伯努利分布、二项分布、泊松分布等2. 常见连续型分布:均匀分布、正态分布、指数分布等(三)随机变量的数字特征1. 数理期望和方差2. 协方差和相关系数3. 大数定律和中心极限定理四、数学分析(一)无穷级数1. 函数项级数、幂级数和几何级数2. Abel定理和Dirichlet定理(二)函数的连续性和可导性1. 极限的闭合性和连续函数的性质2. 可导函数的定义、求导公式和求导法则3. 微分中值定理和泰勒公式(三)广义积分1. 广义积分的概念、性质和判别法2. 常见的特殊函数与收敛性讨论五、数值计算(一)插值法1. 拉格朗日插值、牛顿插值与分段线性插值2. 多项式插值误差和插值余项(二)数值微积分1. 求积公式的概念和性质2. Newton-Cotes公式和Gauss-Legendre公式3. 自适应辛普森公式和数值微分公式以上便是专升本高等数学知识点的完整汇总,考生通过此份知识点汇总可做到有的放矢,聚焦重点,帮助他们更好地备战考试。
专升本高等数学复习
专升本高等数学复习专升本高等数学复习第一篇六、无穷级数(一)数项级数学问范围(1)数项级数数项级数的概念级数的收敛与发散级数的基本性质级数收敛的必要条件(2)正项级数收敛性的判别法比较判别法比值判别法(3)任意项级数交叉级数肯定收敛条件收敛莱布尼茨判别法要求(1)理解级数收敛、发散的概念。
把握级数收敛的必要条件,了解级数的基本性质。
(2)把握正项级数的比值判别法。
会用正项级数的比较判别法。
(3)把握几何级数、调和级数与级数的收敛性。
(4)了解级数肯定收敛与条件收敛的概念,会使用莱布尼茨判别法。
(二)幂级数学问范围(1)幂级数的概念收敛半径收敛区间(2)幂级数的基本性质(3)将简洁的初等函数展开为幂级数要求(1)了解幂级数的概念。
(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。
(3)把握求幂级数的收敛半径、收敛区间(不要求商量端点)的方法。
(4)会运用麦克劳林(Maclaurin)公式。
专升本高等数学复习第二篇二、一元函数微分学(一)导数与微分学问范围(1)导数概念导数的定义左导数与右导数函数在一点处可导的充分必要条件导数的几何意义与物理意义可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算反函数的导数导数的基本公式(3)求导方法复合函数的求导法隐函数的求导法对数求导法由参数方程确定的函数的求导法求分段函数的导数(4)高阶导数高阶导数的定义高阶导数的计算(5)微分微分的定义微分与导数的关系微分法则一阶微分形式不变性要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,把握用定义求函数在一点处的导数的方法。
(2)会求曲线上一点处的切线方程与法线方程。
(3)娴熟把握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。
(4)把握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。
(5)理解高阶导数的概念,会求简洁函数的阶导数。
高数专升本知识点归纳
高数专升本知识点归纳高等数学是专升本考试中的重要组成部分,涵盖了丰富的数学理论和应用技巧。
以下是对高数专升本知识点的归纳总结:一、函数与极限- 函数的定义、性质(奇偶性、周期性、单调性)- 极限的概念、性质和运算法则- 无穷小量和无穷大量的比较- 函数的连续性与间断点二、导数与微分- 导数的定义、几何意义和物理意义- 基本导数公式和导数的运算法则- 高阶导数- 微分的概念和微分中值定理- 导数的应用:切线、单调性、极值、最值问题三、积分学- 不定积分与定积分的概念和性质- 积分的基本公式和积分技巧(换元积分法、分部积分法)- 定积分的应用:面积、体积、平均值问题- 广义积分和积分方程的简介四、级数- 级数的概念、收敛性判定- 正项级数的收敛性判定方法(比较判别法、比值判别法等)- 幂级数、泰勒级数和傅里叶级数的基本概念五、多元函数微分学- 多元函数的极限和连续性- 偏导数和全微分- 多元函数的极值问题- 多元函数的几何应用(如曲面的切平面和法线)六、多元函数积分学- 二重积分和三重积分的概念和计算方法- 曲线积分和曲面积分- 格林公式、高斯公式和斯托克斯定理七、常微分方程- 一阶微分方程的解法:分离变量法、变量替换法、常数变易法- 高阶微分方程的降阶和幂级数解法- 线性微分方程和常系数线性微分方程的解法八、线性代数基础- 矩阵的运算和性质- 行列式的概念和计算- 线性方程组的解法:高斯消元法、克拉默法则- 向量空间和线性变换的基本概念结束语:通过以上知识点的归纳,我们可以看到高等数学在专升本考试中的重要性。
掌握这些基础知识对于解决实际问题和进一步的数学学习都是至关重要的。
希望这份归纳能够帮助大家更好地复习和准备专升本考试。
专升本高数知识点概述总结
专升本高数知识点概述总结一、数列与级数1. 数列的概念和表示方法2. 数列的分类及常见数列3. 数列的通项公式及性质4. 级数的概念和性质5. 级数的敛散性及判别法6. 级数的常见级数及性质7. 函数极限与无穷小8. 极限的概念和性质9. 极限的求解方法10. 无穷小量与无穷大量11. 函数的连续性12. 函数的连续性及运算13. 函数极值与最值14. 函数求导与微分15. 函数的泰勒展开与应用16. 定积分及其性质17. 定积分的计算方法与应用18. 不定积分及其定义与性质19. 不定积分的计算方法与应用20. 定积分与无穷积分之间的联系二、微分方程1. 微分方程的概念及分类2. 微分方程的解法3. 一阶线性微分方程4. 高阶线性常系数微分方程5. 高阶线性变系数微分方程6. 高阶非齐次线性微分方程7. 常微分方程的应用8. 微分方程的解析解与数值解9. 微分方程在生物和医学领域中的应用10. 微分方程在工程领域中的应用三、多元函数微分学1. 多元函数的定义及表示2. 多元函数的极限与连续性3. 多元函数的偏导数4. 隐函数的偏导数5. 方向导数与梯度6. 多元函数的极值与最值7. 多元函数的泰勒公式及应用8. 多元函数的微分形式9. 多元函数的积分计算10. 重积分的概念及性质11. 重积分的计算方法与应用12. 二重积分与三重积分之间的联系13. 积分中值定理及应用四、向量代数与空间解析几何1. 向量的基本概念及运算2. 向量的数量积与向量积3. 空间直线和平面的方程4. 空间曲线和曲面的方程5. 空间向量与向量代数的应用6. 空间几何与向量的几何应用7. 空间几何在物理和工程领域中的应用五、级数求和与数学证明1. 数学归纳法2. 递推数列的通项公式求解与应用3. 数列的数学归纳法证明4. 几何级数与数学证明5. 一元函数的泰勒级数展开与应用6. 麦克劳林级数的应用7. 级数求和的收敛性判别法8. 变步长球壳法与变限积分的应用9. 函数逼近及余项估计10. 数学证明在实际问题中的应用这些是专升本高等数学的主要知识点,通过对这些知识点的深入学习和理解,学生可以掌握高等数学的核心内容,为将来的学习和工作奠定坚实的数学基础。
专升本高数知识点归纳整理
专升本高数知识点归纳整理专升本高数是许多学生在继续深造过程中必须面对的一门重要课程。
它不仅涵盖了高等数学的基础知识点,还包含了一些更高级的数学概念和方法。
以下是对专升本高数知识点的归纳整理:一、极限与连续性- 极限的定义:数列极限、函数极限- 极限的性质:唯一性、有界性、保号性- 极限的运算法则:加、减、乘、除- 无穷小与无穷大- 连续性的定义:函数在某点的连续性- 连续函数的性质:局部有界性、最值定理二、导数与微分- 导数的定义:导数的几何意义、物理意义- 导数的运算法则:和、差、积、商- 高阶导数- 隐函数与参数方程的导数- 微分的概念:一阶微分- 微分中值定理:罗尔定理、拉格朗日中值定理三、积分学- 不定积分:换元积分法、分部积分法- 定积分:定积分的定义、性质、计算- 定积分的应用:面积、体积、物理量- 反常积分:无穷限积分、无界函数积分四、级数- 级数的概念:数项级数、函数项级数- 级数的收敛性:正项级数、交错级数、绝对收敛- 幂级数:泰勒级数、麦克劳林级数- 函数展开:泰勒公式五、多元函数微分学- 偏导数:一阶偏导数、二阶偏导数- 全微分- 多元函数的极值问题- 多元函数的泰勒展开六、多元函数积分学- 二重积分:直角坐标系、极坐标系- 三重积分:空间几何体的积分计算- 曲线积分:第一类曲线积分、第二类曲线积分- 曲面积分:第一类曲面积分、第二类曲面积分七、常微分方程- 一阶微分方程:可分离变量方程、一阶线性微分方程- 高阶微分方程:常系数线性微分方程- 微分方程的应用:物理、工程问题结束语专升本高数的学习是一个系统而深入的过程,需要学生具备扎实的数学基础和良好的逻辑思维能力。
通过不断的练习和思考,学生可以逐步掌握高数的精髓,为今后的学术研究和职业发展打下坚实的基础。
希望以上的知识点归纳整理能够对专升本高数的学习者有所帮助。
专升本高等数学复习资料(含答案)
专升本高等数学复习资料〔含答案〕专升本高等数学复习资料一、函数、极限和连续 1.函数y?f(x)的定义域是〔B 〕y?f(x)的表达式有意义的变量x的取值范围A.变量x的取值范围 B.使函数C.全体实数 D.以上三种情况都不是 2.以下说法不正确的选项是〔 C 〕 A.两个奇函数之和为奇函数 B.两个奇函数之积为偶函数 C.奇函数与偶函数之积为偶函数 D.两个偶函数之和为偶函数 3.两函数相同那么〔 C 〕A.两函数表达式相同 B.两函数定义域相同C.两函数表达式相同且定义域相同 D.两函数值域相同 4.函数y?4?x?x?2的定义域为〔〕4) B.[2,4] 4] D.[2,4)A.(2,C.(2,5.函数f(x)?2x3?3sinx的奇偶性为〔〕A.奇函数 B.偶函数 C.非奇非偶 D.无法判断1?x,那么f(x)等于( )2x?1xx?21?x2?x A. B. C. D.2x?11?2x2x?11?2x6.设f(1?x)?7.分段函数是( )A .几个函数 B.可导函数 C.连续函数 D.几个分析式和起来表示的一个函数 8.以下函数中为偶函数的是( ) A.y?e?x B.y?ln(?x) C.y?x3cosx D.y?lnx9.以下各对函数是相同函数的有( ) A.f(x)?x与g(x)??x B.f(x)?1?sin2x与g(x)?cosx?x?2xf(x)?与g(x)?1 D.f(x)?x?2与g(x)??x?2?xC.x?2x?210.以下函数中为奇函数的是( )ex?e?x A.y?cos(x?) B.y?xsinx C.y?32? D.y?x3?x211.设函数y?f(x)的定义域是[0,1],那么f(x?1)的定义域是( )[?1,0] C .[0,1] D. [1,2]A .[?2,?1] B.?x??2?x?012.函数f(x)??2?0x?0的定义域是( ) ??x2?20?x?2A.(?2,2) B.(?2,0] C.(?2,2] D. (0,2]13.假设f(x)?1?x?2x?33x?2x,那么f(?1)?( )A.?3 B.3 C.?1 D.1 14.假设f(x)在(??,??)内是偶函数,那么f(?x)在(??,??)内是( )A.奇函数 B.偶函数 C.非奇非偶函数 D.f(x)?015.设f(x)为定义在(??,??)内的任意不恒等于零的函数,那么F(x)?f(x)?f(?x)必是( A.奇函数 B.偶函数 C.非奇非偶函数 D.F(x)?0??1?x?116.设f(x)??x?1,?2x2?1,1?x?2 那么f(2?)等于 ( )??0,2?x?4A.2??1 B.8?2?1 C. 0 D.无意义17.函数y?x2sinx的图形〔〕A.关于ox轴对称 B.关于oy轴对称 C.关于原点对称 D.关于直线y?x对称18.以下函数中,图形关于y轴对称的有( )A.y?xcosx B.y?x?x3?1C.y?ex?e?x .y?ex?e?x2 D219.函数f(x)与其反函数f?1(x)的图形对称于直线( )A.y?0 B.x?0 C.y?x D.y??x20. 曲线y?ax与y?logax(a?0,a?1)在同一直角坐标系中,它们的图形( )A.关于x轴对称 B.关于y轴对称 C.关于直线y?x轴对称 D.关于原点对称21.对于极限limx?0f(x),以下说法正确的选项是〔〕 A.假设极限limx?0f(x)存在,那么此极限是唯一的 B.假设极限limx?0f(x)存在,那么此极限并不唯一1)C.极限limx?0f(x)一定存在D.以上三种情况都不正确 22.假设极限limx?0f(x)?A存在,以下说法正确的选项是〔〕A.左极限C.左极限D.x?0?limf(x)不存在 B.右极限lim?f(x)不存在x?0x?0x?0?limf(x)和右极限lim?f(x)存在,但不相等x?0x?0x?0?limf(x)?limf(x)?limf(x)?A ?lnx?1的值是( )x?ex?e1A.1 B. C.0 D.eelncotx24.极限lim的值是( ).+x?0lnxA. 0 B. 1 C .? D. ?1 23.极限limax2?b?2,那么〔〕 25.limx?0xsinxA.a?2,b?0 B.a?1,b?1 C.a?2,b?1 D.a??2,b?0 a?b,那么数列极限limnan?bn是n???26.设0?A.a B.b C.1 D.a27.极限limx?0?b12?3121x的结果是A.0 B.28.lim C.1 D.不存在 51为( )x??2x1A.2 B. C.1 D.无穷大量2sinmx(m,n为正整数〕等于〔〕 29. limx?0sinnxxsinA.mn B.nm C.(?1)m?nmn?mn D.(?1) nmax3?b?1,那么〔〕 30.limx?0xtan2xA.a?2,b?0 B.a?1,b?0 C.a?6,b?0 D.a?1,b?1 x?cosxx??x?cosx( )31.极限limA.等于1 B.等于0 C.为无穷大 D.不存在232.设函数?sinx?1?f(x)??0?ex?1?x?0x?0x?0 那么limx?0f(x)?( )A.1 B.0 C.?1 D.不存在 33.以下计算结果正确的选项是( )A.xxlim(1?)x?e B .lim(1?)x?e4 x?0x?04411111x?x?4 C .lim(1?)x?eD .lim(1?)x?e4x?0x?04434.极限1lim?()tanx等于( ) x?0x A. 1 B.? C .0 D.1235.极限lim?xsin?x?0?11??sinx?的结果是 xx?A.?1 B.1 C.0 D.不存在 1?k?0?为 ( )x??kx1 A.k B. C.1 D.无穷大量k36.limxsin37.极限limsinx=( )x???2A.0 B.1 C.?1 D.?38.当x??时,函数(1??21x)的极限是( ) xA.e B.?e C .1 D.?139.设函数?sinx?1?f(x)??0?cosx?1?x?0x?0,那么limf(x)?x?0x?0A.1 B.0 C.?1 D.不存在x2?ax?6?5,那么a的值是( ) 40.limx?11?xA.7 B.?7 C. 2 D.341.设?tanax?f(x)??x??x?2x?0x?0,且limx?0f(x)存在,那么a的值是( )2A.1 B.?1 C .2 D.?42.无穷小量就是〔〕A.比任何数都小的数 B.零 C.以零为极限的函数 D.以上三种情况都不是43.当x?0时,sin(2x?x3)与x比拟是( )3A.高阶无穷小 B.等价无穷小 C.同阶无穷小,但不是等价无穷小 D.低阶无穷小 44.当x A.?0时,与x等价的无穷小是〔〕x B.ln(1?x) C.2(sinx1?x?1?x) D.x2(x?1)45.当x?0时,tan(3x?x3)与x比拟是〔〕A.高阶无穷小 B.等价无穷小 C.同阶无穷小,但不是等价无穷小 D.低阶无穷小 46.设f(x)?1?x,g(x)?1?x,那么当x?1时〔〕2(1?x)A.C.f(x)是比g(x)高阶的无穷小 B.f(x)是比g(x)低阶的无穷小 f(x)与g(x)为同阶的无穷小 D.f(x)与g(x)为等价无穷小47.当xA.a48.当x?0?时, f(x)?1?xa?1是比x高阶的无穷小,那么( ) ?1 B.a?0 C.a为任一实常数 D.a?1?0时,tan2x与x2比拟是〔〕A.高阶无穷小 B.等价无穷小 C.同阶无穷小,但不是等价无穷小 D.低阶无穷小 49.“当x?x0,f(x)?A为无穷小〞是“limf(x)?A〞的〔〕x?x0A.必要条件,但非充分条件 B.充分条件,但非必要条件 C.充分且必要条件 D.既不是充分也不是必要条件 50.以下变量中是无穷小量的有( ) A.lim(x?1)(x?1)1 B.limx?0ln(x?1)x?1(x?2)(x?1) C.lim51.设 A. C.111cos D.limcosxsin x??xx?0xxf(x)?2x?3x?2,那么当x?0时( )f(x)与x是等价无穷小量 B.f(x)与x是同阶但非等价无穷小量 f(x)是比x 较高阶的无穷小量 D.f(x)是比x较低阶的无穷小量52.当x?0?时,以下函数为无穷小的是( )111 A.xsin B.ex C.lnx D.sinxxx53.当x?0时,与sinx2等价的无穷小量是 ( )1? A.ln(54.函数x) B.tanx C.2?1?cosx? D.ex?11y?f(x)?xsin,当x??时f(x) ( )x4。
专升本高等数学复习资料(含答案)
专升本高等数学复习资料一、函数、极限和连续1.函数)(x f y =的定义域是( )A .变量x 的取值范围B .使函数)(x f y =的表达式有意义的变量x 的取值范围C .全体实数D .以上三种情况都不是2.以下说法不正确的是( )A .两个奇函数之和为奇函数B .两个奇函数之积为偶函数C .奇函数与偶函数之积为偶函数D .两个偶函数之和为偶函数3.两函数相同则( )A .两函数表达式相同B .两函数定义域相同C .两函数表达式相同且定义域相同D .两函数值域相同 4.函数42y x x =-+-的定义域为( ) A .(2,4) B .[2,4] C .(2,4] D .[2,4) 5.函数3()23sin f x x x =-的奇偶性为( )A .奇函数B .偶函数C .非奇非偶D .无法判断6.设,121)1(-+=-x xx f 则)(x f 等于( )A .12-x xB .x x 212--C .121-+x xD .xx212--7. 分段函数是( )A .几个函数B .可导函数C .连续函数D .几个分析式和起来表示的一个函数8.下列函数中为偶函数的是( )A .x e y -=B .)ln(x y -=C .x x y cos 3=D .x y ln =9.以下各对函数是相同函数的有( )A .x x g x x f -==)()(与B .x x g x x f cos )(sin 1)(2=-=与C .1)()(==x g x xx f 与 D .⎩⎨⎧<->-=-=2222)(2)(x x x x x g x x f 与10.下列函数中为奇函数的是( )A .)3cos(π+=x y B .x x y sin = C .2xx e e y --= D .23x x y +=11.设函数)(x f y =的定义域是[0,1],则)1(+x f 的定义域是( )A .]1,2[--B . ]0,1[-C .[0,1]D . [1,2]12.函数⎪⎩⎪⎨⎧≤<+=<<-+=20200022)(2x x x x x x f 的定义域是( )A .)2,2(-B .]0,2(-C .]2,2(-D . (0,2] 13.若=---+-=)1(,23321)(f xx x x x f 则( )A .3-B .3C .1-D .114.若)(x f 在),(+∞-∞内是偶函数,则)(x f -在),(+∞-∞内是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x f15.设)(x f 为定义在),(+∞-∞内的任意不恒等于零的函数,则)()()(x f x f x F -+=必是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .0)(≡x F16. 设 ⎪⎩⎪⎨⎧<<≤<-≤<--=42,021,1211,1)(2x x x x x x f 则)2(πf 等于 ( ) A .12-π B .182-π C . 0 D .无意义 17.函数x x y sin 2=的图形( )A .关于ox 轴对称B .关于oy 轴对称C .关于原点对称D .关于直线x y =对称 18.下列函数中,图形关于y 轴对称的有( ) A .x x y cos = B .13++=x x yC .2x x e e y -+=D .2xx e e y --=19.函数)(x f 与其反函数)(1x f-的图形对称于直线( )A .0=yB .0=xC .x y =D .x y -=20. 曲线)1,0(log ≠>==a a x y a y a x 与在同一直角坐标系中,它们的图形( )A .关于x 轴对称B .关于y 轴对称C .关于直线x y =轴对称D .关于原点对称 21.对于极限)(lim 0x f x →,下列说法正确的是( )A .若极限)(lim 0x f x →存在,则此极限是唯一的B .若极限)(lim 0x f x →存在,则此极限并不唯一C .极限)(lim 0x f x →一定存在D .以上三种情况都不正确22.若极限A )(lim 0=→x f x 存在,下列说法正确的是( )A .左极限)(lim 0x f x -→不存在 B .右极限)(lim 0x f x +→不存在C .左极限)(lim 0x f x -→和右极限)(lim 0x f x +→存在,但不相等D .A )(lim )(lim )(lim 0===→→→-+x f x f x f x x x23.极限ln 1limx e x x e→--的值是( )A .1B .1eC .0D .e24.极限ln cot lim ln x xx→+0的值是( ). A . 0 B . 1 C .∞ D . 1-25.已知2sin lim20=+→xx bax x ,则( ) A .0,2==b a B .1,1==b a C .1,2==b a D .0,2=-=b a26.设b a <<0,则数列极限l i m n n n n a b →+∞+是A .aB .bC .1D .b a + 27.极限xx 1321lim+→的结果是A .0B .21C .51D .不存在28.∞→x lim xx 21sin为( )A .2B .21C .1D .无穷大量29. n m nxmxx ,(sin sin lim 0→为正整数)等于( )A .n mB .m nC .n m n m --)1(D .mn m n --)1(30.已知1tan lim230=+→xx bax x ,则( ) A .0,2==b a B .0,1==b a C .0,6==b a D .1,1==b a 31.极限xx xx x cos cos lim+-∞→( )A .等于1B .等于0C .为无穷大D .不存在32.设函数⎪⎩⎪⎨⎧>-=<+=01001sin )(x e x x x x f x 则=→)(lim 0x f x ( )A .1B .0C .1-D .不存在33.下列计算结果正确的是( )A . e x x x =+→10)41(lim B .410)41(lim e xx x =+→C .410)41(lim --→=+e x x x D .4110)41(lim e xx x =+→34.极限x x xtan 0)1(lim +→等于( )A . 1B . ∞C .0D .2135.极限⎪⎭⎫⎝⎛-→x x x x x sin 11sin lim 0的结果是A .1-B .1C .0D .不存在36.()01sin lim ≠∞→k kxx x 为 ( )A .kB .k 1C .1D .无穷大量37.极限x x sin lim 2π-→=( )A .0B .1C .1-D .2π-38.当∞→x 时,函数x x)11(+的极限是( )A .eB .e -C .1D .1- 39.设函数⎪⎩⎪⎨⎧>-=<+=01cos 001sin )(x x x x x x f ,则=→)(lim 0x f xA .1B .0C .1-D .不存在40.已知a xax x x 则,516lim21=-++→的值是( ) A .7 B .7- C . 2 D .341.设⎪⎩⎪⎨⎧≥+<=020tan )(x x x xaxx f ,且)(lim 0x f x →存在,则a 的值是( )A .1B .1-C .2D .2-42.无穷小量就是( )A .比任何数都小的数B .零C .以零为极限的函数D .以上三种情况都不是 43.当0→x 时,)2sin(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 44.当0→x 时,与x 等价的无穷小是( ) A .xx sin B .)1ln(x + C .)11(2x x -++ D .)1(2+x x45.当0→x 时,)3tan(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 46.设,1)(,)1(21)(x x g x xx f -=+-=则当1→x 时( )A .)(x f 是比)(x g 高阶的无穷小B .)(x f 是比)(x g 低阶的无穷小C .)(x f 与)(x g 为同阶的无穷小D .)(x f 与)(x g 为等价无穷小 47.当+→0x 时, 11)(-+=a x x f 是比x 高阶的无穷小,则( )A .1>aB .0>aC .a 为任一实常数D .1≥a 48.当0→x 时,x 2tan 与2x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 49.“当0x x →,A x f -)(为无穷小”是“A x f x x =→)(lim 0”的( )A .必要条件,但非充分条件B .充分条件,但非必要条件C .充分且必要条件D .既不是充分也不是必要条件 50. 下列变量中是无穷小量的有( ) A .)1ln(1lim 0+→x x B .)1)(2()1)(1(lim 1-+-+→x x x x xC .x x x 1cos 1lim∞→ D .xx x 1sin cos lim 0→ 51.设时则当0,232)(→-+=x x f x x ( )A .)(x f 与x 是等价无穷小量B .)(x f 与x 是同阶但非等价无穷小量C .)(x f 是比x 较高阶的无穷小量D .)(x f 是比x 较低阶的无穷小量 52. 当+→0x 时,下列函数为无穷小的是( )A .x x 1sinB .x e 1C .x lnD .x xsin 153. 当0→x 时,与2sin x 等价的无穷小量是 ( ) A .)1ln(x + B .x tan C .()x cos 12- D .1-x e54. 函数,1sin )(xx x f y ==当∞→x 时)(x f ( )A .有界变量B .无界变量C .无穷小量D .无穷大量55. 当0→x 时,下列变量是无穷小量的有( )A .x x 3B .xx cos C .x ln D .x e -56. 当0→x 时,函数xxy sec 1sin +=是( )A .不存在极限的B .存在极限的C .无穷小量D .无意义的量 57.若0x x →时, )(x f 与)(x g 都趋于零,且为同阶无穷小,则( ) A .0)()(lim=→x g x f x x B .∞=→)()(lim 0x g x f x xC .)1,0()()(lim≠=→c c x g x f x x D .)()(lim 0x g x f x x →不存在58.当0→x 时,将下列函数与x 进行比较,与x 是等价无穷小的为( ) A .x 3tan B .112-+x C .x x cot csc - D .xx x 1sin 2+ 59.函数)(x f 在点0x 有定义是)(x f 在点0x 连续的( )A .充分条件B .必要条件C .充要条件D .即非充分又非必要条件60.若点0x 为函数的间断点,则下列说法不正确的是( )A .若极限A )(lim 0=→x f x x 存在,但)(x f 在0x 处无定义,或者虽然)(x f 在0x 处有定义,但)(A 0x f ≠,则0x 称为)(x f 的可去间断点B .若极限)(lim 0x f x x +→与极限)(lim 0x f x x -→都存在但不相等,则0x 称为)(x f 的跳跃间断点C .跳跃间断点与可去间断点合称为第二类的间断点D .跳跃间断点与可去间断点合称为第一类的间断点 61.下列函数中,在其定义域内连续的为( )A .x x x f sin ln )(+=B .⎩⎨⎧>≤=00sin )(x ex xx f xC .⎪⎩⎪⎨⎧>-=<+=01011)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f62.下列函数在其定义域内连续的有( ) A .x x f 1)(=B .⎩⎨⎧>≤=0cos 0sin )(x xx x x fC .⎪⎩⎪⎨⎧>-=<+=01001)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f63.设函数⎪⎩⎪⎨⎧=-≠=0201a r c t a n )(x x x x f π 则)(x f 在点0=x 处( ) A .连续 B .左连续 C .右连续 D .既非左连续,也非右连续 B .64.下列函数在0=x 处不连续的有( )A .⎪⎩⎪⎨⎧=≠=-000)(2x x e x f xB .⎪⎩⎪⎨⎧=≠=010sin )(21x x x x x f C .⎩⎨⎧≥<-=00)(2x x x xx f D .⎩⎨⎧≤->+=00)1ln()(2x xx x x f65.设函数⎪⎩⎪⎨⎧=≠--=12111)(2x x x x x f , 则在点)(1x f x 处函数=( )A .不连续B .连续但不可导C .可导,但导数不连续D .可导,且导数连续66.设分段函数⎩⎨⎧<+≥+=0101)(2x x x x x f ,则)(x f 在0=x 点( )A .不连续B .连续且可导C .不可导D .极限不存在67.设函数)(x f y =,当自变量x 由0x 变到y x x ∆∆+相应函数的改变量时,0=( ) A .)(0x x f ∆+ B .x x f ∆)('0 C .)()(00x f x x f -∆+ D .x x f ∆)(068.已知函数⎪⎩⎪⎨⎧>+=<=01200)(x x x x e x f x ,则函数)(x f ( ) A .当0→x 时,极限不存在 B .当0→x 时,极限存在C .在0=x 处连续D .在0=x 处可导 D . 69.函数)1ln(1-=x y 的连续区间是( )A .),2[]2,1[+∞⋃B .),2()2,1(+∞⋃C .),1(+∞D .),1[+∞70.设nxnxx f x -=∞→13lim)(,则它的连续区间是( )A .),(+∞-∞B .处为正整数)(1n nx ≠C .)0()0,(∞+⋃-∞D .处及nx x 10≠≠D . 71.设函数⎪⎪⎩⎪⎪⎨⎧=≠-+=031011)(x x x x x f , 则函数在0=x 处( )A .不连续B .连续不可导C .连续有一阶导数D .连续有二阶导数B .72.设函数⎪⎩⎪⎨⎧=≠=00x x xx y ,则)(x f 在点0=x 处( )A .连续B .极限存在C .左右极限存在但极限不存在D .左右极限不存在73.设11cot )(2-+=x arc x x f ,则1=x 是)(x f 的( )A .可去间断点B .跳跃间断点C .无穷间断点D .振荡间断点74.函数2xy e x z y-+=的间断点是( ) A .)1,1(),1,1(),0,1(-- B .是曲线y e y -=上的任意点 C .)1,1(),1,1(),0,0(- D .曲线2x y =上的任意点 75.设2)1(42-+=xx y ,则曲线( ) A .只有水平渐近线2-=y B .只有垂直渐近线0=x C .既有水平渐近线2-=y ,又有垂直渐近线0=x D .无水平,垂直渐近线76.当0>x 时, xx y 1sin=( ) A .有且仅有水平渐近线 B .有且仅有铅直渐近线C .既有水平渐近线,也有铅直渐近线D .既无水平渐近线,也无铅直渐近线二、一元函数微分学77.设函数)(x f 在点0x 处可导,则下列选项中不正确的是( ) A .x yx f x ∆∆=→∆00lim)(' B .xx f x x f x f x ∆-∆+=→∆)()(lim )('0000C .000)()(lim )('0x x x f x f x f x x --=→D .h x f h x f x f h )()21(lim )('0000--=→78.若e cos x y x =,则'(0)y =( )A .0B .1C .1-D .279.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .x e sinB .x e cos -C .x e cosD .x e sin -80.设函数)(x f 在点0x 处可导,且2)('0=x f ,则hx f h x f h )()21(lim 000--→等于( )81.A .1-B .2C .1D .21-B .81.设)(x f 在a x =处可导,则xx a f x a f x )()(lim--+→=( )A .)('a fB .)('2a fC .0D .)2('a f 82.设)(x f 在2=x 处可导,且2)2('=f ,则=--+→hh f h f h )2()2(lim 0( )A .4B .0C .2D .383.设函数)3)(2)(1()(---=x x x x x f ,则)0('f 等于( ) A .0 B .6- C .1 D .3 84.设)(x f 在0=x 处可导,且1)0('=f ,则=--→hh f h f h )()(lim 0( )A .1B .0C .2D .3 85.设函数)(x f 在0x 处可导,则0lim→h hx f f )()h - x (00-( )A .与0x ,h 都有关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 都无关86.设)(x f 在1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=)1('f ( )A . 21B . 21-C . 41D .41-87.设==-)0('')(2f e x f x 则( )A .1-B .1C .2-D .2 88.导数)'(log x a 等于( )A .a x ln 1B .a x ln 1C .x xa log 1 D .x 189.若),1()2(249102+-++=x x x x y 则)29(y =( )A .30B .29!C .0D .30×20×10 90.设',)(',)()(y x f e e f y x f x 则存在且==( )A .)()()()('x f x x f x e e f e e f +B .)(')(')(x f e e f x f x ⋅C .)(')()(')()(x f e e f e e f x f x x f x x ⋅++D .)()('x f x e e f 91.设=---=)0('),100()2)(1()(f x x x x x f 则 ( )A .100B .100!C .!100-D .100- 92.若==',y x y x 则( )A .1-⋅x x xB .x x x lnC .不可导D .)ln 1(x x x +93.处的导数是在点22)(=-=x x x f ( )A .1B .0C .1-D .不存在94.设==-',)2(y x y x 则( )A .)1()2(x x x +--B .2ln )2(x x -C .)2ln 21()2(x x x +- D .)2ln 1()2(x x x +-- 95.设函数)(x f 在区间],[b a 上连续,且,0)()(<b f a f 则 ( )A .)(x f 在),(b a 内必有最大值或最小值B .)(x f 在),(b a 内存在唯一的0)(,=ξξf 使C .)(x f 在),(b a 内至少存在一个0)(,=ξξf 使D .)(x f 在),(b a 内存在唯一的0)(',=ξξf 使96.设,)()(x g x f y =则=dx dy ( ) A .])()(')()('[2x g x g x f x f y - B .])(1)(1[2x g x f y - C .)()('21x g x f y ⋅ D .)()('2x g x f y ⋅ 97.若函数)(x f 在区间)b a,(内可导,则下列选项中不正确的是( )A .若在)b a,(内0)('>x f ,则)(x f 在)b a,(内单调增加B .若在)b a,(内0)('<x f ,则)(x f 在)b a,(内单调减少C .若在)b a,(内0)('≥x f ,则)(x f 在)b a,(内单调增加D .)(x f 在区间)b a,(内每一点处的导数都存在98.若)(y x f =在点0x 处导数存在,则函数曲线在点))(,(00x f x 处的切线的斜率为( )A .)('0x fB .)(0x fC .0D .199.设函数)(y x f =为可导函数,其曲线的切线方程的斜率为1k ,法线方程的斜率为2k ,则1k 与2k 的关系为( )A .211k k = B .121-=⋅k k C .121=⋅k k D .021=⋅k k 100.设0x 为函数)(x f 在区间()b a ,上的一个极小值点,则对于区间()b a ,上的任何点x ,下列说法正确的是( )A .)()(0x f x f >B .)()(0x f x f <C .)()(0x f x f ->D .)()(0x f x f -<专升本高等数学综合练习题参考答案1.B 2.C 3.C4.B 在偶次根式中,被开方式必须大于等于零,所以有40x -≥且20x -≥,解得24x ≤≤,即定义域为[2,4].5.A 由奇偶性定义,因为33()2()3sin()23sin ()f x x x x x f x -=---=-+=-,所以3()23sin f x x x=-是奇函数.6.解:令t x -=1,则tt t t t f 21212211)(--=---+=,所以x x x f 212)(--= ,故选D 7.解:选D 8. 解:选D 9. 解:选B 10.解:选C 11. 解:110≤+≤x ,所以01≤≤-x ,故选B12. 解:选C 13. 解:选B 14. 解:选B 15.解:选B 16. 解:)(x f 的定义域为)4,1[-,选D17.解:根据奇函数的定义知选C 18. 解:选C 19. 解:选C20.解:因为函数)1,0(log ≠>==a a x y a y a x 与互为反函数,故它们的图形关于直线x y =轴对称,选C 21.A 22.D23.解:这是00型未定式ln 1l 1lim lim x e x e x x e x e→→-==-,故选B . 24.解:这是∞∞型未定式 22csc ln cot sin cot lim lim lim lim 11ln sin cos sin cos x x x x xx x x x x x x x x xx→→→→-==-⋅=-=-++++0000 故选D .25.解:因为2sin lim 20=+→x x b ax x 所以0)(lim 20=+→b ax x ,得0=b ,2sin lim 20=→x x ax x 所以2=a ,故选A 26.解:b b b b b a b b n n n n n n n n n ==+≤+≤=2选B27.解:选D28.解:因为∞→x lim 2121lim 21sin==∞→x x x x x ,故选B 29.解:n m nx mx nx mx x x ==→→00lim sin sin lim 故选A 30.解:因为1tan lim 230=+→x x b ax x 所以0)(lim 20=+→b ax x ,得0=b ,1tan lim 230=→x x ax x ,所以1=a ,故选B 31.解:1cos 1cos 1lim cos cos lim =+-=+-∞→∞→x x x xx x x x x x ,选A32.解:因为01lim )(lim 00=-=++→→)(x x x e x f ,11sin lim )(lim 00=+=--→→)(x x f x x 所以)(lim 0x f x →不存在,故选D 33.解:41414010])41(lim [)41(lim e x x x x x x =+=+→→,选D 34.解:极限0sin lim cotx lnx - lim )1(lim 200tan 0===+++→→→xx x x x x x ,选C 35.解:110sin 11sin lim 0-=-=⎪⎭⎫ ⎝⎛-→x x x x x ,选A 36.解:kkx x kx x x x 11lim 1sin lim ==∞→∞→选B 37.解:1sin lim 2=-→x x π,选B 38.解:选A 39. 解:选D40.解:06lim 21=++→ax x x ,7-=a ,选B 41.解:2),2(lim tan lim 00=+=-+→→a x xax x x ,选C 42.解:根据无穷小量的定义知:以零为极限的函数是无穷小量,故选C 43.解:因为22lim )2sin(lim 2020=+=+→→xx x x x x x x ,故选C 44.解:因为11ln(lim 0=+→xx x ),故选B 45.解:因为33lim )3tan(lim 2020=+=+→→xx x x x x x x ,故选C 46.解:因为21)1(21lim 1)1(21lim 11=++=-+-→→x x x x xx x ,故选C 47.解:因为021lim 11lim 00==-+++→→xx x x a x a x ,所以1>a ,故选A 48.解:因为02tan lim 20=→x x x ,故选D 49.解:由书中定理知选C50.解:因为01cos 1lim =∞→xx x ,故选C 51.解:因为6ln 13ln 32ln 2lim 232lim 00=+=-+→→x x x x x x x ,选B 52.解:选A53.解:1sin )cos 1(2lim 20=-→xx x ,选C54.解:因为1)(lim =+∞→x f x ,选A 55.解:选A56.解:0sec 1sin lim0=+→xx x ,选C 57.解:选C58.解:,11sin lim 20=+→xx x x x 选D 59.解:根据连续的定义知选B60.C61.解:选A62.解:选A 63.解:)0(2)(lim 0f x f x ≠=+→π, )0(2)(lim 0f x f x =-=-→π,选B64.解:选A65.解:因为21)1)(1(lim 11lim 21=-+-=--++→→x x x x x x x ,21)1)(1(lim 11lim 21-=-+--=----→→x x x x x x x , 选A66.解:因为)0(1)(lim 0f x f x ==+→,又)0(1)(lim 0f x f x ==-→,所以)(x f 在0=x 点连续, 但111lim )0()(lim )0('00=-+=-=--→→-xx x f x f f x x , 011lim )0()(lim )0('200=-+=-=++→→+xx x f x f f x x 所以)(x f 在0=x 点不可导,选C 67.解:选C68.解:因为)0(1)(lim 0f x f x ≠=+→,又)0(1)(lim 0f x f x ≠=-→,所以)(x f 在0=x 点不连续,从而在0=x 处不可导,但当0→x 时,极限存在,选B69.解:选B70.解:313lim )(-=-=∞→nxnx x f x ,选A 71.解:)0(2111lim 0f x x x ≠=-+→,选A 72.解:选C73.解:因为0)11cot (lim )(lim 211=-+=++→→x arc x x f x x , π=-+=--→→)11cot (lim )(lim 211x arc x x f x x 故选B 74.解:选D75.解:因为2lim ,lim 0-=∞=∞→→y y x x ,曲线既有水平渐近线2-=y ,又有垂直渐近线0=x ,选C 76.解:因为11sin lim =+∞→xx x ,所以有水平渐近线1=y ,但无铅直渐近线,选A 77.D 78.C 解:e cos e sin x x y x x '=-,(0)101y '=-=.选C .79.C 解:x x g cos )('=,所以x e x g f cos )]('[=,故选C .80.解:=--→h x f h x f h )()21(lim 000 1)('21)21(21)()21(lim 0000-=-=----→x f h x f h x f h ,选C 81.解:)('2])()()()([lim )()(lim 00a f xa f x a f x a f x a f x x a f x a f x x =---+-+=--+→→,选B 82.解:因为=--+→h h f h f h )2()2(lim 0 +-+→h f h f h )2()2([lim 0 ])2()2(hf h f ---=)2('2f ,故选A 83.解:)0('f 6)3)(2)(1(lim )0()(lim 00-=---=-=→→xx x x x x f x f x x ,故选B 84.解:因为=--→h h f h f h )()(lim 0 +-→h f h f h )0()([lim 0 ])0()(hf h f ---=)0('2f ,故选C 85.解:因为0lim →h )(')()h - x (000x f hx f f -=-,故选B 86.解:因为=--→h f h f h )1()21(lim 0 21)1('222)1()21(lim 0=-=----→f h f h f h )( ,故选D 87.解:222242)('',2)('x x x e x e x f xe x f ---+-=-=,2)0(''-=f 选C88.解:选B 89.解:01282829.....a x a x a x y ++++=,所以!29)29(=y ,选B90.解:)(')()('')()(x f e e f e e f y x f x x f x x ⋅+=+,选C91.解:!100)100()2)(1(lim )0()(lim )0('00=---=-=→→xx x x x x f x f f x x ,选B 92.解:)'('ln x x e y =)ln 1(x x x +=,选D93.解:,1202lim 2)2()(lim )2('22=---=--=++→→+x x x f x f f x x ,1202lim 2)2()(lim )2('22-=---=--=--→→-x x x f x f f x x 选D 94.解:[]]1)2ln([)2('')2ln(--==--x x e y x x x ,选D95.解:选C 96.解:])()(')()('[21,)](ln )([ln 21x g x g x f x f y y e y x g x f -⋅='=-,选A 97.C 98.A 99.B 100.A。
完整版专升本高等数学知识点汇总3篇
完整版专升本高等数学知识点汇总第一篇:导数与微分导数:是用来研究函数在某一点的变化率的一种工具。
其代表的是函数在该点的微小变化与自变数的微小变化之比的极限值。
微分:是由函数的导数所定义的另一种函数。
微分是利用导数对自变数进行微小的变化而得到的函数值的变化量,即函数的微分为函数在某一点的导数与自变数的微小变化值的乘积。
导数的定义公式:$\Large f'(x)= \lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}= \lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$微分的定义公式:$\Large dy=f'(x)dx$常用导数公式:常数函数的导数为0:$\large (\mathrm{C})'=0$幂函数的导数为其幂次减一倍的函数值:$\large(x^n)'=nx^{n-1}$指数函数的导数是其自身的函数值再乘以以e为底数的指数,即:$\large (e^x)'=e^x$常数倍的函数的导数,等于常数倍和该函数的导数之积:$\large (k f(x))'=k f'(x)$和差函数的导数等于其各自的导数之和:$\large(f(x)\pm g(x))'=f'(x)\pm g'(x)$常用微分公式:$\large dy=(\frac{d}{dx}f(x))dx$$\largedy=\frac{d}{dx}(f(x)g(x))dx=f'(x)g(x)+f(x)g'(x)dx$ $\largedy=\frac{d}{dx}(\frac{f(x)}{g(x)})dx=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}dx$高阶导数:如果函数的一阶导数存在,可以对其再进行一次导数运算,得到函数的二阶导数;继续运算,可以得到函数的三、四、五……n阶导数。
高数专升本知识点目录总结
高数专升本知识点目录总结第一章:集合与函数1.1 集合的基本概念1.2 集合的运算1.3 函数的概念1.4 函数的性质1.5 反函数和复合函数第二章:极限与连续2.1 数列的极限2.2 函数的极限2.3 极限的运算法则2.4 无穷大与无穷小2.5 连续的概念2.6 连续函数的运算法则第三章:导数与微分3.1 导数的定义3.2 导数的计算3.3 隐函数和参数方程的导数3.4 高阶导数和导数的应用3.5 微分的概念3.6 微分的近似计算第四章:不定积分4.1 不定积分的性质4.2 不定积分的基本公式4.3 特殊函数的不定积分4.4 不定积分的计算方法4.5 定积分的性质第五章:定积分5.1 定积分的定义5.2 定积分的计算5.3 特殊函数的定积分5.4 定积分的应用第六章:微分方程6.1 微分方程的基本概念6.2 微分方程的解的存在唯一性6.3 一阶微分方程的解法6.4 高阶微分方程的解法6.5 微分方程的应用第七章:多元函数微分学7.1 多元函数的极限7.2 偏导数7.3 全微分7.4 多元函数的极值7.5 条件极值第八章:重积分8.1 二重积分的概念8.2 二重积分的计算8.3 三重积分的概念8.4 三重积分的计算8.5 重积分的应用第九章:曲线曲面积分9.1 曲线积分的概念9.2 第一型曲线积分9.3 第二型曲线积分9.4 曲面积分的概念9.5 曲面积分的计算第十章:无穷级数10.1 级数的概念10.2 收敛级数的性质10.3 收敛级数的判别法10.4 幂级数的收敛半径10.5 函数展开为幂级数第十一章:向量代数11.1 向量的基本概念11.2 向量的线性运算11.3 空间直角坐标系中的向量11.4 点、线、面的向量方程11.5 向量的数量积和向量积第十二章:空间解析几何12.1 空间直角坐标系中的点、直线、平面12.2 空间中的曲线和曲面12.3 空间中的曲线积分12.4 空间中的曲面积分12.5 空间中的曲率和法线方程以上的知识点目录总结包括了高数专升本课程的所有重要知识点,涵盖了集合与函数、极限与连续、导数与微分、不定积分、定积分、微分方程、多元函数微分学、重积分、曲线曲面积分、无穷级数、向量代数以及空间解析几何等内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.第一章极限和连续第一节极限][复习考试要求了解极限的概念(对极限定义等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点1. 处极限存在的充分必要条件。
2.了解极限的有关性质,掌握极限的四则运算法则。
理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较3. (高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
4.熟练掌握用两个重要极限求极限的方法。
第二节函数的连续性][复习考试要求理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函1. 数)在一点处连续性的方法。
2.会求函数的间断点。
3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。
4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。
第二章一元函数微分学第一节导数与微分[复习考试要求] 1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。
2.会求曲线上一点处的切线方程与法线方程。
3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。
4.掌握隐函数的求导法与对数求导法。
会求分段函数的导数。
了解高阶导数的概念。
会求简单函数的高阶导数。
5. 理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。
6. 第二节导数的应用[复习考试要求] 熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。
1. 2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。
会利用函数的单调性证明简单的不等式。
理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。
3. 会判断曲线的凹凸性,会求曲线的拐点。
4. 会求曲线的水平渐近线与铅直渐近线5.第三章一元函数积分学第一节不定积分[复习考试要求] 1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。
2.熟练掌握不定积分的基本公式。
3.熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)。
4.熟练掌握不定积分的分部积分法。
掌握简单有理函数不定积分的计算。
5.第二节定积分及其应用[复习考试要求]1.理解定积分的概念及其几何意义,了解函数可积的条件2.掌握定积分的基本性质3.理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。
4.熟练掌握牛顿—莱布尼茨公式。
5.掌握定积分的换元积分法与分部积分法。
6.理解无穷区间的广义积分的概念,掌握其计算方法。
资料Word.7.掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。
第四章多元函数微分学复习考试要求][ 1.了解多元函数的概念,会求二元函数的定义域。
了解二元函数的几何意义。
2.了解二元函数的极限与连续的概念。
理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法。
掌握二元函数的二阶偏导数的求3. 法,掌握二元函数的全微分的求法。
4.掌握复合函数与隐函数的一阶偏导数的求法。
5.会求二元函数的无条件极值和条件极值。
6.会用二元函数的无条件极值及条件极值解简单的实际问题。
第五章概率论初步[复习考试要求] 1.了解随机现象、随机试验的基本特点;理解基本事件、样本空间、随机事件的概念。
2.掌握事件之间的关系:包含关系、相等关系、互不相容关系及对立关系。
3.理解事件之间并(和)、交(积)、差运算的意义,掌握其运算规律。
4.理解概率的古典型意义,掌握事件概率的基本性质及事件概率的计算。
5.会求事件的条件概率;掌握概率的乘法公式及事件的独立性。
6.了解随机变量的概念及其分布函数。
7.理解离散性随机变量的意义及其概率分布掌握概率分布的计算方法。
8.会求离散性随机变量的数学期望、方差和标准差。
第一章极限和连续第一节极限[复习考试要求]了解极限的概念(对极限定义等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点1. 处极限存在的充分必要条件。
2.了解极限的有关性质,掌握极限的四则运算法则。
理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较3. (高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
熟练掌握用两个重要极限求极限的方法。
4. ][主要知识容(一)数列的极限数列1. 定义按一定顺序排列的无穷多个数x为数列的一般项或通项,例如}{x,数列中每一个数称为数列的项,第n项称为无穷数列,简称数列,记作nn),…(等差数列)5,…,(2n-1(1)1,3,)(等比数列)(2 )(递增数列)(3 ,…,…(震荡数列)1,04)1,0,(都是数列。
它们的一般项分别为。
2n-1),(,它的定义域是全体正n)xn的函数=f(与之对应,所以说数列对于每一个正整数n,都有一个x{x}可看作自变量nnn 1,2,3…一切正整数时,对应的函数值就排列成数列。
整数,当自变量n依次取在几何上,数列{x}可看作数轴上的一个动点,它依次取数轴上的点xx,x,...x。
…1,n,2n32.数列的极限定义对于数列{x},如果当n→∞时,x无限地趋于一个确定的常数A,则称当n趋于无穷大时,数列{x}以常数A nnn为极限,或称数列收敛于A,记作比如:无限的趋向0资料Word.1 ,无限的趋向如果数列没有极限,}没有极限,不是无限地趋于一个确定的常数,称数列{x否则,对于数列{x},如果当n→∞时,x nnn就称数列是发散的。
,…(2n-1),…,比如:1,3,5 ,…1,01,0,趋于无穷n以A为极限,就表示当数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,若数列{x}n趋于0。
x大时,点x可以无限靠近点A,即点与点A之间的距离|x-A|nnn比如:0 无限的趋向1无限的趋向(二)数列极限的性质与运算法则数列极限的性质1. 收敛,则其极限值必定惟一。
(惟一性)若数列{x}定理1.1n收敛,则它必定有界。
{x}定理1.2(有界性)若数列n注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。
比如:1 0,…有界:0,1,0,1, 2.数列极限的存在准则满足以下条件:}定理1.3(两面夹准则)若数列{x nnn,(1)2),则(}单调有界,则它必有极限。
定理1.4若数列{x n数列极限的四则运算定理。
3.1.5 定理1)((2)(3)当时,(三)函数极限的概念1.当x→x时函数f(x)的极限0(1)当x→x时f(x)的极限0定义对于函数y=f(x),如果当x 无限地趋于x时,函数f(x)无限地趋于一个常数A,则称当x→x时,函数f(x)00的极限是A,记作或f(x)→A(当x→x时)0例y=f(x)=2x+1x→1,f(x)→?x<1x→1x>1x→1(2)左极限当x→x时f(x)的左极限0定义对于函数y=f(x),如果当x从x的左边无限地趋于x时,函数f(x)无限地趋于一个常数A,则称当x→x000时,函数f(x)的左极限是A,记作或f(x-0)=A 0(3)右极限当x→x时,f(x)的右极限0定义对于函数y=f(x),如果当x从x的右边无限地趋于x时,函数f(x)无限地趋于一个常数A,则称当x→x000时,函数f(x)的右极限是A,记作或f(x+0)=A 0例子:分段函数,求,资料Word.解:当x从0的左边无限地趋于0时f(x)无限地趋于一个常数1。
我们称当x→0时,f(x)的左极限是1,即有当x从0的右边无限地趋于0时,f(x)无限地趋于一个常数-1。
我们称当x→0时,f(x)的右极限是-1,即有显然,函数的左极限右极限与函数的极限之间有以下关系:定理1.6当x→x时,函数f(x)的极限等于A的必要充分条件是0反之,如果左、右极限都等于A,则必有。
x→1时f(x)→?x≠1x→1f(x)→2对于函数,当x→1时,f(x)的左极限是2,右极限也是2。
2.当x→∞时,函数f(x)的极限(1)当x→∞时,函数f(x)的极限y=f(x)x→∞f(x)→?y=f(x)=1+x→∞f(x)=1+→1定义对于函数y=f(x),如果当x→∞时,f(x)无限地趋于一个常数A,则称当x→∞时,函数f(x)的极限是A,记作或f(x)→A(当x→∞时)(2)当x→+∞时,函数f(x)的极限定义对于函数y=f(x),如果当x→+∞时,f(x)无限地趋于一个常数A,则称当x→+∞时,函数f(x)的极限是A,记作这个定义与数列极限的定义基本上一样,数列极限的定义中n→+∞的n是正整数;而在这个定义中,则要明确写出x→+∞,且其中的x不一定是正整数,而为任意实数。
y=f(x)x→+∞f(x)x→?x→+∞,f(x)=2+→2-x例:函数f(x)=2+e,当x→+∞时,f(x)→?-x解:f(x)=2+e=2+,x→+∞,f(x)=2+→2所以(3)当x→-∞时,函数f(x)的极限定义对于函数y=f(x),如果当x→-∞时,f(x)无限地趋于一个常数A,则称当x→-∞时,f (x)的极限是A,记作x→-∞f(x)→?则f(x)=2+(x<0)x→-∞,-x→+∞f(x)=2+→2例:函数,当x→-∞时,f(x)→?解:当x→-∞时,-x→+∞→2,即有资料Word.由上述x→∞,x→+∞,x→-∞时,函数f(x)极限的定义,不难看出:x→∞时f(x)的极限是A充分必要条件是当x→+∞以及x→-∞时,函数f(x)有相同的极限A。
例如函数,当x→-∞时,f(x)无限地趋于常数1,当x→+∞时,f(x)也无限地趋于同一个常数1,因此称当x→∞时的极限是1,记作其几何意义如图3所示。
f(x)=1+y=arctanx不存在。
但是对函数y=arctanx来讲,因为有即虽然当x→-∞时,f(x)的极限存在,当x→+∞时,f(x)的极限也存在,但这两个极限不相同,我们只能说,当x→∞时,y=arctanx的极限不存在。
x)=1+y=arctanx不存在。
但是对函数y=arctanx来讲,因为有即虽然当x→-∞时,f(x)的极限存在,当x→+∞时,f(x)的极限也存在,但这两个极限不相同,我们只能说,当x→∞时,y=arctanx的极限不存在。
(四)函数极限的定理定理1.7(惟一性定理)如果存在,则极限值必定惟一。
定理1.8(两面夹定理)设函数在点的某个邻域(可除外)满足条件:(1),(2)则有。
注意:上述定理1.7及定理1.8对也成立。
下面我们给出函数极限的四则运算定理定理1.9如果则(1)(2)(3)当时,时,上述运算法则可推广到有限多个函数的代数和及乘积的情形,有以下推论:(1)(2)(3)用极限的运算法则求极限时,必须注意:这些法则要求每个参与运算的函数的极限存在,且求商的极限时,还要求分母的极限不能为零。