重型卡车制动系统-中英文版 2015-10
中英文文献翻译-汽车制动系统
附录附录ABraking system function is to make the car driving in accordance with the requirements of the pilot required even slow down park; They offend car has in various road conditions (including in the slope stability) in car; Make the downhill cars speed to be stable.For car up the role of brake is only in the car and role with the direction of the car driving direction opposite forces, and the size of these forces are random, do not control, so cars must be installed on a series of special equipment to achieve the function.Automobile brake system is to point to to ensure that the car in technology, improve the safe driving car average speed, etc., and the admiration installed in the car brake special brake institutions. In general automobile brake system including crane brake system and parking brake two sets of independent device. One crane brake device is a driver with feet to manipulate, and it said the foot brake. Parking brake device is a pilot with the hand, so it says of the manipulation of the hand brake. The function of the crane brake system is to make the car slow down or running in the shortest distance parking within. And parking brake function is to make had stopped the car on the road all keep still. But, sometimes, in an emergency, two braking device can be used at the same time and increase the effect of auto brake. Some special purpose of cars and often in the mountains cars, long and frequently brake will lead to crane brake system overheating, so in these cars often add all sorts of different types of auxiliary braking equipment, so as to speed up the hill stability.According to the braking energy situation, brake system can also be divided into human brake system, power brake system, and servo brake system, three. Human brake system to the driver's physical strength as braking energy; Power brake system engine power to the transformation of the air pressure or hydraulic braking energy as; And servo brake system is the most human and engine power as a brake energy. In addition, according to the braking energy transfer mode, brake system and can be divided into mechanical and hydraulic, pneumatic type and assolenoid style wait until a few kinds.In the types of brake system, the brake is car brake system to produce stop the traffic movement or movement trend components. Force At present, the kind used by car is friction brakes brake, also is to prevent the braking torque motor sports from fixed components and rotation of the friction between the work surface.附录B制动系统作用是使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。
制动系统外文翻译
附录1BRAKE SYSTEMThe braking system is the most important system in cars. If the brakes fail, the result can be disastrous. Brakes are actually energy conversion devices, which convert the kinetic energy (momentum) of the vehicle into thermal energy (heat).The brake system is composed of the following basic components: the “master cylinder” 、“brake lines” 、“brake hoses” 、“slave cylinders” . “brake disk” “filler block” and so on.The typical brake system consists of disk brakes in front and either disk or drum brakes in the rear connected by a system of tubes and hoses that link the brake at each wheel to the master cylinder .Stepping on the brake pedal, a plunger is actually been pushing against in the master cylinder which forces hydraulic oil (brake fluid) through a series of tubes and hoses to the braking unit at each wheel. Since hydraulic fluid (or any fluid for that matter) cannot be compressed, pushing fluid through a pipe is just like pushing a steel bar through a pipe. Unlike a steel bar, however, fluid can be directed through many twists and turns on its way to its destination, arriving with the exact same motion and pressure that it started with. It is very important that thefluid is pure liquid and that there are no air bubbles in it. Air can compress, which causes a sponginess to the pedal and severely reduced braking efficiency. If air is suspected, then the system must be bled to remove the air. There are “bleeder screws” at each wheel cylinder and caliper for this purpose.With drum brakes, fluid is forced into the wheel cylinder which pushes the brake shoes out so that the friction linings are pressed against the drum which is attached to the wheel, causing the wheel to stop.On a disk brake, the fluid from the master cylinder is forced into a caliper where it presses against a piston. The piston, in-turn, squeezes two brake pads against the disk(rotor)which is attached to the wheel, forcing it to slow down or stop. This process is similar to a bicycle brake where two rubber pads rub against the wheel rim creating friction.In either case, the friction surfaces of the pads on a disk brake system, or the shoes on a drum brake convert the forward motion of the vehicle into heat. Heat is what causes the friction surfaces (linings) of the pads and shoes to eventually wear out and require replacement.Drum BrakesSo if disk brakes are so great, how come we still have cars with The reason is cost. While all vehicles produced for many years have disk brakes on the front, drum brakes are cheaper to produce for the rearwheels. The main reason is the parking brake system. On drum brakes, adding a parking brake is the simple addition of a lever, while on disk brakes, we need a complete mechanism, in some cases, a complete mechanical drum brake assembly inside the disk brake rotor! Parking brakes must be a separate system that does not use hydraulics. It must be totally mechanical, but more on parking brakes laterWheel CylinderThe wheel cylinder consists of a cylinder that has two pistons, one on each side. Each piston has a rubber seal and a shaft that connects the piston with a brake shoe. When brake pressure is applied, the pistons are forced out pushing the shoes into contact with the drum. Wheel cylinders must be rebuilt or replaced if they show signs of leaking.Brake ShoesLike the disk pads, brake shoes consist of a steel shoe with the friction material or lining riveted or bonded to it. Also like disk pads, the linings eventuallywear out and must be replaced. If the linings are allowed to wear through to the bare metal shoe, they will cause severe damage to the brake drum.Backing PlateThe backing plate is what holds everything together. It attaches to the axle and forms a solid surface for the wheel cylinder, brake shoes andassorted hardware. It rarely causes any problemsReading material:Disk BrakeDisk brakes, like many automotive innovations, were originally developed for auto racing, but are now standard equipment on virtually every car made. On most cars, the front brake are of the disc type, and the rear brakes are of the “drum” type. Drum brakes use two semi-circular shoes to press outward against the inner surfaces of a steel drum. Older cars often had drum brakes on all four wheels, and many new have 4-wheel disc brakes.Though disc brakes rely on the same basic principles to slow a vehicle (friction and heat), their design is far superior to that of drum brakes. Because disc brakes can fling off water more easily than drum brakes, they work much better in wet conditions. This is not to say that water does not affect them, it definitely does. If you splash through a puddle and then try to apply the brakes, your brakes may not work at all for a few seconds!Disc brakes also allow better airflow cooling, which also increases their effectiveness. Some high performance disc brakes have drilled or slotted holes through the face of the rotor, which helps to prevent the pads from “glazing” (becoming hardened due to heat). Disc brakes were introduced as standard equipment on most cars in the early seventies.译文制动系统制动系统是汽车中要紧的系统之一。
制动系统--文献翻译
Brake systemAutomobile brake is the most important system in cars.Brake are actually energy conversion ,which convert the kinetic energy of the vehicle into thermal energy .When stepping on the brakes,the drive commands a stopping force ten times as p owerful as the force that puts the cars in motin .The brakeing system can exert thousands of pounds of pressure on each of the four brakes.Each vehicle must have two indenpent brake s ystems for safety.The main brake s ystem which is locate under the hoo d and is directly connect to the brake pedal is hydraulically operated and is called the service brake system.The secondary or parking brake system is mechanically operated.To increase safety ,most modern car brake system are broken into two circuits,with two wheels on each circuit.There is a fluid-filled cylinder,called the master cylinder .It supplies pressure to hoth circuits of the car ,and if a fluid leak occurs in one circuit ,only two of the wheels will lose their brakes and the car will be stopped.Why that pushig down on the brake pedal can slow a car to stop? How dose the car transmits the force from the driver’leg to its wheel? It is the work that brakes did.Layout of Typical Brake system When depressing the breke pedal ,the car transmits the force the drive’s foot to its brakes through a fluid.Since the actual brakes require a much greater force than the drive could apply with his leg ,the car must also multipy the force of the driver’s foot.It dose this in two ways: mechanical advantage a nd hydraulic force multiplication .Leverge The pedal is designed in such a way that it can multiply the force from the driver’s leg several times before any force is even transmitted to the brake fluid.In the figure above ,a force F is being applied t o the left end of the lever.The left end of the lever is twice as long 2X) as the right end (x).Therefore ,on the right end of the lever a force of 2F is available,but it acts through half of the distans (Y) that the left end moves (2Y) .Changing the relat ive lengths of the left and right ends of the lever changes the mulitipliers.Hydraulic Brake Systems The hydraulic system is that force applied at one point is thansmitted to another point using an incompressible fluid , almost alwaays an oil of some so rt .Most brake systems also muitiply the force in the process .The great thing about hydraulic systems is that the pipe connecting the two cylinders can be any length and shape , allowing it to snake through all sorts of things separating the two pistons .The pipe can also fork ,so that one master cylinder can drive more than one salve cylinder if desired .The other neat thing about a hydraulic s ystem is that it makes force multiplicationfairly eas y . In a hydralic system , all you have to do change the si ze of one piston and cylinder to the other .The automobile brake systems are divided into three t ypes of service brake combinations:drum brake , disc brakes and disc-drum combinations.Drum Brake It uses an internal expanding brake shoe with the lining attactet , working within the confines of a rotating brake surface called a brake drum .The brake shoe diameter is expanded to contact the brake surface by a hydraulic cylinder that is referred to as a wheel cylinder . With drum brake , the fluid is forced into the wheel cylinde which pushed the brake shoes out so that the friction lining are pressed againtst the drum , and cause the wheel to stop .Power brakes back in the day , when most cars had drum brakes ,power brakes were not really necessary ---- drum brakes naturally provide some of their own power assist .Since most cars today have disc brakes ,at least on the front wheels , they need power brakes,Without this device ,a lot of drivers would have very tired legs .The brake booster use Vacuum from the engine to multipiy the force that your foot applies to the master cylinder .Disc Brakes Most modern cars have disc brake on the front wheels , and some have disc brakes on all four wheels ,Disc brakes employ a brake disc that rotates with the wheel ,so it is usually referred to as a brake rotor . On a disc brake , the fluid from the master cylinder is forced into a caliper where it presses against a piston ,in—turn , squeezes two brake pads against the disk which is attached to the wheel ,forcing it to slow down or stop .This process is similar to a bicycle brake where two rubber pads rub against the wheel rim creating friction.The most common type of disc brake on modern cars is the single-piston floating caliper.Self-Adjusting brakes The single-piston floating-caliper disc brake is self-centering and self-adjusting .The caliper is able to slide from side to side so it will move to the center each time the brakes are applied .Also,since there is no spring to pull the pads away from the disc ,the pads always stay in light contact with the rotor .This is important because the pistons in the brakes are much larger in diameter than the ones in the master cylinder .If the brake pistons retracted into their cylinders ,it might take several applications of the brake pedal to pump enough fluid into the brake cylinder to engage the brake pads.Self-Adjusting disc brake Older cars had dual or four-pistin fixed-caliper desiger .A piston on each side of the rotor pushed the padon that side .This design has b een largel y eliminated becausesingle-piston designs are cheaper and more reliable .Emergence Brakes In cars with disc brakes on all four wheels ,an emergency brake has to be actuated by a separate mechanism than the primary brakes in case of a total pr imary brake failure .Most cars use a cable to actuate the emergency brake .Some cars with four-wheel disc brakes have a separate drum brake integrated into the hub of the rear wheels .This drum brake is only for the emergency brake sysem ,and it is actuate d only by the cable;it has no hydraulics .Parking Brakes Cars also have the parking brake system .It is used to hold one or more of the vehicle brakes in an applied position for an extended period of time .This brake system must be capable of holding the vehicle on a grade and bringing the vehicie to a stop if the service brakes fail .The parking brake system used on most current model passenger vehicles operates by applying two rear-wheel brakes through a mechanical system of cable and levers.There are air brakes,anti-lock brakes,too .The forme used in heavy trucks and utilizes compressed air as a source of force to stop the truck .The latter used for solving the lockup problem: it can rapidly pump the brakes whenever the system detects a wheel that is locked up .This pumping of the brakes occurs at ten or more times a second ,far fasrer than a human can pump the brake manually.Post-Sale Service and CallbackThe automobile post-sale service means the sale branch provides all the technical service to the customer before or after they buy the car .It may carry on in pre-sale ,or when selling carries on .What but are more is sells after the vehicles ,cerris on the quality guarantee ,the routine maintenance ,the repair ,the technical consultation and the spare parts supply according to the deadline and so on a series of work .In recent years ,the products performances ,product qualities and product prices are almost convergence the same among those famous international automobile compani es .As a result ,the focus of competition in the market focus and transfer to post-sale .Post-sale functions should be enable to use good car products and to create the best returns ,and thus can prove the successful post-sale work .A perfect post-sale service should have two function : to serve both customers and companies themselves .For customers ,the post-sale service could satisfy them and help them solve problems ;for the companies themselves ,it could accurately reflect product utility information ,quality information ,and important social information ,so that the company can make right decisions based on them .Automobile is the most typical product which highl y unifies thesale and the post-sale service .In the intermation market ,one important criterion for automobile sale agent is whethe they have and fulfill post-sale service .When a customer wants to purchase a car ,the first thing he asks is where to repaire the car and whether there are spare-parts .Only getting postive replies ,will he think of other things .Big automobile companies from Eupope ,the US and Japan all recognize that the first car is sold by sales personnel ,but the second car mainly relies on good post-sale service .The automobile is a big product ,so it is very difficult to f ulfill all kinds of post-sale service only depending upon manufaturers .Usually ,a service network undertakes all technical service for manufacturers.In foreign countries ,the post-sale service network is usually linked with sales network .So it can provid e technical service while selling automobile .And the post-sale service network is composed by distributors ,agents and repairing shops .Post-sale service itself belongs to the technical service category.Automobile is hightly technology-intensive ,so the post-sale service includes technical guidance ,technical consultation ,and technical demonstration and so on .Main points which need to be introduced to the society ,dealers ,post-sale service network and customers are completely done by post-sale department .On the other hand ,as a post-sale service man ,one should make sure that you have satisfied your customers when doing your work ,and should make it clear that you want to know if there are any problems with you work ,no matter when they develop .Since you made the project ,you are naturally the best person to service it ,if and when the need arises .Make this clear to your client .Nobody likes callbacks ,and if you’ve done your job well ,you should have few ,if any ,for months or years after the in stallation or delivery.But let the client know that for repairs that result fromordinary use ,you’ll be glad to keep your work looking and working like new---for a modest fee ,of course .If ,however ,problems arise that are clearl y due to shoddy workmanship ,it is incumbent on you to correct them free of charge .This is ,of course ,perhaps the best reason to get it right the first time .There’s no trick to determine whether you are being called back because of a problem due to you workmanship or the clie nt’t use of the unit .Like everything else we’ve covered in this series ,doing right by your customers is just a matter of honesty .Put honesty into practice as part of your selling system and you’ll find that it is the best way to do what is right for you r business ,too .A checklist for maintaining good customer relations:Do anything you can to help the client visualize in advance how the finished project will look .Don’t give ballpark prices unless you already have a well established relationship with the client .Use customers as references ,but only when you are sure they are totally satisfied.Tell customers you want to know if there are problems with your work and that you can provide any routine service .In everything you do ,be honest with your c lient .Automobile callback system originated from the U.S in 1960s .Now it is not new in the U.S.,European countries ,Japan and South Korea .The U.S.has the longest history of automobile callback and the most strict regulations .Until now ,the American gr and has totally recalled more than 200 million vehicles since 1966 ,and more than 24 million tires ,including passenger vehicle ,trucks ,buses ,motorcycles and so on ,And nearly all auto manufactures in the world have recalled cases in the U.S.China’s Fla w Automobile Prosuct Management Stipulation wasimplemented since October1 ,2004 .Automobile is the machine which is assembled by tens of thousands of components and it is not strang to have this kind of flaw or that kind in materials or designs .But most flaws are recessive ,so they will be gradually exposed after using a period of time and people can then realize the flaw’s existence .Sometimes some batch of vehicle components processing ,assembly or material formula change ,and they possibly bring the flaws .The scope of callback s ystem is extremely explicit ,that is the flaw has to be associated with safet y and should appear in the batch .Recall system mainly aims at the systematic and unified flaws which are related with safety and existing in one batch of vehicles .The goal of the automobile recall is to eliminate the flaw and hidden danger ,ensure the public security ,the public benefit and the social economic order .制动系统制动系统是汽车中最重要的系统,它实际上是个能量转换装置,它把动能转化为内能。
重型汽车制动系统-57页
▪ 2.主制动、应急制动与停车制动可以共用 一套制动执行机构。但主制动的操纵系统 必须独立于停车制动的操纵系统。换句话 说,应急制动的操作系统可以和主制动、 也可以和停车制动共用一套操纵系统。
二重型汽车制动系统与全车气路
▪ 典型的制动系统图 ▪ 制动系统的全车气路原理图 ▪ 重型汽车全车气路流程图
6×4型制动系统
4×2型制动系统
6×4型半挂制动系统
2制动系统的全车气路原理图
3重型汽车全车气路流程图
3重型汽车全车气路流程图
三 半挂车制动系统简介
▪ 半挂车制动系统满足的基本要求 ▪ 1、挂车与牵引车制动系统相互协同工作。 ▪ 2、挂车与牵引车制动系统制动作用顺序依次为
1拨叉 2主制动器泵 3驻车制动泵 4推杆 5回位簧 6膜片 7通风管 8推杆 9活塞 10制动簧 11制动释放螺杆 12壳体 a驻车制动部分 b主制动部分
19.闸阀
▪ 事实上,主制动回路只要有6.5巴气压就确保可 靠了,因此上述回路保护阀从开始充气到驻车制 动回路达到行驶要求气压(6.5巴)的充气时间过 长。为了既保证主制动可靠又缩短充气时间,在 (中)后桥主制动回路与驻车制动回路之间又跨接 了一个闸阀。
14.前制动分室
▪ 单膜片制动泵用于前轮回路。 ▪ 制动泵包括一个固定容器,
被橡胶膜片分割为两个室。 一个室与压缩空气系统连接。 另一个室中有一个推杆和配 一个弹簧,推杆一直抵住膜 片。 ▪ 制动踏板踩下时,空气从进 口 1 进入制动泵,膜片 5 受 压,抵住活塞 7 推杆 8。推 杆从泵中伸出来,作用于车 轮制动器机构,推动制动蹄 片压紧制动鼓。释放踏板, 压缩空气被抵压活塞和膜片 的弹簧 7 推出制动泵。推杆 被吸回泵,制动结束。
汽车制动系统外文翻译
Automobile Brake SystemThe braking system is the most important system in cars. If the brakes fail, the result can be disastrous. Brakes are actually energy conversion devices, which convert the kinetic energy (momentum) of the vehicle into thermal energy (heat).When stepping on the brakes, the driver commands a stopping force ten times as powerful as the force that puts the car in motion. The braking system can exert thousands of pounds of pressure on each of the four brakes.Two complete independent braking systems are used on the car. They are the service brake and the parking brake.The service brake acts to slow, stop, or hold the vehicle during normal driving. They are foot-operated by the driver depressing and releasing the brake pedal. The primary purpose of the parking brake is to hold the vehicle stationary while it is unattended. The parking brake is mechanically operated by when a separate parking brake foot pedal or hand lever is set.The brake system is composed of the following basic components: the “master cylinder” which is located under the hood, and is directly connected to the brake pedal, converts driver foot’s mechanical pressure into hydraulic pressure. Steel “brake lines” and flexible “brake hoses” connect the master cylinder to the “slave cylinders” located at each wheel. Brake fluid, specially designed to work in extreme conditions, fills the system. “Shoes” and “pads” are pushed by the slave cylinders to contact the “drums” and “rotors” thus causing drag, which (hopefully) slows th e car.The typical brake system consists of disk brakes in front and either disk or drum brakes in the rear connected by a system of tubes and hoses that link the brake at each wheel to the master cylinder (Figure).Basically, all car brakes are friction brakes. When the driver applies the brake, the control device forces brake shoes, or pads, against the rotating brake drum or disks at wheel. Friction between the shoes or pads and the drums or disks then slows or stops the wheel so that the car is braked.In most modern brake systems (see Figure 15.1), there is afluid-filled cylinder, called master cylinder, which contains two separate sections, there is a piston in each section and both pistons are connected to a brake pedal in the driver’s compartment. W hen the brake is pushed down, brake fluid is sent from the master cylinder to the wheels.At the wheels, the fluid pushes shoes, or pads, against revolving drums or disks. The friction between the stationary shoes, or pads, and the revolving drums or disks slows and stops them. This slows or stops the revolving wheels, which, in turn, slow or stop the car.The brake fluid reservoir is on top of the master cylinder. Most cars today have a transparent reservoir so that you can see the level without opening the cover. The brake fluid level will drop slightly as the brake pads wear. This is a normal condition and no cause for concern. If the level drops noticeably over ashort period of time or goes down to about two thirds full, have your brakes checked as soon as possible. Keep the reservoir covered except for the amount of time you need to fill it and never leave a cam of brake fluid uncovered.Brake fluid must maintain a very high boiling point. Exposure to air will cause the fluid to absorb moisture which will lower that boiling point.The brake fluid travels from the master cylinder to the wheels through a series of steel tubes and reinforced rubber hoses. Rubber hoses are only used in places that require flexibility, such as at the front wheels, which move up and down as well as steer. The rest of the system uses non-corrosive seamless steel tubing with special fittings at all attachment points. If a steel line requires a repair, the best procedure is to replace the compete line. If this is not practical, a line can be repaired using special splice fittings that are made for brake system repair. You must never use copper tubing to repair a brake system. They are dangerous and illegal.Drum brakes, it consists of the brake drum, an expander, pull back springs, a stationary back plate, two shoes with friction linings, and anchor pins. The stationary back plate is secured to the flange of the axle housing or to the steering knuckle. The brake drum is mounted on the wheel hub. There is a clearance between the inner surface of the drum and the shoe lining. To apply brakes, the driver pushes pedal, the expander expands the shoes and presses them to the drum. Friction between the brake drum and the friction linings brakes the wheels and the vehicle stops. To release brakes, the driver release the pedal, the pull back spring retracts the shoes thus permitting free rotation of the wheels.Disk brakes, it has a metal disk instead of a drum. A flat shoe, or disk-brake pad, is located on each side of the disk. The shoes squeeze the rotatin g disk to stop the car. Fluid from the master cylinderforces the pistons to move in, toward the disk. This action pushes the friction pads tightly against the disk. The friction between the shoes and disk slows and stops it. This provides the braking action. Pistons are made of either plastic or metal. There are three general types of disk brakes. They are the floating-caliper type, the fixed-caliper type, and the sliding-caliper type. Floating-caliper and sliding-caliper disk brakes use a single piston. Fixed-caliper disk brakes have either two or four pistons.The brake system assemblies are actuated by mechanical, hydraulic or pneumatic devices. The mechanical leverage is used in the parking brakes fitted in all automobile. When the brake pedal is depressed, the rod pushes the piston of brake master cylinder which presses the fluid. The fluid flows through the pipelines to the power brake unit and then to the wheel cylinder. The fluid pressure expands the cylinder pistons thus pressing the shoes to the drum or disk. If the pedal is released, the piston returns to the initialposition, the pull back springs retract the shoes, the fluid is forced back to the master cylinder and braking ceases.The primary purpose of the parking brake is to hold the vehicle stationary while it is unattended. The parking brake is mechanically operated by the driver when a separate parking braking hand lever is set. The hand brake is normally used when the car has already stopped.A lever is pulled and the rear brakes are approached and locked in the “on” position. The car may now be left without fear of its rolling away. When the driver wants to move the car again, he must press a button before the lever can be released. The hand brake must also be able to stop the car in the event of the foot brake failing.For this reason, it is separate from the foot brake uses cable or rods instead of the hydraulic system.Anti-lock Brake SystemAnti-lock brake systems make braking safer and more convenient, Anti-lock brake systems modulate brake system hydraulic pressure to prevent the brakes from locking and the tires from skidding on slippery pavement or during a panic stop.Anti-lock brake systems have been used on aircraft for years, and some domestic car were offered with an early form of anti-lock braking in late 1990’s. Recently, several automakers have introduced more sophisticated anti-lock system. Investigations in Europe, where anti-lock brakin g systems have been available for a decade, have led one manufacture to state that the number of traffic accidents could be reduced by seven and a half percent if all cars had anti-lock brakes. So some sources predict that all cars will offer anti-lock brakes to improve the safety of the car.Anti-lock systems modulate brake application force several times per second to hold the tires at a controlled amount of slip; all systems accomplish this in basically the same way. One or more speed sensors generate alternating current signal whose frequency increases with the wheel rotational speed. An electronic control unit continuously monitors these signals and if the frequency of a signal drops too rapidly indicating that a wheel is about to lock, the control unit instructs a modulating device to reduce hydraulic pressure to the brake at the affected wheel. When sensor signals indicate the wheel is again rotating normally, the control unit allows increased hydraulic pressure to the brake. This release-apply cycle occursseveral time per second to “pump” the brakes like a driver mig ht but at a much faster rate.In addition to their basic operation, anti-lock systems have two other things in common. First, they do not operate until the brakes are applied with enough force to lock or nearly lock a wheel. At all other times, the system stands ready to function but does not interfere with normal braking. Second, if the anti-lock system fail in any way, the brakes continue to operate without anti-lock capability. A warning light on the instrument panel alerts the driver when a problem exists in the anti-lock system.The current Bosch component Anti-lock Braking System (ABSⅡ), is a second generation design wildly used by European automakers such as BWM, Mercedes-Benz and Porsche. ABSⅡ system consists of : four wheel speed sensor, electronic control unit and modulator assembly.A speed sensor is fitted at each wheel sends signals about wheel rotation to control unit. Each speed sensor consists of a sensor unit and a gear wheel. The front sensor mounts to the steering knuckle and its gear wheel is pressed onto the stub axle that rotates with the wheel. The rear sensor mounts the rear suspension member and its gear wheel is pressed onto the axle. The sensor itself is a winding with a magnetic core. The core creates a magnetic field around the winding, and as the teeth of the gear wheel move through this field, an alternating current is induced in the winding. The control unit monitors the rate o change in this frequency to determine impending brake lockup.The control unit’s function can be divided into three parts: signal processing, logic and safety circuitry. The signal processing sectionis the converter that receives the alternating current signals form the speed sensors and converts them into digital form for the logic section. The logic section then analyzes the digitized signals to calculate any brake pressure changes needed. If impending lockup is sensed, the logic section sends commands to the modulator assembly.Modulator assemblyThe hydraulic modulator assembly regulates pressure to the wheel brakes when it receives commands from the control utuit. The modulator assembly can maintain or reduce pressure over the level it receives from the master cylinder, it also can never apply the brakes by itself. The modulator assembly consists of three high-speed electric solenoid valves, two fluid reservoirs and a turn delivery pump equipped with inlet and outlet check valves. The modulator electrical connector and controlling relays are concealed under a plastic cover of the assembly.Each front wheel is served by electric solenoid valve modulated independently by the control unit. The rear brakes are served by a single solenoid valve and modulated together using the select-low principle. During anti-braking system operation, the control unit cycles the solenoid valves to either hold or release pressure the brake lines. When pressure is released from the brake lines during anti-braking operation, it is routed to a fluid reservoir. There is one reservoir for the front brake circuit. The reservoirs arelow-pressure accumulators that store fluid under slight spring pressure until the return delivery pump can return the fluid through the brake lines to the master cylinder.汽车制动系统制动系统是汽车上最重要的系统。
(完整版)汽车制动系统英文文献及翻译)
Automobile Brake SystemThe braking system is the most important system in cars. If the brakes fail, the result can be disastrous. Brakes are actually energy conversion devices, which convert the kinetic energy (momentum) of the vehicle into thermal energy (heat).When stepping on the brakes, the driver commands a stopping force ten times as powerful as the force that puts the car in motion. The braking system can exert thousands of pounds of pressure on each of the four brakes.Two complete independent braking systems are used on the car. They are the service brake and the parking brake.The service brake acts to slow, stop, or hold the vehicle during normal driving. They are foot-operated by the driver depressing and releasing the brake pedal. The primary purpose of the brake is to hold the vehicle stationary while it is unattended. The parking brake is mechanically operated by when a separate parking brake foot pedal or hand lever is set.The brake system is composed of the following basic components: t he “master cylinder” which is located under the hood, and is directly connected to the brake pedal, converts driver foot’s mechanical pressure into hydraulic pressure. Steel “brake lines” and flexible “brake hoses” connect the master cylinder to the “slave cylinders” located at each wheel. Brake fluid, specially designed to work in extreme conditions, fills the system. “Shoes” and “pads” are pushed by the slave cylinders to contact the “drums” and “rotors” thus causing drag, which (hopefully) slows the car.The typical brake system consists of disk brakes in front and either disk or drum brakes in the rear connected by a system of tubes and hoses that link the brake at each wheel to the master cylinder (Figure).Basically, all car brakes are friction brakes. When the driver applies the brake, the control device forces brake shoes, or pads, against the rotating brake drum or disks at wheel. Friction between the shoes or pads and the drums or disks then slows or stops the wheel so that the car is braked.In most modern brake systems (see Figure 15.1), there is a fluid-filled cylinder, called master cylinder, which contains two separate sections, there is a piston in each section and both pistons are connected to a brake pedal in the driver’s compartment. When th e brake is pushed down, brake fluid is sent from the master cylinder to the wheels.At the wheels, the fluid pushes shoes, or pads, against revolving drums or disks. The friction between the stationary shoes, or pads, and the revolving drums or disks slows and stops them. This slows or stops the revolving wheels, which, in turn, slow or stop the car.The brake fluid reservoir is on top of the master cylinder. Most cars today have a transparent r reservoir so that you can see the level without opening the cover. The brake fluid level will drop slightly as the brake pads wear. This is a normal condition and no cause for concern. If the level drops noticeably over ashort period of time or goes down to about two thirds full, have your brakes checked as soon as possible. Keep the reservoir covered except for the amount of time you need to fill it and never leave a cam of brake fluid uncovered. Brake fluid must maintain a very high boiling point. Exposure to air will cause the fluid to absorb moisture which will lower that boiling point.The brake fluid travels from the master cylinder to the wheels through a series of steel tubes and reinforced rubber hoses. Rubber hoses are only used in places that require flexibility, such asat the front wheels, which move up and down as well as steer. The rest of the system uses non-corrosive seamless steel tubing with special fittings at all attachment points. If a steel line requires a repair, the best procedure is to replace the compete line. If this is not practical, a line can be repaired using special splice fittings that are made for brake system repair. You must never use copper tubing to repair a brake system. They are dangerous and illegal.Drum brakes, it consists of the brake drum, an expander, pull back springs, a stationary back plate, two shoes with friction linings, and anchor pins. The stationary back plate is secured to the flange of the axle housing or to the steering knuckle. The brake drum is mounted on the wheel hub. There is a clearance between the inner surface of the drum and the shoe lining. To apply brakes, the driver pushes pedal, the expander expands the shoes and presses them to the drum. Friction between the brake drum and the friction linings brakes the wheels and the vehicle stops. To release brakes, the driver release the pedal, the pull back spring retracts the shoes thus permitting free rotation of the wheels.Disk brakes, it has a metal disk instead of a drum. A flat shoe, or disk-brake pad, is located on each side of the disk. The shoes squeeze the rotatin g disk to stop the car. Fluid from the master cylinder forces the pistons to move in, toward the disk. This action pushes the friction pads tightly against the disk. The friction between the shoes and disk slows and stops it. This provides the braking action. Pistons are made of either plastic or metal. There are three general types of disk brakes. They are the floating-caliper type, the fixed-caliper type, and the sliding-caliper type. Floating-caliper and sliding-caliper disk brakes use a single piston. Fixed-caliper disk brakes have either two or four pistons.The brake system assemblies are actuated by mechanical, hydraulic or pneumatic devices. The mechanical leverage is used in the parking brakes fitted in all automobile. When the brake pedal is depressed, the rod pushes the piston of brake master cylinder which presses the fluid. The fluid flows through the pipelines to the power brake unit and then to the wheel cylinder. The fluid pressure expands the cylinder pistons thus pressing the shoes to the drum or disk. If the pedal is released, the piston returns to the initialposition, the pull back springs retract the shoes, the fluid is forced back to the master cylinder and braking ceases.The primary purpose of the parking brake is to hold the vehicle stationary while it is unattended. The parking brake is mechanically operated by the driver when a separate parking braking hand lever is set. The hand brake is normally used when the car has already stopped. A lever is pulled and t he rear brakes are approached and locked in the “on” position. The car may now be left without fear of its rolling away. When the driver wants to move the car again, he must press a button before the lever can be released. The hand brake must also be able to stop the car in the event of the foot brake failing. For this reason, it is separate from the foot brake uses cable or rods instead of the hydraulic system.Anti-lock Brake SystemAnti-lock brake systems make braking safer and more convenient, Anti-lock brake systems modulate brake system hydraulic pressure to prevent the brakes from locking and the tires from skidding on slippery pavement or during a panic stop.Anti-lock brake systems have been used on aircraft for years, and some domestic car were offered with an early form of anti-lock braking in late 1990’s. Recently, several automakers have introduced more sophisticated anti-lock system. Investigations in Europe, where anti-lock brakin g systems have been available for a decade, have led one manufacture to state that the number oftraffic accidents could be reduced by seven and a half percent if all cars had anti-lock brakes. So some sources predict that all cars will offer anti-lock brakes to improve the safety of the car.Anti-lock systems modulate brake application force several times per second to hold the tires at a controlled amount of slip; all systems accomplish this in basically the same way. One or more speed sensors generate alternating current signal whose frequency increases with the wheel rotational speed. An electronic control unit continuously monitors these signals and if the frequency of a signal drops too rapidly indicating that a wheel is about to lock, the control unit instructs a modulating device to reduce hydraulic pressure to the brake at the affected wheel. When sensor signals indicate the wheel is again rotating normally, the control unit allows increased hydraulic pressure to the brake. This release-apply cycle occurs several time per second to “pump” the brakes like a dr iver might but at a much faster rate.In addition to their basic operation, anti-lock systems have two other things in common. First, they do not operate until the brakes are applied with enough force to lock or nearly lock a wheel. At all other times, the system stands ready to function but does not interfere with normal braking. Second, if the anti-lock system fail in any way, the brakes continue to operate without anti-lock capability. A warning light on the instrument panel alerts the driver when a problem exists in the anti-lock system.The current Bosch component Anti-lock Braking System (ABSⅡ), is a second generation design wildly used by European automakers such as BWM, Mercedes-Benz and Porsche. ABSⅡsystem consists of : four wheel speed sensor, electronic control unit and modulator assembly.A speed sensor is fitted at each wheel sends signals about wheel rotation to control unit. Each speed sensor consists of a sensor unit and a gear wheel. The front sensor mounts to the steering knuckle and its gear wheel is pressed onto the stub axle that rotates with the wheel. The rear sensor mounts the rear suspension member and its gear wheel is pressed onto the axle. The sensor itself is a winding with a magnetic core. The core creates a magnetic field around the winding, and as the teeth of the gear wheel move through this field, an alternating current is induced in the winding. The control unit monitors the rate o change in this frequency to determine impending brake lockup.The control unit’s functi on can be divided into three parts: signal processing, logic and safety circuitry. The signal processing section is the converter that receives the alternating current signals form the speed sensors and converts them into digital form for the logic section. The logic section then analyzes the digitized signals to calculate any brake pressure changes needed. If impending lockup is sensed, the logic section sends commands to the modulator assembly.Modulator assemblyThe hydraulic modulator assembly regulates pressure to the wheel brakes when it receives commands from the control utuit. The modulator assembly can maintain or reduce pressure over the level it receives from the master cylinder, it also can never apply the brakes by itself. The modulator assembly consists of three high-speed electric solenoid valves, two fluid reservoirs and a turn delivery pump equipped with inlet and outlet check valves. The modulator electrical connector and controlling relays are concealed under a plastic cover of the assembly.Each front wheel is served by electric solenoid valve modulated independently by the control unit. The rear brakes are served by a single solenoid valve and modulated together using the select-low principle. During anti-braking system operation, the control unit cycles the solenoid valves to either hold or release pressure the brake lines. When pressure is released from the brakelines during anti-braking operation, it is routed to a fluid reservoir. There is one reservoir for the front brake circuit. The reservoirs are low-pressure accumulators that store fluid under slight spring pressure until the return delivery pump can return the fluid through the brake lines to the master cylinder.汽车制动系统制动系统是汽车中最重要的系统。
重型卡车供油系统-中英文版 2015-10.
Bracket
Strap Nut
7
燃油箱 Fuel tank
维护及保养 maintenance
油箱内沉积物和水分的排出 排污周期取决于油的类型、品质、使用条件 和工况等。通常情况下排污周期为运行 80,000公里左右。 螺塞拧紧力矩:35±3N*m
Drain water and sediment in the tank
4
目录 Contents
低压燃油系统 Low Pressure Fuel System 燃油箱 Fuel tank 油量传感器 Fuel level sensor 燃油滤清器 Fuel filter 燃油管 Fuel pipe
5
燃油箱 Fuel tank
功能与关键特性
Function & Key points
3
燃油系统 Low Fuel system
示意图和原理图 Sketch Map & Principle Figure
Fuel flow direction as shown in figure: Fuel Tank——Fuel Sensor——Prefilter——ECU cooling plate——Gear Fuel Pump—— Fine(Main)Filter——High Pressure Fuel Pump——Common Rail(CR)——Fuel Injector , Extra fuel from fuel pump overflow valve、DBV of CR and fuel injectors will return into fuel tank through the return lines.
浮子 float
磁块 magnet
(完整版)汽车制动系统英文文献及翻译)
Automobile Brake SystemThe braking system is the most important system in cars. If the brakes fail, the result can be disastrous. Brakes are actually energy conversion devices, which convert the kinetic energy (momentum) of the vehicle into thermal energy (heat).When stepping on the brakes, the driver commands a stopping force ten times as powerful as the force that puts the car in motion. The braking system can exert thousands of pounds of pressure on each of the four brakes.Two complete independent braking systems are used on the car. They are the service brake and the parking brake.The service brake acts to slow, stop, or hold the vehicle during normal driving. They are foot-operated by the driver depressing and releasing the brake pedal. The primary purpose of the brake is to hold the vehicle stationary while it is unattended. The parking brake is mechanically operated by when a separate parking brake foot pedal or hand lever is set.The brake system is composed of the following basic components: t he “master cylinder” which is located under the hood, and is directly connected to the brake pedal, converts driver foot’s mechanical pressure into hydraulic pressure. Steel “brake lines” and flexible “brake hoses” connect the master cylinder to the “slave cylinders” located at each wheel. Brake fluid, specially designed to work in extreme conditions, fills the system. “Shoes” and “pads” are pushed by the slave cylinders to contact the “drums” and “rotors” thus causing drag, which (hopefully) slows the car.The typical brake system consists of disk brakes in front and either disk or drum brakes in the rear connected by a system of tubes and hoses that link the brake at each wheel to the master cylinder (Figure).Basically, all car brakes are friction brakes. When the driver applies the brake, the control device forces brake shoes, or pads, against the rotating brake drum or disks at wheel. Friction between the shoes or pads and the drums or disks then slows or stops the wheel so that the car is braked.In most modern brake systems (see Figure 15.1), there is a fluid-filled cylinder, called master cylinder, which contains two separate sections, there is a piston in each section and both pistons are connected to a brake pedal in the driver’s compartment. When th e brake is pushed down, brake fluid is sent from the master cylinder to the wheels.At the wheels, the fluid pushes shoes, or pads, against revolving drums or disks. The friction between the stationary shoes, or pads, and the revolving drums or disks slows and stops them. This slows or stops the revolving wheels, which, in turn, slow or stop the car.The brake fluid reservoir is on top of the master cylinder. Most cars today have a transparent r reservoir so that you can see the level without opening the cover. The brake fluid level will drop slightly as the brake pads wear. This is a normal condition and no cause for concern. If the level drops noticeably over ashort period of time or goes down to about two thirds full, have your brakes checked as soon as possible. Keep the reservoir covered except for the amount of time you need to fill it and never leave a cam of brake fluid uncovered. Brake fluid must maintain a very high boiling point. Exposure to air will cause the fluid to absorb moisture which will lower that boiling point.The brake fluid travels from the master cylinder to the wheels through a series of steel tubes and reinforced rubber hoses. Rubber hoses are only used in places that require flexibility, such asat the front wheels, which move up and down as well as steer. The rest of the system uses non-corrosive seamless steel tubing with special fittings at all attachment points. If a steel line requires a repair, the best procedure is to replace the compete line. If this is not practical, a line can be repaired using special splice fittings that are made for brake system repair. You must never use copper tubing to repair a brake system. They are dangerous and illegal.Drum brakes, it consists of the brake drum, an expander, pull back springs, a stationary back plate, two shoes with friction linings, and anchor pins. The stationary back plate is secured to the flange of the axle housing or to the steering knuckle. The brake drum is mounted on the wheel hub. There is a clearance between the inner surface of the drum and the shoe lining. To apply brakes, the driver pushes pedal, the expander expands the shoes and presses them to the drum. Friction between the brake drum and the friction linings brakes the wheels and the vehicle stops. To release brakes, the driver release the pedal, the pull back spring retracts the shoes thus permitting free rotation of the wheels.Disk brakes, it has a metal disk instead of a drum. A flat shoe, or disk-brake pad, is located on each side of the disk. The shoes squeeze the rotatin g disk to stop the car. Fluid from the master cylinder forces the pistons to move in, toward the disk. This action pushes the friction pads tightly against the disk. The friction between the shoes and disk slows and stops it. This provides the braking action. Pistons are made of either plastic or metal. There are three general types of disk brakes. They are the floating-caliper type, the fixed-caliper type, and the sliding-caliper type. Floating-caliper and sliding-caliper disk brakes use a single piston. Fixed-caliper disk brakes have either two or four pistons.The brake system assemblies are actuated by mechanical, hydraulic or pneumatic devices. The mechanical leverage is used in the parking brakes fitted in all automobile. When the brake pedal is depressed, the rod pushes the piston of brake master cylinder which presses the fluid. The fluid flows through the pipelines to the power brake unit and then to the wheel cylinder. The fluid pressure expands the cylinder pistons thus pressing the shoes to the drum or disk. If the pedal is released, the piston returns to the initialposition, the pull back springs retract the shoes, the fluid is forced back to the master cylinder and braking ceases.The primary purpose of the parking brake is to hold the vehicle stationary while it is unattended. The parking brake is mechanically operated by the driver when a separate parking braking hand lever is set. The hand brake is normally used when the car has already stopped. A lever is pulled and t he rear brakes are approached and locked in the “on” position. The car may now be left without fear of its rolling away. When the driver wants to move the car again, he must press a button before the lever can be released. The hand brake must also be able to stop the car in the event of the foot brake failing. For this reason, it is separate from the foot brake uses cable or rods instead of the hydraulic system.Anti-lock Brake SystemAnti-lock brake systems make braking safer and more convenient, Anti-lock brake systems modulate brake system hydraulic pressure to prevent the brakes from locking and the tires from skidding on slippery pavement or during a panic stop.Anti-lock brake systems have been used on aircraft for years, and some domestic car were offered with an early form of anti-lock braking in late 1990’s. Recently, several automakers have introduced more sophisticated anti-lock system. Investigations in Europe, where anti-lock brakin g systems have been available for a decade, have led one manufacture to state that the number oftraffic accidents could be reduced by seven and a half percent if all cars had anti-lock brakes. So some sources predict that all cars will offer anti-lock brakes to improve the safety of the car.Anti-lock systems modulate brake application force several times per second to hold the tires at a controlled amount of slip; all systems accomplish this in basically the same way. One or more speed sensors generate alternating current signal whose frequency increases with the wheel rotational speed. An electronic control unit continuously monitors these signals and if the frequency of a signal drops too rapidly indicating that a wheel is about to lock, the control unit instructs a modulating device to reduce hydraulic pressure to the brake at the affected wheel. When sensor signals indicate the wheel is again rotating normally, the control unit allows increased hydraulic pressure to the brake. This release-apply cycle occurs several time per second to “pump” the brakes like a dr iver might but at a much faster rate.In addition to their basic operation, anti-lock systems have two other things in common. First, they do not operate until the brakes are applied with enough force to lock or nearly lock a wheel. At all other times, the system stands ready to function but does not interfere with normal braking. Second, if the anti-lock system fail in any way, the brakes continue to operate without anti-lock capability. A warning light on the instrument panel alerts the driver when a problem exists in the anti-lock system.The current Bosch component Anti-lock Braking System (ABSⅡ), is a second generation design wildly used by European automakers such as BWM, Mercedes-Benz and Porsche. ABSⅡsystem consists of : four wheel speed sensor, electronic control unit and modulator assembly.A speed sensor is fitted at each wheel sends signals about wheel rotation to control unit. Each speed sensor consists of a sensor unit and a gear wheel. The front sensor mounts to the steering knuckle and its gear wheel is pressed onto the stub axle that rotates with the wheel. The rear sensor mounts the rear suspension member and its gear wheel is pressed onto the axle. The sensor itself is a winding with a magnetic core. The core creates a magnetic field around the winding, and as the teeth of the gear wheel move through this field, an alternating current is induced in the winding. The control unit monitors the rate o change in this frequency to determine impending brake lockup.The control unit’s functi on can be divided into three parts: signal processing, logic and safety circuitry. The signal processing section is the converter that receives the alternating current signals form the speed sensors and converts them into digital form for the logic section. The logic section then analyzes the digitized signals to calculate any brake pressure changes needed. If impending lockup is sensed, the logic section sends commands to the modulator assembly.Modulator assemblyThe hydraulic modulator assembly regulates pressure to the wheel brakes when it receives commands from the control utuit. The modulator assembly can maintain or reduce pressure over the level it receives from the master cylinder, it also can never apply the brakes by itself. The modulator assembly consists of three high-speed electric solenoid valves, two fluid reservoirs and a turn delivery pump equipped with inlet and outlet check valves. The modulator electrical connector and controlling relays are concealed under a plastic cover of the assembly.Each front wheel is served by electric solenoid valve modulated independently by the control unit. The rear brakes are served by a single solenoid valve and modulated together using the select-low principle. During anti-braking system operation, the control unit cycles the solenoid valves to either hold or release pressure the brake lines. When pressure is released from the brakelines during anti-braking operation, it is routed to a fluid reservoir. There is one reservoir for the front brake circuit. The reservoirs are low-pressure accumulators that store fluid under slight spring pressure until the return delivery pump can return the fluid through the brake lines to the master cylinder.汽车制动系统制动系统是汽车中最重要的系统。
重型卡车进气系统-中英文版 2015-10
排尘阀 Dust drain valve
排水阀 Water drain valve
5
二、键件特性 Chapter 2、 Key Components Character
旋流管
利用管路中空气流体边流动边旋转离心的作用,使得密度较大的灰尘与密度较小的空气分 离,达到初步净化空气的作用。
Air cleaner
Desert type air cleaner is mainly used in desert sand, dust concentration in the air, dust particles small place, improve the efficiency of filtration and maintenance cycle. Divided into tow kinds: vortex tube and the oil bath type according to the preliminary filter principle. C&C truck using vortex tube desert air cleaner, it has tow housing: upper housing and below housing. Below housing: Prefilter with vortex tubes, separate the large dirt by centrifugal effect ,need regular maintenance; Upper housing: Filter with paper filter, separate the rest of the dust
原理图 principle figure
重型卡车变速箱系统-中英文版2015-11剖析
在自动模式下,控制系统会避免可能引起发动机转速过高或者熄火的换档。 In automatic mode, the control system will avoid possible engine speed is too high or turn off shift. 可以通过前后拨动换档杆来干预换档,比如在复杂行驶状况下,自动模式也可以通过横向拨动换档杆来切换到手动模式 。 You can toggle back and forth by shifting the shift lever to intervene, such as in complex driving situation, the automatic mode can also be switched to manual mode toggle through the horizontal shift lever.
外文翻译---制动系统
外文翻译---制动系统附录1Hydraulic Brake SystemsThe braking system is the most important system in cars. If the brake system fail, the result can be disastrous.When you step on the brake pedal, you expect the vehicle to stop. The brake pedal operates a hydraulic system that is used for two reasons. First, fluid under pressure can be carried to all parts of the vehicle by small hoses or metal lines with out taking up a lot of room or causing routing problems. Second, the hydraulic fluid offers a great mechanical advantage-little foot pressure is required on the pedal, but a great deal of pressure is generated at the wheels. The brake pedal is linked to a piston in the brake master cylinder, which is filled with hydraulic brake fluid. The master cylinder consists of a cylinder containing a small piston and a fluid reservoir.Modern master cylinders are actually two separate cylinders. Such a system is called a dual circuit, because the front cylinder is connected to the front brakes and the rear cylinder to the rear brakes. (Some vehicles are connected diagonally.) The two cylinders are actually separated, allowing for emergency stopping power should one part of the system fail.The entire hydraulic system from the master cylinder to the wheels is full of hydraulic brake fluid. When the brake pedal is depressed, the pistons in the master cylinder are forced to move, exerting tremendous force on the fluid in the lines. The fluid has nowhere to go, and forces the wheel cylinder pistons (drum brakes) or caliper pistons (disc brakes) to exert pressure on the brake shoes or pads. The friction between the brake shoe and wheel drum or the brake pad and rotor (disc) slows the vehicle and eventually stops it.Also attached to the brake pedal is a switch that lights the brake lights as the pedal is depressed. The lights stay on until the brake pedal is released and returns to its normal position.Each wheel cylinder in a drum brake system contains two pistons, one at either end, which push outward in opposite directions. In disc brake systems, the wheel cylinders are part of the caliper (there can be as many as four or as few asone). Whether disc or drum type, all pistons use some type of rubber seal to prevent leakage around the piston, and a rubber dust boot seals the outer ends of the wheel cylinders against dirt and moisture.When the brake pedal is released, a spring pushes the master cylinder pistons back to their normal positions. Check valves in the master cylinder piston allow fluid to flow toward the wheel cylinders or calipers as the piston returns. Then as the brake shoe return springs pull the brake shoes back to the released position, excess fluid returns to the master cylinder through compensating ports, which have been uncovered as the pistons move back. Any fluid that has leaked from the system will also be replaced through the compensating ports.All dual circuit brake systems use a switch to activate a light, warning of brake failure. The switch is located in a valve mounted near the master cylinder.A piston in the valve receives pressure on each end from the front and rear brake circuits. When the pressures are balanced, the piston remains stationary, but when one circuit has a leak, greater pressure during the application of the brakes will force the piston to one side or the other, closing the switch and activating the warning light. The light can also be activated by the ignition switch during engine starting or by the parking brake.Front disc, rear drum brake systems also have a metering valve to prevent the front disc brakes from engaging before the rear brakes have contacted the drums. This ensures that the front brakes will not normally be used alone to stop the vehicle. A proportioning valve is also used to limit pressure to the rear brakes to prevent rear wheel lock-up during hard braking.1. Friction materialsBrake shoes and pads are constructed in a similar manner. The pad or shoe is composed of a metal backing plate and a friction lining. The lining is either bonded (glued) to the metal, or riveted. Generally, riveted linings provide superior performance, but good quality bonded linings are perfectly adequate.Friction materials will vary between manufacturers and type of pad and the material compound may be referred to as: asbestos, organic, semi-metallic, metallic. The difference between these compounds lies in the types and percentages of friction materials used, material binders and performance modifiers.Generally speaking, organic and non-metallic asbestos compound brakesare quiet, easy on rotors and provide good feel. But this comes at the expense of high temperature operation, so they may not be your best choice for heavy duty use or mountain driving. In most cases, these linings will wear somewhat faster than metallic compound pads, so you will usually replace them more often. But, when using these pads, rotors tend to last longer.Semi-metallic or metallic compound brake linings will vary in performance based on the metallic contents of the compound. Again, generally speaking, the higher the metallic content, the better the friction material will resist heat. This makes them more appropriate for heavy duty applications, but at the expense of braking performance before the pad reaches operating temperature. The first few applications on a cold morning may not give strong braking. Also, metallic and semi-metallic are more likely to squeal. In most cases, metallic compounds last longer than non-metallic pads, but they tend to cause more wear on the rotors. If you use metallic pads, expect to replace the rotors more often.When deciding what type of brake lining is right for you, keep in mind that today's modern cars have brake materials which are matched to the expected vehicle's performance capabilities. Changing the material from OEM specification could adversely affect brake feel or responsiveness. Before changing the brake materials, talk to your dealer or parts supplier to help decide what is most appropriate for your application. Remember that heavy use applications such as towing, stop and go driving, driving down mountain roads, and racing may require a change to a higher performance material.Some more exotic materials are also used in brake linings, among which are Kevlar and carbon compounds. These materials have the capability of extremely good performance for towing, mountain driving or racing. Wear characteristics can be similar to either the metallic or the non-metallic linings, depending on the product you buy. Most race applications tend to wear like metallic linings, while many of the street applications are more like the non-metallic.2. Brake fluidOn a disk brake, the fluid from the master cylinder is forced into a caliper where it presses against a piston. The piston, in-turn, squeezes two brake pads against the disk(rotor)which is attached to the wheel, forcing it to slow down or stop. This process is similar to a bicycle brake where two rubber pads rub against the wheel rim creating friction.With drum brakes, fluid is forced into the wheel cylinder which pushes the brake shoes out so that the friction linings are pressed against the drum which is attached to the wheel, causing the wheel to stop.In either case, the friction surfaces of the pads on a disk brake system, or the shoes on a drum brake convert the forward motion of the vehicle into heat. Heat is what causes the friction surfaces (linings) of the pads and shoes to eventually wear out and require replacement.Brake fluid is a special oil that has specific properties. It is designed to withstand cold temperatures without thickening as well as very high temperatures without boiling.(If the brake fluid should boil, it will cause you to have a spongy pedal and the car will be hard to stop). Figure shows a brake hydraulic system.The brake fluid reservoir is on top of the master cylinder. Most cars today have a transparent r reservoir so that you can see the level without opening the cover. The brake fluid level will drop slightly as the brake pads wear. This is a normal condition and no cause for concern. If the level drops noticeably over a short period of time or goes down to about two thirds full, have your brakes checked as soon as possible. Keep the reservoir covered except for the amount of time you need to fill it and never leave a cam of brake fluid uncovered. Brake fluid must maintain a very high boiling point. Exposure to air will cause the fluid to absorb moisture which will lower that boiling point.The brake fluid travels from the master cylinder to the wheels through a series of steel tubes and reinforced rubber hoses. Rubber hoses are only used in places that require flexibility, such as at the front wheels, which move up and down as well as steer. The rest of the system uses non-corrosive seamless steel tubing with special fittings at all attachment points. If a steel line requires a repair, the best procedure is to replace the compete line. If this is not practical, a line can be repaired using special splice fittings that are made for brake system repair. You must never use copper tubing to repair a brake system. They are dangerous and illegal.制动系统制动系统是汽车中最重要的系统。
重型卡车ECAS操作说明-中英文版 2015-11
9
感谢您的参与! Thank you for your attention !
10
training conducted. After the calibration process
parameters need to be sure that the system is reliable Check.
8
Introduction of Solenoid Valve
电磁阀 Solenoid Valve 电磁阀安装在车架上。控制气囊的充气、保压和放气 Solenoid valve mounted on the frame. Control inflator, pressure and deflation 气路连接 Gas connections 11——接储气筒 Connection gas storage holder 22——接气囊 Connection balloon 23——接气囊 Connection balloon
Replace height sensor
7
Introduction of Height Sensor
更换时传感器壳体和可转动翼上分别有两个和一个小孔, 转动翼上小孔的方向需与原车装配完全一致。转动翼小孔与
传感器壳体小孔完全对齐时,高度传感器处于“0”位。
5
Introduction of RCU
记忆高度储存: Height storage memory 将车辆调整到某一需要的高度后,按下“STOP”停止键,同时按下“M1”或“M2” 记忆高度键,则车辆当前的高度将会储存为相应的记忆高度。
Will be adjusted to the height of a vehicle that you need, Press the "STOP" button
重型卡车SCR排放系统-中英文版 2015-10
12 发 动 机 发动机废气流向箭头 Exhaust flow arrow
12.Engine 13.Coolant control valve 14.Coolant in hose 15.Coolant out hose 16.Coolant return hose 7.Urea sensor 17.Exhaust pipe 18.Exhaust Gas processor 19.Exhaust tail pipe 20.Catalyst input T-sensor 21.Catalyst output T-sensor 22.NOx sensor 23.Dosing control unit 24.Engine control unit 25.Heating relay 26.Battery 27.Ignition switch
排气装置 Exhaust catalytic reduction device 发动机 Engine
添蓝供给装置 Adblue supply device
系统控制装置 System control device 系统加热装置 system heating device
空气供给装置 Air supply device
3
目录 Contents
第一部分 Chapter 1 第二部分 第三部分 Chapter 3 第四部分 Chapter 4 第五部分
概述 Overview 系统构造与原理 主要部件功用及工作原理 Functions and Operating Principle of Main Components 使用注意事项 Use attention 故障诊断及排除
催化消声器 Exhaust gas processor
重型卡车进气系统-中英文版 2015-10
2
一、 进气系统简介 One、 Air Intake System Introduction
空气入口 Air inlet
预过滤旋流管组 Pre-Cleaning Tubes ( vortex tubes)
排水阀 Water drain valve
波纹管 Bellow
空气滤清器 Air cleaner
进气系统主要组成如下: 高位引气管总成/空气滤清器总成 减震波纹软管/塑料导向管路 进气塑料管/进气软管 压力报警传感器
Main components of air intake system: High inlet pipe & Air cleaner Bellow & Plastic guide pipe Plastic pipe & Rubber hose Pressure monitor sem: Provide enough dry & clean air to engine. Main Parameters: Indicator Alert Restriction: Engine can afford limited air inlet restriction while running at rated power, and we set the max. value as alert point for indicator, normally it’s 6.25 kPa for HD truck. Initial Restriction: The restriction of a new and fresh air intake system while running at ratted flow. Dust Holding Capacity: The total dust holding capacity when indicator alert. It will impact the service interval.
(完整版)汽车制动系统-英文文献及翻译
Brake systemsWe all know that pushing down on the brake pedal slows a car to a stop. But how does this happen? How does your car transmit the force from your leg to its wheels? How does it multiply the force so that it is enough to stop something as big as a car?Brake Image GalleryLayout of typical brake system. See more brake images.When you depress your brake pedal, your car transmits the force from your foot to its brakes through a fluid. Since the actual brakes require a much greater force than you could apply with your leg, your car must also multiply the force of your foot. It does this in two ways:•Mechanical advantage (leverage)•Hydraulic force multiplicationThe brakes transmit the force to the tires using friction, and the tires transmit that force to the road using friction also. Before we begin our discussion on the components of the brake system, we'll cover these three principles:•Leverage•Hydraulics•FrictionLeverage and HydraulicsIn the figure below, a force F is being applied to the left end of the lever. The left end of the lever is twice as long (2X) as the right end (X). Therefore, on the right end of the lever a force of 2F is available, but it acts through half of the distance (Y) that the left end moves (2Y). Changing the relative lengths of the left and right ends of the lever changes the multipliers.The pedal is designed in such a way that it can multiply the force from yourleg several times before any force is even transmitted to the brake fluid.The basic idea behind any hydraulic system is very simple: Force applied at one point is transmitted to another point using an incompressible fluid, almost always an oil of some sort. Most brake systems also multiply the force in the process. Here you can see the simplest possible hydraulic system:Your browser does not support JavaScript or it is disabled.Simple hydraulic systemIn the figure above, two pistons (shown in red) are fit into two glass cylinders filled with oil (shown in light blue) and connected to one another with an oil-filled pipe. If youapply a downward force to one piston (the left one, in this drawing), then the force is transmitted to the second piston through the oil in the pipe. Since oil is incompressible, the efficiency is very good -- almost all of the applied force appears at the second piston. The great thing about hydraulic systems is that the pipe connecting the two cylinders can be any length and shape, allowing it to snake through all sorts of things separating the twopistons. The pipe can also fork, so that one master cylinder can drive more than one slave cylinder if desired, as shown in here:Your browser does not support JavaScript or it is disabled.Master cylinder with two slavesThe other neat thing about a hydraulic system is that it makes force multiplication (or division) fairly easy. If you have read How a Block and Tackle Works or How Gear Ratios Work, then you know that trading force for distance is very common in mechanical systems. In a hydraulic system, all you have to do is change the size of one piston and cylinder relative to the other, as shown here:Your browser does not support JavaScript or it is disabled.Hydraulic multiplicationTo determine the multiplication factor in the figure above, start by looking at the size of the pistons. Assume that the piston on the left is 2 inches (5.08 cm) in diameter (1-inch / 2.54 cm radius), while the piston on the right is 6 inches (15.24 cm) in diameter (3-inch / 7.62 cm radius). The area of the two pistons is Pi * r2. The area of the left piston is therefore 3.14, while the area of the piston on the right is 28.26. The piston on the right is nine times larger than the piston on the left. This means that any force applied to theleft-hand piston will come out nine times greater on the right-hand piston. So, if you apply a 100-pound downward force to the left piston, a 900-pound upward force will appear on the right. The only catch is that you will have to depress the left piston 9 inches (22.86 cm) to raise the right piston 1 inch (2.54 cm).A Simple Brake SystemBefore we get into all the parts of an actual car brake system, let's look at a simplified system:Your browser does not support JavaScript or it is disabled.A simple brake systemYou can see that the distance from the pedal to the pivot is four times the distance from the cylinder to the pivot, so the force at the pedal will be increased by a factor of four before it is transmitted to the cylinder.You can also see that the diameter of the brake cylinder is three times the diameter of the pedal cylinder. This further multiplies the force by nine. All together, this system increases the force of your foot by a factor of 36. If you put 10 pounds of force on the pedal, 360 pounds (162 kg) will be generated at the wheel squeezing the brake pads.There are a couple of problems with this simple system. What if we have a leak? If it is a slow leak, eventually there will not be enough fluid left to fill the brake cylinder, and the brakes will not function. If it is a major leak, then the first time you apply the brakes all of the fluid will squirt out the leak and you will have complete brake failure.Drum brakes work on the same principle as disc brakes: Shoes press against a spinning surface. In this system, that surface is called a drum.Figure 1. Location of drum brakes. See more drum brakepictures.Many cars have drum brakes on the rear wheels and disc brakes on the front. Drum brakes have more parts than disc brakes and are harder to service, but they are less expensive to manufacture, and they easily incorporate an emergency brake mechanism.In this edition of HowStuffWorks, we will learn exactly how a drum brake system works, examine the emergency brake setup and find out what kind of servicing drum brakes need.Figure 2. Drum brake with drum in placeFigure 3. Drum brake without drum in placeLet's start with the basics.The Drum BrakeThe drum brake may look complicated, and it can be pretty intimidating when you open one up. Let's break it down and explain what each piece does.Figure 4. Parts of a drum brakeLike the disc brake, the drum brake has two brake shoes and a piston. But the drum brake also has an adjuster mechanism, an emergency brake mechanism and lots of springs.First, the basics: Figure 5 shows only the parts that provide stopping power.Your browser does not support JavaScript or it is disabled.Figure 5. Drum brake in operationWhen you hit the brake pedal, the piston pushes the brake shoes against the drum. That's pretty straightforward, but why do we need all of those springs?This is where it gets a little more complicated. Many drum brakes are self-actuating. Figure 5 shows that as the brake shoes contact the drum, there is a kind of wedging action, which has the effect of pressing the shoes into the drum with more force.The extra braking force provided by the wedging action allows drum brakes to use a smaller piston than disc brakes. But, because of the wedging action, the shoes must be pulled away from the drum when the brakes are released. This is the reason for some of the springs. Other springs help hold the brake shoes in place and return the adjuster arm after it actuates.Brake AdjusterFor the drum brakes to function correctly, the brake shoes must remain close to the drum without touching it. If they get too far away from the drum (as the shoes wear down, for instance), the piston will require more fluid to travel that distance, and your brake pedal will sink closer to the floor when you apply the brakes. This is why most drum brakes have an automatic adjuster.Figure 6. Adjuster mechanismNow let's add in the parts of the adjuster mechanism. The adjuster uses theself-actuation principle we discussed above.Your browser does not support JavaScript or it is disabled.Figure 7. Drum brake adjuster in operationIn Figure 7, you can see that as the pad wears down, more space will form between the shoe and the drum. Each time the car stops while in reverse, the shoe is pulled tight against the drum. When the gap gets big enough, the adjusting lever rocks enough to advance the adjuster gear by one tooth. The adjuster has threads on it, like a bolt, so that it unscrews a little bit when it turns, lengthening to fill in the gap. When the brake shoes wear a little more, the adjuster can advance again, so it always keeps the shoes close to the drum.Some cars have an adjuster that is actuated when the emergency brake is applied. This type of adjuster can come out of adjustment if the emergency brake is not used forlong periods of time. So if you have this type of adjuster, you should apply your emergency brake at least once a week.ServicingThe most common service required for drum brakes is changing the brake shoes. Some drum brakes provide an inspection hole on the back side, where you can see how much material is left on the shoe. Brake shoes should be replaced when the friction material has worn down to within 1/32 inch (0.8 mm) of the rivets. If the friction material is bonded to the backing plate (no rivets), then the shoes should be replaced when they have only 1/16 inch (1.6 mm) of material left.Photo courtesy of a local AutoZone storeFigure 9. Brake shoeJust as in disc brakes, deep scores sometimes get worn into brake drums. If aworn-out brake shoe is used for too long, the rivets that hold the friction material to the backing can wear grooves into the drum. A badly scored drum can sometimes be repaired by refinishing. Where disc brakes have a minimum allowable thickness, drum brakes have a maximum allowable diameter. Since the contact surface is the inside of the drum, as you remove material from the drum brake the diameter gets bigger.Figure 10. Brake drum制动系统众所周知,踩下制动踏板可以使汽车减速至停止。
沃尔沃重型汽车培训教材 制动系统 (法汉对照)
GROUPE DE FONCTIONS 5功能组5FREINS制动Historique历史Le système de freinage qui était, à l'origine, un système entièrement mécanique, estdésormais basé sur une interaction élaborée entre composants électroniques, pneumatiques et mécaniques. Quatre éléments permettent le ralentissement, l'arrêt ou le stationnement d'un véhicule:制动系统初始时期,是完全机械式的。
后来,结合了电子元件、气动及机械形式。
四个部分实现车辆减速、停车或驻车。
∙Frein à pied∙脚制动∙Frein de stationnement∙驻车制动∙Frein moteur∙发动机制动∙Ralentisseur∙缓速器Freins à commande intégralement mécanique机械控制制动À l'origine, le système de freinage d'un camion était intégralement mécanique. La force était transférée de la pédale de frein aux segments de frein à l'aide de câbles et de leviers. Dans la plupart des cas, seules les roues motrices étaient équipées de freins. Par la suite, des freinsfurent installés pour les quatre roues.起初,卡车的制动系统全部是机械式的。
重型汽车制动系统-57页(1)(57页)
空气干燥器 注意事项:
空气干燥器(16)上的干燥筒要定 时 更 换 , 以免干燥效果不良。
一般以检查离干燥器最远的贮气 筒是否出现积水来及时更换干燥筒 。
3.反冲储气筒
· 充气阶段 压缩机(1)处的
空气被压到空气干 燥器的进口(2)空 气穿过容器(3)中 的干燥剂。干燥剂 包括多孔球、沸石, 可以去除空气中的 水汽。干燥后的空 气受压穿过出口 4 ,到达干燥罐 5 ,然后进入主 罐(6)。
1、供气管路
半挂车制动气路布置图解 牵引车通过②供气管路,经过⑤紧急继动阀向⑥储气筒供气,同时通过⑧手动阀向驻车制动分泵(制动分泵驻车气室部
分)供气。当储气筒超过4bar之后,驻车制动解除。 2、控制管路 当踩下刹车踏板时,①控制管路内过气,顶开⑤紧急继动阀,这时⑥储气筒开始向各个轴的④制动分泵供
能。
充气 卡车制动系统中没有空气且发动机起动时,安全阀按下面的顺序调节气罐的充气。首先充气的是两个主制动回路中的一个,
然后是驻车制动回路和其它设备回路。最后是剩下的那个主制动回路。
1= 进口 21= 前轮回路 23= 其它设备 22=驱动轮回路 24=驻车制动回路
充气
布置图显示四个阀并排排列。卡车制动系统中没有空气且发动机起动时的功能描述。
2.空气干燥器工作原理
2.干燥器
· 为了彻底清除制动回路的水份,特别是在 湿气较大的环境中运行的车辆,清除气路 内的水份,确保制动系统的可靠是至关重 要的。另外安装空气悬挂的车辆,空气弹 簧对湿度较为敏感。因此,重型汽车制动 系统普遍采用了空气干燥器。
· 空气干燥器内装有微孔结构的铝硅酸盐干 燥剂,当带有水气的空气经过干燥时,空 气内的水份即被干燥剂所吸收,干燥剂的 使用寿命为两年。
重型卡车制动系统-中英文版 2015-10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
踏板 Pedal
行车制动操纵装置 Service Brake Operating Device 制动气室 Brake Chamber
制动器 Brake
行车制动执行装置 Service Brake Execution Device
6
当需要车辆减速或遇红绿灯等其余路况需要临时停车时,驾驶员踩下制动踏板,顶杆下移,推动制动总阀8的顶杆座下移 ,消除排气间隙,制动总阀排气阀门关闭,进气阀门被打开,这时由后桥储气筒4过来的控制气流经制动总阀上腔流向后 继动阀10的控制口,通过气流压力打开继动阀进气阀门,这时由后桥储气筒过来的供能气流便经继动阀进出气口,到后 桥行车气室14,从而实现中后桥的行车制动;
前继动阀 挂车连接头及管路 Front Relay 继动阀 Trailer Connector and Valve Relay Pipeline 空压机 Valve 储气筒 Air 变速箱+缓速 Air Reservoir Compressor 器 Transmission and Retarder 挂车阀 Trailer Valve
Chassis Department of C&C Trucks Co., Ltd. Research Institute 2015年9月 September, 2015
0
目录 Contents
第一部分 Chapter 1
概述 Overview
第二部分
Chapter 2 第三部分 Chapter 3 第四部分 Chapter 4 第五部分 Chapter 5 第六部分
制动系统构造
Brake System Construction 制动系统工作原理 Operating Principle of Brake System 制动系统主要部件功用及工作原理 Functions and Operating Principle of Main Brake System Components 制动系统装配调校注意事项 Precaution for Assembling and Adjustment of Brake System 制动系统故障及排除
执行元件部分 Executive Component Part
控制元件部分 Control Component Part
供能元件部分 Supply Component Part
4
三、制动系统工作原理 Chapter 3 Operating Principle of Brake System
1. 联合卡车制动系统工作原理详见下图(以4×2牵引车为例) 1. See the following drawing for the operating principle of C&C trucks brake system (take 6×4 tractor for example)
从图中可以看出,整个制动气路大致可分为:行车制动、驻车制动、辅助制动及其余辅助用气等。下面将分别对这几种制 动方式的工作原理作以详细介绍。 As seen from the drawing, the whole brake air circuit is roughly divided into: service brake, parking brake, supp lemental brake, other auxiliary air and ect.. Next, the operating principles of these braking methods will be desc ribed in detail. 5
a.行车制动:Service Brake: 联合卡车行车制动采用双回路气压制动系统。即前行车制动回路和后行车制动回路,二者彼此独立。见下图线条加粗 部分,其中红色代表前行车制动回路,绿色代表后行车制动回路。 The C&C truck service brake uses the double-circuit pneumatic brake system. It includes the front service b rake circuit and the rear service brake circuit, which are independent. As shown by the bold lines in the dra wing, the red represents the front service brake circuit, the green represents the rear service brake circuit.
2
二、制动系统构造 Chapter 2 Brake System Construction
排气制动蝶阀
Exhaust Brake Butterfly Valve
制动大管束及散管 Big Brake Pipe Bundle and Separate Pipes
驻车手阀+挂车手阀 Parking Brake + Trailer Parking Brake
多通接头 Multi-way Connector 制动硬管 Brake Hard Pipe 前ABS电磁阀 储气筒模块 Front ABS Air Reservoir 限压阀 Solenoid Valve Module Relief Valve
挂车ABS电磁阀 ABS For Trailer 干燥器 Dryer 四回路 Fourcirve
后ABS电磁阀 Rear ABS Solenoid Valve
3
联合卡车制动系统整车布置简图 Complete Vehicle Layout of C&C Trucks Brake System 整车从布置上大致可分为:供能、控制和执行元件三个部分。 The complete vehicle can be roughly divided into three parts according to its arrangement: supply, control and ex ecutive components. 供能元件即从空压机至干燥器再到四回路、储气筒等的相关元件及管路; Supply components contain the air compressor, dryer, four-circuit, air reservoir and other related components and pipelines; 控制元件即踏板、脚阀、手阀、继动阀、差动阀,及连接各控制阀之间的若干管路; Control components contain the pedal, service brake, parking brake, relay valve, differential valve and the several pipes between the control valves; 执行元件即气路终端制动器及相关执行气路。 Executive components are the brakes at the end of the air circuits and the relevant executive air circuits.
适配阀 Adaptation Valve 后桥盘式制动器及制动气室 Rear Axle Disc Brake and Brake Chamber 储气筒 Air Reservoir
制动踏板+脚阀 Brake Pedal + Service Brake 前盘式制动器+气室 Front Disc Brake + Air Chamber
When it is necessary to decelerate the vehicle or stop it temporarily as encountering the traffic light or other ro ad conditions, the driver depresses the brake pedal, the push rod is moved downward, the push rod seat of the brake valve 8 is pushed downward to eliminate the exhaust clearance, the exhaust valve of the brake valve is cl osed and the intake valve is opened. At this time, the controlled air flow from the rear axle air reservoir 4 passe s through the upper chamber on the brake valve, flowing into the control port of the rear relay valve 10, the inta ke valve of the relay valve is opened by the air flow pressure, then the supply air flow from the rear axle air rese rvoir passes through the inlet and the outlet of the relay valve, flowing into the rear axle service brake chamber 14, it achieves the service braking of the center rear axle. 与此同时,由前桥储气筒5过来的控制气流经制动总阀下腔流向前继动阀10的控制口,通过气流压力打开继动阀进气阀门 ,这时由后桥储气筒过来的供能气流便经继动阀进出气口,到前桥制动气室13,实现前桥行车制动。 At the same time ,the controlled air flow from the front axle air reservoir 5 passes through the lower chamber on the brake valve, flowing into the control port of the front relay valve 10, the intake valve of the relay valve is opened by the air flow pressure, then the supply air flow from the front axle air reservoir passes through the inl et and the outlet of the relay valve , flowing into the front axle brake chamber 13, achieving the service braking of the front axle. 对于牵引车,由制动总阀过来的行车制动控制气流同时流向挂车阀17控制口,控制挂车制动。 For the tractors, the service brake controlled air flow from the brake valve flows into the control port of the trail er valve 17 to control the trailer brake.