波动理论基础.
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原来的平衡位置而进入运动状态。由于质点间相对位置的 变化,使得受扰动质点同其周围质点之间增加了附加的弹 性力,从而与受扰动质点相邻的质点也必然受到影响而进 入运动状态。这种作用依次传递下去,便形成一个由扰动 源开始的波动现象。这种扰动借质点间的弹性力而逐渐传 播的过程,称为弹性波。如果介质是无限大的,扰动将会 随时间的发展一直传播出去。然而一个实际的物体总是有 边界的,当扰动到达边界时,将要和边界发生相互作用而 产生反射。对一个有界的物体,由于扰动在其边界上来回 反射,从而使得整个物体就会呈现出在其平衡位置附近的 一种周期性的振荡现象,称之为弹性体的振动。弹性波和 弹性体的振动之间存在着本质的内在联系。这两种现象的 形成有着相同的机制,它们都是由介质的弹性和
又若令:
(1-5)
式中c是应力波传播速度,或称为纵波波速。那么方程(1-4)又可以写为: (1-6)
根据行波理论,其波动解为二个反向行波的叠加, 通解形式为:
(1-7)
f和g分别代表了沿x轴正向传播的下行波和沿x轴负向 传播的上行波,其传播速度(波速)均为C,此通解也称 D‘Alembert通解,高应变动力试桩和低应变反射波法 即是对一维波动方程进行波动解。 根据振动理论,采用分离变量法,令u(x,t)=X(x)U(t),则可解得:
假定振动在杆件内是沿轴向进行传播的,并且同一横 截面上的质点振动状态是相同的,既振动时横截面的平面 状态保持不变。现从杆件中取一长为Δx的微元,两端截面 的坐标分别为x和x+ Δx,设A和ρ分别为杆件的横截面面 积和密度,则单元的质量为ρA Δx ,令u为单元的位移,那 么根据牛顿第二定律有:
(1-1)
建立波动方程需满足下列基本假设条件 1.弹性限度内的振动。振动时,各质点的应力、应变和位移的关系均 服从虎克定律。对于低应变反射波法动力测桩来说,由于锤击力 很小且可以控制,因此被振动可以满足假设要求。 2.各向同性的均匀或分段均勾材料。混凝土桩的拉伸特性与压缩特 性存在明显差异,而且是非均匀性的,不过在微米级弹性振动范围 内,可以将其近似看成满足这一假设要求,可以忽略这种差异。 3.纵向振动时,横截面应为平面,且截面上的轴向应力应力是均匀分布 的,其它应力分量均为零。 4.由于纵波长度相比桩横截面尺寸要大的多,故不考虑横向位移对纵 向运动的影响。
(1 -8 )
式中ω为杆纵向振动的固有圆频率,常数c1,c2由初始条 件决定,c3,c4由边界条件决定.下面研究两种与实际基桩情 形相近的边界条件 (1)两端自由的杆 此时杆的两端受力为零,因而应变为零,即:
代入(1-8)式得:
(1-9)
(1-10) 式中Δf为相邻两阶固有频率之差,且Δf =f1,即相邻两阶固有 频率之差与一阶固有频率相等。 (2)一端自由,一端固定的杆
惯性两个基本性质所决定的。弹性性质有使发生了位移的 质点回复到原来平衡位置的作用,而运动质点的惯性有使 当前的运动状态持续下去的作用,或者说弹性是贮存势能 的要素,惯性是维持动能的表征。正是由于这两种特性的 存在,系统的能量才能得以保持和传递,外部的扰动才能 激发起弹性被和弹性体的振动。弹性波的传播和弹性体的 振动,实际上可以看作是同一物理问题的不同表现形式。
代入式(1-8)有
(1-11)
得到公式(1-8),Δf仍为相邻两阶固有频率之差,但Δf≠f1。
三、弹性波的反射与透射
低应变反射波法以一维波动理论为基础,把桩作为连 续均匀的弹性杆件,研究桩顶在动态力作用下弹性杆的纵 向波动及桩土体系的动态响应。 自然状态下,桩顶受冲击后,将产生向下传播的应力 波(入射波),在波阻抗差异界面处(如缩径、夹异物、混 凝土离析或扩径等),部分应力波产生反射向上传播,部 分应力波产生透射继续向下传播至桩端,在桩端处又产生 反射向上传播。 由安装在桩顶的加速度或速度传感器接收初始入射信 号及各种反射信号(动态响应信号),并经基桩动测仪进行 信号放大等处理后得到速度时程曲线。由(1-5)式,杆中 质点位移由上下行波两部分组成,在顶端受瞬时冲击后产 生的初始下行波中存在压应力σ1,在σ1 的作用下桩身 产生运动,其质点运动速度VI(m/S)取决于应力大小和材 料特性。
二、波动方程 目前,低应变反射波法动力测桩是采用低能量 的瞬态激振,桩在弹性范围内做低幅度振动,利用 振动和波动理论判断桩身缺陷。应力波反射法是 一种以弹性波(也称应力波)在桩身中的传播反射 特征为理论基础的方法。对于桩基来说,桩长一般 远大于直径,从而可将桩看成一维杆件。当在桩顶 处施加一瞬态激振力,将会产生弹性波,由于桩与 土之间的波阻抗差异较大,所以大部分波能量将在 桩身传递,在桩身传播的弹性波可以用一维波动方 程计算。
用u表示位移,应变为
质点运动速度为v u t
工程应力为σ=F/A,胡克定律表示为σ=Eε。
上式中的
为微元的加速度
而σ(x+Δx)和σ(x)分别为微元两端截面上的正应力,上 式两边除以A Δx后得: (1-2)
令Δx—0时,上式取极限可得:
(1-3)
考虑到σ=Eε的关系,以及
百度文库则公式(1-3)变为: (1-4)
低应变理论基础
2014年11月16日
一、波动与振动
弹性动力学主要目标是在给定扰动源信息及边界条件、初始条件下求解弹性 物体的动力响应。解答的形式有两种:一种是波动解,一种是振动解。前者描 述行波在弹性介质中的传播过程,后者描述弹性体的振动。为了说明两者的联 系与差异,首先考察波动与振动两个物理现象。 一个原来处于静止状态的物体,当其局部受到突然的扰动,并不能立即引 起物体各部分的运动。如下图所示的一根半无限长杆端部受到打击时,远离杆 端的区域并不能立即感受到端部的打击信号,而要经过一定的时间后才能接受 到这个信号。这是动力问题和静力问题最根本的区别。实际上由于连续介质中 的各个质点由某种约束力而彼此联系起来,在末受到扰动之前,质点之间的相 互作用力处于平衡状态。当某一个质点受到扰动以后,它就要偏离
扰动一开始总是以行波的方式将能量传播出去, 而当物体有边界时,由于行波的来回反射,最终 使物体趋于定常的运动状态,则表现为振动现象 。弹性体的振动是被动过程的一种特殊表现形式 ,并不意味着被动过程已经消失,而是一种在有 界物体中长时间范围内的波动过程。在实际的弹 性动力学问题中,有时需要考察波动过程,有时 则对振动现象更感兴趣。