列车制动技术及发展(1)
浅析铁道车辆制动技术的现状及发展
浅析铁道车辆制动技术的现状及发展铁道车辆制动技术是铁路运输中至关重要的一环,它直接关系到列车的安全和运行效率。
随着科技的不断进步和铁路运输行业的发展,铁道车辆制动技术也在不断更新和完善。
本文将对铁道车辆制动技术的现状及发展进行浅析,以期更好地了解这一重要领域的变化和未来发展趋势。
一、铁道车辆制动技术的现状1. 传统制动技术传统的铁道车辆制动技术主要分为手动制动和空气制动两种。
手动制动是通过司机手动操作制动杆来控制列车制动,这种方式操作简单,但容易造成司机疲劳和制动不及时。
空气制动是通过空气压缩机产生气压,通过管道传输气压信号,从而控制制动。
这种方式可以实现列车的快速制动和释放,但对空气管路的维护要求较高,且存在气压信号传输延迟的问题。
2. 现代制动技术随着科技的发展,现代铁道车辆制动技术不断更新,主要体现在以下几个方面:(1) 电气制动:电磁制动和电阻制动是现代列车常用的电气制动技术,它们可以实现快速制动和稳定的制动效果,同时减少对空气管路的依赖,提高了列车的制动可靠性。
(2) 自动制动:自动制动系统可以根据列车的运行状态和载重情况自动调整制动力度,使列车的制动更加智能化和高效化。
(3) 制动辅助系统:制动辅助系统如防抱死制动系统(ABS)和牵引力控制系统(TCS)等,可以提高列车在不良天气和复杂路况下的行车稳定性,降低事故风险。
1. 智能化未来铁道车辆制动技术的发展将更加智能化,通过搭载传感器和控制系统,实现实时监测列车的运行状态和环境参数,从而自动调整制动力度,提高列车的稳定性和运行效率。
2. 综合化未来铁道车辆制动技术将趋向于综合化,通过整合各种制动技术和辅助系统,实现制动系统与列车其他部件(如牵引系统、车辆控制系统等)的无缝协调,提高列车整体性能。
3. 环保化未来铁道车辆制动技术的发展将更加注重环保性能,通过提高能量回收利用率,减少能源消耗和污染排放,实现列车制动系统的绿色化和可持续发展。
高速列车制动技术研究
高速列车制动技术研究随着高铁时代的到来,高速列车的制动技术也逐渐成为了人们关注的焦点。
高速列车制动技术的研究,不仅对列车的安全性有着重要的影响,更是对高速铁路系统的可靠性和稳定性具有重要意义。
本文将从列车制动原理、高速列车制动技术现状和未来发展等方面来探讨高速列车制动技术的发展。
一、列车制动原理列车制动是以增大列车运动阻力为目的,使列车减速停车的过程。
列车制动一般分为片制闸制动、液压制动和电阻制动三种类型。
目前,高速列车采用的制动方式主要是电阻制动和液压制动两种。
电阻制动是指通过给制动电机加电阻使电机转化成发电机,将制动能以电能的形式回馈给电网,达到制动的效果。
液压制动则是通过将列车动能转化成热能,使制动器具有制动力,然后通过管道、阀门控制制动力的大小,达到控制列车减速的目的。
二、高速列车制动技术现状高速列车的制动系统是目前铁路技术研究的重点之一。
随着高速列车技术的不断发展,列车制动技术也在不断提高。
但目前高速列车制动技术存在的问题还是比较突出的。
1. 制动距离过长高速列车制动距离长,是当前列车制动技术的主要问题。
高速列车在高速运行状态下,惯性大,制动难度大。
目前,高速列车的制动距离在500-1000米左右,存在较大的安全隐患。
2. 制动系统失效容易发生高速列车的制动系统是高速列车的安全保障之一。
但制动系统的失效也是目前高速列车制动技术的一个难点。
当列车发生制动失效时,所导致的后果是灾难性的。
3. 制动噪音问题高速列车的制动噪音是高速列车制动技术发展过程中的一个难点。
高速列车制动噪音问题不仅影响了列车的行驶舒适度,也影响到了周围环境的安宁。
三、高速列车制动技术未来发展为了提高高速列车的安全性和运行效率,高速列车制动技术未来的发展方向是在以下几个方面展开探索。
1. 制动力的控制高速列车制动力的控制是高速列车制动技术未来发展的重要方向。
为了缩短列车制动距离,必须在制动过程中控制制动力大小,保证列车的安全性。
铁路货车制动技术发展
铁路货车制动技术发展摘要:从货车空气制动装置的基本组成部分,制动机、空中车调整装置、闸瓦间隙制动调整装置等方面,阐述货车制动系统的发展情况及运用现状。
国民经济的发展对铁路运输的需求压力下,铁路货车运输必然朝着快速、重载趋势发展。
阐述快速和重载趋势下铁路货车制动装置所需克服的问题及发展模式,展望了铁路货车高速、重载制动技术的发展前景。
关键词:铁路货车;制动系统;快速;重载1列车制动基础常识1.1常见的制动概念。
人为的使列车减速或使之在规定的距离内停产即为制动,反之对已经行驶的列车解除或减弱其制动作用即为缓解。
为使列车能施行制动和缓解而安装在列车上的一整套零部件组成的装置,称为列车制动装置。
产生制动原动力并进行操纵和控制的部分叫做制动机,传送制动原动力并产生制动力的部分称为基础制动装置。
1.2制动装置的主要指标。
从司机施行制动(将制动阀手柄移至制动位)的瞬间起到列车停止所驶过的距离称为制动距离。
正常情况下为调节或控制列车速度,包括进站停车所施行的制动称常用制动,作用比较缓和且制动力可调节,多数情况下只用50%左右。
紧急情况下为使列车尽快停止而施行的制动称紧急制动,作用迅猛且要把列车制动力全部实施。
制动缸达到最大平衡压力瞬间所对应的列车管减压量为列车管最大有效减压量。
1.3列车制动装置的分类。
常见的按动力来源及操作方式划分类别。
电空制动机是重载列车的发展方向,采用电气控制压力空气为动力,缩短长大货物列车制动空走时间和制动距离,极大提高制动、环节波速,减少冲撞。
空气制动以压力空气为动力源及操纵方式,增压环节、减压制动,含直通式、二压力机构、三压力机构及二、三压力混合等。
人力制动用人力转动手轮或用杠杆波动的方式使闸瓦压紧车轮踏面而实现制动。
真空制动利用大气压力为动力,制动时由真空泵抽真空实现制动,较为落后,目前已基本不采用。
2国铁货车制动装置主要部分发展概况2.1制动阀发展过程。
由于我国铁路机车车辆来自世界许多国家,制动装置品种繁多,解放前以K1型三通阀为主与其他阀型并存,且含有未安装空气制动装置车辆存在。
高速列车的十大关键技术
(二)、盘形制动装置
轴盘式
1—制动盘 2—闸片 3-闸片托 4-单元制动缸 5-杠杆
轴盘式
轮盘式
CRH2-T(拖车)转向架 CRH2-M(动力车)转向架
CRH2-T车轮对轮盘/轴盘制动卡钳装置
盘形制动的特点:
1、减少了车轮的磨耗,延长了车轮的使用寿命; 2、散热性能比较好,可获得较高的制动功率; 3、自由选择制动盘和闸片材料,从而减轻制动装置的重量; 4、磨耗小,运用经济; 5、使簧下重量增加,受轮轨黏(粘)着的限制。
盘(旋转)
由相对运动在盘上产生 涡电流
涡电流 电磁涡流转子制动
由相互磁力作用产生 制动力
涡流制动装置的具体结构和在转 向架上的安装位置
涡电流制动线圈 (电磁铁)
涡电流制动盘
日本新干线300系列高速 动车组
涡流制动特点
1、是非接触式,避免了磨损; 2、当动车组发生故障导致整车失电时,涡流制动将 不能工作,只能依靠车载蓄电池提供励磁电流,对 蓄电池容量要求较高; 3、结构复杂、重量大、耗电量大; 4、属于黏着制动范畴,制动力受黏着系数的制约。
日本新干线100系动车组
接触网 受电弓 主变压器 变流器
牵引电机
(六)、再生制动
1、原理:与电阻制动类同,
唯不同的是产生的电能不是
消耗在制动电阻上而是将电
再
能反馈到时供电系统。
生
制
2、特点:
动
(1)可以节约大量电能
(2)对逆变技术和动力车 主电路系统要求较高。
(三)、涡流制动
电磁铁(固定)
电磁铁励磁
* 倾摆式车体技术
* 复合制动技术
高速动车组的紧急制动距离
列车制动 第1章 列车制动总论讲解
《列车制动》
第一章 列车制动总论
逆汽制动 飞轮贮能制动
制动时,把列车动能转移入飞轮贮存, 启动加速时使该能量放出以节约能源。飞轮 质量较大,传动装置也复杂。
且与列车运动状态有关、随列车速度的 升高而降低。
粘着系数
粘着力与车轮与钢轨间的垂直载荷之比 称为“粘着系数”。
《列车制动》
第一章 列车制动总论
计算粘着系数 (规定的假定值)
制动力和惯性力不是作用在同一水平面内, 造成各个车轮对钢轨的法向反力并不相等。
假定垂直载荷固定不变,认为粘着力的变 化仅由粘着系数的变化引起的。粘着系数为 假定值。
《列车制动》
第一章 列车制动总论
第五节 其他制动方式
主要内容:铁道车辆常见的制动方式分类及 其作用原理、各自的特点和具体应用中应注 意的问题。
学习重点:用能量的观点来分析具体的制动 方式。
《列车制动》
盘形制动 结构: 在车轴上或在车 轮辐板侧面装上制 动盘,用制动夹钳 使合成材料制成的 两个闸片紧压制动 盘侧面,通过摩擦 产生制动力,把列 车动能转变成热能。
轴制动率:一个制动轴上的全部闸瓦压力与
该轴轴重的比值,用 0 表示。
轴制动率是制动设计中校验有无滑行危 险的重要数据。
《列车制动》
第一章 列车制动总论
车辆制动率:
一辆车总闸瓦压力与该车总重的比值。
K Qg
车辆制动率表示设计新车在构造速度 的情况下紧急制动时在规定距离内停车所 具备的制动能力。
浅析城市轨道列车盘式制动与踏面制动的优缺点及发展趋势
浅析城市轨道列车盘式制动与踏面制动的优缺点及发展趋势摘要:本论文在分析城市轨道车辆运输特点基础上,结合城市轨道车辆基础制动装置具体类型,分析了城市轨道车辆踏面制动与盘式制动的优缺点关键词:城市轨道车辆,基础制动,盘形制动。
地铁、轻轨等作为城市轨道交通的重要组成部分,在缓解交通压力、拓展城市空间等方面发挥着重要作用,其运行速度也由最初的30km/h,逐渐提高到80 km/h,甚至更高。
随着速度的提高,在运营过程中城市轨道车辆所装配的踏面制动装置已暴露出车轮踏面产生高温剥离或热裂纹、车轮和钢轨踏面异常磨耗进而恶化轮轨匹配关系、维修工作量和运营成本大大增加等问题。
迫使我们对城市轨道列车的运输特点及其基础制动装置匹配问题进行认真分析,并做出合理选择。
1 城轨运输的特点城市轨道交通运输与铁路运输有很多相似之处,但是与铁路运输相比还有许多差异,其中与制动系统有关的有以下几个方面:(1)运行速度低。
目前国内外地铁的运行速度一般都在135 km/h以下,而铁路机车车辆和动车组的发展趋势是重载和高速,我国高速动车组的持续运行速度已经达到350 km/h。
(2)减速度大、制动距离短。
地铁站间距短,只有起动加速快、制动减速度大才能提高列车的运行速度和效率,因此地铁车辆的紧急制动平均减速度一般定为1.2~1.3 m/s2,有的甚至到1.4 m/s2,而铁路机车车辆和动车组的紧急制动平均减速度一般为0.7~1.2 m/s2;大连地铁3号线要求紧急制动初速120 km/h时,制动距离≤427 m,而铁路机车车辆和动车组在同样速度时,制动距离≤800 m。
(3)制动频繁。
地铁运输有城市公交站间距短的特点,一般只有几百米,长的也只有几公里。
这就要求列车必须频繁的制动停车,以满足乘客的上下车要求。
而铁路运行的站间距一般都在几十公里,甚至一百公里以上。
(4)制动的准确性要求高。
地铁车站普遍装有屏蔽门,对定位停车的精度要求比铁路机车车辆和动车组高,停车位置精度一般在±250 mm左右。
浅析铁道车辆制动技术的现状及发展
浅析铁道车辆制动技术的现状及发展1. 引言1.1 铁道车辆制动技术定义铁道车辆制动技术是指在铁路运输中,用以实现列车减速、停车和保证安全行车的技术手段。
其主要功能是通过对车轮的制动来减缓列车的速度,以确保列车能够安全平稳地停车或减速。
铁道车辆制动技术是铁路运输系统中至关重要的一环,直接关系到列车的行车安全和运行效率。
铁道车辆制动技术的发展经历了从传统手动操作到现代自动化控制的演变,现代铁道车辆制动系统已经变得更加智能化和高效化。
通过不断的技术创新和改进,铁道车辆制动技术已经成为铁路运输系统中不可或缺的重要组成部分。
铁道车辆制动技术定义了列车运行中的重要环节,其发展不仅推动了铁路运输的现代化,也为列车的安全行车提供了有力保障。
随着科技的迅速发展,铁道车辆制动技术也将不断创新和完善,以适应铁路运输发展的需求。
1.2 铁道车辆制动技术的重要性铁道车辆制动技术的重要性体现在保证列车运行安全和乘客乘员平安的重要角色。
制动技术的可靠性直接影响到列车的停车过程和应急情况下的制动效果。
优秀的制动系统可以有效降低事故风险,提高安全性,保障运行的顺畅性,同时对车辆的使用寿命和性能提升也将产生积极的影响。
在铁道交通运输领域中,铁道车辆制动技术不可或缺,其重要性不言而喻。
随着铁路交通的发展和现代化要求的提高,对于制动技术的要求也越来越高,需要不断进行技术的革新和升级。
制动技术的提高不仅仅是为了提高行车效率和安全性,更是为了适应未来铁路运输的需求及挑战,在保障运输效率的也要兼顾节能环保、舒适乘车等方面的要求。
铁道车辆制动技术的重要性在铁路运输中具有不可替代的地位,是铁路运输安全和高效运行的关键技术之一。
2. 正文2.1 铁道车辆制动技术的分类1. 机械制动:机械制动是早期铁道车辆制动技术的一种形式,它通过车辆上的机械装置来实现制动效果。
在机械制动系统中,常见的制动装置包括手动刹车、脚踏刹车和摩擦制动器等。
机械制动主要依靠物理力学原理,通过机械传动实现车辆制动。
列车制动概述范文
列车制动概述范文列车制动是列车在行驶过程中为减速、停车或维持行车安全而使用的一种重要系统。
在列车运行过程中,因为车辆的惯性和重量很大,需要采取有效的措施来控制列车的速度和停车距离,保证列车的安全运行。
列车制动系统的设计和使用对于列车的安全性、可靠性和运行效率具有至关重要的作用。
一、列车制动的分类和原理1.汽车制动:汽车制动是最早被使用的列车制动形式之一,通过控制制动盘与轮轴之间的摩擦力,实现列车的减速和停车。
汽车制动可以分为手动制动和自动制动两种方式,手动制动需要司机通过操纵制动杆来实现,而自动制动则由列车上的计算机系统来控制。
2.空气制动:空气制动是一种通过气源提供的空气压力控制制动器实现列车制动的方式。
使用气源通过供气管路,控制制动过程中对列车轮轴上的制动器施加压力,从而实现列车的减速和停车。
空气制动具有快速反应、操作简便、可靠性高等优点。
二、列车制动系统的组成列车制动系统主要由制动装置、供气系统、操纵系统以及辅助设备等几个部分组成。
1.制动装置:制动装置是实现列车制动的关键部件,可以分为汽车制动器和空气制动器两种类型。
汽车制动器一般由制动盘、制动盘架、刹车垫、制动杆等部件组成;空气制动器则包括制动缸、制动盘、控制阀等部件。
制动装置的性能和质量直接影响列车的制动效果和安全性。
2.供气系统:供气系统主要由气源、气源管路、供气阀等部件组成,用于提供制动气源,控制制动气压,实现列车的制动功能。
气源系统根据制动需求,可以采用不同的气源源泉,如机车上的压缩空气系统、牵引车上的制动空气系统等。
3.操纵系统:操纵系统是驾驶员控制列车制动过程的主要工具,通过操纵制动杆、制动手柄、制动踏板等装置来调节列车制动力的大小,保证列车的安全运行。
操纵系统可以通过机械、液压、电气等方式来实现。
4.辅助设备:列车制动系统还包括各种辅助设备,如制动灯、制动声响器、制动监测系统等。
这些辅助设备可以帮助驾驶员监控列车制动状态,及时发现和解决制动故障,保证列车的安全行驶。
列车制动总论课件
制动距离的计算与优化
制动距离的计算
制动距离是衡量列车制动性能的重要指标,可以通过计算列 车在一定速度下制动到停车所需的时间和距离,来评估列车 的制动性能。
制动距离的优化
为了提高列车的制动性能,可以通过优化列车制动系统参数 、改善列车运行环境等方式,减小制动距离,提高列车运行 的安全性和可靠性。
03
液压系统可靠性
液压系统是列车制动系统的动力源,其可靠性对制动效果 有重要影响。应定期检查液压系统的密封性、油液清洁度 等指标,确保液压系统正常工作。
电气控制系统可靠性
电气控制系统是列车制动系统的控制中心,其可靠性直接 关系到制动系统的正常工作。应定期对电气控制系统进行 检测和维护,确保其正常工作。
提高制动系统安全可靠性的措施
总结词
盘形制动装置是一种利用制动盘和夹 紧器产生摩擦力实现制动的装置。
详细描述
盘形制动装置的制动盘安装在车轴上 ,夹紧器通过弹簧或气动方式夹紧制 动盘,使列车减速。夹紧器与制动盘 之间的摩擦力将列车动能转化为热能 ,从而实现制动。
磁浮制动装置
总结词
磁浮制动装置是一种利用磁力实现制动的装 置,具有无接触、无磨损的优点。
列车制动系统的历史与发展
总结词
列车制动系统的历史与发展
详细描述
列车制动系统的发展经历了多个阶段,从最初的机械制动到现代的电气液压制动 和电磁轨道制动等。随着技术的不断进步,列车制动系统的性能和安全性得到了 显著提高,同时也更加环保和节能。
列车制动系统的分类与组成
总结词
列车制动系统的分类与组成
详细描述
感谢观看
THANKS
详细描述
这些制动方式在特定情况下使用,如轨道涡流制动适用于高速列车,电阻制动适用于电 力机车,液力制动适用于柴油机车等。它们通过不同的工作原理将列车动能转化为其他
我国轨道车辆制动技术发展概述
我国轨道车辆制动技术发展概述1引言我国轨道车辆制动技术经过60余年的发展,取得了长足进步。
特别是上个世纪90年代以来,经过六次客运大提速和重载货运技术的提高,我国机车、客车、货车、高速动车组、城轨车辆等轨道车辆制动技术在许多方面达到或接近世界先进水平。
但同时应该看到,在高速和重载货运等制动技术方面,部分核心技术我们还没有完全掌握,还没有形成具有完全自主知识产权的产品,因此我国轨道车辆制动技术还有较大的发展空间,需要进一步加大研发力度。
2 机车车辆制动技术发展长期以来,我国机车车辆一直采用符合AAR标准的制动机。
解放初期,我国机车车辆制动机沿用解放前所采用的美国制动机,即机车采用单端操纵的ET-6型制动机,客车采用L型制动机,货车采用K制动机,到了20世纪60年代初期,机车由ET-6型演变成适应双端操纵的EL-14型制动机,并开始在电力、内燃机车上装用。
由于这两种机车制动机在结构上存在固有缺点,到20世纪80年代逐步淘汰。
为了克服ET-6、EL-14机车制动机制动和缓解波速慢、其金属研磨件难以维护等缺点,20世纪70年代,我国相继研制成功JZ-7型内燃机车制动机和DK-1型电力机车制动机,这两种制动机能够客货车兼用,在结构上取消了研磨件,并设置了过充性能,到目前为止仍为我国内燃机车和电力机车的主型制动机。
在L型和K型制动机的基础上,我国开发了客车GL型、货车GK型制动机,这两种制动机均采用二压力直接作用式三通阀,为金属、胀圈结构形式,制动、缓解波速较低,使用维护不便。
20世纪60年代末至80年代初,分别研制成功二压力间接作用式的104型客车制动机和103型货车制动机、三压力结构的F8型客车制动机,前两种制动机采用橡胶膜板、滑阀结构,后一种制动机采用膜板、柱塞结构,制动、缓解波速得到较大提升,使用维护较为方便。
90年代为解决万吨运煤列车的制动问题,研制了120型货车制动机,使我国货车制动机技术水平达到国际先进水平。
城市轨道交通车辆(地铁)刹车调研报告(1)
城市轨道交通车辆(地铁)刹车调研报告一、制动系统简介地铁刹车称为制动。
列车制动分为电制动和机械制动,电制动又分为再生制动和电阻制动;机械制动又称为气制动。
1、电制动:电机正转就是消耗电能牵引列车动作,电能转化为动能。
在再生制动时,电机就作为发电机反转,把动能转化为电能再通过列车的牵引逆变系统把这些电能逆变为电网一样的电输送到电网供其他车使用;电阻制动:在电网的电压达到上限了,列车电机产生的电能就不再输送到电网,而是通过列车的制动电阻把这些电能消耗掉。
2、机械制动:当前面的电制动满足不了列车进站的制动停车时,因为速度较小的时候再生制动的制动率较低。
这时机械制动就补充进来,把列车停稳。
就是使用压缩空气使闸瓦贴在轮对踏面上(或闸片贴在制动盘上),通过摩擦来制动;停放制动:列车停稳后施加的,类似汽车的手刹,保证列车在停车过不溜车。
二、城市轨道交通常用的摩擦制动方式1、闸瓦制动(1)闸瓦制动组成:制动缸、活塞杆、基础制动装置、闸瓦和车轮。
(2)闸瓦制动中每个动车或拖车转向架上各有四个闸瓦组成,其中两个闸瓦装有附加弹簧制动器,起到停放制动的作用。
(3)闸瓦按材质可分为铸铁闸瓦和合成闸瓦两类。
铸铁闸瓦:已有100多年使用历史,早期是灰铸铁闸瓦,含磷量约0.2%左右,摩擦系数随速度的提高而迅速下降,耐磨性也很差。
改用中磷闸瓦(含磷量0.7%~1.0%)可以改善性能,但在制动时容易产生火花引起火灾。
高磷闸瓦(含磷量2.5%以上)产生的火花少,比较安全,但质脆容易断裂,浇铸时须添装钢制瓦背。
高磷铸铁闸瓦的使用,日益普遍。
合成闸瓦,又称非金属闸瓦:是用石棉及其他填料以树脂或橡胶作为粘合剂混合后热压而成。
合成闸瓦也要用钢背加强。
合成闸瓦于1907年首先在伦敦地铁车辆上使用。
50年代以来,应用日益普遍。
优点:1、摩擦性能可按需要进行调整。
2、耐磨性能好,使用寿命长。
3、对轮对踏面的磨耗小,可延长车轮使用寿命。
4、质量轻。
列车制动的发展史研究报告
列车制动的发展史研究报告一、引言列车制动系统是保障铁路运输安全的重要组成部分,随着科技的进步和制动技术的不断革新,列车制动系统的发展历程也日趋完善。
本研究旨在探索列车制动系统的发展史,深入了解其演变过程和技术创新。
二、蒸汽时代的制动系统在蒸汽时代,列车制动系统的主要手段是手动刹车,即机车司机通过操纵蒸汽刹车的杠杆来实现制动操作。
这种制动方式操作简单、可靠性相对较高,但并不灵活。
后来,为了提高列车的制动效果,发明了真空制动系统。
该系统使用真空产生的吸力来实现制动,相对于手动刹车而言,真空制动系统的灵活性更大,制动效果也更好。
这一技术的发明极大地推动了列车制动系统的进步。
三、电力时代的制动系统随着电力机车的出现,为了适应电力机车的需求,发明了电磁制动系统。
电磁制动系统通过电磁原理实现制动,与蒸汽时代和真空时代的制动系统相比,具有更快的响应速度和更高的可靠性。
电磁制动系统的采用进一步提升了列车的制动效能。
同时,随着电子技术的发展,电力时代还出现了电子控制制动系统。
电子控制制动系统将电磁制动与电子技术相结合,实现了对制动力的精确控制和调节。
这一技术革新使得列车制动系统更加自动化、精准化。
四、现代时代的制动系统进入现代时代,列车制动系统的发展趋势是更加智能化、高效化。
例如,通过激光测距技术,现代列车制动系统可以根据列车与前方障碍物的距离自动调整制动力度,实现更安全、更平稳的制动操作。
此外,基于无线通信技术的远程控制系统也得到了广泛应用,使得列车制动操作更加灵活、方便。
另外,随着环保意识的增强,研究人员还开发了再生制动系统。
再生制动系统通过将制动时产生的能量回收或转化,并利用其供应电车的动力需求,降低了能源的消耗。
这一技术的应用不仅提高了列车的运行经济性,同时也减少了对环境的影响。
五、结论随着科技不断发展,列车制动系统也经历了从手动刹车到真空制动、电磁制动,再到现代的电子控制制动和智能化制动的演进过程。
这些技术的创新使得列车制动系统更加自动、精确、高效,并为铁路运输的安全性提供了坚实保障。
浅析铁道车辆制动技术的现状及发展
浅析铁道车辆制动技术的现状及发展【摘要】铁道车辆制动技术在铁路运输中起着至关重要的作用。
本文主要围绕铁道车辆制动技术的发展历程、现状、问题、未来发展趋势以及在安全生产中的作用展开讨论。
通过对当前铁道车辆制动技术的调研和分析,揭示了其存在的问题和不足之处。
文章还展望了铁道车辆制动技术未来的发展方向,并强调了加强相关研究的必要性。
结论部分强调了铁道车辆制动技术的重要性,并对未来展望做出了总结。
通过本文的研究,可以更全面地了解铁道车辆制动技术的现状与发展,从而为相关领域的研究和实践提供参考和指导。
【关键词】铁道车辆制动技术、发展历程、应用现状、问题、未来发展趋势、安全生产、重要性、展望、研究、必要性。
1. 引言1.1 铁道车辆制动技术的重要性铁道车辆制动技术的重要性体现在保障铁路运输安全和高效运营方面。
制动系统是铁道车辆的重要部件,它能够在列车行驶中实现减速、停车和保持稳定行驶的控制功能,确保列车在安全距离内停稳或减速避险。
在高速列车运行中,制动技术更是至关重要,它直接关系到乘客和货物的安全和运输效率。
有效的制动系统可以保障列车在紧急情况下的安全减速和停车,避免事故发生,保护乘客和货物的安全。
制动技术的发展也能够提高列车的运输效率,降低能耗和污染,为铁路运输行业的可持续发展作出贡献。
研究和发展铁道车辆制动技术对提升铁路运输的安全性、效率和可持续性具有重要意义。
1.2 本文的研究对象本文的研究对象是铁道车辆制动技术,该技术在铁路运输系统中扮演着重要的角色。
铁道车辆制动技术的研究对象包括了铁路列车上的制动装置、制动系统和制动控制方法等方面。
通过对铁道车辆制动技术的研究,可以不仅可以提高铁路运输的运行效率和安全性,还可以减轻对铁路设备和人员的损耗,保障铁路交通的正常运行。
本文将从铁道车辆制动技术的历史发展、目前的应用现状、存在的问题、未来发展趋势以及在安全生产中的作用等方面进行深入探讨和分析。
通过对铁道车辆制动技术的研究,可以不仅可以提高铁路运输的运行效率和安全性,还可以为铁路行业的可持续发展提供重要支持。
列车制动方式
2. 动力制动 依靠机车或动车的动力机械通过传动装臵产生的制动力。 2.1 电阻制动
制动时,变牵引电动机为发电机,将所发电能加于电阻
器中,使它发热,靠风扇给电阻器强迫通风而将热量消散于 大气中。电力机车、电传动内燃机车和电动车组等,即凡用 牵引电动机驱动的动力车都有可能实现电阻制动。但车辆底 架下需要安装体积和重量都较大的电阻箱和散热风机。
2.制动一般概念及其在铁路运输中的意义 2.1 制动的一般概念
(1)“制动”:人为地施加于运动物体,使其减速(含防止其加速)或停 止运动或施加于静止物体,保持其静止状态。这种作用被称为制动作 用。简称“制动”。 (2)“缓解”: 对已经施行的列车,解除或减弱其制动作用,均可称 之为“缓解”。 (3)“制动装置”: 为使列车能施行制动和缓解而安装于列车上的由 一整套零部件组成的装臵,称为制动装臵。
一.列车动能转移方式 分两类:“热逸散”和可用能。 (一)热逸散 动能转变为热能,然后消散于大气中。 1、摩擦制动:把列车动能转变为摩擦热能。 1.1 固体摩擦制动;1.2 液体摩擦制动; 2、动力制动:制动时将牵引电动机变成发电机,通过它将 列车动能转化为电能。 (1)电阻制动; (2)旋转涡流制动; (3)轨道涡流(线性涡流)制动:
列车制动在操纵上按用途可分为两种: (5)“常用制动”:正常情况下为调节或控制列车速度,包 括 进站停车所施行的制动。其特点是作用比较缓和且制动力可 以调节,多数情况下只用50%左右。
(6)“紧急制动”:紧急情况下为使列车尽快停住而施行的 制 动,其特点是作用比较迅猛,而且要把列车制动力全部用上。
列车制动装置见图片
(4)“制动距离”:从司机施行制动(将制动阀手柄移至制动位)的瞬间 起,到列车速度降为零的瞬间止,列车所驶过的距离。它是综合反映 列车制动装臵的性能和实际制动效果的主要技术指标。 根据我国原《技规》“列车在任何线路坡道上的紧急制动距离, 规定为800米”。但是,在设计机车车辆时要求的只是在空旷的平直道 (即无隧道、无坡道、无弯道)以“构造速度”运行时,其紧急制动距离 不超过800米。
铁道机车车辆液压制动机及其国内外发展
铁道机车车辆液压制动机及其国内外发展摘要介绍了应用于铁道机车车辆上的液压制动机的原理、特点和关键技术,对国内外铁道机车车辆采用液压制动机的应用进行了分析,并阐述了液压制动机的发展趋势。
关键词液压制动;铁道车辆;发展列车运行速度越高,对车辆设备小型化、轻量化及制动系统的性能及可靠性要求越高。
采用液压制动机来代替传统的空气制动机,可以在确保具有与空气制动装置相同可靠性的条件下实现小型化、轻型化,同时由于液压系统具有快速响应的特点,可取消防滑器,并比空气制动系统具有更好的防滑性能。
为了适应高速机车车辆以及城市轨道交通车辆整体技术的发展,世界上许多国家都对液压制动方式进行了研究,成为铁路机车车辆制动技术发展的趋势之一。
目前,随着计算机技术、机电和自动控制技术、现代制造技术及新材料、新工艺等一系列高新技术的蓬勃发展,液压技术有了很大的发展。
密封材料性能的提高、液压件微型化以及高可靠性和适用性等,都给机车车辆制动系统采用液压技术创造了条件。
1 液压制动的组成及基本原理液压制动系统一般是由油泵,蓄能器,电磁控制阀以及基础制动装置等部件组成。
液压系统原理图一般如图1所示。
由液压系统原理图可以看出,整个液压制动系统按照功能来分,可以分为微机制动控制器(MBCU)、电液制动装置及基础制动装置。
微机制动控制器(MBCU)的工作原理与空气制动机基本相似,以接收常用制动指令、紧急制动指令、电气制动反馈、ATC信号等输入,经过计算机处理,输出常用制动指令、紧急制动指令来控制相应电磁阀,完成制动力的控制。
除此之外,它还要控制液压系统的驱动和控制,如油泵的起停控制,以及整个液压系统的状态检测等,如液压系统的各种传感器反馈信息。
电液制动装置由电机、油泵、蓄能器、常用制动压力控制、紧急制动压力控制和油箱组成。
各部分工作原理如下。
(1)电机、油泵及蓄能器电机、油泵将电能转变为液压能源,给整个制动系统提供制动能量。
由于机车车辆的制动系统是间隙性工作的,因此采用了蓄能器装置,可有效减少电机功率,降低系统能耗。
列车制动技术及发展
列车制动技术及发展最早的列车制动技术是由火车员手动操作制动系统,通过操作车厢顶部的手柄或脚踏板来实现列车的制动。
这种制动方式操作繁琐,制动效果较差,容易发生事故。
随着工业革命的进展,蒸汽机车逐渐取代了蒸汽火车,出现了蒸汽制动系统。
蒸汽制动是利用汽缸中的蒸汽力来实现制动,比手动制动提高了制动力的大小和速度,但仍然存在操作不方便和制动效果不稳定的问题。
20世纪初,出现了空气制动技术。
这种制动方式利用空气压力来传递力量,通过管道和活塞将压缩空气传递到车辆上的制动器上,实现制动效果。
空气制动技术大大提高了制动力的大小和稳定性,减少了制动距离,因此在列车运行过程中得到广泛应用。
但是,空气制动技术仍然需要火车员手动操作制动装置,存在操作不便和制动反应时间长的问题。
20世纪50年代,电磁制动技术开始应用于列车制动系统中。
电磁制动利用电磁力实现制动效果,通过列车上的传感器和控制系统控制电磁制动器的工作,实现自动化制动。
这种制动方式大大提高了制动的精确度和舒适性,减少了制动距离,并减少了对火车员的依赖。
然而,由于电磁制动需要大量的电力支持,因此需配备能够提供大量电力的配电系统,增加了列车的重量和成本。
现代列车制动技术在电磁制动的基础上进一步发展,出现了自动制动系统。
自动制动系统利用传感器和计算机控制系统,实现对列车制动装置的自动化控制和监测。
当列车需要制动时,传感器会监测到相应的信号,并通过计算机控制制动器的工作。
自动制动系统大大提高了制动的精确度和可靠性,并降低了对火车员的要求。
此外,随着科技的不断进步,列车制动技术也在不断创新和发展。
例如,利用电动蓄能技术实现高效能制动;利用电磁铁吸附技术实现快速刹车;利用惯性制动技术实现紧急制动等。
这些新技术不断推动着列车制动技术的进步,使得列车行车更加安全和可靠。
综上所述,列车制动技术经历了手动制动、蒸汽制动、空气制动、电磁制动和自动制动等多个阶段的发展。
不断创新和进步的技术使得列车制动更加精确、可靠和安全。
列车制动
第二章 列车制动总论
一、制动在铁路运输中的意义
制动系统是列车的重要组成部分,其性能的好坏和 制动能力的大小直接涉及列车能否安全运行。众所周, 由于列车在紧急情况下的安全需要,列车制动距离远小 于列车的牵引距离。制动系统在制动时所需要提供的制 动功率不但与列车速度三次方成正比,而且与列车的制 动距离成反比。从这个意义上讲,速度提高对列车制动 系统的考验,相比列车其他系统来得更为严峻。
在闸瓦与车轮这一对摩擦副中,车轮的主要任务是 承担车辆走行功能,因此其材料不能随意更改。要改善 闸瓦制动的性能,只能通过改变闸瓦材料的方法来改善 其摩擦性能。早期的闸瓦材料主要是铸铁。铸铁材料容 易取得、价格便宜,但其耐高温性能较差和摩擦系数较 低,磨耗量大。合成闸瓦基本上可以弥补铸铁闸瓦的缺 点,但由于其机体的主要成分是非金属材料,所以导热 性极差,制动功率过高时,容易损伤车轮踏面。兼具合 成闸瓦的优点又有良好散热性能的是粉末冶金材料闸瓦。
社会的进步与交通运输的发展是密切相关 的。现代交通运输在运送旅客方面必须提高和 改善快速、舒适、安全、准确、方便、经济等 指标。我们知道:“时间就是生命,时间就是 效益”。因此,提高列车运行速度和牵引重量 是提高铁路运输能力、实现铁路运输现代化的 重要内容。但是,如果没有性能良好的机车车 辆制动装臵,要提高列车速度和牵引重量以及 保证列车运输安全都是不可能的。列车制动是 进一步提高列车运用 作紧急制动时的一种补充制动方式。这种制动方式的缺点 是在制动时容易造成轨道的磨耗,列车运行时其结构复杂 的装臵增加了列车的重量。
2.动力制动 动力制动方式是在制动时将牵引电动机变成发电机, 通过它将列车动能转化为电能。对电机产生的电能的不同 处理方式,形成了不同方式的动力制动。高速列车上采用 的动力制动形式主要有电阻制动、再生制动、圆盘涡流制 动和线性涡流制动。 (1) 再生制动 再生制动方式是将列车动能转化的电能反馈回电网, 提供给别的列车使用。再生制动方式既节约能源又减少制 动时对环境的污染,并且基本上无磨耗,因此是一种非常 理想的动力制动方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)制动作用的可靠性不断提高。 从三通阀发展到空气分配阀起, 彻底杜绝了货 物列车不起紧急的安全隐患。 闸瓦间隙自动调整器 则克服了铸铁闸瓦磨耗快的不良影响, 避免了制动 力因闸瓦磨耗、制动缸活塞行程延长而产生的衰 减,提高了制动可靠性。 (2)制动能力不断提高。
列车制动技术及发展 (1)
况
制动技术包括制动控制技术和基础制动技术, 是重载货车提速的关键技术。 制动控制技术是与产 生和输出制动动力, 控制、调节和保持车辆制动力 等有关的技术。基础制动技术是与传递和放大制动 动力,实现和保持制动力, 转换和消耗车辆动能等 有关的技术。我国铁路货车以 压缩 空气作为制动动 力源,控制系统采用空气制动机, 包括制动控制阀、 空重车调整装置、副风缸等辅助风缸和制动缸等。 基础制动系统则由机械传动装置、 闸瓦间隙调整器 和闸瓦等组成。
2
制动率;制动缸的三段变速升压特性也有利于缓解 较长编组列车的纵向力。 我国自主研发的 中磷 铸铁 闸瓦不仅提高了耐磨性, 也提高了高速区的摩擦系 数。这些技术既提高了制动能力, 又改善了制动性 能,不仅使货车载重提高到 50t 级、60t 级,也使 货车速度提高到了 80km/h,基本满足了牵引重量 3000t 级货物列车的运用要求。
4
大容量三通阀和制动控制阀、 空重车调整装置 和大直径制动缸为提高重车制动率创造了条件, 闸 瓦摩擦性能的改进则提高了高速区黏着利用的效 果。因此,货车的制动能力随着货车速度的提高、 载重的增加逐步提高。 120-1 型制动控制阀、 KZW-A 型多级空重车自动调整装置、 HGM系列新一代高摩 合成闸瓦、直径 305mm制动缸等新技术的组合 满足 了我国铁路货运 “速度高、 轴重大、编组长、制动 距离短”的特殊运用要求, 使我国铁路货车以制动 减速度表征的制动能力达到了世界领先水平。
综上所述,货车制动技术以制动控制阀 (包括 三通阀和分配阀)、空重车调整装置和闸瓦等关键 部件的技术进步为发展主线, 以提高能力为发展主 题,以货车重载、 提速为 发展 动力,坚持自主创新 的指导思想, 在吸收国外先进经验的基础上, 形成 了既满足中国铁路近乎苛刻的 “速度、 密度、重量 并重”及网络化运输的特殊要求, 又具有国际先进 水平,且具有完全自主知识产权的独特的技术体 系,为铁路货车向重载、 提速方向发展提供了技术 基础。
3
量由 3500t 逐步提高到 4000t ,固定车底的煤炭、 矿石专列可提高到 5000t ”,也标志着我国第一代, 即 5000t 级重载列车成套制动技术的形成。
进入 21 世纪,具备压力保持功能的 120 型空 气控制阀和 KZW-A型空重车自动调整装置技术上 日趋成熟, HGM-A、HGM-B型高摩擦系数合成闸瓦 及 L-A、L-B 型组合式制动梁等新技术全面推广应 用,φ305 型密封式旋压制动缸研制成功,空气控 制阀进一步发展到具备常用加速制动功能的 120-1 型空气控制阀。 我国自主研发的 这些 制动 新 技术形成了我国新一代, 即万吨级重载列车成套制 动技术,不仅满足了货车提速到 120km/h 的需要, 也更好地满足了万吨及以上等级长编组重载列车 制动和同步操纵的要求,不仅满足了速度、密度、 重量并重的运输组织需要,也符合货运向快捷化、 重载化发展的要求。
上世纪 80 年代,407G型高摩擦系数合成闸瓦、 高摩擦系数合成闸瓦在重载货车上的应用技术、 ST1-600 型双向闸瓦间隙调整器等货车制动新技 术通过鉴定, 103 型制动机(含手动两级空重车调 整装置)也已运用成熟。 103 型制动机不仅从根本 上解决了紧急制动作用的可靠性问题, 而且明显提 高了制动波速。 高摩合成闸瓦的摩擦系数稳定, 耐 磨性更好, 不仅提高了制动能力, 而且明显降低了 低速 区制动、缓解时的纵向冲动, 还缩短了列车的 初充气和再充气时间; 这些优良的性能不仅改善了 重载列车的操纵性能, 而且提高了列车在长大坡道 地区的安全性。闸瓦间隙调整器及 103 阀的间接作 用性能解决了因闸瓦磨耗、 制动缸活塞行程增加引 起的制动力衰减问题,提高了制动作用的可靠性。 我国自主研发的 这些 制动 新技术不仅符合《铁路主 要技术政策》 确定的发展目标:“货物列车的重量, 近期在不增加机车车辆轴重的情况下,充分利用 850m 车站股道有效长度,一般货物列车的最大重
(3)长编组列车制动缓解的纵向冲动不断减 少,安全性不断提高。
从 GK型三通阀,到 103 型空气分配阀,再到 120 型制动控制阀, 空气制动机制动、缓解波速不 断提高, 制动充风、 排气性能不断改进, 有效地提 高了列车前后部制动缓解的一致性。 而高摩合成闸 瓦的推广应用,进一步降低了长编组列车的纵向冲 动,改善了操纵性能。 制动控制阀与高摩合成闸瓦 的组合,不仅使列车缓解的最低允许速度降低, 扩 大了列车的可控速度范围, 而且使重载列车的最大 编组达到 120 辆,牵引重量达到 1 万吨,成为万吨 以上等级组合列车的技术基础。
我国铁路货车制动技术的进步经历了三个历 史阶段。
GK 型制动机及其两级手动空重车调整装置、 中磷铸铁闸瓦是我国铁路货车最早的重载、 提速技 术,其影响一直持续了近 40 年。 在 K 型制动机基 础上,按照我国轴重增大, 速度提高的要求进行改 进的 GK制动机不仅可与直径 356mm的大制动缸配 套,而且实现了空重车调整, 因此,提高了重车的
(4)长大坡道地区列车制动的安全可靠性不 断提高。
铸铁闸瓦材质不断改进, 耐磨性增加, 耐热性
5
提高,制动火花减少, 彻底消除了高坡地区磨闸瓦 托和制动火灾等事故。 高摩合成闸瓦及配套小直径 制动缸组合, 减少了列车 “波浪式” 反复制动缓解 引起的制动力衰减。 制动控制阀的压力保持功能可 以避免空气系统漏泄引起的制动力衰减。 高摩合成 闸瓦具有耐磨性高和耐热性好的特点, 长时间持续 制动不会造成制动力衰竭, 因此,制动控制阀与高 摩合成闸瓦组合, 既适用于列车 “波浪式” 反复制 动缓解的操纵方式, 也可以实现 “一把闸” 制动下 坡,进一步提高坡道地区列车的安全性。