初一数学不等式与不等式组单元测试卷(B卷)

合集下载

人教版七年级下册数学第九章《不等式和不等式组》单元检测卷 (附答案)

人教版七年级下册数学第九章《不等式和不等式组》单元检测卷 (附答案)

人教版七年级下册数学第九章《不等式和不等式组》单元测试卷(基础)总分:100分一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个B .3个C .4个D .5个2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B . C .D .3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<-B .11a b +>+C .22a b <D .33a b->- 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥xB .1x ≤C .2x ≥D .2x ≤7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .8.(2021·全国七年级)不等式组24020x x -⎧⎨+>⎩的解集在数轴上表示正确的是( )A .B .C .D .9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a >B .0a <C .3a >D .3a <10.(2021·广西北海市·八年级期末)若不等式组无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”).12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x⎧+>+⎪⎨--⎪⎩的最大整数解为__________.13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___.16.(2020·浙江绍兴市·八年级其他模拟)关于x 的不等式组314(1)x x x a->-⎧⎨<⎩的解是3x <,那么a 的取值范围是______.三、解答题一(每小题6分,共12分) 17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件. (1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?答案解析一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个 B .3个C .4个D .5个【答案】C 【分析】根据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式进行判断即可得. 【详解】根据不等式的定义可知①-2<0;②2x-5>0;⑤x≠-2;⑥x+2>x-1为不等式, 共4个, 故选:C . 【点睛】本题考查了不等式,一般地,用不等号表示不相等关系的式子叫不等式,解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B .C .D .【答案】D 【解析】试题分析:根据一元一次不等式的解法解不等式x+2≤0,得x≤﹣2. 表示在数轴上为:.故选D考点:不等式的解集3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤【答案】D 【分析】利用不等式的定义即可得. 【详解】最高气温是9C ︒表示的是气温小于或等于9C ︒, 最低气温是零下2C ︒表示的是气温大于或等于2C -︒, 则当天我市气温变化范围是29t -≤≤, 故选:D . 【点睛】本题考查了列不等式,掌握列不等式的方法是解题关键.4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<- B .11a b +>+C .22a b <D .33a b->- 【答案】B 【分析】根据不等式的性质进行判断即可. 【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误; B 、在不等式两边同时加1,不等号方向不变,故正确; C 、在不等式两边同时乘2,不等号方向不变,故错误; D 、在不等式两边同时除以-3,不等号方向改变,故错误; 故选:B . 【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断. 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-【答案】D根据不等式的性质解题:不等式的两边同时加(或减)同一个数(或式子),不等式的结果仍成立;不等式的两边同乘以(或除以)同一个不为零的正数,不等式的结果仍成立; 不等式的两边同乘以(或除以)同一个不为零的负数,不等式的方向要改变. 【详解】A. x y >则11x y +>+,正确,故A 不符合题意;B. 若a b ->-则a b <,正确,故B 不符合题意;C. 12x y ->则2x y <-,正确,故C 不符合题意; D. 若35x -<则53x >-,错误,故D 符合题意,故选:D . 【点睛】本题考查不等式的性质,是重要考点,难度较易,掌握相关知识是解题关键. 6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥x B .1x ≤C .2x ≥D .2x ≤【答案】D 【分析】不等式移项合并,把x 系数化为1,即可求出解集. 【详解】不等式213x -≤, 移项合并得:24x ≤, 解得:2x ≤, 故选:D . 【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .【分析】首先解出不等式的解集,然后看四个答案中哪个符合,即可解答;【详解】解:不等式4x-8≥0,4x≥8,x≥2;D符合;故选:D.【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.8.(2021·全国七年级)不等式组24020xx-⎧⎨+>⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】C【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】解:24020xx-⎧⎨+>⎩①②,解不等式①,得2x,解不等式②,得2x>-,∴不等式组的解集是22x-<,在数轴上表示为:,故选:C.【点睛】本题考查了一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解题的关键.9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a > B .0a <C .3a >D .3a <【答案】D 【分析】根据不等式的性质,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案. 【详解】(3)3a x a ->-的解集是1x <,∴30a -<,解得:3a <, 故答案选D . 【点睛】本题考查了解一元一次不等式,由不等号方向改变,得出未知数的系数小于0是解题的关键. 10.(2021·广西北海市·八年级期末)若不等式组04x a x无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥【答案】D 【分析】不等式组整理后,根据不等式组无解确定出a 的范围即可. 【详解】解:不等式组整理得:4x a x,由不等式组无解,得到4a ≥. 故选:D . 【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”). 【答案】< 【分析】根据不等式的性质直接求解即可.【详解】∴22a b -<- ∴2525b a故答案是:<. 【点睛】本题考查了不等式的性质,熟悉相关性质是解题的关键.12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩的最大整数解为__________.【答案】3 【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集即可得出答案. 【详解】解:()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩①②解不等式①可得:x >52-, 解不等式②可得:x <4, 则不等式组的解集为52-<x <4, ∴不等式组的最大整数解为3, 故答案为:3. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.【答案】2或3 【分析】根据不等式的基本性质分别解两个不等式,然后取公共解集,最后找出整数解即可.解:321215x x ->⎧⎨-≤⎩①② 解①,得1x > 解②,得3x ≤∴该不等式组的解集为13x <≤ ∴该不等式组的整数解为2或3 故答案为2或3. 【点睛】此题考查的是求不等式组的整数解,掌握不等式组的解法是解决此题的关键.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.【答案】13x -<≤. 【分析】根据不等式组解集确定的口诀,结合数轴,确定解集即可. 【详解】根据数轴的意义,得 不等式的解集为13x -<≤; 故答案为13x -<≤. 【点睛】本题考查了不等式组解集,利用数形结合思想,熟练掌握解集的确定要领是解题的关键. 15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___. 【答案】5≤m <6 【分析】首先解不等式组求得解集,然后根据不等式组恰好有三个整数解,确定整数解,则可以得到一个关于m的不等式组求得m的范围.【详解】解:0 721 x mx-≤⎧⎨-≤⎩①②解不等式①,得:x m≤解不等式②,得:3x≥∴不等式组的解集为:3x m≤≤∵不等式组恰有三个整数解,∴不等式组的整数解为3、4、5,则5≤m<6.故答案为:5≤m<6.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(2020·浙江绍兴市·八年级其他模拟)关于x的不等式组314(1)x xx a->-⎧⎨<⎩的解是3x<,那么a的取值范围是______.【答案】a≥3【分析】先解第一个不等式得到x<3,由于不等式组的解集为x<3,则利用同大取大可得到a的范围.【详解】解:314(1)x xx a->-⎧⎨<⎩①,解①得x<3,而不等式组的解集为x<3,所以a≥3.故答案为:a≥3.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题一(每小题6分,共12分)17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.【答案】57x <;数轴见解析 【分析】 根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x 的范围,再把所得的x 的范围在数轴上表示出来即可.【详解】431132x x +-->, 去分母,得()()243316x x +-->,去括号,得28936x x +-+>,移项、合并同类项,得75x ->-,系数化为1,得57x <. 在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集 【答案】24x -≤<,数轴见解析【分析】分别解出这两个不等式,即可得到不等式组的解集.【详解】 解:31211213x x x x +≥-⎧⎪⎨+>-⎪⎩①②,解不等式①得2x ≥-,解不等式②得4x <,∴不等式组的解集为24x -≤<,在数轴上表示不等式的解集为:【点睛】本题考查解不等式组,解题的关键是掌握解不等式组的方法.四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +【答案】1【分析】 由题意,根据方程组的解相同得到2563516x y x y +=-⎧⎨-=⎩,从而得到22x y =⎧⎨=-⎩,再代入计算,求出m 、n 的值,即可得到答案.【详解】解:根据题意,由2563516x y x y +=-⎧⎨-=⎩, 解得:22x y =⎧⎨=-⎩,代入48mx ny nx my -=⎧⎨+=-⎩, 得224228m n n m +=⎧⎨-=-⎩, 解得:31m n =⎧⎨=-⎩;则20212021(2)(32)1m n +=-=;【点睛】 本题考查了解二元一次方程组,解题的关键是掌握解二元一次方程组的方法进行解题.20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件.(1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?【答案】(1)租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;(2)这次运送的费用最少需要9000元.【分析】(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,根据题意列一元一次不等式组,解一元一次不等式组,找到符合题意的解即可;(2)由(1)中结论,分别计算租车费用,再比较大小即可解题.【详解】解:(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,得()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解得:5x 6≤≤,所以符合条件的x 可以取5,6,租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;⨯+⨯=9000元;(2)方案一:租车的费用:1200510003⨯+⨯=9200元;方案二:租车的费用:1200610002所以这次运送的费用最少需要9000元.【点睛】本题考查一元一次不等式(组)的实际应用,是重要考点,难度较易,掌握相关知识是解题关键.。

人教新版七年级下册《第9章 不等式与不等式组》单元测试卷

人教新版七年级下册《第9章 不等式与不等式组》单元测试卷

人教新版七年级下册《第9章不等式与不等式组》单元测试卷一、选择题1.若m>n,则下列各式中错误的是()A.m﹣2>n﹣2B.4m>4n C.﹣3m>﹣3n D.>2.在数学表达式:①﹣3<0,②3x+5>0,③x2﹣6,④x=﹣2,⑤y≠0,⑥x+2≥x中,不等式的个数是()A.2B.3C.4D.53.不等式组的解集是()A.x≥﹣1B.x<5C.﹣1≤x<5D.x≤﹣1或x<5 4.若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1B.2a<2b C.﹣>﹣D.a2<b25.在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x题,可列不等式为()A.10x﹣5(20﹣x)≥80B.10x+5(20﹣x)≥80C.10x﹣5(20﹣x)>80D.10x+5(20﹣x)>806.某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有()A.152块B.153块C.154块D.155块7.若关于x的不等式组有解,则m的范围是()A.m≤2B.m<2C.m<﹣1D.﹣1≤m<2 8.a、b是不相等的任意正数,又x=,y=,则x、y这两个数一定是()A.至少有一个小于2B.都不小于2C.至少有一个大于2D.都不大于29.已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.10.如果a>b,下列各式中不正确的是()A.a﹣4>b﹣4B.﹣2a<﹣2b C.﹣1+a<﹣1+b D.二、填空题11.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是.12.不等式4x≤12的自然数解是:.13.不等式2x>﹣3x,x2+1≤0,|2x﹣1|+1>0,x2﹣2x+1>0中,解集是一切实数的是,无解的是.14.已知数a、b、c满足a+b+c=6,2a﹣b+c=3,0≤c≤b,则a的最大值为;最小值为.15.不等式﹣3≤5﹣2x<3的正整数解是.16.“端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子袋.三、解答题17.解不等式组:18.解不等式组,并把解集在数轴上表示出来.19.如果方程组的解满足x>0,y>0,求m的取值范围.20.10个实数a1,a2,…,a10,满足a1=1,0≤a2≤2a1,0≤a3≤2a2,…,0≤a10≤2a9,且使a1﹣a2+a3﹣a4+a5﹣a6+a7﹣a8+a9﹣a10取得最大值,求此时a9的值.21.现在有住宿生若干名,分住若干间宿舍,若每间住5人,则还有19人无宿舍住;若每间住8人,则有一间宿舍不空也不满,问住宿人数是多少?22.阅读材料:形如2<2x+1<3的不等式,我们就称之为双连不等式,求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得1<2x<2,然后同时除以2,得<x<1.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式2≥﹣2x+3>﹣5;(3)已知﹣3≤x<,求3x+5的整数值.人教新版七年级下册《第9章不等式与不等式组》单元测试卷一、选择题1.若m>n,则下列各式中错误的是()A.m﹣2>n﹣2B.4m>4n C.﹣3m>﹣3n D.>【分析】依据不等式的基本性质进行判断,即可得出结论.【解答】解:A.不等式m>n的两边都减去2,不等号的方向不变,原变形正确,故本选项不符合题意;B.不等式m>n的两边都乘以4,不等号的方向不变,原变形正确,故本选项不符合题意;C.不等式m>n的两边都乘以﹣3,不等号的方向改变,原变形错误,故本选项符合题意;D.不等式m>n的两边都除以2,不等号的方向不变,原变形正确,故本选项不符合题意.故选:C.【点评】本题考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.2.在数学表达式:①﹣3<0,②3x+5>0,③x2﹣6,④x=﹣2,⑤y≠0,⑥x+2≥x中,不等式的个数是()A.2B.3C.4D.5【分析】依据不等式的定义求解即可.【解答】解:①﹣3<0是不等式,②3x+5>0是不等式,③x2﹣6不是不等式,④x=﹣2不是不等式,⑤y≠0是不等式,⑥x+2≥x是不等式.故选:C.【点评】本题主要考查的是不等式的定义,掌握不等式的定义是解题的关键.3.不等式组的解集是()A.x≥﹣1B.x<5C.﹣1≤x<5D.x≤﹣1或x<5【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:由﹣x≤1得:x≥﹣1由x﹣2<3得:x<5∴不等式组的解集为5>x≥﹣1.故选:C.【点评】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.4.若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1B.2a<2b C.﹣>﹣D.a2<b2【分析】由不等式的性质进行计算并作出正确的判断.【解答】解:A、在不等式a<b的两边同时减去1,不等式仍成立,即a﹣1<b﹣1,故本选项错误;B、在不等式a<b的两边同时乘以2,不等式仍成立,即2a<2b,故本选项错误;C、在不等式a<b的两边同时乘以﹣,不等号的方向改变,即﹣>﹣,故本选项错误;D、当a=﹣5,b=1时,不等式a2<b2不成立,故本选项正确;故选:D.【点评】考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.5.在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x题,可列不等式为()A.10x﹣5(20﹣x)≥80B.10x+5(20﹣x)≥80C.10x﹣5(20﹣x)>80D.10x+5(20﹣x)>80【分析】首先设答对x道题,则答错了或不答的有(20﹣x)道,根据题意可得:答对题的得分﹣答错了或不答扣的分数≥80,列出不等式.【解答】解:设答对x道题,根据题意可得:10x﹣5(20﹣x)≥80,故选:A.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,找出题目中的不等关系,列出不等式.6.某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有()A.152块B.153块C.154块D.155块【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,200×80+(x﹣80)×150>27000解得,x>153∴这批手表至少有154块,故选:C.【点评】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.7.若关于x的不等式组有解,则m的范围是()A.m≤2B.m<2C.m<﹣1D.﹣1≤m<2【分析】根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到即可确定m的取值范围.【解答】解:∵关于x的不等式组有解,∴m<2,故选:B.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.a、b是不相等的任意正数,又x=,y=,则x、y这两个数一定是()A.至少有一个小于2B.都不小于2C.至少有一个大于2D.都不大于2【分析】a、b是互不相等的任意正数,不妨设a>b>0,根据a2+b2≥2ab,即可作出判断.【解答】解:a、b是互不相等的任意正数,不妨设a>b>0,x=≥=2×,y=≥=2×,∵a>b>0,∴0<<1,>1∴y一定大于2,而x不确定.故至少有一个大于2.故选:A.【点评】本题考查不等式的性质,正确利用不等式的性质a2+b2≥2ab是关键.9.已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【分析】先得出点M关于x轴对称点的坐标为(1﹣2m,1﹣m),再由第一象限的点的横、纵坐标均为正可得出关于m的不等式,继而可得出m的范围,在数轴上表示出来即可.【解答】解:由题意得,点M关于x轴对称的点的坐标为:(1﹣2m,1﹣m),又∵M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴,解得:,在数轴上表示为:.故选:A.【点评】此题考查了在数轴上表示不等式解集的知识,及关于x轴对称的点的坐标的特点,根据题意得出点M对称点的坐标是解答本题的关键.10.如果a>b,下列各式中不正确的是()A.a﹣4>b﹣4B.﹣2a<﹣2b C.﹣1+a<﹣1+b D.【分析】根据不等式的性质对各选项进行逐一分析即可.【解答】解:A.∵a>b,∴a﹣4>b﹣4,原变形正确,故此选项不符合题意;B.∵a>b,∴﹣2a<﹣2b,原变形正确,故此选项不符合题意;C.∵a>b,∴﹣1+a>﹣1+b,原变形不正确,故此选项符合题意;D.∵a>b,∴,原变形正确,故此选项不符合题意.故选:C.【点评】本题考查的是不等式的性质.解题的关键是掌握不等式的性质,即:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.二、填空题11.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是x>49.【分析】表示出第一次的输出结果,再由第三次输出结果可得出不等式,解不等式求出即可.【解答】解:第一次的结果为:2x﹣10,没有输出,则2x﹣10>88,解得:x>49.故x的取值范围是x>49.故答案为:x>49【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.12.不等式4x≤12的自然数解是:0,1,2,3.【分析】首先解不等式,然后确定不等式的自然数解即可.【解答】解:系数化成1得:x≤3.则自然数解是0,1,2,3,故答案为:0,1,2,3.【点评】本题考查了不等式的解法,解一元一次不等式的基本依据是不等式的基本性质,解不等式是本题的关键.13.不等式2x>﹣3x,x2+1≤0,|2x﹣1|+1>0,x2﹣2x+1>0中,解集是一切实数的是|2x ﹣1|+1>0,无解的是x2+1≤0.【分析】分别求出不等式的解集,判断即可.【解答】解:不等式2x>﹣3x,解得:x>0;x2+1≤0,即x2≤﹣1,无解;|2x﹣1|+1>0,即|2x﹣1|>﹣1,解得:x为一切实数;x2﹣2x+1>0,即(x﹣1)2>0,解得:x≠1,则解集是一切实数的是|2x﹣1|+1>0,无解的是x2+1≤0.故答案为:|2x﹣1|+1>0,x2+1≤0.【点评】此题考查了解一元一次不等式,以及绝对值,熟练掌握不等式的解法是解本题的关键.14.已知数a、b、c满足a+b+c=6,2a﹣b+c=3,0≤c≤b,则a的最大值为3;最小值为.【分析】由a+b+c=6,2a﹣b+c=3关系式可以用a来表示b和c,再根据0≤c≤b列出不等式组,可以求得a的取值范围,最后根据a的取值范围来确定a的最大最小值.【解答】解:∵由已知条件得,解得,∵0≤c≤b,∴,解答,故a的最大值为3,最小值为.故答案为:3;.【点评】本题考查了解一元一次不等式组,解答本题的关键是分别用a来表示b和c,根据b≥c≥0,就可以得到关于a的不等式组.本题利用了消元的基本思想,消元的方法可以采用加减消元法或代入消元法.15.不等式﹣3≤5﹣2x<3的正整数解是2,3,4.【分析】先将不等式化成不等式组,再求出不等式组的解集,进而求出其整数解.【解答】解:原式可化为:,解得,即1<x≤4,所以不等式的正整数解为2,3,4.【点评】此题要明确,不等式﹣3≤5﹣2x<3要转化成不等式组的形式解答,否则将无从下手.16.“端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子6袋.【分析】根据一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款,设可以购买x袋蜜枣粽子,根据:2袋原价付款数+超过2袋的总钱数≤50,列出不等式求解即可得.【解答】解:设可以购买x(x为整数)袋蜜枣粽子.2×10+(x﹣2)×10×0.7≤50,解得:x≤6,则她最多能买蜜枣粽子是6袋.故答案为:6.【点评】此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.三、解答题17.解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.18.解不等式组,并把解集在数轴上表示出来.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,,不等式组的解集是:﹣3<x≤1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.如果方程组的解满足x>0,y>0,求m的取值范围.【分析】先解方程组得出,根据x>0,y>0得出,求出每个不等式的解集即可得出答案.【解答】解:解方程组得,∵x>0,y>0,∴,解不等式①,得:m>1,解不等式②,得:m<或m>1,∴m的取值范围是m>1.【点评】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是根据已知条件列出关于m的不等式组,并熟练解不等式组.20.10个实数a1,a2,…,a10,满足a1=1,0≤a2≤2a1,0≤a3≤2a2,…,0≤a10≤2a9,且使a1﹣a2+a3﹣a4+a5﹣a6+a7﹣a8+a9﹣a10取得最大值,求此时a9的值.【分析】根据10个不等式,当10个式子都取等号时,10个式子累加后才成立,进而计算可得结论.【解答】解:a1﹣a2+a3﹣a4+a5﹣a6+a7﹣a8+a9﹣a10=a1+(a3﹣a2)+(a5﹣a4)+(a7﹣a6)+(a9﹣a8)﹣a10,∵0≤a3≤2a2,∴a3﹣a2≤a2,同理:a5﹣a4≤a4,a7﹣a6≤a6,a9﹣a8≤a8,∴原式≤a1+a2+a4+a6+a8﹣a10≤a1+a2+a4+a6+a8,∵a2≤2a1,a4≤23a1,a6≤25a1,a8≤27a1,a9≤28a1,∴原式≤(1+2+23+25+27)a1=171,最大值为171,此时a9=28=256.【点评】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找规律.21.现在有住宿生若干名,分住若干间宿舍,若每间住5人,则还有19人无宿舍住;若每间住8人,则有一间宿舍不空也不满,问住宿人数是多少?【分析】假设宿舍共有x间,则住宿生人数是5x+19人,若每间住8人,则有一间不空也不满,说明住宿生若住满(x﹣1)间,还剩的人数大于或等于1人且小于8人,所以可列式1≤5x+19﹣8(x﹣1)<8,解出x的范围讨论.【解答】解:设有宿舍x间.住宿生人数5x+19人.由题意得,1≤5x+19﹣8(x﹣1)<8,即1≤﹣3x+27<8,解得:6<x≤8.因为宿舍间数只能是整数,所以宿舍是7间或8间,当宿舍是7间时,住宿人数为5×7+19=54;当宿舍是8间时,住宿人数为5×8+19=59.答:住宿人数是54或59人.【点评】本题考查一元一次不等式的应用,对题目逐字分析,找出隐含(数学中的客观事实,但在题目中不存在)或题目中存在的条件.列出不等式关系,求解.22.阅读材料:形如2<2x+1<3的不等式,我们就称之为双连不等式,求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得1<2x<2,然后同时除以2,得<x<1.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式2≥﹣2x+3>﹣5;(3)已知﹣3≤x<,求3x+5的整数值.【分析】(1)3<x﹣2<5,转化为不等式组;(2)根据方法二的步骤解答即可;(3)根据方法二的步骤解答,得出﹣4≤3x+5<﹣,即可得到结论.【解答】解:(1)3<x﹣2<5,转化为不等式组;(2)2≥﹣2x+3>﹣5,不等式的左、中、右同时减去3,得﹣1≥﹣2x>﹣8,同时除以﹣2,得≤x<4;(3)﹣3≤x<,不等式的左、中、右同时乘以3,得﹣9≤3x<﹣,同时加5,得﹣4≤3x+5<﹣,∴3x+5的整数值﹣4或﹣3.【点评】本题考查了解一元一次不等式组,参照方法二解不等式组是解题的关键,应用的是不等式的性质.。

【教师卷】初中数学七年级数学下册第九单元《不等式与不等式组》经典测试题(培优)

【教师卷】初中数学七年级数学下册第九单元《不等式与不等式组》经典测试题(培优)

一、选择题1.不等式32x x -≤的解集在数轴上表示正确的是( )A .B .C .D . B解析:B【分析】先求出不等式的解集,再根据不等式在数轴上的表示方法即可得.【详解】 32x x -≤,23x x --≤-,33x -≤-,1≥x ,由此可知,只有选项B 表示正确,故选:B .【点睛】本题考查了在数轴上表示一元一次不等式的解集,熟练掌握不等式的解法是解题关键. 2.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( )A .B .C .D . A解析:A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x )<4去括号得:2﹣2x<4移项得:2x >﹣2,系数化为1得:x >﹣1,故选A .“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 3.不等式组64325x x x -<⎧⎨≥+⎩的解集是( ) A .x ≥5B .x ≤5C .x >3D .无解A解析:A【分析】先分别求出每个不等式的解集,然后再确定不等式组的解集即可.【详解】解:64325x x x -<⎧⎨≥+⎩, 解不等式①得:x >34, 解不等式②得:x ≥5, 所以不等式组的解集是x ≥5,故答案为A .【点睛】本题考查了解不等式组,正确求解每一个不等式和确定不等式组的解集是解答本题的关键.4.已知01m <<,则m 、2m 、1m ( ) A .21m m m >>B .21m m m >>C .21m m m >>D .21m m m>> C 解析:C【分析】根据不等式的性质解答.【详解】解:∵01m <<,∴01m m m <⋅<⨯,即20m m <<(不等式的两边都乘以同一个正数,所得的不等式仍然成立)① 10m m m <<,即101m<<(不等式的两边都除以同一个正数,所得的不等式仍然成立)② 由①②知21m m m >>; 故选:C.【点睛】此题考查不等式的性质:不等式两边都乘以同一个正数,所得的不等式仍然成立,不等式的两边都除以同一个正数,所得的不等式仍然成立,解题的关键是正确掌握不等式的性质. 5.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x ﹣2]=﹣1,则x 的取值范围为( )A .0<x ≤1B .0≤x <1C .1<x ≤2D .1≤x <2D解析:D【详解】由题意得2021x x -<⎧⎨-≥-⎩解之得12x ≤<故选D .6.不等式组10840x x ->⎧⎨-≤⎩的解集在数轴上表示为( ) A . B . C . D . A 解析:A【分析】先对不等式组进行化简,找出它们的公共部分,然后在数轴上分别表示出x 的取值范围.【详解】解:不等式组10840x x ->⎧⎨-≤⎩①②由①得,x >1,由②得,x ⩾2, 故不等式组的解集为:x ⩾2, 在数轴上可表示为:故选:A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,注意在数轴上表示解集时,空心圈和实心圈的区别.7.不等式()2x 13x -≥的解集是( )A .x 2≥B .x 2≤C .x 2≥-D .x 2≤- D解析:D【分析】去括号、移项、合并同类项,然后系数化成1即可求解.【详解】解:()2x 13x -≥,去括号,得2x 23x -≥,移项,得23x 2x -≥-,解得x 2≤-.故选:D .【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( )A .23a <B .23a >C .a 为任何实数D .a 为大于0的数A 解析:A【分析】先解方程,再结合题意列出不等式,解之即可得出答案.【详解】解:∵3x+3a=2,∴x=233a - , 又∵方程的解为正数,∴233a ->0, ∴a <23. 故选:A.【点睛】 本题考查一元一次不等式与一元一次方程的综合运用,正确理解一元一次方程解的意义及熟练求解一元一次不等式是解题关键.9.不等式325132x x ++≤-的解集表示在数轴上是( ) A . B .C .D . B解析:B【分析】 根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.【详解】解:去分母,得,2(3x +2)≤3(x +5)﹣6,去括号,得6x +4≤3x +15﹣6,移项、合并同类项,得3x ≤5,系数化为1,得,x ≤53, 在数轴上表示为:故选:B .【点睛】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.10.在数轴上,点A 2,现将点A 沿数轴做如下移动,第一次点A 向左移动4个单位长度到达点1A ,第二次将点1A 向右移动8个单位到达点2A ,第三次将点2A 向左移动12个单位到达点3A ,第四次将点3A 向右移动16个单位长度到达点4A ,按照这种规律下去,第n 次移动到点n A ,如果点n A 与原点的距离不少于18,那么n 的最小值是( ) A .7B .8C .9D .10C解析:C【分析】根据题意依次得出点A 移动的规律,当点A 奇数次移动时,对应表示的数为负数,当点A 偶数次移动时,对应表示的数为正数,得出对应规律,根据点n A 与原点的距离不少于18,列出不等式,求解可得.【详解】解:第一次:1A 24-,第二次:2A 24,第三次:3A 28,第四次:4A 28+,... 当n 为奇数时,第n 1242n +⨯222n -, 当n 为偶数时,第n 242n ⨯22n ,∵点n A 与原点的距离不少于18,∴2218n -≥218n ≥,解得:8n ≥,9n ≥,∵012<<, ∴n≥9,∴n 的最小值是9,故选C .【点睛】本题是数字类的变化规律题,考查了解不等式,还考查了数轴的性质:向左移→减,向右移→加;从第一个点移动开始分别计算出表示的数,大胆猜想,找出对应的规律,并验证,列式计算.二、填空题11.已知关于x ,y 的方程组4375x y m x y m +=⎧⎨-=-⎩的解满足不等式2x+y>8,则m 的值是_____.m <-6【分析】先解方程组然后将xy 的值代入不等式解答【详解】解:①+②得解得x=2m-1把x=2m-1代入②得解得y=4-5m 将x=2m-1y=4-5m 代入不等式2x+y >8得4m-2+4-5m >解析:m <-6.【分析】先解方程组,然后将x 、y 的值代入不等式解答.【详解】解:4375x y m x y m +=⎧⎨-=-⎩①②①+②得,5105x m =-,解得,x=2m-1,把x=2m-1代入②得,2175m y m --=-,解得,y=4-5m ,将x=2m-1,y=4-5m 代入不等式2x+y >8得4m-2+4-5m >8,∴m <-6,故答案为:m <-6.【点睛】本题考查了方程组与不等式,熟练解方程组与不等式是解题的关键.12.已知不等式组43103x x a -≤≤-⎧⎪⎨->⎪⎩有解,那么a 的取值范围是___________.【分析】先求出不等式组中第二个不等式的解再结合数轴根据不等式组有解即可得【详解】解得:在数轴上表示两个不等式的解如下:要使不等式组有解则解得故答案为:【点睛】本题考查了一元一次不等式组的解熟练掌握不解析:1a <-【分析】先求出不等式组中第二个不等式的解,再结合数轴,根据不等式组有解即可得.【详解】 解103x a ->得:3x a >, 在数轴上表示两个不等式的解如下:要使不等式组有解,则33a <-,解得1a <-,故答案为:1a <-.【点睛】本题考查了一元一次不等式组的解,熟练掌握不等式组的解法是解题关键.13.已知点()6,29P m m --关于x 轴对称的点在第三象限,则m 的整数解是______.5【分析】利用平面直角坐标系中点的坐标特点得出m 的取值范围【详解】解:∵点P(m ﹣62m ﹣9)关于x 轴的对称点在第三象限∴点P 在第二象限∴m ﹣6<0且2m ﹣9>0解得:<m<6∴m 的取值范围是<m<解析:5【分析】利用平面直角坐标系中点的坐标特点得出m 的取值范围.【详解】解:∵点P (m ﹣6,2m ﹣9)关于x 轴的对称点在第三象限,∴点P 在第二象限,∴m ﹣6<0且2m ﹣9>0,解得:92<m<6, ∴m 的取值范围是92<m<6, ∴m 的整数解为5;故答案为 5.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),要注意先判断出点P 在第二象限.14.当前我国的新冠疫情虽然有所控制,但防控仍不可掉以轻心,为做好秋季防疫工作,王老师带现金6820元为年级采购了额温枪和消毒酒精两种防疫物品,额温枪每个125元,消毒酒精每瓶55元,购买后剩余100元、10元、1元的钞票若干张(10元钞票和1元钞票剩余数量均不超过9张,且采购额温枪的数量大于消毒酒精的数量).若把购买两种防疫物品的数量交换,剩余的100元和10元的钞票张数恰好相反,但1元钞票的张数不变,则购买消毒酒精的数量为__________________瓶.30【分析】设额温枪的数量为消毒酒精的数量为剩余100元钞票的数量为a10元为b 根据题意列出方程组然后分别代入可能的a 和b 即可求得【详解】解:∵题中所有的钱数(68201255510010)均是0或解析:30【分析】设额温枪的数量为x ,消毒酒精的数量为y ,剩余100元钞票的数量为a ,10元为b ,根据题意列出方程组,然后分别代入可能的a 和b ,即可求得.【详解】解:∵题中所有的钱数(6820,125,55,100,10)均是0或5结尾,且1元钞票的数量不超过9张∴1元钞票的数量是5设额温枪的数量为x ,消毒酒精的数量为y ,剩余100元钞票的数量为a ,10元为b 根据题意得()()682012555100105682012555100105x y a b y x b a ⎧-+=++⎪⎨-+=++⎪⎩两式子相减可整理得:97x y b a -=- ∵9b ≤∴9x y -=,7b a -=∴b a -有三种情况①b=7,a=0②b=8,a=1③b=9,a=2将三种情况分别代入上述方程组计算得情况①和②算出x 和y 不是整数,不符合题意情况③情况符合题意:=39x 和=30y ,且39>30,符合题意故购买的消毒酒精的数量为30瓶故答案为:30【点睛】本题考查四元一次方程组与不等式的应用,找出题中数量关系,列出方程组,并整体得出两个未知数的方程是解题的关键,要注意钞票张数是整数.15.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分.15【分析】设至少答对x 道题总分才不会低于6根据对1题给5分错1题扣3分不答题不给分也不扣分小华有3题未做总分不低于65分可列不等式求解【详解】解:设至少答对x 道题总分才不会低于6根据题意得5x-3解析:15【分析】设至少答对x 道题,总分才不会低于6,根据对1题给5分,错1题扣3分,不答题不给分也不扣分.小华有3题未做,总分不低于65分,可列不等式求解.【详解】解:设至少答对x 道题,总分才不会低于6,根据题意,得5x-3(20-x-3)≥65,解之得x≥14.5.答:至少答对15道题,总分才不会低于6.故答案是:15.【点睛】本题考查了一元一次不等式的应用,理解题意找到题目中的不等关系列不等式是解决本题的关键.16.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.−5【分析】设被污染的数为a 表示出不等式的解集根据已知解集确定出a 的值即可【详解】解:设被污染的数为a 不等式为1−3x <a 解得:x >由已知解集为x >2得到=2解得:a =−5故答案为:−5【点睛】此题 解析:−5【分析】设被污染的数为a ,表示出不等式的解集,根据已知解集确定出a 的值即可.【详解】解:设被污染的数为a ,不等式为1−3x <a .解得:x >1-3a , 由已知解集为x >2,得到1-3a =2, 解得:a =−5,故答案为:−5【点睛】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.17.把方程组2123x y m x y +=+⎧⎨+=⎩中,若未知数x y 、满足0x y +>,则m 的取值范围是_________.【分析】先将方程组中的两个方程相加化简得出的值再根据可得关于m 的一元一次不等式然后解不等式即可得【详解】由①②得:即解得故答案为:【点睛】本题考查了二元一次方程组的解解一元一次不等式根据二元一次方程解析:4m >-【分析】先将方程组中的两个方程相加化简得出x y +的值,再根据0x y +>可得关于m 的一元一次不等式,然后解不等式即可得.【详解】2123x y m x y +=+⎧⎨+=⎩①②, 由①+②得:334x y m +=+, 即43m x y ++=, 0x y +>,403m +∴>, 解得4m >-,故答案为:4m >-.【点睛】本题考查了二元一次方程组的解、解一元一次不等式,根据二元一次方程组得出x y +的值是解题关键.18.不等式2x+9>3(x+4)的最大整数解是_____.-4【分析】先求出不等式的解集在其解集范围内找出符合条件的x 的最大整数解即可【详解】解:去括号移项得2x ﹣3x >12﹣9合并同类项得﹣x >3系数化为1得x <﹣3∴x 的最大整数解是﹣4故答案为:﹣4【解析:-4【分析】先求出不等式的解集,在其解集范围内找出符合条件的x 的最大整数解即可.【详解】解:去括号、移项得,2x ﹣3x >12﹣9,合并同类项得,﹣x >3,系数化为1得,x <﹣3,∴x 的最大整数解是﹣4.故答案为:﹣4.【点睛】考核知识点:解不等式.运用不等式基本性质是关键.19.若不等式组30x a x >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可.【详解】30x a x >⎧⎨-≤⎩30x -≤3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 20.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________.3≤a <4【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-a 解不等解析:3≤a <4【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案.【详解】0122x a x x +≥⎧⎨->-⎩①② 解不等式①得:x≥-a ,解不等式②x <1,∴不等式组得解集为-a≤x <1,∵不等式组恰有四个整数解,解得:3≤a <4,故答案为:3≤a <4【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a 的不等式组是解题关键.三、解答题21.我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数n ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数n 为“七巧数”.例如:3254是“七巧数”,因为347+=,257+=,所以3254是“七巧数”; 1456不是“七巧数”,因为167+=,但457+≠,所以1456不是“七巧数”.(1)若一个“七巧数”的千位数字为a ,则其个位数字可表示为______(用含a 的代数式表示);(2)最大的“七巧数”是______,最小的“七巧数”是______;(3)若m 是一个“七巧数”,且m 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数”m .解析:(1)7-a ;(2)7700,1076;(3)6431,4523,2615【分析】(1)根据七巧数的定义,即可得到答案;(2)根据七巧数的定义,即可得到答案;(3)设m 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,根据题意得到a ,b ,c ,d 之间的数量关系,进而求出b 的范围,即可求解.【详解】(1)∵一个“七巧数”的千位数字为a ,∴其个位数字可表示为:7-a ,故答案是:7-a ;(2)由题意可得:最大的“七巧数”是:7700,最小的“七巧数”是:1076,故答案是:7700,1076;(3)设m 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则3()77a c b d a d c b +=-⎧⎪=-⎨⎪=-⎩①②③,把②③代入①,可得:7-d+7-b=3b-3d ,既:4b-2d=14,∴d=2b-7,∴百位数字为b ,个位数字为2b-7,十位数字为7-b ,∵2b-7≥0且7-b≥0,当b=4时,则d=1,a=6,c=3,m=6431,当b=5时,则d=3,a=4,c=2,m=4523,当b=6时,则d=5,a=2,c=1,m=2615,当b=7时,则d=7,a=0,c=0,不符合题意,∴ 满足条件的所有“七巧数”m 为:6431,4523,2615.【点睛】本题主要考查新定义问题,理解题意,列出方程和不等式,掌握分类讨论的思想方法,是解题的关键.22.近两年,重庆市奉节县紧紧围绕“村有骨干产业、户有致富门路”的发展思路,大力实施农产品产业扶贫项目,实现助农增收其中“乡坛子”什锦套菜礼盒、奉节脐橙10km 装广受好评,单价分别为100元/盒和60元/盒.(1)某公司大力响应扶贫政策,准备用不低于15000元购买什锦套菜礼盒、奉节脐橙共200盒,则至少购入什锦套菜礼盒多少盒?(2)2021年春节将至,该公司准备再次购入以上两种产品作为员工新春福利.恰逢“学习强国”重庆学习平台开展“党员直播带货、‘渝’你抗疫助农”扶贫农产品公益直播活动.直播中,什锦套菜礼盒以原价8折销售,该公司购买数量在(1)问最少数量的基础上增加了5%2m ;奉节脐橙售价比原价降低了815m 元,购买数量在(1)问奉节脐橙最多数量的基础上增加了40%.该公司在直播间下单后实际花费比(1)问中最低花费增加2350元,求m 的值.解析:(1)至少购入什锦套菜礼盒75盒;(2)15m =.【分析】(1)设购进什锦套菜礼盒x 盒,则购进奉节脐橙礼盒(200-x )盒,根据总价值不低于15000元,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论; (2)根据销售总价=销售单价×销售数量结合题意可得出关于m 的一元一次方程,解之即可得出结论.【详解】(1)设购进什锦套菜礼盒x 盒,则购进奉节脐橙礼盒(200-x )盒,根据题意得:()6020010015000x x -+≥,解得:75x ≥.答:至少购入什锦套菜礼盒75盒;(2)根据题意得:()()5810080%751%6020075140%150002350215m m ⎛⎫⎛⎫⨯⨯++--+=+ ⎪ ⎪⎝⎭⎝⎭, 整理得:1708503m =, 解得:15m =.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元一次方程.23.大润发超市用6800元购进A 、B 两种计算器共120只,这两种计算器的进价、标价如下表.(2)元旦活动期间,超市决定将A 型计算器按标价的9折出售,为保证这批计算器全部售出后盈利不低于1400元,则B 型计算器最多打几折出售?解析:(1)A 型计算机进购40只,B 形计算机进购80只;(2)B 型计算器最多打八折出售【分析】(1)设A 型计算器进购x 只,B 形计算器进购y 只,列二元一次方程组求解;(2)设B 型计算器打m 折,先算出A 型计算器和B 形计算器的单个利润,然后列不等式求解.【详解】 解:(1)设A 型计算器购进x 只,B 形计算器购进y 只,列式:12030706800x y x y +=⎧⎨+=⎩,解得4080x y =⎧⎨=⎩, 答:A 型计算器购进40只,B 形计算器购进80只;(2)设B 型计算器打m 折,A 型计算器的单个利润是500.93015⨯-=(元),B 型计算器的单个利润是()10070107010m m ⎛⎫⨯-=- ⎪⎝⎭元, 列式:()15408010701400m ⨯+-≥60080056001400m +-≥8006400m ≥8m ≥,答:B 型计算器最多打八折出售.【点睛】本题考查二元一次方程组的应用和不等式的应用,解题的关键是根据题意列出方程组或不等式进行求解.24.点(),P x y 满足525744x y a x y a +=⎧⎨+=⎩.(1)当1a =时,求P 点的坐标;(2)点(),P x y 的坐标满足不等式组259x y x y +<⎧⎨->-⎩,求出整数a 的所有值之和. 解析:(1)5(2)2P -,;(2)5. 【分析】(1)将a=1带入,再用加减消元法解方程组;(2)直接解出方程组,用a 表示x 、y ,再代入不等式组,求出解集,最后取整数解相加求和.【详解】解:(1)a=1代入方程组525744x y x y +=⎧⎨+=⎩①② ①2⨯,得:10410x y +=③③-②,得:36x =系数化为1,得:2x =2x =代入①,得:52y =- 则252x y =⎧⎪⎨=-⎪⎩因此,P 点坐标为5(2)2-, (2)525744x y a x y a +=⎧⎨+=⎩①② ①2⨯,得:10410x y a +=③③-②,得:36x a =系数化为一,得:2x a =2x =代入①,得:52y a =- 则252x a y a =⎧⎪⎨=-⎪⎩将x 、y 代入不等式组259x y x y +<⎧⎨->-⎩54525292a a a a ⎧-<⎪⎪⎨⎪+>-⎪⎩④⑤ 由不等式④得:103a <由不等式⑤得:2a >- 综合得:1023a -<< 则a 的整数解为-1、0、1、2、3,a 的整数解的和为-1+0+1+2+3=5【点睛】本题考查解二元一次方程组,解不等式组等知识点,熟练掌握二元一次方程组的解法,会用参数表示方程组的解,以及会取不等式解集的整数解是解题的关键.25.解不等式或不等式组(1)2132x x +≤ (2)2113112x x x +≥-⎧⎪⎨-<+⎪⎩ 解析:(1)2x -≤;(2)13x -≤<【分析】(1)去分母,然后去括号、移项、合并同类项、系数化成1即可求解;(2)首先解每个不等式,两个不等式的解集得公共部分就是不等式组的解集.【详解】(1)去分母,得:2(21)3x x +≤去括号得:423x x +≤移项合并同类项得:2x -≤;(2)2113112x x x +≥-⋯⎧⎪⎨-<+⋯⎪⎩①②, 解①得:1x ≥-解②得:x <3故原不等式组的解集是:13x -≤<.【点睛】本题考查的是一元一次不等式组的解.通过观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间,注意等价转化,考查运算能力,属于基础题和易错题. 26.计划对河道进行改造,现有甲乙两个工程队参加改造施工,受条件限制,每天只能由一个工程队施工.若甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成550米施工任务:若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成420米的施工任务.(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?(2)该河道全长6000米,若两队合作工期不能超过90天,乙工程队至少施工多少天? 解析:(1)甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米;(2)乙工程队至少施工50天【分析】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据等量关系列出二元一次方程组,即可求解;(2)设乙工程队施工a 天,根据不等量关系,列出一元一次不等式,即可求解.【详解】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据题意得:3555024420x y x y +=⎧⎨+=⎩,解得:5080x y =⎧⎨=⎩, 答:甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米; (2)设乙工程队施工a 天,根据题意得:80a+50(90-a )≥6000,解得:a≥50,答:乙工程队至少施工50天【点睛】本题主要考查二元一次方程组与一元一次不等式的实际应用,找出等量关系和不等量关系,列出方程组和不等式,是解题的关键.27.解不等式(组),并将解集表示在数轴上:(1)6194x x ->-(2)13215232(3)4x x x x -+⎧-≥⎪⎨⎪-->⎩解析:(1)x <1,数轴见解析;(2)﹣5≤x < 2,数轴见解析【分析】(1)先解一元一次不等式,再在数轴上表示出不等式的解集;(2)先解一元一次不等式组,再在数轴上表示出不等式组的解集;【详解】解:(1)6194x x ->-6941x x->-+33x->-解得:x<1,在数轴上表示如下:(2)13215232(3)4x xx x-+⎧-≥⎪⎨⎪-->⎩①②解不等式①得:x≥﹣5解不等式②得:x< 2∴不等式组的解集为﹣5≤x< 2 ;在数轴上表示如下:.【点睛】本题主要考查求一元一次不等式和一元一次不等式组的解集和数轴,解题的关键是熟练掌握解一元一次不等式和一元一次不等式组的方法.28.长沙市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共70件,其中乙种纪念品的数量不少于40件,考虑到资金周转,用于购买这70件纪念品的资金不能超过5750元,那么该商店共有几种进货方案?解析:(1)购进甲种纪念品每件需50元,购进乙种纪念品每件需100元;(2)该商店共有6种进货方案【分析】(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元,根据“若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进乙种纪念品m件,则购进甲种纪念品(70−m)件,根据“购进乙种纪念品的数量不少于40件,且用于购买这70件纪念品的资金不能超过5750元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出结论.【详解】解:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元,依题意,得:23400 35650x yx y+=⎧⎨+=⎩,解得:50100 xy=⎧⎨=⎩.答:购进甲种纪念品每件需50元,购进乙种纪念品每件需100元;(2)设购进乙种纪念品m件,则购进甲种纪念品(70﹣m)件,依题意,得:4050(70)1005750mm m≥⎧⎨-+≤⎩,解得:40≤m≤45,又∵m为正整数,∴m可以为40,41,42,43,44,45,∴该商店共有6种进货方案.【点睛】本题考查了一元一次不等式组的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.。

【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)

【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)

人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。

新七年级数学下册第九章《不等式与不等式组》单元测试卷(解析版)

新七年级数学下册第九章《不等式与不等式组》单元测试卷(解析版)

人教版七年级数学下册 第九章 不等式与不等式组 单元测试题(解析版)一、选择题(共10小题,每小题3分,共30分)1.2019年2月1日某市最高气温是8℃,最低气温是-2℃,则当天该市气温变化范围t (℃)是( )A .t >8B .t <2C . -2<t <8D . -2≤t ≤82.下列x 的值中,是不等式x >3的解的是( )A . -3B . 0C . 2D . 43.下列不等式变形正确的是( )A . 由a >b ,得ac >bcB . 由a >b ,得a -2<b -2C . 由-21>-1,得-2a>-a D . 由a >b ,得c -a <c -b4.如果a +b <0,且b >0,那么a ,b ,-a ,-b 的大小关系为( ) A .a <b <-a <-b B . -b <a <-a <b C .a <-b <-a <b D .a <-b <b <-a5.定义运算:a *b ,当a >b 时,有a *b =a ,当a <b 时,有a *b =b ,如果(x +3)*2x =x +3,那么x 的取值范围是( )A .x <3B .x >3C .x <1D . 1<x <36.若关于x 、y 的二元一次方程组的解满足x -y >-2,则a 的取值范围是( )A .a <4B . 0<a <4C . 0<a <10D .a <107.已知点M (1-2m ,m -1)在第四象限内,那么m 的取值范围是( ) A .m >1 B .m <21 C .21<m <1D .m <21或m >1 8.已知不等式组有解,则a 的取值范围为( )A .a >-2B .a ≥-2C .a <2D .a ≥29.在关于x、y的方程组中,未知数满足x≥0,y>0,那么m的取值范围在数轴上应表示为()A.B.C.D.10.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5B.6C.7 D.8二、填空题(共8小题,每小题3分,共24分)11.某不等式的解集在数轴上的表示如图所示,则该不等式的解集是___________.12.如果2x-5<2y-5,那么-x______-y.(填“<、>、或=”)13.若关于x的不等式(a-2)x>a-2解集为x<1,化简|a-3|=______.14.关于x的方程3(x+2)=k+2的解是正数,则k的取值范围是________.15.不等式组:的解集是________.16.关于x的不等式组的解集为1<x<4,则a的值为________.17.把m个练习本分给n个学生.若每人分3本,则余80本;若每人分5本,则最后一个同学有练习本但不足5本.那么n=________.18.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共______张.三、解答题(共7小题,共66分)19.(8分)解不等式:6x-1≤5;把解集在数轴上表示出来.20. (8分)阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad -bc .如=2×5-3×4=-2.如果有>0,求x 的解集.21. (8分)已知方程组的解为非负数,求整数a 的值.22. (8分)若关于x 的方程2x -3m =2m -4x +4的解不小于87-,求m 的最小值.23. (10分)解不等式组:并把解集在数轴上表示出来.24. (12分)某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元;本周已售出2辆A 型车和1辆B 型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?25. (12分)学校计划利用校友慈善基金购买一些平板电脑和打印机.经市场调查,已知购买1台平板电脑比购买3台打印机多花费600元,购买2台平板电脑和3台打印机共需8 400元.(1)求购买1台平板电脑和1台打印机各需多少元?(2)学校根据实际情况,决定购买平板电脑和打印机共100台,要求购买的总费用不超过168 000元,且购买打印机的台数不低于购买平板电脑台数的2倍.请问最多能购买平板电脑多少台?答案解析1.【答案】D【解析】由题意得-2≤t ≤8.故选D. 2.【答案】D【解析】∵不等式x >3的解集是所有大于3的数,∴4是不等式的解.故选D. 3.【答案】D【解析】A.由a >b ,得ac >bc (c >0),故此选项错误; B .由a >b ,得a -2>b -2,故此选项错误; C .由-21>-1,得-2a>-a (a >0),故此选项错误; D .由a >b ,得c -a <c -b ,此选项正确.故选D. 4.【答案】D【解析】∵设b =1,a =-2,则有-b =-1,-a =2,a <-b <b <-a .故选D. 5.【答案】A【解析】∵(x +3)*2x =x +3,∴x +3>2x ,x <3,故选A. 6.【答案】D【解析】在关于x 、y 的二元一次方程组中,①+②,得4x -4y =2-a ,即x -y =21-4a, ∵x -y >-2,∴21-4a>-2,解得a <10,故选D. 7.【答案】B【解析】根据题意,可得解不等式①,得m <21,解不等式②,得m <1,∴m <21,故选B. 8.【答案】C 【解析】不等式组由(1)得x ≥a ,由(2)得x <2,故原不等式组的解集为a ≤x <2, ∵不等式组有解,∴a 的取值范围为a <2.故选C.9.【答案】C【解析】①×2-②,得3x=3m+6,即x=m+2,把x=m+2代入②,得y=3-m,由x≥0,y>0,得到解得-2≤m<3,表示在数轴上,如图所示:,故选C.10.【答案】B【解析】设小张同学应该买的球拍的个数为x,根据题意得20×1.5+25x≤200,解得x≤6.8,所以x的最大整数值为6,所以小张同学应该买的球拍的个数是6个.故选B.11.【答案】x>-2【解析】观察数轴可得该不等式的解集为x>-2.故答案为x>-2.12.【答案】>【解析】如果2x-5<2y-5,两边都加5可得2x<2y;同除以(-2)可得-x>-y.13.【答案】3-a【解析】∵关于x的不等式(a-2)x>a-2解集为x<1,∴a-2<0,即a<2,∴原式=3-a.故答案为3-a.14.【答案】k>4【解析】由方程3(x+2)=k+2去括号移项,得3x=k-4,∴x=,∵关于x的方程3(x+2)=k+2的解是正数,∴x=>0,∴k>4.15.【答案】x>5【解析】解①得x>1,解②得x>5,所以不等式组的解集为x>5.故答案为x>5.16.【答案】5【解析】解不等式2x+1>3,得x>1,解不等式a-x>1,得x<a-1,∵不等式组的解集为1<x <4,∴a -1=4,即a =5, 故答案为5. 17.【答案】41或42 【解析】根据题意得解得40<n <42.5,∵n 为整数,∴n 的值为41或42.故答案为41或42. 18.【答案】152【解析】设本班有x 人(x 是正整数),最后的学生得到的贺卡为y (y 是整数,0<y ≤3), 根据题意有3x +59=5(x -1)+y ,解得x =32-21y ,由于x 取正整数,y 为整数,0<y ≤3,∴y 只能取2,∴x =32-1=31, 那么班主任购买的贺卡数为3x +59=152(张),故填152. 19.【答案】6x -1≤5,6x ≤6,x ≤1, 在数轴上表示为【解析】利用不等式的性质1及性质2求出解集. 20.【答案】解:由题意得2x -(3-x )>0, 去括号得2x -3+x >0, 移项合并同类项得3x >3, 把x 的系数化为1得x >1.【解析】首先看懂题目所给的运算法则,再根据法则得到2x -(3-x )>0,然后去括号、移项、合并同类项,再把x 的系数化为1即可. 21.【答案】解:①×3+②,得5x =6a +5-a ,即x =a +1≥0,解得a ≥-1; ②-①×2,得5y =5-a -4a ,即y =1-a ≥0,解得a ≤1; 则-1≤a ≤1,即a 的整数值为-1,0,1.【解析】用加减消元法解方程组,求出x 和y (x 和y 均为含有a 的代数式),再根据x 、y 的取值即可列出关于a 的不等式组,即可求出a 的取值范围,进一步即可求解. 22.【答案】解:关于x 的方程2x -3m =2m -4x +4的解为x =,根据题意,得≥87-,去分母,得4(5m +4)≥21-8(1-m ), 去括号,得20m +16≥21-8+8m , 移项,合并同类项,得12m ≥-3, 系数化为1,得m ≥-41.所以当m ≥-41时,方程的解不小于87-,m 的最小值为-41.【解析】首先求解关于x 的方程2x -3m =2m -4x +4,即可求得x 的值,根据方程的解的解不小于87-,即可得到关于m 的不等式,即可求得m 的范围,从而求解.23.【答案】解:解不等式①,得x <2, 解不等式②,得x ≥-1, 在数轴上表示为:∴不等式组的解集为-1≤x <2.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,确定不等式组的解集.24.【答案】解:(1)每辆A 型车和B 型车的售价分别是x 万元,y 万元. 则解得答:每辆A 型车的售价为18万元,每辆B 型车的售价为26万元; (2)设购买A 型车a 辆,则购买B 型车(6-a )辆, 则依题意得解得2≤a ≤341.∵a 是正整数,∴a =2或a =3. ∴共有两种方案:方案一:购买2辆A 型车和4辆B 型车;人教版七年级数学下册 第九章 不等式与不等式组 单元测试题(解析版)一、选择题(共10小题,每小题3分,共30分)1.2019年2月1日某市最高气温是8℃,最低气温是-2℃,则当天该市气温变化范围t (℃)是( )A .t >8B .t <2C . -2<t <8D . -2≤t ≤82.下列x 的值中,是不等式x >3的解的是( )A . -3B . 0C . 2D . 43.下列不等式变形正确的是( )A . 由a >b ,得ac >bcB . 由a >b ,得a -2<b -2C . 由-21>-1,得-2a>-a D . 由a >b ,得c -a <c -b4.如果a +b <0,且b >0,那么a ,b ,-a ,-b 的大小关系为( ) A .a <b <-a <-b B . -b <a <-a <b C .a <-b <-a <b D .a <-b <b <-a5.定义运算:a *b ,当a >b 时,有a *b =a ,当a <b 时,有a *b =b ,如果(x +3)*2x =x +3,那么x 的取值范围是( )A .x <3B .x >3C .x <1D . 1<x <36.若关于x 、y 的二元一次方程组的解满足x -y >-2,则a 的取值范围是( )A .a <4B . 0<a <4C . 0<a <10D .a <107.已知点M (1-2m ,m -1)在第四象限内,那么m 的取值范围是( ) A .m >1 B .m <21 C .21<m <1D .m <21或m >1 8.已知不等式组有解,则a 的取值范围为( )A .a >-2B .a ≥-2C .a <2D .a ≥29.在关于x 、y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( ) A .B .C .D.10.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5B.6C.7 D.8二、填空题(共8小题,每小题3分,共24分)11.某不等式的解集在数轴上的表示如图所示,则该不等式的解集是___________.12.如果2x-5<2y-5,那么-x______-y.(填“<、>、或=”)13.若关于x的不等式(a-2)x>a-2解集为x<1,化简|a-3|=______.14.关于x的方程3(x+2)=k+2的解是正数,则k的取值范围是________.15.不等式组:的解集是________.16.关于x的不等式组的解集为1<x<4,则a的值为________.17.把m个练习本分给n个学生.若每人分3本,则余80本;若每人分5本,则最后一个同学有练习本但不足5本.那么n=________.18.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共______张.三、解答题(共7小题,共66分)19.(8分)解不等式:6x-1≤5;把解集在数轴上表示出来.20. (8分)阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad-bc.如=2×5-3×4=-2.如果有>0,求x的解集.21. (8分)已知方程组的解为非负数,求整数a 的值.22. (8分)若关于x 的方程2x -3m =2m -4x +4的解不小于87-,求m 的最小值.23. (10分)解不等式组:并把解集在数轴上表示出来.24. (12分)某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元;本周已售出2辆A 型车和1辆B 型车,销售额为62万元. (1)求每辆A 型车和B 型车的售价各为多少元.(2)甲公司拟向该店购买A ,B 两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?25. (12分)学校计划利用校友慈善基金购买一些平板电脑和打印机.经市场调查,已知购买1台平板电脑比购买3台打印机多花费600元,购买2台平板电脑和3台打印机共需8 400元.(1)求购买1台平板电脑和1台打印机各需多少元?(2)学校根据实际情况,决定购买平板电脑和打印机共100台,要求购买的总费用不超过168 000元,且购买打印机的台数不低于购买平板电脑台数的2倍.请问最多能购买平板电脑多少台?答案解析1.【答案】D【解析】由题意得-2≤t ≤8.故选D. 2.【答案】D【解析】∵不等式x >3的解集是所有大于3的数,∴4是不等式的解.故选D. 3.【答案】D【解析】A.由a >b ,得ac >bc (c >0),故此选项错误; B .由a >b ,得a -2>b -2,故此选项错误; C .由-21>-1,得-2a>-a (a >0),故此选项错误; D .由a >b ,得c -a <c -b ,此选项正确.故选D. 4.【答案】D【解析】∵设b =1,a =-2,则有-b =-1,-a =2,a <-b <b <-a .故选D. 5.【答案】A【解析】∵(x +3)*2x =x +3,∴x +3>2x ,x <3,故选A. 6.【答案】D【解析】在关于x 、y 的二元一次方程组中,①+②,得4x -4y =2-a ,即x -y =21-4a, ∵x -y >-2,∴21-4a>-2,解得a <10,故选D. 7.【答案】B【解析】根据题意,可得解不等式①,得m <21,解不等式②,得m <1,∴m <21,故选B. 8.【答案】C 【解析】不等式组由(1)得x ≥a ,由(2)得x <2,故原不等式组的解集为a ≤x <2, ∵不等式组有解,∴a 的取值范围为a <2.故选C.9.【答案】C【解析】①×2-②,得3x=3m+6,即x=m+2,把x=m+2代入②,得y=3-m,由x≥0,y>0,得到解得-2≤m<3,表示在数轴上,如图所示:,故选C.10.【答案】B【解析】设小张同学应该买的球拍的个数为x,根据题意得20×1.5+25x≤200,解得x≤6.8,所以x的最大整数值为6,所以小张同学应该买的球拍的个数是6个.故选B.11.【答案】x>-2【解析】观察数轴可得该不等式的解集为x>-2.故答案为x>-2.12.【答案】>【解析】如果2x-5<2y-5,两边都加5可得2x<2y;同除以(-2)可得-x>-y.13.【答案】3-a【解析】∵关于x的不等式(a-2)x>a-2解集为x<1,∴a-2<0,即a<2,∴原式=3-a.故答案为3-a.14.【答案】k>4【解析】由方程3(x+2)=k+2去括号移项,得3x=k-4,∴x=,∵关于x的方程3(x+2)=k+2的解是正数,∴x=>0,∴k>4.15.【答案】x>5【解析】解①得x>1,解②得x>5,所以不等式组的解集为x>5.故答案为x>5.16.【答案】5【解析】解不等式2x+1>3,得x>1,解不等式a-x>1,得x<a-1,∵不等式组的解集为1<x <4,∴a -1=4,即a =5, 故答案为5. 17.【答案】41或42 【解析】根据题意得解得40<n <42.5,∵n 为整数,∴n 的值为41或42.故答案为41或42. 18.【答案】152【解析】设本班有x 人(x 是正整数),最后的学生得到的贺卡为y (y 是整数,0<y ≤3), 根据题意有3x +59=5(x -1)+y ,解得x =32-21y ,由于x 取正整数,y 为整数,0<y ≤3,∴y 只能取2,∴x =32-1=31, 那么班主任购买的贺卡数为3x +59=152(张),故填152. 19.【答案】6x -1≤5,6x ≤6,x ≤1, 在数轴上表示为【解析】利用不等式的性质1及性质2求出解集. 20.【答案】解:由题意得2x -(3-x )>0, 去括号得2x -3+x >0, 移项合并同类项得3x >3, 把x 的系数化为1得x >1.【解析】首先看懂题目所给的运算法则,再根据法则得到2x -(3-x )>0,然后去括号、移项、合并同类项,再把x 的系数化为1即可. 21.【答案】解:①×3+②,得5x =6a +5-a ,即x =a +1≥0,解得a ≥-1; ②-①×2,得5y =5-a -4a ,即y =1-a ≥0,解得a ≤1; 则-1≤a ≤1,即a 的整数值为-1,0,1.【解析】用加减消元法解方程组,求出x 和y (x 和y 均为含有a 的代数式),再根据x 、y 的取值即可列出关于a 的不等式组,即可求出a 的取值范围,进一步即可求解. 22.【答案】解:关于x 的方程2x -3m =2m -4x +4的解为x =,根据题意,得≥87-,去分母,得4(5m +4)≥21-8(1-m ), 去括号,得20m +16≥21-8+8m , 移项,合并同类项,得12m ≥-3, 系数化为1,得m ≥-41.所以当m ≥-41时,方程的解不小于87-,m 的最小值为-41.【解析】首先求解关于x 的方程2x -3m =2m -4x +4,即可求得x 的值,根据方程的解的解不小于87-,即可得到关于m 的不等式,即可求得m 的范围,从而求解.23.【答案】解:解不等式①,得x <2, 解不等式②,得x ≥-1, 在数轴上表示为:∴不等式组的解集为-1≤x <2.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,确定不等式组的解集.24.【答案】解:(1)每辆A 型车和B 型车的售价分别是x 万元,y 万元. 则解得答:每辆A 型车的售价为18万元,每辆B 型车的售价为26万元; (2)设购买A 型车a 辆,则购买B 型车(6-a )辆, 则依题意得解得2≤a ≤341.∵a 是正整数,∴a =2或a =3. ∴共有两种方案:方案一:购买2辆A 型车和4辆B 型车;人教版七年级数学下册单元提高训练:第九章不等式与不等式组一、填空题。

第九章 不等式与不等式组B卷(新课标人教版七年级数学试卷)

第九章  不等式与不等式组B卷(新课标人教版七年级数学试卷)

广丰县永丰中学七年级下册数学单元测试卷《第九章 不等式与不等式组》班级:_____ _ 姓名: ______ _ _ 学号: ____ __命题:周焕山(2011-5-22)一、选择题:(每小题3分,共30分)1.已知a <b ,则下列不等式中不正确的是( ).A.4a <4b B.a +4<b +4 C.-4a <-4bD.a -4<b -42.不等式1132x +<的正整数解有( ).A.1个 B.2个 C.3个 D.4个 3.满足-1<x ≤2的数在数轴上表示为( ).4.如果|x -2|=x -2,那么x 的取值范围是( ).A.x ≤2 B.x ≥2 C.x <2 D.x >25.从甲地到乙地有16千米,某人以4千米/时∽8千米/时的速度由甲地到乙地,则他用的时间大约为( ).A.1小时∽2小时 B.2小时∽3小时 C.3小时∽4小时 D.2小时∽4小时 6.不等式组102(1)x x x+<⎧⎨-⎩,≤的解集是( ).A.x <-1 B.x ≤2 C.x >1 D.x ≥2 7.不等式2+x <6的非负整数解有( )A .2个B .3个C .4个D .5个 8.下图所表示的不等式组的解集为( )-2A .x 3B .32 x -C .2- xD .32 x - 9.若方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( ).A .m >1.25B .m >-1.25C .m <-1.25 D.m <1.2510.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ).A.5千米 B.7千米 C.8千米 D.15千米二、填空题(每题3分,共30分)11.已知三角形的两边为3和4,则第三边a 的取值范围是________.12.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为 . 13.若11|1|-=--x x ,则x 的取值范围是 . 14.不等式组110210x x ⎧+>⎪⎨⎪->⎩,.的解集为 .15.当0<<a x 时,2x 与ax 的大小关系是_______________.16.若点P (1-m ,m )在第二象限,则(m -1)x > 1-m 的解集为_______________. 17.已知x =3是方程2a x -—2=x —1的解,那么不等式(2—5a )x <31的解集是 . 18.若不等式组841x x x m+-⎧⎨⎩ 的解集是x >3,则m 的取值范围是 .19.小明用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每只钢笔5元.那么小明最多能买 只钢笔.20.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打 折.三、解答题(本题共 6个小题,共36分)21、判断以下各题的结论是否正确(对的打“√”,错的打“×”)。

人教版七年级数学下册 《第9章 不等式与不等式组》单元测试试卷 含答案解析02

人教版七年级数学下册 《第9章 不等式与不等式组》单元测试试卷 含答案解析02

人教版七年级下册数学《第9章不等式与不等式组》单元测试一、选择题1.已知a<b,则下列选项错误的是()A.a+2<b+2B.a﹣1<b﹣1C.<D.﹣3a<﹣3b2.不等式(a+1)x>a+1的解集是x<1,则a必满足()A.a<0B.a>﹣1C.a<﹣1D.a≤13.下列说法中,错误的是()A.不等式x<5有无数多个整数解B.不等式x>﹣5的负整数解有4个C.不等式﹣2x<8的解集是x<﹣4D.﹣10是不等式2x<﹣8的一个解4.满足不等式,﹣2x+3≤7的整数解有()A.6个B.4个C.5个D.无数个5.已知关于x的一元一次不等式组有2个整数解,若a为整数,则a的值为()A.5B.6C.6或7D.7或86.若不等式组无解,则实数a的取值范围是()A.a≥﹣1B.a<﹣1C.a≤1D.a≤﹣17.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120D.10x﹣5(20﹣x)<120二、填空题8.若2a+6是非负数,则a的取值范围是.9.若x>y,则8﹣5x8﹣5y.(填“>”或“=”或“<”)10.不等式2x﹣m≤0的非负整数解只有3个,则m的取值范围是11.已知关于x的不等式组,解不等式①得;解不等式②得;若不等式组的整数解共4个,则m的取值范围是.12.若|﹣a|>﹣a,则a0.(请用“>,<,≥,≤或=”号填空)13.若方程组的解满足条件0<x+y<2,则k的取值范围是.14.已知a,b为实数,若不等式组的解集为﹣1<x<1,那么(a﹣1)(b﹣1)的值等于.15.关于x的不等式1+>+与关于x的不等式x+1>的解集相同,整数m 是,不等式的解集是.16.若关于x,y的方程组的解是一对负数,则|2m+1|﹣|﹣6m+2|=.三、解答题17.解不等式(组)(Ⅰ)解不等式5x﹣2≥3(x+1),并把它的解集在数轴上表示出来.(Ⅱ)解不等式组请结合题意填空,完成本题的解答.解不等式①,得;解不等式②,得;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为.18.若不等式2(x+1)﹣5<3(x﹣1)+4的最小整数解是方程的解,求代数式a2﹣2a﹣11的值.19.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣5|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.20.某小区为了绿化环境,计划分两次购进A、B两种树苗,第一次分别购进A、B两种树苗30棵和15棵,共花费675元;第二次分别购进A、B两种树苗12棵和5棵,共花费265元.两次购进的A、B两种树苗价格均分别相同.(1)A、B两种树苗每棵的价格分别是多少元?解:设A种树苗每棵x元,B种树苗每棵y元根据题意列方程组,得:解这个方程组,得:答:.(2)若购买A、B两种树苗共31棵,且购买树苗的总费用不超过320元,则最多可以购买A种树苗多少棵?21.接种新冠病毒疫苗,建立全民免疫屏障,是战胜病毒的重要手段.北京科兴中维需运输一批疫苗到我市疾控中心,据调查得知,2辆A型冷链运输车与3辆B型冷链运输车一次可以运输600盒;5辆A型冷链运输车与6辆B型冷链运输车一次可以运输1350盒.(1)求每辆A型车和每辆B型车一次可以分别运输多少盒疫苗.(2)计划用两种冷链运输车共12辆运输这批疫苗,A型车一次需费用5000元,B型车一次需费用3000元.若运输物资不少于1500盒,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?参考答案一、选择题1.D2.C3.C4.C5.D6.D7.C 二、填空题8.a≥﹣3.9.<.10.4≤m<6.11.x<m;x≥3;6<m≤7.12.>.13.﹣4<k<614.6.15.m=7x>1.16.8m﹣1.三、解答题17.解:(Ⅰ)去括号,得:5x﹣2≥3x+3,移项,得:5x﹣3x≥3+2,合并同类项,得:2x≥5,系数化为1,得:x≥,将不等式解集表示在数轴上如下:(Ⅱ)解不等式①,得x<3;解不等式②,得x≥﹣;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为﹣≤x<3.故答案为:x<3、x≥﹣、﹣≤x<3.18.解:解不等式2(x+1)﹣5<3(x﹣1)+4,得x>﹣4,∵大于﹣4的最小整数是﹣3,∴x=﹣3是方程的解.把x=﹣3代入中,得:,解得a=2.当a=2时,a2﹣2a﹣11=22﹣2×2﹣11=﹣11.∴代数式a2﹣2a﹣11的值为﹣11.19.解:(1)解方程组得:,∵x为非正数,y为负数,∴,解得﹣2<m≤3;(2)∵﹣2<m≤3,∴m﹣5<0,m+2>0,则原式=5﹣m﹣m﹣2=3﹣2m(3)由不等式2mx+x<2m+1的解为x>1,知2m+1<0;所以,又因为﹣2<m<3,所以,因为m为整数,所以m=﹣1.20.解:(1)设A种树苗每棵x元,B种树苗每棵y元,根据题意列方程组,得:,解这个方程组,得:.答:A种树苗每棵20元,B种树苗每棵5元.故答案为:;;A种树苗每棵20元,B种树苗每棵5元.(2)设购买A种树苗m棵,则购买B种树苗(31﹣m)棵,依题意,得:20m+5(31﹣m)≤320,解得:m≤11.答:最多可以购买A种树苗11棵.21.解:(1)设每辆A型车和每辆B型车一次可以分别运输x盒疫苗、y盒疫苗,由题意可得,,解得,答:每辆A型车和每辆B型车一次可以分别运输150盒疫苗、100盒疫苗;(2)设A型车a辆,则B型车(12﹣a)辆,由题意可得,,解得6≤a<9,∵a为正整数,∴a=6,7,8,∴共有三种运输方案,方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A型车8辆,B型车4辆,∵A型车一次需费用5000元,B型车一次需费用3000元,计划用两种冷链运输车共12辆运输这批疫苗,∴A型车辆数越少,费用越低,∴方案一所需费用最少,此时的费用为5000×6+3000×6=48000(元),答:方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A 型车8辆,B型车4辆,其中方案一所需费用最少,最少费用是48000元.。

山东省潍坊第二中学七年级数学下册第九单元《不等式与不等式组》经典测试卷(含答案解析)

山东省潍坊第二中学七年级数学下册第九单元《不等式与不等式组》经典测试卷(含答案解析)

一、选择题1.不等式32x x -≤的解集在数轴上表示正确的是( )A .B .C .D . B解析:B【分析】先求出不等式的解集,再根据不等式在数轴上的表示方法即可得.【详解】 32x x -≤,23x x --≤-,33x -≤-,1≥x ,由此可知,只有选项B 表示正确,故选:B .【点睛】本题考查了在数轴上表示一元一次不等式的解集,熟练掌握不等式的解法是解题关键. 2.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( ) A .3a ≤-B .3a <-C .3a >D .3a ≥ D 解析:D【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围.【详解】 ∵关于x 的不等式组21x x a <⎧⎨>-⎩无解, ∴a-1≥2,∴a≥3.故选:D.【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折B解析:B【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 4.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ).A .8-B .8C .10D .26A 解析:A【分析】解不等式组和方程得出关于x 的范围及x 的值,根据不等式组有4个整数解和方程的解为整数得出k 的范围,继而可得整数k 的取值.【详解】解:解关于x 的方程9x-3=kx+14得:179x k=-, ∵方程有整数解,∴9-k=±1或9-k=±17,解得:k=8或10或-8或26, 解不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩得不等式组的解集为2528k x -≤<, ∵不等式组有且只有四个整数解, ∴20128k -<≤, 解得:2<k≤30; 所以满足条件的整数k 的值为8、10、26,故选:A .【点睛】本题主要考查方程的解和一元一次不等式组的解,熟练掌握解方程和不等式组的能力,并根据题意得到关于k 的范围是解题的关键.5.如果点P(m ,1m -)在第四象限,则m 的取值范围是( )A .0m >B .01m <<C .1m <D .1m D解析:D【分析】根据点P(m ,1m -)在第四象限列出关于m 的不等式组,解之可得.【详解】∵点P(m ,1m -)在第四象限, ∴010m m >⎧⎨-<⎩, 解得m >1,故选:D .【点睛】本题考查了解一元一次不等式组以及点的坐标,正确把握各象限内点的坐标特点是解题关键.6.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤2C 解析:C【解析】试题分析:∵程x ﹣m+2=0的解是负数,∴x=m ﹣2<0,解得:m <2,故选C . 考点:解一元一次不等式;一元一次方程的解.7.若m n <,则下列各式中正确的是( )A .33m n +>+B .33m n ->-C .33m n ->-D .33m n > C 解析:C【分析】根据不等式的基本性质依次分析各项即可得到结果.【详解】∵m <n∴m+3<n+3,故A 选项错误;m-3<n-3,故B 选项错误;-3m >-3n ,故C 选项正确; 33m n <,故D 选项错误; 故选C.【点睛】本题考查了不等式的基本性质,解答本题的关键是熟练掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.8.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .822x <B .822x <C .864x <≤D .2264x <≤ D解析:D【分析】 根据“操作恰好进行两次就停止了”可得第一次运行的结果小于等于190,第二次运行的结果大于190,由此建立不等式组,再解不等式组即可得.【详解】由题意得:()321903322190x x -≤⎧⎪⎨-->⎪⎩①②, 解不等式①得:64x ≤,解不等式②得:22x >,则不等式组的解集为2264x <≤,故选:D .【点睛】本题考查了一元一次不等式组的应用,根据程序运行的次数,正确建立不等式组是解题关键.9.下列是一元一次不等式的是( )A .21x >B .22x y -<-C .23<D .29x < A解析:A【分析】根据一元一次不等式的定义对各选项进行逐一分析即可.【详解】解:A 、21x >中含有一个未知数,并且未知数的最高次数等于1,是一元一次不等式,故本选项正确;B 、22x y -<-中含有两个未知数,故本选项错误;C 、23<中不含有未知数,故本选项错误;D 、29x <中含有一个未知数,但未知数的最高次数等于1,不是一元一次不等式,故本选项错误.故选:A .【点睛】本题考查的是一元一次不等式的定义,即含有一个未知数,未知数的最高次数是1的不等式,叫做一元一次不等式.10.若关于x?的不等式组2x 1x 3x a +<-⎧⎨>⎩无解,则实数 a?的取值范围是( ) A .a 4<-B .a 4=-C .a 4?≥-D . a 4>- C 解析:C【分析】 先解出第一个不等式的解集,再根据题意确定a 的取值范围即可.【详解】解:2x 1x 3x a +<-⎧⎨>⎩①② 解①的:x ﹤﹣4,∵此不等式组无解,∴a≥﹣4,故选:C .【点睛】本题考查一元一次不等式组的解法,熟知不等式组解集应遵循的原则“同大取大,同小取小,大小小大取中间,大大小小无解”是解答的关键.二、填空题11.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.或【分析】根据新定义法则分x 或x+4或x ﹣4最小2或x+1或2x 最大几种情况分别列出一元一次不等式组和一元一次方程进行解答即可【详解】(1)当最小时则即无解此情况不成立(2)当最小时则即解得此时:即 解析:43或2- 【分析】 根据新定义法则,分x 或x+4或x ﹣4最小、2或x+1或2x 最大几种情况,分别列出一元一次不等式组和一元一次方程进行解答即可.【详解】(1)当4最小时,则4444x x +>⎧⎨->⎩,即00x x >⎧⎨<⎩, x 无解,此情况不成立.(2)当4x +最小时,则4444x x x ≥+⎧⎨-≥+⎩,即00x x ≤⎧⎨≤⎩, ∴解得0x ≤,此时:12x +<,22x <,{}max 2,1,22x x ∴+=,42x ∴+=,即2x =-.(3)当4x -最小时,则4444x x x>-⎧⎨+>-⎩,即00x x >⎧⎨>⎩, ∴解得0x >,此时无法判断,{}max 2,1,2x x +的值,则分情况讨论如下:①当2最大时:2122x x ≥+⎧⎨≥⎩,即11x x ≤⎧⎨≤⎩, 01x ∴<≤,此时:42x -=,2x =(舍去).②当2x 最大时:2221x x x >⎧⎨>+⎩,即11x x >⎧⎨>⎩, 1x ∴>,此时有:42x x -=,43x =. ③当1x +最大时,1212x x x +>⎧⎨+>⎩,即11x x >⎧⎨<⎩,无解,此情况不成立. 综上所述:43x =或2x =-. 【点睛】本题考查新定义下解一元一次不等式组和一元一次方程的能力,由已知等式找到x 的分界点以及准确分类讨论是解答的关键.12.a b ≥,1a -+_____1b -+≤【分析】根据不等式的性质判断即可【详解】∵a≥b ∴-a≤-b ∴-a+1≤-b+1故答案为≤【点睛】本题考查不等式的性质需要特别注意不等式两边同时乘除一个负数不等号要变号解析:≤【分析】根据不等式的性质判断即可.【详解】∵a≥b∴-a≤-b∴ -a+1≤-b+1故答案为≤.【点睛】本题考查不等式的性质,需要特别注意不等式两边同时乘除一个负数不等号要变号. 13.已知点()6,29P m m --关于x 轴对称的点在第三象限,则m 的整数解是______.5【分析】利用平面直角坐标系中点的坐标特点得出m 的取值范围【详解】解:∵点P(m ﹣62m ﹣9)关于x 轴的对称点在第三象限∴点P 在第二象限∴m ﹣6<0且2m ﹣9>0解得:<m<6∴m 的取值范围是<m<解析:5【分析】利用平面直角坐标系中点的坐标特点得出m 的取值范围.【详解】解:∵点P (m ﹣6,2m ﹣9)关于x 轴的对称点在第三象限,∴点P 在第二象限,∴m ﹣6<0且2m ﹣9>0, 解得:92<m<6, ∴m 的取值范围是92<m<6, ∴m 的整数解为5;故答案为 5.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),要注意先判断出点P 在第二象限.14.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.−5【分析】设被污染的数为a 表示出不等式的解集根据已知解集确定出a 的值即可【详解】解:设被污染的数为a 不等式为1−3x <a 解得:x >由已知解集为x >2得到=2解得:a =−5故答案为:−5【点睛】此题 解析:−5【分析】设被污染的数为a ,表示出不等式的解集,根据已知解集确定出a 的值即可.【详解】解:设被污染的数为a ,不等式为1−3x <a .解得:x >1-3a , 由已知解集为x >2,得到1-3a =2, 解得:a =−5,故答案为:−5【点睛】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.15.若关于x 的不等式组2()102153x m x 的解集为76x -<<-,则m 的值是______.【分析】先解不等式组得出其解集为结合可得关于的方程解之可得答案【详解】解:由①得:由②得:不等式的解集为:∵关于的不等式组的解集为【点睛】本题考查的是利用一元一次不等式组的解集求参数熟悉相关性质是解 解析:152【分析】 先解不等式组得出其解集为1262mx ,结合76x -<<-可得关于m 的方程,解之可得答案.【详解】解:2()102153x m x ①②由①得:2210x m +->,221x m >-+, 12x m >-+由②得:212x <-,6x <-, ∴不等式的解集为:162m x -+<<- ∵关于x 的不等式组的解集为76x -<<-,172m ∴-+=- 152m ∴= 【点睛】本题考查的是利用一元一次不等式组的解集求参数,熟悉相关性质是解题的关键. 16.若干名学生住宿舍,每间住 4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____【分析】先根据每间住人人无处住可得学生人数再根据每间住人空一间还有一间不空也不满建立不等式组即可得【详解】设有间宿舍则学生有人由题意得:故答案为:【点睛】本题考查了列一元一次不等式组理解题意正确找出解析:()142626x x ≤+--<【分析】先根据“每间住 4人,2人无处住”可得学生人数,再根据“每间住 6人,空一间还有一间不空也不满”建立不等式组即可得.【详解】设有x 间宿舍,则学生有()42x +人,由题意得:()142626x x ≤+--<,故答案为:()142626x x ≤+--<.【点睛】本题考查了列一元一次不等式组,理解题意,正确找出不等关系是解题关键. 17.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.【分析】先将m 看做常数解方程组求出再代入可得关于m 的不等式解之可得答案【详解】①-②得:将代入②得:∵∴+∴故答案为:【点睛】本题主要考查了解二元一次方程组和解一元一次不等式熟练掌握运算法则是解本题 解析:72m <【分析】先将m 看做常数解方程组求出2x m =-、2y m =+,再代入32x y +>-可得关于m 的不等式,解之可得答案.【详解】 23224x y m x y +=-+⎧⎨+=⎩①② ①2⨯-②得:2x m =-,将2x m =-代入②得:2y m =+, ∵32x y +>-, ∴2m - +322m +>-, ∴72m <.故答案为:72m <. 【点睛】 本题主要考查了解二元一次方程组和解一元一次不等式,熟练掌握运算法则是解本题的关键.注意:不等式两边都乘以或除以同一个负数不等号方向要改变.18.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌 解析:35m <- 【分析】 首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可.【详解】 25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++, 解得12m x -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.19.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘_____个.20【分析】直接利用已知得出二元一次方程组求出键盘与鼠标的单价再利用总费用不超过1820元得出不等式求出答案【详解】解:设键盘每个价格为x 元鼠标每个价格为y 元根据题意可得:解得:则设购买键盘a 个则鼠解析:20 【分析】直接利用已知得出二元一次方程组求出键盘与鼠标的单价,再利用总费用不超过1820元,得出不等式求出答案. 【详解】解:设键盘每个价格为x 元,鼠标每个价格为y 元,根据题意可得:319023220x y x y +=⎧⎨+=⎩, 解得:5040x y =⎧⎨=⎩,则设购买键盘a 个,则鼠标(50﹣a )个, 根据题意可得:50×0.8a +40×0.85(50﹣a )≤1820, 解得:a ≤20,故最多可购买键盘20个. 故答案为:20. 【点睛】本题咔嚓的是二元一次方程组与一元一次不等式,根据题意正确列式是解题的关键. 20.若关于x 的不等式2x ﹣m≥1的解集如图所示,则m =_____.3【分析】根据不等式的解集可得关于m 的方程根据解方程可得答案【详解】解:解不等式得x≥由不等式的解集是x≥2得=2解得m =3故答案为:3【点睛】本题主要考查的是一元一次不等式的解法将数轴和不等式结合解析:3 【分析】根据不等式的解集,可得关于m 的方程,根据解方程,可得答案. 【详解】 解:解不等式得 x≥12+m , 由不等式的解集是x≥2,得12+m =2, 解得m =3, 故答案为:3.【点睛】本题主要考查的是一元一次不等式的解法,将数轴和不等式结合起来观察是解题的关键.三、解答题21.已知,点O 是数轴的原点,点A 、点B 是数轴上不重合的两个点,且点A 在点B 的左边,点M 是线段AB 的中点.在上述条件下,解决问题:(1)如果点A 表示的数是4,点B 表示的数是6,那么点M 表示的数是 ;(2)如果点A 表示的数是-3,点M 表示的数是2,那么点B 表示的数是 ;(3)如果点A 表示的数是a ,点B 表示的数是b ,那么点M 表示的数是 ;(用含a ,b 的代数式表示) ,所以AM =BM .因此得到关于x 的方程:x -a =b -x .你能解出这个方程吗?(4)如果点A 表示的数是-2,点C 表示的数是3,点B 是线段OC 上的一点,点M 表示的数为m ,则m 的取值范围是 ;(5)如果点E 表示的数是1,点F 表示的数是x ,点A 从点E 出发,以每分钟1个单位长度的速度向右运动,点B 从点F 出发,以每分钟3个单位长度的速度向右运动,设运动时间为t (t >0).①当x =5时,如果EM =6,那么t 的值是 ; ②当t ≤3时,如果EM ≤9,求x 的取值范围. 解析:(1)5;(2)7;(3)2a b +,2a b x +=;(4)﹣1≤m ≤12;(5)①2;②1<x ≤7 【分析】(1)设点M 表示的数是m ,分别表示出AM 和BM 的距离,再根据AM=BM 求解即可得出答案;(2)设点B 表示的数是b ,分别表示出AM 和BM 的距离,再根据AM=BM 求解即可得出答案;(3)设点M 表示的数是m ,分别表示出AM 和BM 的距离,再根据AM=BM 求解即可得出答案;x a b x -=-根据解一元一次方程的一般步骤即可得出答案;(4)设点B 表示的数是b ,根据点B 的位置在点O 和点C 之间建立不等式,再将点M 表示的数代入求解即可得出答案;(5)①分别表示出点M 表示的数、点A 表示的数及点B 表示的数,再根据2a bm +=代入求解即可得出答案;②先表示出A 、B 、M 所表示的数,得出EM 的值,再根据给出的范围建立不等式求解即可得出答案. 【详解】(1)设点M 表示的数是m ,则AM 之间的距离是4m -,BM 之间的距离是6m -, 点M 是线段AB 的中点,∴AM=BM ,即46m m -=-, 解得:5m =, 点M 表示的数是5;(2)设点B 表示的数是b点A 表示的数是-3,点M 表示的数是2,∴AM=5,BM=2b -点M 是线段AB 的中点,且点A 在点B 的左边,∴AM=BM ,5=2b ∴-解得:7b =∴点B 表示的数是7;(3)设点M 表示的数是m ,点A 表示的数是a ,点B 表示的数是b ,则AM 之间的距离是m a -,BM 之间的距离是b m -, 点M 是线段AB 的中点,∴AM=BM ,即m a b m -=-, 解得:2a bm +=, x a b x -=-移项,得x x b a +=+ 合并同类项,得2xa b将系数化为1,得2a bx +=(4)设点B 表示的数是bO 是原点,点A 表示的数是-2,点C 表示的数是3,点B 是线段OC 上的一点,03b ∴≤≤22b m -+=112m ∴-≤≤;(5)①点E 表示的数是1,EM=6,∴点M 表示的数是16=7+点F 表示的数是x ,且x=5∴点A 表示的数是1t +,点B 表示的数为53t +15372t t+++∴= 解得:2t =; ②由题意得点A 表示的数是1t +,点B 表示的数为3x t +,∴点M 表示的数是132t x t+++ 点E 表示的数是1,∴1312t x tEM +++=-,1x > 即13192t x t+++-≤ 化简得194xt -≤3t ≤ 1934x -∴≥解得:7x ≤∴x 的取值范围为17x <≤.【点睛】本题考查了根据数轴表示两点间的距离、一元一次方程的应用、一元一次不等式的应用,解题的关键是结合数轴将点表示成具体的数.22.某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元. (1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本? 解析:(1)一个甲种笔记本需10元,一个乙种笔记本需5元;(2)25个 【分析】(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元列二元一次方程组解答; (2)设需要购买a 个甲种笔记本,列不等式解答. 【详解】解:(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元,15202501025225x y x y +=⎧⎨+=⎩,解得105x y =⎧⎨=⎩, 答:购买一个甲种笔记本需10元,一个乙种笔记本需5元. (2)设需要购买a 个甲种笔记本,105(35)300a a +-≤,解得:25a ≤,答:至多需要购买25个甲种笔记本. 【点睛】此题考查二元一次方程组的实际应用,不等式的实际应用,正确理解题意是解题的关键. 23.某商店有A 商品和B 商品,已知A 商品的单价比B 商品单价多12元,若购买400件B 商品与购买100件A 商品所用钱数相等. (1)求A ,B 两种商品的单价分别是多少元.(2)已知该商店购买B 商品的件数比购买A 商品的件数的2倍少4,如果需要购买A ,B 两种商品的总件数不少于32,且该商店购买的A ,B 两种商品的总费用不超过296元,那么该商店有哪几种购买方案?说明理由.解析:(1)A 种商品的单价为16元,B 种商品的单价为4元;(2)有两种方案:方案(1):m =12,2m ﹣4=20 即购买A 商品的件数为12件,则购买B 商品的件数为20件;方案(2):m =13,2m ﹣4=22 即购买A 商品的件数为13件,则购买B 商品的件数为22件. 【分析】(1)设B 种商品的单价为x 元,A 种商品的单价为(x -12)元,根据等量关系:购买400件A 商品与购买100件B 商品所用钱数相等,列出方程求解即可.(2)设购买A 商品的件数为m 件,则购买B 商品的件数为(2m ﹣4)件,根据不等关系:①购买A 、B 两种商品的总件数不少于32件,②购买的A 、B 两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m 的取值范围,进而讨论各方案即可. 【详解】设B 种商品的单价为x 元,则A 种商品的单价为(x +12)元, 由题意得:400100(12)x x =+ , 解得x =4, 则x +12=16(元),答:A 种商品的单价为16元、B 种商品的单价为4元.设购买A 商品的件数为m 件,则购买B 商品的件数为(2m ﹣4)件, 由题意得:2432164(24)296m m m m +-≥⎧⎨+-≤⎩,解得:12≤m ≤13, ∵m 是整数,∴m =12或13,故有如下两种方案:方案(1):m =12,2m ﹣4=20 即购买A 商品的件数为12件,则购买B 商品的件数为20件;方案(2):m =13,2m ﹣4=22 即购买A 商品的件数为13件,则购买B 商品的件数为22件. 【点睛】本题考点是一元一次方程及一元一次不等式组的应用,注意找到正确的等量关系是解题的重点.24.解下列不等式(组) (1)5261x x -<+;(2)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩. 解析:(1)x >﹣3;(2)﹣1≤x <2 【分析】(1)根据不等式的性质解一元一次不等式解答即可;(2)分别求出每个不等式的解集,再求其解集的公共部分即可解答. 【详解】解:(1)移项、合并同类项,得:﹣x <3, 化系数为1,得:x >﹣3, ∴不等式的解集为x >﹣3;(2)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩①②, 解①得:x≥﹣1, 解②得:x <2,∴不等式组的解集为﹣1≤x <2. 【点睛】本题考查不等式的性质、解一元一次不等式(组),熟练掌握一元一次不等式(组)的解法是解答的关键,求解时注意不等号的方向.25.一直关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-. (1)求a 的取值范围; (2)试化简1a a 2-++. 解析:(1)a 1>;(2)2a 1+. 【分析】(1)根据不等式的基本性质,得到关于a 的不等式,即可求解; (2)根据求绝对值的法则以及a 的范围,即可得到答案. 【详解】(1)∵ 关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-, ∴ 1a 0-<, ∴ a 1>; 2()由(1)得a 1>, ∴1a 0-<,a 20+>,∴1a a 2a 1a 22a 1-++=-++=+. 【点睛】本题主要考查不等式的性质以及求绝对值的法则,熟练掌握不等式的性质是解题的关键. 26.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元. (1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a 出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a ,求a 的最大值. 解析:(1)3月20日当天口罩的价格为每盒36元.(2)a 的最大值为25. 【分析】(1)可设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,根据3月20日当天,王老师购买4盒口罩比年初多花了48元列出方程即可求解;(2)根据两种口罩销售的总金额比3月20日至少提高了1%10a ,列出不等式即可求解. 【详解】解:(1)设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,依题意有4 1.5448x x ⨯-=,解得24x = ,1.5 1.52436x =⨯=.∴3月20日当天口罩的价格为每盒36元. (2)1000×(1+20%)=1200(盒),5120010006⨯==1000(盒),1200-1000=200(盒),依题意有()13620010003610.7%1000361%10a a ⎛⎫⨯+⨯-≥⨯+ ⎪⎝⎭, 解得a≤25. 故a 的最大值为25. 【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.27.已知方程组2523x y mx y m-=+⎧⎨+=⎩的解满足条件0x >,0y <,求m 的取值范围.解析:21m -<<【分析】首先利用含m 的式子表示出x 、y ,再根据x >0,y >0可得关于m 的不等式组,再解不等式组即可. 【详解】2523x y m x y m -=+⎧⎨+=⎩①② ②×2-①得:1y m =-,把1y m =-代入②得:2x m =+, ∵0x >,0y <,∴2010m m +>⎧⎨-<⎩,解得:21m -<<. 【点睛】本题主要考查了二元一次方程组和一元一次不等式组,关键是用含m 的式子表示出x 、y . 28.某市出租车的计费标准如下:行程3km 以内(含3km ),收费7元.行程超过3km ,如果往返乘同一出租车并且中间等候时间不超过3min ,超过3km 的部分按每千米1.6元计费,另加收1.6元等候费;如果返程时不再乘坐此车,超过3km 的部分按每千米2.4元计费.小文等4人从A 处到B 处办事,在B 处停留时间在3min 之内,然后返回A 处.现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元); 方案二:4人乘同一辆出租车往返.(1)若A ,B 两地相距1.2km ,方案一付费_____元,方案二付费______元; (2)若A ,B 两地相距2.5km ,方案一付费_____元,方案二付费______元; (3)设A ,B 两地相距x km (x <12),请问选择那种方案更省钱?解析:(1)15,8.6;(2)15,11.8;(3)当0<x <5时,方案二更省; 当x=5时,方案一、二一样; 当5<x <12时,方案一更省. 【分析】(1)根据题意分别列出表示两种方案费用的代数式,进行计算即可得到答案; (2)根据题意分别列出表示两种方案费用的代数式,进行计算即可得到答案; (3)当0<x≤1.5时,得到方案一:15元;方案二:8.6元,于是得到方案二更省钱;当1.5<x≤3时,求得方案一:15元;方案二:()7 1.623 1.6 3.2 3.8x x +-+=+,即当x=3,有最大费用13.4元,13.4<15,于是得到方案二更省钱;当x >3时;求得方案一:7+2.4(x-3)+8=2.4x+7.8;方案二:7+1.6(2x-3)+1.6=3.2x+3.8;列方程或不等式,再讨论即可得到结论. 【详解】解:(1) 1.2<3,∴ 方案一:7+42=7+8=15⨯(元),方案二:7+1.6=8.6(元), 故答案为:15,8.6. (2)∵2.5<3,∴方案一付费:7+4×2=15元,方案二付费:()7+53 1.6 1.611.8-⨯+=, 故答案为:15,11.8. (3)当0<x≤1.5时, 方案一:7+42=7+8=15⨯元; 方案二:7+1.6=8.6元, ∴方案二更省钱; 当1.5<x≤3时,方案一:7+42=7+8=15⨯元;方案二:()7 1.623 1.6 3.2 3.8x x +-+=+,即当x=3,最大费用为:13.4元, 方案二:13.4<15∴方案二更省钱; 当x >3时;方案一:()7 2.438 2.47.8x x +-+=+; 方案二:()7 1.623 1.6 3.2 3.8x x +-+=+; 当2.47.8 3.2 3.8x x +=+时, 解得:5x =; ∴当x=5时,两者均可, 当2.47.8x +<3.2 3.8x +时,0.8x ∴-<4-, ∴x >5,所以x >5时方案一更省, 当2.47.8x +>3.2 3.8x +时,0.8x ∴->4-, ∴x <5,所以x <5时,方案二更省;综上可得:当0<x <5时,方案二更省; 当x=5时,方案一、二一样; 当5<x <12 时,方案一更省. 【点睛】本题考查了列代数式,一元一次方程的应用,一元一次不等式的应用,最优化选择问题,解答本题的关键是根据题目所示的收费标准,列出x 的关系式,再计算与比较.。

人教版七年级数学(下)第9章 不等式与不等式组单元测试 B卷(含解析)

人教版七年级数学(下)第9章 不等式与不等式组单元测试 B卷(含解析)

人教版七年级数学(下)第9章 不等式与不等式组单元测试 B 卷班级:________ 姓名:________ 得分:________一、选择题(每小题3分,共30分)1.“x 的2倍与3的差不大于8”列出的不等式是( )A .B .C .D .2x ‒3≤82x ‒3≥82x ‒3<82x ‒3>82.不等式组的整数解是( ){3x <503x +3>50 A .15 B .16 C .17 D .15,163.下列不等式中一定成立的是( )A .3a >2aB .a >-2aC .a +2<a +3D .<2a 3a 4.把不等式组的解集表示在数轴上正确的是( ){x +1≥0x ‒1<0A .B .C .D .5.若关于x ,y 的方程组的解满足,则m 的最小整数解为( ){2x +y =4x +2y =‒3m +2 x ‒y >‒32A .﹣3B .﹣2C .﹣1D .06.已知点M (1﹣a ,3a ﹣9)在第三象限,且它的坐标都是整数,则a 的值是( )A .0B .1C .2D .37.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,共有学生人数为( )A .6B .5C .6或5D .48.某射击运动员在一次比赛中前5次射击共中46环,如果他要打破92环(10次射击)的纪录,第6次射击起码要超过( )A .6环B .7环C .8环D .9环9.已知关于x 的不等式组有解,则m 的取值范围为( ){x +3>m 2x <m A .B .C .D .m >6m ≥6m <6m ≤610.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为283,则满足条件的x 不同值最多有( )A .6个B .5个C .4个D .3个二、选择题(每小题3分,共30分)11.写出含有解为x =1的一元一次不等式__ __(写出一个即可).12.不等式3(x ﹣1)≤5﹣x 的非负整数是_________.13.不等式组的解是__________.{3x ‒2>x 12x ≤3 14.若>0,<0,则ac ________0.a b c b 15.关于x 的不等式2x -a ≤-3的解集如图所示,则a 的值是__________.16.某种水果的进价为4.5元/千克,销售中估计有10%的正常损耗,商家为了避免亏本,售价至少应定为_________元/千克.17.某商场店庆活动中,商家准备对某种进价为600元、标价为1100元的商品进行打折销售,但要保证利润率不低于10%,则最多打_________折.18.若不等式(k -4)x >-1的解集为x ,则k 的取值范围是__________ .<‒1k ‒419.商店为了对某种商品促销,将定价为3元的商品以下列方式优惠销售:若购买不超过5件,则按原价付款;若一次性购买5件以上,则超过部分打八折.那么用27元钱最多可以购买该商品________件.20.小明家阳台的地面是一个矩形,工人师傅要给地面铺上地砖,已知阳台的长和宽都大于60cm ,且长是宽的2倍,小明要求工人师傅只能使用完整的60×60的方砖(即边长是60cm 的正方形),但无论怎么铺设,被覆盖的面积都不超过阳台总面积的40%,则小明家阳台的地面至少为_________平方米.三、解答题(共60分)21.(6分)解不等式- 0,并把它的解集表示在数轴上2x ‒435x +12≤22.(6分)解不等式组:,并把解集在数轴上表示出来.{x ‒42+3≥x1‒3(x ‒1)<6‒x23.(6分)定义一种新运算“a ☆b ”的含义为:当a ≥b 时,a ☆b =a +b ;当a <b 时,a ☆b =a -b .例如:3☆(-4)=3+(-4)=-1,(-6)☆=-6-=-6.121212(1)填空:(-4)☆3=______;(2)如果(3x -4)☆(2x +8)=(3x -4)-(2x +8),求x 的取值范围;(3)如果(3x -7)☆(3-2x )=2,求x 的值.24.(6分)若关于x 、y 的二元一次方程组中,x 的值为负数,y 的值为正数,求{x ‒y =m ‒5x +y =3m +3 m 的取值范围.25.(8分)某公司有A ,B 两种客车,它们的载客量和租金如下表.星星中学根据实际情况,计划用A ,B 型车共5辆,同时送七年级师生到校基地参加社会实践活动.(1)若要保证租金费用不超过980元,请问该学校有哪几种租车方案?(2)在(1)的条件下,若七年级师生共有150人,请问哪种租车方案最省钱?26.(8分)某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,求当m取值为多少时,费用最少.27.(10分)学校为举行社团活动,准备向某商家购买A、B两种文化衫.已知购买2件A种文化衫和3件B种文化衫需要170元;购买4件A种文化衫和1件B种文化衫需要190元.(1)求A、B两种文化衫的单价;(2)恰逢商家搞促销,现有两种优惠活动,如图所示,学校决定向该商家购买A、B两种文化衫共100件,其中A种文化衫a件(a<50).①若按活动一购买,共需付款 元;若按活动二购买,共需付款 元;(用a的代数式表示)②若按活动二购买比按活动一购买更优惠,求a的所有可能值.28.(10分)小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:类别购买A商品数量(件)购买B商品数量(件)消费金额(元)次数第一次45320第二次26300第三次57258解答下列问题:(1)第 次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.参考答案1.A【解析】x 的2倍即2x ,不大于8即≤8,据此列不等式.解:根据题意,得2x -3≤8.故选:A .2.B【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.解:,{3x <50①3x +3>50② 由①得x <,503由②得x >,473所以不等式组的解集是<x <,473503则整数解是16.故选:B .3.C【解析】这题主要看变量的取值范围是否是任意的实数解:A 项,解得可知a >0,当a ≤0不满足题目意思,B 项,解得可知a >0,当a ≤0不满足题目意思,C 项是正确选项,解得可知0<1,这个不等式恒成立,D 项,解得可知a >0,当a <0不满足题目意思4.D【解析】先解不等式组,再把解集表示在数轴上.解:,{x +1≥0 ①x ‒1<0 ② 解得,,①x ≥‒1解得,,②x <1把解集表示在数轴上,不等式组的解集为.‒1≤x <1故选:D .5.B【解析】方程组中的两个方程相减得出x -y =3m +2,根据已知得出不等式,求出不等式的解集即可.解:,{2x +y =4①x +2y =‒3m +2② ①-②得:x -y =3m +2,∵关于x ,y 的方程组的解满足x -y >-,{2x +y =4x +2y =‒3m +2 32∴3m +2>-,32解得:m >,‒76∴m 的最小整数解为-1,故选:B .6.C【解析】在第三象限内,那么横坐标小于0,纵坐标小于0.而后求出整数解即可.解:∵点M 在第三象限,∴,解得:1<a <3,因为点M 的坐标为整数,所以a =2.{1‒a <03a ‒9<0 故选C .7.A【解析】设共有学生x 人,则书共(3x +8)本,再根据题意列出不等式,解出来即可.解:设共有学生x 人,0≤(3x +8)-5(x -1)<3,解得5<x ≤6.5,故共有学生6人,故选A.8.A【解析】由题中的信息,要打破92环,则最少需要93环,设第67次成绩为x 环,第7,8,9,10次的成绩都为10环,则可以列出不等式,从而得出答案.解:设他第6次射击的成绩为x 环,得:46+x +40≥92解得x ≥6由于x 是正整数且大于等于6,得:x ≥6答:运动员第6次射击不能少于6环.故答案为A .9.C【解析】根据不等式有解,可得关于m 的不等式,根据解不等式,可得答案.解:解不等式组,{x +3>m①2x <m② 解①得:x >m -3,解②得:x < ,m 2根据题意得:m -3<,解得:m <6m 2故选:C .10.B【解析】根据题意重复代入求值即可解题.解:令3x +1=283,解得x =94,令3x +1=94,解得x =31,令3x +1=31,解得x =10,令3x +1=10,解得x =3,令3x +1=3,解得x =,23综上一共有5个正数,故选B.11.x >0等【解析】根据一元一次不等式的定义写出的一元一次不等式的解集含有x =1即可.解:例如:x >0(答案不唯一).故答案为:x >0(答案不唯一).12.0、1、2.【解析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.解:3(x ﹣1)≤5﹣x ,去括号,得:3x ﹣3≤5﹣x ,移项,得:3x +x ≤5+3,合并同类项,得:4x ≤8,系数化为1,得:x ≤2,则不等式3(x ﹣1)≤5﹣x 的非负整数解是0、1、2.故答案为:0、1、2.13.1<x ≤6【解析】分别求出各不等式的解集,再求出其公共解集即可.解:{3x ‒2>x①12x ≤3② 解不等式①,得x >1,解不等式②,得x ≤6,所以不等式组的解集是1<x ≤6,故答案是:1<x ≤6.14.<【解析】根据有理数的除法判断出a 、b 同号,再根据有理数的除法判断出b 、c 异号,然后根据有理数的乘法运算法则判断即可.解:∵>0,a b ∴a 、b 同号,∵<0,c b ∴b 、c 异号,∴a 、c 异号,故答案为:<.15.1【解析】首先用a 表示出不等式的解集,然后解出a .解:∵2x -a ≤-3,∴x ≤,a ‒32∵x ≤-1,∴a =1.故答案为:1.16.5【解析】设商家把售价应该定为每千克x 元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x (1﹣5%),根据题意列出不等式即可.解:设商家把售价应该定为每千克x 元,根据题意得:x (1﹣10%)≥4.5,解得,x ≥5,故为避免亏本,商家把售价应该至少定为每千克5元.故答案为:5.17.6【解析】根据利润率的计算公式先列出不等式,再解不等式即可.解:设此商品打折出售,则x 1100×x 10≥600×(1+10%)解得x ≥6此商品最多打6折.∴故答案为:6.【解析】根据不等式的性质:不等式两边同除以一个负数,不等号方向改变,进而得出答案.解:∵不等式(k -4)x >-1的解集为x <-,1k ‒4∴k -4<0,解得:k <4.故答案为k <4.19.10【解析】易得27元可购买的商品一定超过了5件,关系式为:5×原价+超过5件的件数×打折后的价格≤27,把相关数值代入计算求得最大的正整数解即可.解:∵27>5×3,∴27元可购买的商品一定超过了5件,设购买了x 件该商品.5×3+(x -5)×3×0.8≤27,2.4x ≤24,x ≤10,∴最多可购买该商品10件.20.4.5【解析】设阳台宽a 厘米,则长是2a 厘米,用了n 块方砖,根据被覆盖的面积都不超过阳台总面积的40%,列不等式解决问题.解:设阳台宽a 厘米,则长是2a 厘米,用了n 块方砖(n 是正整数),根据题意得60×60n ≤a •2a •40%化简得a 2≥4500n∵n 是正整数∴4500n 是正整数阳台的面积等于2a 2平方厘米,要使面积最小,则a 的取值最小即可.而4500n 要是最小的完全平方数时,n 取5,最小值为22500∴a 的最小值是150,2a 2=45000平方厘米=4.5平方米∴阳台的面积至少是4.5平方米.【解析】根据解不等式的一般步骤解答即可.解:- 02x ‒435x +12≤4x ‒8‒15x ‒3≤0‒11x ≤11x ≥‒1不等式的解集在数轴上表示为:22.-1< x ≤2,数轴见解析【解析】分別求得两个不等式的解集,这两个不等式解集的公共部分即为不等式组的解集,在数轴上表示出来即可解:由题意知{x ‒42+3≥x①1‒3(x ‒1)<6‒x②解得①得,x ≤2解得②得,x >-1∴不等式的解集为:-1< x ≤2其在数轴上表示为:23.(1)-7;(2)x <12;(3)x =6.【解析】(1)根据新定义列式计算即可得;(2)由已知等式,根据新定义知3x -4<2x +8,解之可得;(3)分3x -7≥3-2x 和3x -7<3-2x 两种情况,依据新定义列出方程求解可得.解:(1)(-4)☆3=-4-3=-7,故答案为:-7;(2)由题意得3x -4<2x +8,解得:x <12,∴x 的取值范围是x <12;(3) 当3x -7≥3-2x ,即x ≥2时,由题意得:(3x -7)+(3-2x )=2,解得 x =6;当3x -7<3-2x ,即x <2时,由题意得:(3x -7)-(3-2x )=2,解得x =(舍).125∴x 的值为6.24.-4<m <.12【解析】先解方程组,用含m 的代数式表示x 、y ,再根据x 的值为负数,y 的值为正数,得到关于m 的不等式组,求解即可.解:,{x ‒y =m ‒5①x +y =3m +3② ①+②得2x =4m -2,解得x =2m -1,②-①得2y =2m +8,解得y =m +4,∵x 的值为负数,y 的值为正数,∴,{2m ‒1<0m +4>0 ∴-4<m <.1225.(1)该学校的租车方案有如下5种:租A 型车0辆、B 型车5辆;租A 型车1辆、B 型车4辆;租A 型车2辆、B 型车3辆;租A 型车3辆、B 型车2辆;租A 型车4辆、B 型车1辆.(2)当租A 型车3辆、B 型车2辆时,租车费用最低.【解析】(1)设租A 型车x 辆,则租B 型车(5-x )辆,根据总费用=单价×数量结合租金费用不超过980元,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,结合x 取正整数即可找出各租车方案;(2)设租A 型车x 辆,则租B 型车(5-x )辆,根据总人数=单量车的载客量×租车数量结合七年级师生共有150人,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,结合(1)结论即可确定x 的值,再根据总费用=单价×数量求出两种方案的总费用,比较后即可得出结论.解:(1)设租A 型车x 辆,则租B 型车(5-x )辆,根据题意得200x +150(5-x )≤980,解得x ≤.因为x235取非负整数,所以x =0,1,2,3,4,所以该学校的租车方案有如下5种:租A 型车0辆、B 型车5辆;租A 型车1辆、B 型车4辆;租A 型车2辆、B 型车3辆;租A 型车3辆、B 型车2辆;租A 型车4辆、B 型车1辆.(2)根据题意得40x +20(5-x )≥150,解得x ≥.因为x 取整数,且x ≤,所以x =3或4.当x =3时,租52235车费用为200×3+150×2=900(元);当x =4时,租车费用为200×4+150×1=950(元).因为900<950,所以当租A 型车3辆、B 型车2辆时,租车费用最低.26.(1)A 奖品的单价是10元,B 奖品的单价是15元;(2)应买A 种奖品75件,B 种奖品25件,才能使总费用最少为1125元.【解析】(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,根据条件建立方程组求出其解即可;(2)设购买A 种奖品m 件,则购买B 种奖品(100-m )件,根据购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,可列出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,再结合数量关系即可得出费用与m 之间的函数关系,即可以解决最值问题..解:(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,由题意,得,{3x +2y =605x +3y =95 解得:,{x =10y =15 答:A 奖品的单价是10元,B 奖品的单价是15元;(2)设购买A 种奖品m 件,则购买B 种奖品(100-m )件,则总费用为=-5m +1500,10m +15(100‒m)由已知得:,{10m +15(100‒m)≤1150m ≤3(100‒m) 解得:70≤m ≤75,当m=75时,总费用取最小值,最小值为1125,∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.27.(1)A、B两种型号的文化衫每件的价格分别为40元和30元;(2)①20a+1200,3000-20a;②a的所有可能值为46,47,48,49【解析】(1)设A种奖品的单价是x元,B种奖品的单价是y元,根据“钱数=A种奖品单价×数量+B种奖品单价×数量”可列出关于x、y的二元一次方程组,解方程组即可得出结论;(2)①根据活动方案列出代数式即可;②根据不等关系列出不等式,求解不等式即可.解:(1)A、B两种型号的文化衫每件的价格分别为x元和y元,则{2x+3y=1704x+y=190解得{x=40 y=30答:A、B两种型号的文化衫每件的价格分别为40元和30元.(2)若按活动一购买,共需付款(20a+1200) 元;若按活动二购买,共需付款 (3000-20a)元;由题意得:3000-20a<20a+1200解得a>45又∵a<50,且a为整数所以a的所有可能值为46,47,48,4928.(1)三(2)A:30元/件,B:40元/件(3)6 (4)7件【解析】(1)由第三次购买的A、B两种商品均比头两次多,总价反而少,可得出第三次购物有折扣;(2)设A商品的原价为x元/件,B商品的原价为y元/件,根据总价=单价×数量结合前两次购物的数量及总价,即可得出关于x、y的二元一次方程组,解之即可得出结论;(3)设折扣数为z,根据总价=单价×数量,即可得出关于z的一元一次方程,解之即可得出结论;(4)设购买A商品m件,则购买B商品(10﹣m)件,根据总价=单价×数量结合消费金额不超过200元,即可得出关于m的一元一次不等式,解之取其中的最小整数即可得出结论.解:(1)观察表格数据,可知:第三次购买的A、B两种商品均比头两次多,总价反而少,∴第三次购买有折扣.故答案为:三.(2)设A 商品的原价为x 元/件,B 商品的原价为y 元/件,根据题意得:{4x +5y =3202x +6y =300 解得:.{x =30y =40 答:A 商品的原价为30元/件,B 商品的原价为40元/件.(3)设折扣数为z ,根据题意得:5×307×40258×z 10+×z 10=解得:z =6.答:折扣数为6.(4)设购买A 商品m 件,则购买B 商品(10﹣m )件,根据题意得:30m +40(10﹣m )≤200×610×610解得:m .≥203∵m 为整数,∴m 的最小值为7.答:至少购买A 商品7件.。

新人教(七下)第9章不等式与不等式组综合测试题AB卷(含参考答案)

新人教(七下)第9章不等式与不等式组综合测试题AB卷(含参考答案)

ACDB第9章不等式与不等式组AB卷(含参考答案)第9章不等式与不等式组综合测试题A一、选择题:(每题3分,共30分)1.下列根据语句列出的不等式错误的是( )A. “x的3倍与1的和是正数”,表示为3x+1>0.B. “m的15与n的13的差是非负数”,表示为15m-13n≥0.C. “x与y的和不大于a的12”,表示为x+y≤12a.D. “a、b两数的和的3倍不小于这两数的积”,表示为3a+b≥ab.2.给出下列命题:①若a>b,则ac2>bc2;②若ab>c,则b>ca;③若-3a>2a,则a<0;•④若a<b,则a-c<b-c,其中正确命题的序号是( )A.③④B.①③C.①②D.②④3.解不等式3x-32<2x-2中,出现错误的一步是( )A.6x-3<4x-4B.6x-4x<-4+3C.2x<-1D.x>-1 24.不等式12,39xx-<⎧⎨-≤⎩的解集在数轴上表示出来是( )5. .下列结论:①4a>3a;②4+a>3+a;③4-a>3-a中,正确的是( )A.①②B.①③C.②③D.①②③6.某足协举办了一次足球比赛,记分规则是:胜一场积3分,平一场积1分,负一场积0分.若甲队比赛了5场共积7分,则甲队可能平了( )A.2场B.3场C.4场D.5场7.某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有28人获得奖励,其中获得两项奖励的有13人,那么该班获得奖励最多的一位同学可获得的奖励为( ) A.3项B.4项C.5项D.6项8.若│a │>-a,则a 的取值范围是( ) A.a>0B.a ≥0C.a<0D.自然数9.不等式23>7+5x 的正整数解的个数是( ) A.1个B.无数个C.3个D.4个10.已知(x+3)2+│3x+y+m │= 0中,y 为负数,则m 的取值范围是( ) A.m>9 B.m<9C.m>-9D.m<-9二、填空题:(每题3分,共24分)11.若y=2x-3,当x______时,y ≥0;当x______时,y<5. 12.若x=3是方程2x a --2=x-1的解,则不等式(5-a)x<12的解集是_______. 13.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x<1,则a=_______,b=_______.14. (2008苏州)6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市 元. 15.不等式组204060x x x +>⎧⎪->⎨⎪-<⎩的解集为________.16.小明用100元钱去购买笔记本和钢笔共30分,已知每本笔记本2元,•每枝钢笔5元,那么小明最多能买________枝钢笔. 17.如果不等式组212x m x m >+⎧⎨>+⎩的解集是x>-1,那么m 的值是_______.18.关于x 、y 的方程组321431x y a x y a +=+⎧⎨+=-⎩的解满足x>y,则a 的取值范围是_________.三、解答题:(共46分)19.解不等式(组)并把解集在数轴上表示出来(每题4分,共16分)(1)5(x+2)≥1-2(x-1) (2) 273125y yy+>-⎧⎪-⎨≥⎪⎩(3)42x--3<522x+; (4)32242539x xx xx+>⎧⎪->-⎨⎪->-⎩20. (5分)k取何值时,方程23x-3k=5(x-k)+1的解是负数.21. (5分)某种客货车车费起点是2km以内2.8元.往后每增加455m车费增加0.5元.现从A 处到B处,共支出车费9.8元;如果从A到B,先步行了300m然后乘车也是9.8元,求AB的中点C到B处需要共付多少车费?22.(5分)(1)A、B、C三人去公园玩跷跷板,从下面的示意图(1)•中你能判断三人的轻重吗?(2)P、Q、R、S四人去公园玩跷跷板,从示意图(2)•中你能判断这四个人的轻重吗?23. (7分)某市“全国文明村”白村果农王保收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王保如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?24.(8分) 2011年我市筹备30周年庆典,园林部门决定利用现有的3490盆甲种花卉和2950,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型盆乙种花卉搭配A B需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?参考答案一、1.D 2.A 3.D 4.A 5. C 6.C 7.B 8.B 9.C 10.A 二、11.x ≥32,x<4 ; 12.x<120; 13.a=1,b=-2; 14.8 ; 15.4<x<6 ; 16.13; 17.-3; 18.a>-6.三、19. (1)x ≥-1 (2)2≤y<8;(3)x>-3; (4)-2<x<3 20.k<1221.设走xm 需付车费y 元,n 为增加455m 的次数.∴y=2.8+0.5n,可得n=70.5=14 ∴2000+455×13<x ≤2000+455×14 即7915<x ≤8370,又7915<x-300≤8370 ∴8215<x ≤8670, 故8215<x ≤8370,CB 为2x ,且4107.5<2x≤4185, 4107.52000455-=4.63<5,41852000455-=4.8<5,∴n=5代入y=2.8+0.5×5=5.3(元) ∴从C 到B 需支付车费5.3元. 22.(1)C 的重量>A 的重量>B 的重量(2)从图中可得S>P,P+R>Q+S ,R>Q+(S-R),∴R>Q; 由P+R>Q+S ,S-P<R-Q ∴ (Q+R-P)-P<R-Q ∴P>Q, 同理R>S,∴R>S>P>Q23. 解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得4x + 2(8-x )≥20,且x + 2(8-x )≥12, 解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案:(2)方案一所需运费 300×2 + 240×6 = 2040元; 方案二所需运费 300×3 + 240×5 = 2100元; 方案三所需运费 300×4 + 240×4 = 2160元. 所以王保应选择方案一运费最少,最少运费是2040元.24. 解:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ ,解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ x Q 是整数,x ∴可取313233,,,∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个 ②A 种园艺造型32个 B 种园艺造型18个 ③A 种园艺造型33个 B 种园艺造型17个.(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) 方法二:方案①需成本:318001996043040⨯+⨯=(元) 方案②需成本:328001896042880⨯+⨯=(元) 方案③需成本:338001796042720⨯+⨯=元∴应选择方案③,成本最低,最低成本为42720元第9章不等式与不等式组综合检测题B一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ) A .5千米 B.7千米 C.8千米 D.15千米10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x x x x ->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x ≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x +≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1.20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.。

新七年级数学下册第九章《不等式与不等式组》单元测试卷(含答案解析)

新七年级数学下册第九章《不等式与不等式组》单元测试卷(含答案解析)

七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( ) A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( ) A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( ) A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( ) A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组 有解,则 的取值范围为( )A .a>-2B .a≥-2C .a<2D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( )A .m =2B .m >2C .m <2D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( ) A. 30x-45≥300 B. 30x+45≥300 C. 30x-45≤300 D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( )A .40B .45C .51D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个. 12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 .14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 . 15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 . 三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm. (1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1.(1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案: 一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B 二、填空题: 11、3 12、≤a≤13、a≥2 14、515、40%×85+60%x≥90 三、解答题:16、(1)4×s0.8>100.(2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-ba =1.∴b=-a ,b >0.∴不等式by >a 的解集为y >ab =-1,即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2.(2)∵2m -mx 2>12x -1,∴2m-mx >x -2.∴-mx -x >-2-2m.∴(m+1)x <2(1+m). ∵该不等式有解,∴m+1≠0,即m≠-1. 当m >-1时,不等式的解集为x <2; 当x <-1时,不等式的解集为x >2. 19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算. 20、(1)解不等式①,得x <52人教版七年级下数学单元测试卷 第九章 不等式与不等式组 人教版七年级数学下册第九章 不等式与不等式组单元测试题一、填空题:(每小题3分,共30分)1、若一个三角形两边的长分别为3cm 和5cm ,那么第三边的长x 的取值范围 是 。

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)一、单选题1.若a<b ,则下列各式中不成立的是( )A .22a b +<+B .22a b < C .22a b -<- D .22a b -<-2.不等式10x -<的解集是( )A .1x >B .1x >-C .1x <D .1x <-3.不等式组 233412x x x +>⎧⎪⎨-≤-⎪⎩ 的解集在数轴上应表示为( )A .B .C .D .4.在平面直角坐标系中,点M (1+m ,2m ﹣3)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5.若(m ﹣1)x >m ﹣1 的解集是 x <1,则 m 的取值范围是( )A .m >1B .m≤﹣1C .m <1D .m≥16.如图所示,在数轴上表示了某不等式的解集,则这个不等式可能是( )A .x≤1B .x≤-1C .x≥1D .x≥-17.一次知识竞赛共有15道题.竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分.若甲同学总分超过了85分,且有1道题没答,则甲同学至少答对了() A .11道题B .12道题C .13道题D .14道题8.关于x 的不等式23x m +>的解如图所示,则m 的值为( ).A .1-B .5-C .1D .59.不等式组{5x −1>3x −4−13x ≤23−x的整数解的和为( )A .1B .0C .29D .3010.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本,共有()名同学. A .5B .6C .7D .8二、填空题11.用不等号填空:如果>0a b -,那么a b .12.某测试共有20道题,每答对一道得5分,每答错或不答一道题扣1分,设小明答对了x 道题,若小明得分要超过80分,则小明至少要答对 道题.13.如果不等式组4x x m≥⎧⎨<⎩有解,那么m 的取值范围是 .14.在平面直角坐标系中,已知点P (m ﹣3,4﹣2m ),m 是任意实数.(1)当m =0时,点P 在第 象限.(2)当点P 在第三象限时,求m 的取值范围 .三、计算题15.解不等式:215132x x -+-≤1. 16.解不等式组:()53133143x x x x ⎧-<-⎪⎨-+≥-⎪⎩四、解答题17.已知一种卡车每辆至多能载3吨货物.现有100吨黄豆,若要一次运完这批黄豆,至少需要这种卡车多少辆?18.解不等式:2 (3x -1)≤x +3,并把它的解集在数轴上表示出来.19.解不等式组()()2810433112x x x x ⎧+≤--⎪⎨+-<⎪⎩,并写出它的所有整数解. 五、综合题20.(1)若x>y ,请比较2-3x 与 2-3y 的大小,并说明理由. (2)若x>y ,请比较(a -3)x 与(a -3)y 的大小.21.2022年是富川县大力发展香芋种植的一年,某香芋种植大户聘请了一些临时工帮种植一批香芋,每个工人每天可以种植一亩香芋,计划9天种完,种植3天后由于气象台预测几天后将会有暴雨,为使香芋的种植不受到暴雨的影响,所以该种植大户又聘请了5个工人一起种植香芋,恰好提前两天完成了种植任务.(1)问该香芋种植大户种植了多少亩香芋?第一批请了多少个工人帮种植香芋?(2)种植过程中每天中午都要给每个工人提供一份快餐,已知烧鹅饭每个21元,排骨蒸饭每个18元,在种植的最后一天,该种植大户计划帮工人们订快餐的总花费不超过300元,则最多能订多少个烧鹅饭?22.先阅读理解下面的例题,再按要求解答下列问题.例题:解不等式()()330x x -+>.解:由有理数的乘法法则“两数相乘,同号得正,异号得负”,得3030x x -<⎧⎨+<⎩①,3030x x ->⎧⎨+>⎩②解不等式组①,得3x <-,解不等式组②,得3x >,()()330x x ∴-+>的解集为3x >或3x <-.(1)满足()()22310x x -+>的x 的取值范围是 ;(2)仿照材料,解不等式()()3150x x -+<.参考答案与解析1.【答案】C【解析】【解答】解:A 、∵a <b∴a+2<b+2,故本选项不符合题意; B 、∵a <b ∴22a b< ,故本选项不符合题意; C 、∵a <b∴-2a >-2b ,故本选项符合题意; D 、∵a <b∴a-2<b-2,故本选项不符合题意; 故答案为:C .【分析】根据不等式的性质,即不等式两边同加上或同减去同一个数,不等号方向不变,不等式两边同乘以或同除以同一个正数,不等号方向不变,同乘以或同除以同一个负数,不等号方向改变,据此分别判断即可.2.【答案】A【解析】【解答】解:10x -<1x -<- 1x >故答案为:A.【分析】根据不等式的性质两边同时减1、再两边同时除以-1,把不等式的系数化为1,即可解答.3.【答案】C【解析】【解答】解: 233412x x x +>⎧⎪⎨-≤-⎪⎩①② 解①得 1x > 解②得 2x ≤∴不等式组的解集为 12x <≤ 将解集表示在数轴上如C 选项所示 故答案为:C .【分析】先解不等式组,然后按照大于向右画,小于向左画,有等号是实心圆点,无等号是空心圆点的原则即可确定答案.4.【答案】B【解析】【解答】解:A.由 10230m m +>⎧⎨->⎩ 知m > 32 ,此时点M 在第一象限;B.由 10230m m +<⎧⎨->⎩知m 无解,即点M 不可能在第二象限;C.由 10230m m +<⎧⎨-<⎩知m <﹣1,此时点M 在第三象限;D.由 10230m m +>⎧⎨-<⎩ 知﹣1<m < 32 ,此时点M 在第四象限;故答案为:B.【分析】根据各象限内点的坐标符号特点列出关于m 的不等式组,解之求出m 的范围,从而得出答案.5.【答案】C【解析】【解答】解:∵(m-1)x >m-1的解集是 x <1∴m-1<0∴m<1. 故答案为:C.【分析】根据不等式的性质可得m-1<0,求解可得m 的范围.6.【答案】C【解析】【解答】由题意得x≥1.故答案为:C.【分析】根据数轴直接写出不等式的解集即可。

七年级数学(下)第九章《不等式与不等式组》单元检测卷含答案

七年级数学(下)第九章《不等式与不等式组》单元检测卷含答案

七年级数学(下)第九章《不等式与不等式组》单元检测卷姓名:__________ 班级:__________题号一二三总分评分一、选择题(每小题3分;共33分)1.如果a<b ,那么下列不等式中一定正确的是()A. a﹣2b<﹣bB. a2<abC. ab<b2D. a2<b22.2x﹣4≥0的解集在数轴上表示正确的是().A. B.C. D.3.如果不等式(a+1)x<a+1的解集为x>1,那么a的取值范围是()A. a<1B. a<﹣1C. a>1D. a>﹣14.关于x的不等式(m+1)x≥m+1,下列说法正确的是()A. 解集为x≥1B. 解集为x≤1C. 解集为x取任何实数D. 无论m取何值,不等式肯定有解5.某不等式组的解集在数轴上表示如图,则这个不等式组可能是()A. B. C. D.6.不等式x﹣1≤1的解集在数轴上表示正确的是()A. B.C. D.7.如果不等式无解,则b的取值范围是()A. b>-2B. b<-2C. b≥-2D. b≤-28.若a<0关于x的不等式ax+1>0的解集是()A. x>B. x<C. x>-D. x<-9.在x=﹣4,﹣1,0,3中,满足不等式组的x值是()A. ﹣4和0B. ﹣4和﹣1C. 0和3D. ﹣1和010.若m<n,则在下列各式中,正确的是().A. m-3>n-3B. 3m>3nC. -3m>-3nD.11.不等式组的解集是x>1,则m的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤0二、填空题(共8题;共32分)12.不等式﹣x+3<0的解集是________.13.若不等式组的整数解共有三个,则a的取值范围是________.14.若不等式(m﹣2)x>2的解集是x<,则m的取值范围是________15.“x的与5的差不小于-4的相反数”,则用不等式表示为________.16.若a<3,则关于x的不等式ax>3x+a﹣3的解集为________.17.若不等式组无解,则m的取值范围是________.18.生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,若现在所需要的时间为b小时,则________ ________ .19.当x________时,式子3x﹣5的值大于5x+3的值.三、解答题(共3题;35分)20.解不等式:≥ ﹣1.21.解不等式组,并把解集在数轴上表示出来.22.园林部门用3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,挂放在迎宾大道两侧,搭配每个造型所要花盆数如表,综合上述信息,解答下列问题.造型甲乙A 90盆 30盆B 40盆 100盆(1)符合题意的搭配方案有哪几种?(2)若搭配一个A种造型的成本为1000元,搭配一个乙种造型的成本为1200元,选(1)中那种方案的成本最低?参考答案一、选择题A CB D BCD D D C D二、填空题12.x>6 13.5≤a<6 14.m<215.x-5≥416.x<1 17.m≥818.85% a;92% a 19.x<﹣4三、解答题20.解:去分母,得:3(x﹣2)≥2(2x﹣1)﹣6,去括号,得:3x﹣6≥4x﹣2﹣6,移项,得:3x﹣4x≥﹣2﹣6+6,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2.21.解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.不等式组的解集在数轴上表示如下:22.(1)解:设需要搭配x个A种造型,则需要搭配B种造型(50﹣x)个,则有,解得30≤x≤32,所以x=30或31或32.第一方案:A种造型32个,B种造型18个;第二种方案:A种造型31个,B种造型19个;第三种方案:A种造型30个,B种造型20个.(2)解:总成本为:1000x+1200(50﹣x)=60000﹣2x.显然当x取最大值32时成本最低,为60000﹣2×32=53600 答:第一种方案成本最低,最低成本是53600。

七年级下册数学不等式与不等式组单元试卷(含答案)

七年级下册数学不等式与不等式组单元试卷(含答案)

A .50页B .60页C .80页D .100页二、填空题11.若关于x 的不等式的解集在数轴上表示如图,则其解集为 .12.如图,请任意选取一幅图,根据图中信息,写出一个关于温度x (℃)的不等式: .13.数轴上实数b 的对应点的位置如图所示.比较大小:b +1 0(用“<”或“>”填空).1214.在一次课外知识竞赛中,一共有30道判断题,答对一道题得4分,不答或答错一道题扣1分,如果在这次竞赛中得分要超过72分,那么至少应答对 道题.15.若关于x 的不等式3x -a ≤0只有两个正整数解,则a 的取值范围是 .三、解答题16.解不等式:5(x -2)+8<6(x -1)+7.17.解不等式组,并在数轴上表示其解集.{>0,①x +132(x +5)≥6(x −1),②A .B .C .D .【参考答案】答案:C .解:由题意得P (2a -1,1-a )在第一象限,∴解得:0.5<a <1,在数轴上表示为:故选C .{2a −1>01−a >09.若不等式组有解,则a 的取值范围是()A .a ≤3B .a <3C .a <2D .a ≤2【参考答案】答案:B .解:由1+x >a 得,x >a -1;由2x -4≤0得,x ≤2,∵此不等式组有解,∴a -1<2,解得a <3.故选B .{1+x >a ,2x −4≤0{1+x >a2x −4≤010.小红读一本500页的书,计划10天内读完,前5天因种种原因只读了100页,为了按计划读完,则从第6天起平均每天至少要读()A .50页B .60页C .80页D .100页【参考答案】答案:C .解:设从第6天起平均每天要读x 页,才能按计划读完,则:100+(10-5)x ≥500;解得x ≥80;所以从第六天起,平均每天至少要读80页才能按计划读完.故选C .二、填空题11.若关于x 的不等式的解集在数轴上表示如图,则其解集为 .【参考答案】答案:-3<x ≤5.解:结合数轴可得-3处是空心,5处是实心,故这个不等式的解集为-3<x ≤5.12.如图,请任意选取一幅图,根据图中信息,写出一个关于温度x (℃)的不等式: .【参考答案】答案:x ≥-8.(x <30或x ≤110)解:根据题意,得第一个图:x ≥-8;第二个图:x <30或x ≤110.13.数轴上实数b 的对应点的位置如图所示.比较大小:b +1 0(用“<”或“>”填空).【参考答案】答案:>.解:因为-2<b <-1,所以-2×<b <-1×,即-1<b <-,所以-1+1<b +1<-+1,即0<b +1<.故b +1>0.121212121212121212121214.在一次课外知识竞赛中,一共有30道判断题,答对一道题得4分,不答或答错一道题扣1分,如果在这次竞赛中得分要超过72分,那么至少应答对 道题.【参考答案】答案:21.解:设应答对x 道题,根据题意得4x -(30-x )≥72,解得x ≥,∴至少答对21道题目.102515.若关于x 的不等式3x -a ≤0只有两个正整数解,则a 的取值范围是 .【参考答案】答案:6≤a <9.解:由3x -a ≤0,得x ≤.∵不等式的正整数解有2个,只能是1,2,∴2≤<3,∴6≤a <9.a3a 3三、解答题16.解不等式:5(x -2)+8<6(x -1)+7.【参考答案】解:去括号得,5x -10+8<6x -6+7,移项得,5x -6x <-6+7+10-8,合并同类项得,-x <3,化系数为1得,x >-3.故此不等式的解集为:x >-3.17.解不等式组,并在数轴上表示其解集.【参考答案】解:由①得x >-1;由②得x ≤4,∴不等式组的解集为-1<x ≤4.用数轴表示为{>0,①x +132(x +5)≥6(x −1),②。

七年级下册《第9章不等式与不等式组》单元测试题(含答案解析)

七年级下册《第9章不等式与不等式组》单元测试题(含答案解析)

秋人教版七年级下《第9章不等式与不等式组》单元测试题一.选择题(共10小题)1.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<02.已知x>2,则下列变形正确的是()A.﹣x<2B.若y>2,则x﹣y>0C.﹣x+2<1D.若y>2,则3.如果不等式组有解,那么m的取值范围是()A.m>5B.m≥5C.m<5D.m≤84.一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.5.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±36.下列各式不是一元一次不等式组的是()A.B.C.D.7.用不等式表示“a的一半不小于﹣7”,正确的是()A.a≥﹣7B.a≤﹣7C.a>﹣7D.8.不等式x﹣1<2的正整数解有()A.1个B.2个C.3个D.4个9.小红准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买甲种饮料的瓶数是()A.4B.3C.2D.110.已知点M(1﹣a,3a﹣9)在第三象限,且它的坐标都是整数,则a的值是()A.0B.1C.2D.3二.填空题(共8小题)11.已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=.12.若a<b,则﹣5a﹣5b(填“>”“<”或“=”).13.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是.14.如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是.15.请写出一个一元一次不等式.16.不等式x+3<2的解集是.17.不等式组的解集为.18.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买个.三.解答题(共7小题)19.利用数轴确定不等式组的解集.20.根据下列语句列不等式并求出解集:x与4的和不小于6与x的差.21.列式计算:求使的值不小于的值的非负整数x.22.阅读下面的材料:小明在学习了不等式的知识后,发现如下正确结论:若A﹣B>0,则A>B;若A﹣B=0,则A=B;若A﹣B<0,则A<B.下面是小明利用这个结论解决问题的过程:试比较与2的大小.解:∵=﹣2+=2>0,∴2.回答下面的问题:(1)请完成小明的解题过程;(2)试比较2(x2﹣3xy+4y2)﹣3与3x2﹣6xy+8y2﹣2的大小(写出相应的解答过程).23.我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:已知用“<”或“>”填空5+23+1﹣3﹣1﹣5﹣21﹣24+1(2)一般地,如果那么a+c b+d(用“<”或“>”填空).请你说明上述性质的正确性.24.定义新运算:对于任意有理数a,b,都有a*b=b(a﹣b)﹣b,等式右边是通常的加法、减法及乘法运算,例如:2*5=5×(2﹣5)﹣5=﹣20.(1)求2*(﹣5)的值;(2)若x*(﹣2)的值大于﹣6且小于9,求x的取值范围,并在如图所示的所画的数轴上表示出来.25.已知:关于x、y的方程组的解为非负数.(1)求a的取值范围;(2)化简|2a+4|﹣|a﹣1|;(3)在a的取值范围内,a为何整数时,使得2ax+3x<2a+3解集为x>1.秋人教版七年级下册《第9章不等式与不等式组》单元测试题参考答案与试题解析一.选择题(共10小题)1.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<0【分析】本题利用数与数轴的关系及数形结合解答.【解答】解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.【点评】本题主要是利用数形结合的思想,用排除法选项.2.已知x>2,则下列变形正确的是()A.﹣x<2B.若y>2,则x﹣y>0C.﹣x+2<1D.若y>2,则【分析】根据不等式的性质,可得答案.【解答】解:A、两边乘以不同的数,故A不符合题意;B、x,y无法比较,故B不符合题意;C、两边都除以﹣2,不等号的方向改变,故C符合题意;D、x,y无法比较,故D不符合题意;故选:C.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3.如果不等式组有解,那么m的取值范围是()A.m>5B.m≥5C.m<5D.m≤8【分析】依据小大大小中间找,可确定出m的取值范围.【解答】解:∵不等式组有解,∴m<5.故选:C.【点评】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.4.一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再进行比较可得到答案.【解答】解:第一个不等式的解集为:x>﹣3;第二个不等式的解集为:x≤2;所以不等式组的解集为:﹣3<x≤2.在数轴上表示不等式组的解集为:.故选:C.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±3【分析】根据一元一次不等式的定义,|m|﹣3=1,m+4≠0,分别进行求解即可.【解答】解:根据题意|m|﹣3=1,m+4≠0解得|m|=4,m≠﹣4所以m=4.故选:A.【点评】本题考查一元一次不等式的定义中的未知数的最高次数为1次,本题还要注意未知数的系数不能是0.6.下列各式不是一元一次不等式组的是()A.B.C.D.【分析】根据一元一次不等式组的定义进行解答.【解答】解:A、该不等式组符合一元一次不等式组的定义,故本选项错误;B、该不等式组符合一元一次不等式组的定义,故本选项错误;C、该不等式组中含有2给未知数,不是一元一次不等式组,故本选项正确;D、该不等式组符合一元一次不等式组的定义,故本选项错误;故选:C.【点评】本题考查了一元一次不等式组的定义,每个不等式中含有同一个未知数且未知数的次数是1的不等式组是一元一次不等式组.7.用不等式表示“a的一半不小于﹣7”,正确的是()A.a≥﹣7B.a≤﹣7C.a>﹣7D.【分析】抓住题干中的“不小于﹣7”,是指“大于”或“等于﹣7”,由此即可解决问题.【解答】解:根据题干“a的一半”可以列式为:a;“不小于﹣7”是指“大于等于﹣7”;那么用不等号连接起来是:a≥﹣7.故选:A.【点评】此题考查了由实际问题抽象一元一次不等式的知识,属于基础题,理解“不小于”的含义是解答本题的关键.8.不等式x﹣1<2的正整数解有()A.1个B.2个C.3个D.4个【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得不等式的解集,继而可得其正整数解.【解答】解:移项,得:x<2+1,合并同类项,得:x<3,所以不等式的正整数解为1、2,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.9.小红准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买甲种饮料的瓶数是()A.4B.3C.2D.1【分析】首先设小红能买甲种饮料的瓶数是x瓶,则可以买乙饮料(10﹣x)瓶,由题意可得不等关系:甲饮料的花费+乙饮料的花费≤50元,根据不等关系可列出不等式,再求出整数解即可.【解答】解:设小红能买甲种饮料的瓶数是x瓶,则可以买乙饮料(10﹣x)瓶,由题意得:7x+4(10﹣x)≤50,解得:x≤,∵x为整数,∴x=0,1,2,3,则小红最多能买甲种饮料的瓶数是3瓶.故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是弄清题意,找出合适的不等关系,设出未知数,列出不等式.10.已知点M(1﹣a,3a﹣9)在第三象限,且它的坐标都是整数,则a的值是()A.0B.1C.2D.3【分析】在第三象限内,那么横坐标小于0,纵坐标小于0.而后求出整数解即可.【解答】解:∵点M在第三象限.∴,解得1<a<3,因为点M的坐标为整数,所以a=2.故选:C.【点评】主要考查了平面直角坐标系中第三象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).二.填空题(共8小题)11.已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=﹣4.【分析】解答此题要理解“≥”“≤”的意义,判断出a和b的最值即可解答.【解答】解:因为x≥2的最小值是a,a=2;x≤﹣6的最大值是b,则b=﹣6;则a+b=2﹣6=﹣4,所以a+b=﹣4.故答案为:﹣4.【点评】解答此题要明确,x≥2时,x可以等于2;x≤﹣6时,x可以等于﹣6.12.若a<b,则﹣5a>﹣5b(填“>”“<”或“=”).【分析】根据不等式的性质,在不等式的两边同时乘以一个负数,不等号的方向改变,即可得出答案.【解答】解:∵a<b,∴﹣5a>﹣5b;故答案为:>.【点评】此题考查了不等式的性质,掌握不等式的基本性质是本题的关键,不等式的基本性质是:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.13.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是a<3.【分析】根据不等式的性质可得a﹣3<0,由此求出a的取值范围.【解答】解:∵(a﹣3)x>1的解集为x<,∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故答案为:a<3.【点评】本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a﹣3小于0.14.如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是﹣3.【分析】根据去括号、移项、合并同类项,可得不等式的解集,根据不等式解集的表示方法,可得答案.【解答】解:去括号,得3x+1>2x﹣2,移项、合并同类项,得x>﹣3,故答案为:﹣3.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来>或≥,向右画;<或≤,向左画,注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.15.请写出一个一元一次不等式x﹣1>0(答案不唯一).【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.【解答】解:一元一次不等式有:x﹣1>0.故答案为:x﹣1>0(答案不唯一).【点评】本题考查不等式的定义;写出的不等式只需符合条件,越简单越好.16.不等式x+3<2的解集是x<﹣1.【分析】不等式经过移项即可得到答案.【解答】解:x+3<2,移项得:x<﹣1,即不等式的解集为:x<﹣1,故答案为:x<﹣1.【点评】本题考查解一元一次不等式,熟悉解一元一次不等式的步骤是解题的关键.17.不等式组的解集为6<x<9.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解不等式8x>48,得:x>6,解不等式2(x+8)<34,得:x<9,则不等式组的解集为6<x<9,故答案为:6<x<9.【点评】本题考查了不等式组的解法,求不等式组中每个不等式的解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买16个.【分析】设购买篮球x个,则购买足球(50﹣x)个,根据总价=单价×购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.【解答】解:设购买篮球x个,则购买足球(50﹣x)个,根据题意得:80x+50(50﹣x)≤3000,解得:x≤.∵x为整数,∴x最大值为16.故答案为:16.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题(共7小题)19.利用数轴确定不等式组的解集.【分析】先分别求出各不等式的解集,在数轴上表示出来,即可得出不等式组的解集.【解答】解:由①得x≥﹣2由②得x<1在数轴上表示不等式①、②的解集所以,不等式组的解集是﹣2≤x<1【点评】本题考查了解一元一次不等式组:先分别解几个不等式,然后把它们的解集的公共部分作为原不等式的解集;按照“同大取大,同小取小,大于小的小于大的取中间,大于小的小于大的为空集”.也考查了利用数轴表示不等式的解集.20.根据下列语句列不等式并求出解集:x与4的和不小于6与x的差.【分析】与4的和不小于6与x的差.可表示为x+4≥6﹣x,由此可得出不等式,然后求解即可.【解答】解:根据题意可得:x+4≥6﹣x,解得:x≥1.【点评】本题考查了由实际问题抽象一元一次不等式的知识及解一元一次不等式的知识,属于基础题,注意掌握解不等式的法则.21.列式计算:求使的值不小于的值的非负整数x.【分析】根据题意列出不等式后,依据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1求得其解集,继而可得答案.【解答】解:≥,3(x+1)+4≥2(3x﹣1),3x+3+4≥6x﹣2,3x﹣6x≥﹣2﹣3﹣4,﹣3x≥﹣9,x≤3,则符合条件的非负整数有0、1、2、3.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变22.阅读下面的材料:小明在学习了不等式的知识后,发现如下正确结论:若A﹣B>0,则A>B;若A﹣B=0,则A=B;若A﹣B<0,则A<B.下面是小明利用这个结论解决问题的过程:试比较与2的大小.解:∵=﹣2+=2>0,∴>2.回答下面的问题:(1)请完成小明的解题过程;(2)试比较2(x2﹣3xy+4y2)﹣3与3x2﹣6xy+8y2﹣2的大小(写出相应的解答过程).【分析】(1)根据示例可知,一个式子减去另一个式子,如果结果大于0,则前面的式子大于后边的式子,故>2,(2)用2(x2﹣3xy+4y2)﹣3减去3x2﹣6xy+8y2﹣2,将得到的式子化简,发现总<0,则2(x2﹣3xy+4y2)﹣3<3x2﹣6xy+8y2﹣2.【解答】解:(1)根据题意可知:若A﹣B>0,则A>B,∵﹣(2﹣)>0,∴>2答案为:>,(2)2(x2﹣3xy+4y2)﹣3﹣(3x2﹣6xy+8y2﹣2)=2x2﹣6xy+8y2﹣3﹣3x2+6xy﹣8y2+2=﹣x2﹣1.∵﹣x2﹣1<0,∴2(x2﹣3xy+4y2)﹣3﹣(3x2﹣6xy+8y2﹣2)<0.∴2(x2﹣3xy+4y2)﹣3<3x2﹣6xy+8y2﹣2.【点评】本题考查不等式的性质和实数的大小比较,掌握比较实数大小的方法是解决本题的关键.23.我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:已知用“<”或“>”填空5+2>3+1﹣3﹣1>﹣5﹣21﹣2<4+1(2)一般地,如果那么a+c>b+d(用“<”或“>”填空).请你说明上述性质的正确性.【分析】(1)根据不等式的性质即可判断;(2)利用(1)中规律即可判断,根据不等式的性质即可证明;【解答】解:(1)5+2>3+1,﹣3﹣1>﹣5﹣2,1﹣2<4+1;故答案为>,>,<;(2)结论:a+c>b+d.理由:因为a>b,所以a+c>b+c,因为c>d,所以b+c>b+d,所以a+c>b+d.故答案为>.【点评】本题考查不等式的性质、解题的关键是熟练掌握不等式的性质解决问题,属于中考常考题型.24.定义新运算:对于任意有理数a,b,都有a*b=b(a﹣b)﹣b,等式右边是通常的加法、减法及乘法运算,例如:2*5=5×(2﹣5)﹣5=﹣20.(1)求2*(﹣5)的值;(2)若x*(﹣2)的值大于﹣6且小于9,求x的取值范围,并在如图所示的所画的数轴上表示出来.【分析】(1)根据新定义列式计算可得;(2)根据新定义得出x*(﹣2)=﹣2x﹣2,由“x*(﹣2)的值大于﹣6且小于9”列出关于x的不等式组,解之可得.【解答】解:(1)2*(﹣5)=﹣5×[2﹣(﹣5)]﹣(﹣5)=﹣5×(2+5)+5=﹣35+5=﹣30;(2)x*(﹣2)=﹣2×(x+2)+2=﹣2x﹣4+2=﹣2x﹣2,由题意可得,解得:﹣5.5<x<2,不等式组的解集在数轴上表示为:【点评】本题考查了一元一次不等式组的解法,正确理解运算的定义是关键.25.已知:关于x、y的方程组的解为非负数.(1)求a的取值范围;(2)化简|2a+4|﹣|a﹣1|;(3)在a的取值范围内,a为何整数时,使得2ax+3x<2a+3解集为x>1.【分析】(1)先解方程组,根据解为非负数,得出a的取值范围;(2)根据a的取值范围化简|2a+4|﹣|a﹣1|即可;(3)根据2ax+3x<2a+3解集为x>1,得出a的值即可.【解答】解:(1)由得,,∵方程组的解为非负数,∴,得﹣2≤a≤﹣1;(2)∵﹣2≤a≤﹣1,∴|2a+4|﹣|a﹣1|=2a+4﹣(1﹣a)=2a+4﹣1+a=3a+3;(3)∵2ax+3x<2a+3解集为x>1,∴2a+3<0,∵﹣2≤a≤﹣1,∴若a为整数,则a=﹣2,即在a的取值范围内,a=﹣2时,使得2ax+3x<2a+3解集为x>1.【点评】本题考查一元一次不等式的整数解、绝对值、解二元一次方程组,解答本题的关键是明确它们各自的解答方法.。

新七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案)

新七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案)

人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是()A.B.C.D.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.c2a>c2b C.(1+c2)a>(1+c2)b D.1﹣a>1﹣b 3.如果的解集是,那么的取值范围是()A.B.C.D.4.如图,天平左盘中物体A的质量为,,天平右盘中每个砝码的质量都是1g,则的取值范围在数轴上可表示为()A.B.C.D.5.已知不等式组有解,则的取值范围为()A.a>-2 B.a≥-2 C.a<2 D.a≥26.将不等式组的解集在轴上表示出来,应是( )A. B.C. D.>的整数解的个数为()7.不等式组A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B 13.﹣9<x≤﹣3 14.> 15.3组. 16.3 17.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版年级数学下册第九章 不等式与不等式组单元测试题 人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题1.设a >b >0,c 为常数,给出下列不等式:①a-b >0;②ac>bc ;③1a <1b ;④b 2>ab ,其中正确的不等式有( ) A .1个B .2个C .3个D .4个2.已知,下列式子不成立的是( )A .B .C .D .如果,那么3.在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,未知数满足x≥0,y >0,那么m 的取值范围在数轴上应表示为( )4.方程组中,若未知数、满足,则的取值范围是( )A .B .C .D .5.某市自来水公司按如下标准收取水费:若每户每月用水不超过,则每立方米收费元;若每户每月用水超过,则超过部分每立方米收费元,小颖家某月的水费不少于元,那么她家这个月的用水量(吨数为整数)至少是( ) A .B .C .D .6.甲、乙两人从相距24km 的A ,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h 以内相遇,则甲的速度应( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h7.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的同学每人分5本,那么最后一人就分不到3本.则这些图书有( )A .23本B .24本C .25本D .26本8.定义[x ]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[-3.6]=-4.对于任意实数x ,下列式子中错误的是( )A .[x ]=x (x 为整数)B .0≤x -[x ]<1C .[x +y ]≤[x ]+[y ]D .[n +x ]=n +[x ](n 为整数)9.某射击运动员在一次比赛中(共10次射击,每次射击最多是10环),前6次射击共中52环.如果他要打破89环的记录,那么第7次射击不能少于( ) A .5环B .6环C .7环D .8环10.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载.租车方案共有( )种.A. 2B. 3C. 4D. 5二、填空题1.若点A (x +3,2)在第二象限,则x 的取值范围是________. 2.当x ________时,式子3+x 的值大于式子12x -1的值.3.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了________支.4.定义一种法则“”如下:a b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ).例如:=2.若(-2m -=3,则m 的取值范围是__________.5.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.6.不等式组⎩⎪⎨⎪⎧x +1>3(1-x ),1+2x 3≤x 的解集是____________.三、解答题1.解不等式,并把解集在数轴上表示出来:(1)2(x +1)-1≥3x+2;(2)2x -13-9x +26≤1.2.已知关于x 的方程4(x +2)-2=5+3a 的解不小于方程(3a +1)x 3=a (2x +3)2的解,试求a 的取值范围.3.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =1,①x -y =m.②(1)求这个方程组的解(用含m 的式子表示);(2)当m 取何值时,这个方程组的解中,x 大于1,y 不小于-1.4.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2 200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?5.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3__200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3__600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?参考答案: 一、选择题。

第九章不等式与不等式组+单元测试+2022-2023学年人教版七年级下册数学+

第九章不等式与不等式组+单元测试+2022-2023学年人教版七年级下册数学+

第九章不等式与不等式组(单元测试)一、单选题(本大题共12小题,每小题3分,共36分) 1.若x >y ,则下列结论正确的是( )A .x +1>y +1B .x -2<y -2C .-2x >-2yD .33xy < 2.关于x 的不等式3x -a ≤0只有两个正整数解,则a 的取值范围是( )A .6<a <9B .6≤a <9C .6≤a ≤9D .6<a ≤93.若a>b ,则下列不等式不一定成立的是( )A .a +m>b +mB .-2a <-2bC .a(m 2+1)>b(m 2+1)D .a 2 > b 24.小明从学校图书馆借到一本有108页的图书,计划在10天之内读完.如果开始2天每天只读8页,那么他以后几天里平均每天至少要读多少页?设以后几天里平均每天要读x 页,根据题意可列不等式为( ) A .()102108x -≥B .()102108x +≥C .()10228108x -+⨯≥D .()10228108x ++⨯≥5.关于x 的不等式组0312(1)x m x x -<⎧⎨-≥+⎩有解,那么m 的取值范围是( ) A .3m > B .3m ≥ C .3m < D .3m ≤6.如图,直线1:1l y x =+与直线2:l y mx n =+相交于点()2P a ,,则关于x 的不等式1x mx n +≥+的解集为( ).A .x a ≤B .2x ≥C .1x ≥D .2x <7.若a 、b 是实数,且21224a b b =-+-+,则a +b 的值是( )A .3或﹣3B .3或﹣1C .﹣3或﹣1D .3或18.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;①若a>b ,则-2a>-2b ;①如果三条直线a 、b 、c 满足:a①b ,b①c ,那么直线a 与直线c 必定平行;①对顶角相等,其中真命题有( )个. A .1 B .2 C .3D .49.将直线22y x =-+向下平移4个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+说法正确的是( ) A .图象经过一、二、四象限B .当3x ≥时,8y ≥-C .图象与x 轴交于1,0D .直线与坐标轴围成的三角形的面积为2 10.已知a 、b 是不为0的实数,则下列选项中,解集可以为20222022x -<<的不等式组是( )A .11ax bx <⎧⎨>⎩B .11ax bx >⎧⎨>⎩C .11ax bx >⎧⎨<⎩D .11ax bx <⎧⎨<⎩11.重庆市巴川中学校园超市购进某种学生笔记本共500本,进价为3元/本,出售时标价为5元/本,当售出80%时,超市准备更换新的笔记本,于是决定打折出售,直到售完为止.若该超市要保证利润不少于850元,则至多可打( )A .6折B .7折C .8折D .9折12.不等式组2124x x -<⎧⎨≤⎩的解集在数轴上表示正确的是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分)20.不等式组315122x x x +≥⎧⎪⎨->-⎪⎩的解集为__________.三、解答题(本大题共5小题,每小题8分,共40分) 21.清清和洁洁两个公司共同承包甲、乙两个工地清除垃圾的任务,在规定时间内,清清和洁洁两个公司分别可以清运20万立方米和30万立方米,甲、乙两个工地需要清运的垃圾分别是40万立方米和10万立方米.经过测算,清清和洁洁两个公司在两个工地完成清运1立方米垃圾需要的费用如下:在甲工地清运1立方米垃圾所需的费用 在乙工地清运1立方米垃圾所需的费用 清清公司40元 35元 洁洁公司 38元 36元 设清清公司在甲工地清运垃圾x 万立方米(1418x ≤≤),完成这两个工地的垃圾清运所需的总费用为y 万元.(1)求y 与x 的函数关系式,(2)y 是否能等于1890万元,说明理由;(3)若在实际清除过程中,清清公司在甲公司上投入新机械化设备,使清理1立方米的费用减少a 元,但仍高于清清公司在乙工地清理1立方米垃圾的费用,求如何分配任务,使清理垃圾的总费用最小.22.解不等式组()214312x x x x ⎧--≤⎪⎨->⎪⎩,并在数轴上表示它的解集.23.对于有理数a 、b ,我们用符号{}min ,a b 表示a 、b 两数中较小的数,如{}min 1,21=,又如{}min 0,11-=-.(1)直接写出11min ,23⎧⎫--⎨⎬⎩⎭的值. (2)已知{}min 2,13x x c -=.①当1c =-时,求x 的值.①求当{}min 2,13x x c -=成立时,求c 的取值范围.24.解下列不等式组参考答案:.132x≤(1)31860y x=+不可以等于。

西安高新唐南中学七年级数学下册第九单元《不等式与不等式组》测试卷

西安高新唐南中学七年级数学下册第九单元《不等式与不等式组》测试卷

一、选择题1.不等式32x x -≤的解集在数轴上表示正确的是( )A .B .C .D .B解析:B 【分析】先求出不等式的解集,再根据不等式在数轴上的表示方法即可得. 【详解】32x x -≤, 23x x --≤-, 33x -≤-, 1≥x ,由此可知,只有选项B 表示正确, 故选:B . 【点睛】本题考查了在数轴上表示一元一次不等式的解集,熟练掌握不等式的解法是解题关键. 2.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x… -2 -1 0 1 2 3 … y …321-1-2…A .x <1B .x >1C .x <0D .x >0A解析:A 【分析】将x=0、y=1和x=1、y=0代入ax+b=y 得到关于a 、b 的方程组,解之得出a 、b 的值,从而得到关于x 的不等式,解之可得答案. 【详解】解:根据题意,得:10b a b =⎧⎨+=⎩,解得a=-1,b=1,则不等式-ax-b <0为x-1<0, 解得x <1, 故选:A .【点睛】本题考查了解一元一次不等式,解题的关键是根据题意列出关于x的不等式,并熟练掌握解一元一次不等式的步骤和依据.3.不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D. C解析:C【解析】分析:先求出各不等式的解集,再求出其公共解集即可.详解:解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D. A解析:A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1–x)<4去括号得:2﹣2x<4移项得:2x>﹣2,系数化为1得:x>﹣1,故选A.“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.如果a b>,可知下面哪个不等式一定成立()A .a b ->-B .11a b< C .2a b b +> D .2a ab > C解析:C 【分析】由基本不等式a >b ,根据不等式的性质,逐一判断. 【详解】 解:A 、∵a >b , ∴-a <-b ,故本选项不符合题意; B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意; C 、∵a >b , ∴a+b >2b ,故本选项符合题意; D 、∵a >b ,且a >0时, ∴a 2>ab ,故本选项不符合题意; 故选:C . 【点睛】本题考查了不等式的性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变. (2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<- B .116a 2-<<-C .1162a -<-D .1162a --A 解析:A 【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可. 【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20 解②得x >3-2a ,∵不等式组只有5个整数解, ∴不等式组的解集为3-2a <x <20, ∴14≤3-2a <15,1162a ∴-<-故选A 【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键. 7.若|65|56x x -=-,则x 的取值范围是( ) A .56x >B .56x <C .56x ≥D .56x ≤D 解析:D 【分析】先根据绝对值的性质判断出65x -的符号,再求出x 的取值范围即可. 【详解】∵6556x x -=-, ∴650x -≤,∴56x ≤. 故选:D . 【点睛】本题考查了绝对值的性质以及解一元一次不等式,解答此题的关键是熟知绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 8.如果a 、b 表示两个负数,且a b >,则( ) A .1a b> B .1b a> C .11a b> D .1ab < B解析:B 【分析】根据不等式的性质,两边都除以b 判断出A 、B ,两边都除以ab ,判断出C 即可得解. 【详解】∵a 、b 表示两个负数,∴a b >两边都除以b 得,1ab<,故选项A 错误,不符合题意; a b >两边都除以a 得,1ba>,故选项B 正确,符合题意; ∵a 、b 表示两个负数, ∴0ab >,∴a b >都除以ab 得,11b a>,故选项C 错误,不符合题意; 只能判断出0ab >,但无法说明1ab <,故选项D 错误,不符合题意. 故选:B . 【点睛】本题考查了不等式的基本性质,(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 9.若关于x 的不等式组327x x a-<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ).A .3aB .3a >C .3aD .3a < C解析:C 【分析】分别求出每一个不等式的解集,根据口诀:同小取小并结合不等式组的解集可得a 的范围. 【详解】 解:327x x a -<⎧⎨<⎩①②,①式化简得:39,3x x <<又∵该不等式的解集为x a <,∴3a . 故选C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.若线段4、4、m 能构成三角形,且使关于x 的不等式组23834x m x m >-⎧⎨-+≥-⎩有解的所有整数m 的和为( )A .6B .1C .2D .3D解析:D 【分析】根据三角形三边关系可得0<m <8,再根据关于x 的不等式组23834x m x m -⎧⎨-+≥-⎩>有解可得m-2<4-m ,求得m <3,可得所有整数m 有1,2,再相加即可求解. 【详解】解:∵线段4、4、m 能构成三角形, ∴0<m <8,23834x m x m -⎧⎨-+≥-⎩>①②, 解不等式②得:x≤4-m , ∴m-2<4-m , 解得m <3, ∴0<m <3,∴所有整数m 有1,2, 1+2=3.故所有整数m 的和为3. 故选:D . 【点睛】考查了三角形三边关系,一元一次不等式组的整数解,关键是根据题意得到0<m <3.二、填空题11.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元.296【分析】可设A单价x 元B 单价y 元由三类糖果单价和为108元得C 单价;再由一班和二班购买糖果的总金额比值为3∶2可得xy 的关系式再由A 与C 单价差大于25元可得一元一次不等式根据各单价是低于50元解析:296 【分析】可设A 单价x 元,B 单价y 元,由三类糖果单价和为108元得C 单价;再由一班和二班购买糖果的总金额比值为3∶2,可得x 、y 的关系式,再由A 与C 单价差大于25元,可得一元一次不等式,根据各单价是低于50元/千克的整数求出符合题意的解即可 【详解】解:设A 单价x 元,B 单价y 元三类糖果单价和为108元得C 单价为(108-x-y )元 又一班和二班购买糖果的总金额比值为3∶2可得:325(108)324(108)2x y x y x y x y ++--=++--整理可得:2x+3y=216①又A 与C 单价差大于25元,即x-(108-x-y )>25 整理可得:2x+y>133,将①中的2x 代入可得:y<41.5 又A 、B 、C 三类糖果单价是低于50元/千克的整数,故: 若y=41,代入①得x=46.5,不符合题意 若y=40,代入①得x=48,符合题意 若y=39,代入①得x=49.5,不符合题意 若y=38,代入①得x=51,不符合题意y 越小,x 越大,故后面x 的结果均大于50,不符合题意 故x=48,y=40,108-x-y=20 由上可知:A 类糖果的单价是48元B 类糖果的单价是40元C 类糖果的单价是20元故分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为: 48×2+40×3+20×4=296(元) 故答案为:296 【点睛】本题考查一元一次不等式的解法,利用条件建立一元一次不等式并结合题意准确得到A 、B 、C 三类糖果的单价是解本题的关键 12.已知关于x ,y 的方程组4375x y mx y m +=⎧⎨-=-⎩的解满足不等式2x+y>8,则m 的值是_____.m <-6【分析】先解方程组然后将xy 的值代入不等式解答【详解】解:①+②得解得x=2m-1把x=2m-1代入②得解得y=4-5m 将x=2m-1y=4-5m 代入不等式2x+y >8得4m-2+4-5m >解析:m <-6. 【分析】先解方程组,然后将x 、y 的值代入不等式解答. 【详解】 解:4375x y m x y m +=⎧⎨-=-⎩①②①+②得,5105x m =-,解得,x=2m-1,把x=2m-1代入②得,2175m y m --=-,解得,y=4-5m , 将x=2m-1,y=4-5m 代入不等式2x+y >8得 4m-2+4-5m >8, ∴m <-6,故答案为:m <-6. 【点睛】本题考查了方程组与不等式,熟练解方程组与不等式是解题的关键. 13.关于x 的不等式组x 5x a≤⎧⎨>⎩无解,则a 的取值范围是________.【分析】根据不等式组确定解集的方法:大大小小无解了解答即可【详解】∵关于的不等式组无解∴故答案为:【点睛】此题考查一元一次不等式组的解集的确定方法:同大取大同小取小大小小大中间找大大小小无解了 解析:a 5≥【分析】根据不等式组确定解集的方法:大大小小无解了解答即可. 【详解】∵关于x 的不等式组x 5x a ≤⎧⎨>⎩无解, ∴a 5≥, 故答案为:a 5≥. 【点睛】此题考查一元一次不等式组的解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了.14.已知关于x 的不等式组221x a b x a b -≥⎧⎨-<+⎩的解集为55x -≤<,则ab 的值为___________.【分析】先求出不等式组中两个不等式的解再根据不等式组的解集可得一个关于ab 的二元一次方程组解方程组可得ab 的值然后代入即可得【详解】解不等式①得:解不等式②得:由题意得:解得则故答案为:【点睛】本题 解析:1914-【分析】先求出不等式组中两个不等式的解,再根据不等式组的解集可得一个关于a 、b 的二元一次方程组,解方程组可得a 、b 的值,然后代入即可得. 【详解】221x a b x a b -≥⎧⎨-<+⎩①②, 解不等式①得:x a b ≥+, 解不等式②得:212a b x ++<,由题意得:52152a ba b+=-⎧⎪⎨++=⎪⎩,解得1914ab=-⎧⎨=⎩,则1914ab=-,故答案为:19 14 -.【点睛】本题考查了解一元一次不等式组、二元一次方程组,熟练掌握不等式组和方程组的解法是解题关键.15.不等式组351231148x xx x⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__.【分析】分别求出不等式组中两不等式的解集找出两解集的公共部分即可【详解】解:解不等式①得:解不等式②得:所以不等式组的解集是故答案为:【点睛】本题考查了解一元一次不等式组正确求出每一个不等式解集是基解析:87 52x-<【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:351231148x xx x⎧+>-⎪⎪⎨⎪--⎪⎩①②,解不等式①得:85 x>-,解不等式②得:72 x,所以不等式组的解集是87 52x-<,故答案为:87 52x-<.【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.16.若关于x 的不等式0x a -<的正整数解只有3个,则a 的取值范围是________________.3<a≤4【分析】先求出不等式的解集然后再根据只有3个正整数解确定出a 的取值范围即可【详解】解:∵∴x <a ∵关于的不等式的正整数解只有3个∴3<a≤4故答案为:3<a≤4【点睛】本题主要考查了解一元解析:3<a≤4 【分析】先求出不等式0x a -<的解集,然后再根据只有3个正整数解,确定出a 的取值范围即可. 【详解】 解:∵0x a -< ∴x <a∵关于x 的不等式0x a -<的正整数解只有3个, ∴3<a≤4. 故答案为:3<a≤4. 【点睛】本题主要考查了解一元一次不等式和一元一次不等式的整数解的相关知识点,根据不等式的解集得到关于m 的不等式组成为解答本题的关键. 17.若不等式0x b x a -<⎧⎨+>⎩的解集为23x <<,则a ,b 的值分别为_______________.【分析】由于不等式组有解则解不等式组得到-a <x <b 然后与2<x <3进行对比即可确定a 和b 的值【详解】解:∵不等式组的解集为2<x <3而解不等式组得-a <x <b ∴-a=2b=3即a=-2b=3故答案解析:2a =-、3b = 【分析】由于不等式组00x b x a -<⎧⎨+>⎩有解,则解不等式组得到-a <x <b ,然后与2<x <3进行对比即可确定a 和b 的值. 【详解】解:∵不等式组0x b x a -<⎧⎨+>⎩的解集为2<x <3,而解不等式组0x b x a -<⎧⎨+>⎩得-a <x <b ,∴-a=2,b=3,即a=-2,b=3.故答案为:2a =-、3b =. 【点睛】本题考查了不等式的解集,掌握不等式的性质是解题的关键.18.若关于x 、y 的二元一次方程组23242x y a x y a+=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________.【分析】直接把两个方程相加得到然后结合即可求出a 的取值范围【详解】解:直接把两个方程相加得:∴∵∴∴故答案为:【点睛】本题考查了解二元一次方程组以及解一元一次不等式解题的关键是掌握运算法则正确得到解析:4a. 【分析】直接把两个方程相加,得到337x y a +=+,然后结合1x y +<,即可求出a 的取值范围.【详解】解:23242x y a x y a+=-⎧⎨+=+⎩, 直接把两个方程相加,得:337x y a +=+, ∴73a x y ++=, ∵1x y +<, ∴713a +<, ∴4a .故答案为:4a.【点睛】 本题考查了解二元一次方程组,以及解一元一次不等式,解题的关键是掌握运算法则,正确得到73a x y ++=. 19.若干名学生住宿舍,每间住 4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____【分析】先根据每间住人人无处住可得学生人数再根据每间住人空一间还有一间不空也不满建立不等式组即可得【详解】设有间宿舍则学生有人由题意得:故答案为:【点睛】本题考查了列一元一次不等式组理解题意正确找出解析:()142626x x ≤+--<【分析】先根据“每间住 4人,2人无处住”可得学生人数,再根据“每间住 6人,空一间还有一间不空也不满”建立不等式组即可得.【详解】设有x 间宿舍,则学生有()42x +人,由题意得:()142626x x ≤+--<,故答案为:()142626x x ≤+--<.【点睛】本题考查了列一元一次不等式组,理解题意,正确找出不等关系是解题关键.20.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.【分析】表示出不等式组中两不等式的解集根据x 的范围确定出a 的值即可【详解】解不等式得解不等式得∵不等式组的解集为解得:故答案为:【点睛】本题考查了解一元一次不等式组能根据不等式的解集和已知得出关于的解析:5a =-【分析】表示出不等式组中两不等式的解集,根据x 的范围确定出a 的值即可.【详解】解不等式21x a ->得12a x +>, 解不等式122x x ->-得1x <,∵不等式组的解集为21x -<<,122a +=-, 解得:5a =-.故答案为:5a =-.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于a 的方程是解此题的关键.三、解答题21.解不等式组253(2)13212x x x x +≤+⎧⎪⎨+-≤⎪⎩, 并把不等式组的解集在数轴上表示出来,写出不等式组的非负整数解.解析:﹣1≤x ≤3,非负整数解为3,2,1,0.【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.【详解】解:()253213212x x x x ⎧+≤+⎪⎨+-≤⎪⎩,①.②, 由①得:x ≥﹣1,由②得:x ≤3,不等式组的解集为:﹣1≤x ≤3.在数轴上表示为:.∴不等式组的非负整数解,3,2,1,0.【点睛】此题主要考查了解一元一次不等式(组),解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.22.解不等式:()3157x x +≤+,并把它的解集在数轴上表示出来.解析:2x ≥-,在数轴上表示见解析【分析】利用不等式的性质解一元一次不等式的解集,然后将解集表示在数轴上即可.【详解】解:3(1)57x x +≤+,去括号,得: 3357x x +≤+,移项、合并同类项,得:24x -≤ ,化系数为1,得:2x ≥- ,∴不等式的解集为2x ≥-,不等式的解集在数轴上表示为:【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握一元一次不等式的解法步骤,会在数轴上表示不等式的解集是解答的关键,特别注意不等号的方向和端点的空(实)心.23.解下列方程(方程组)或不等式(组).(1)[]{}3213(21)35x x ---+=(2)2(53)3(12)x x x +≤--(3)解方程214163x x --=-(4)解方程组2538x y x y +=⎧⎨-=⎩(代入法解) (5)372(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩ (6)0.35340.532m n m n m n m n +-⎧-=⎪⎪⎨+-⎪+=⎪⎩ 解析:(1)23x =-;(2)3x ≤-;(3)34x =;(4)31x y =⎧⎨=⎩;(5)15x -≤<;(6)71012m n ⎧=⎪⎪⎨⎪=⎪⎩. 【分析】(1)先去括号,然后移项、合并同类项,系数化为1,即可得到答案;(2)先去括号,然后移项、合并同类项,系数化为1,即可得到答案;(3)先去分母,去括号,然后移项、合并同类项,系数化为1,即可得到答案; (4)由代入消元法解方程组,即可得到答案;(5)先求出每个不等式的解集,即可得到不等式组的解集;(6)先把方程组去分母,然后进行整理,再利用加减消元法解方程组,即可得到答案.【详解】解:(1)[]{}3213(21)35x x ---+=,∴[]{}3216335x x ---+=,∴{}32165x x --=,∴{}3145x --=,∴3125x --=, ∴23x =-; (2)2(53)3(12)x x x +≤--, ∴10636x x x +≤-+,∴10736x x -≤--,∴39x ≤-,∴3x ≤-;(3)214163x x --=-,∴212(4)6x x -=--,∴21826x x -=--,∴43x =, ∴34x =; (4)2538x y x y +=⎧⎨-=⎩①②, 由①得:52x y =-③,把③代入②得:3(52)8y y --=,解得:1y =,把1y =代入①,得3x =,∴方程组的解为31x y =⎧⎨=⎩; (5)372(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩①② 解不等式①,得5x <;解不等式②,得1x ≥-;∴不等式组的解集为:15x -≤<;(6)0.35340.532m n m n m n m n +-⎧-=⎪⎪⎨+-⎪+=⎪⎩, 方程组整理得:5352153m n m n +=⎧⎨-=⎩①②, 由①-②,得:3618n =, ∴12n =, 把12n =代入②,得710m =, ∴方程组的解为:71012m n ⎧=⎪⎪⎨⎪=⎪⎩; 【点睛】本题考查了解一元一次方程,解二元一次方程组,解不等式,解不等式组,解题的关键是熟练掌握运算法则,正确的进行解题.24.某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如表所示:(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少购进B种台灯多少盏?解析:(1)购进A种新型节能台灯30盏,购进B种新型节能台灯20盏;(2)至少购进B种台灯27盏【分析】(1)设购进A种新型节能台灯x盏,购进B种新型节能台灯y盏,根据总价=单价×数量结合该商城用2500元购进A、B两种新型节能台灯共50盏,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进B种新型节能台灯m盏,则购进A种新型节能台灯(50﹣m)盏,根据总利润=单盏利润×数量结合总利润不少于1400元,即可得出关于m的一元一次不等式,解之取其中的最小整数值即可得出结论.【详解】解:(1)设购进A种新型节能台灯x盏,购进B种新型节能台灯y盏,依题意,得:50 40652500x yx y+=⎧⎨+=⎩,解得:3020xy=⎧⎨=⎩.答:购进A种新型节能台灯30盏,购进B种新型节能台灯20盏.(2)设购进B种新型节能台灯m盏,则购进A种新型节能台灯(50﹣m)盏,依题意,得:(60﹣40)(50﹣m)+(100﹣65)m≥1400,解得:m≥803.∵m为正整数,∴m的最小值为27.答:至少购进B种台灯27盏.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.25.解下列一元一次不等式组:211132x x x x >-⎧⎪-⎨-<⎪⎩并把解集表示在数轴上. 解析:x>-1,数轴表示见解析.【分析】根据不等式的性质分别求出两个不等式的解集即可求出不等式组的解集,表示在数轴上即可.【详解】解:211132x x x x >-⎧⎪-⎨-<⎪⎩ 解21x x >-得:x>-1,解1132x x --<得: x>-3, ∴原不等式组的解集为x>-1,表示在数轴上如图:【点睛】此题考查一元一次不等式组的解及数轴表示,难度一般.26.某公交公司有A ,B 型两种客车,它们的载客量和租金如下表:A B 载客量(人/辆)45 30 租金(元/辆) 400 280,B 型客车共5辆,同时送2016~2017学年度八年级师生到基地校参加社会实践活动,设租用A 型客车x 辆,根据要求回答下列问题: (1)用含x 的式子填写下表:车辆数(辆) 载客量 租金(元) Ax 45x 400x B 5x -_______ _______(3)在(2)的条件下,若2016~2017学年度八年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.解析:(1)见解析;(2)4;(3)见解析【分析】(1)根据题意,载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,列出代数表达式即可;(2)根据题意,表示出租车总费用,列出不等式即可解决;(3)由(2)得出x的取值范围,一一列举计算,排除不合题意方案即可.【详解】解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,∴B型客车载客量=30(5-x);B型客车租金=280(5-x);填表如下:(2)根据题意,400x+280(5-x)≤1900,解得:x≤46,∴x的最大值为4;(3)由(2)可知,x≤416,故x可能取值为0、1、2、3、4,①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,但载客量为45×0+30×5=150<195,故不合题意舍去;②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,但载客量为45×1+30×4=165<195,故不合题意舍去;③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,但载客量为45×2+30×3=180<195,故不合题意舍去;④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,但载客量为45×3+30×2=195=195,符合题意;⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,但载客量为45×4+30×1=210,符合题意;故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.【点睛】此题主要考查了一次不等式的综合应用,由题意得出租用x辆甲种客车与总租金关系是解决问题的关键.27.学校需要购买一些篮球和足球,已知篮球的单价比足球的单价贵30元,买2个篮球和3个足球一共需要510元.(1)求篮球和足球的单价;(2)根据学生体育活动的需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的23,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?解析:(1)篮球和足球的单价分别是120元,90元;(2)共有11种购买方案【分析】(1)设一个篮球x 元,则一个足球(x−30)元,根据“买两个篮球和三个足球一共需要510元”列出方程,即可解答;(2)设购买篮球x 个,足球(100−x )个,根据“篮球购买的数量不少于足球数量的23,学校可用于购买这批篮球和足球的资金最多为10500元”,列出不等式组,求出x 的取值范围,由x 为正整数,即可解答.【详解】解:(1)设一个篮球x 元,则一个足球(x−30)元,由题意得:2x +3(x−30)=510,解得:x =120,x−30=90,答:篮球和足球的单价分别是120元,90元.(2)设购买篮球x 个,则购买足球(100−x )个, 根据题意,得:()()210031************x x x x ⎧≥-⎪⎨⎪+-≤⎩,解得:40≤x≤50.因为x 为正整数,x 可取:40,41,42,43,44,45,46,47,48,49,50,所以共有11种购买方案.【点睛】本题考查了一元一次不等式组的应用以及一元一次方程的应用,解题的关键是:(1)根据数量关系找出关于x 的一元一次方程;(2)根据数量关系找出关于m 的一元一次不等式组.本题属于中档题,难度不大,解决该题型题目时,根据数量关系找出方程(或不等式组)是关键.28.某企业在疫情复工准备工作中,为了贯彻落实“生命重于泰山,疫情就是命令,防控就是责任”的思想.计划购买300瓶消毒液,已知甲种消毒液每瓶30元,乙种消毒液每瓶18元.(1)若该企业购买两种消毒液共花费7500元,则购买甲、乙两种消毒液各多少瓶? (2)若计划购买两种消毒液的总费用不超过9600元,则最多购买甲种消毒液多少瓶? 解析:(1)175,125;(2)350【分析】(1)设购买甲种消毒液x 瓶,购买乙种消毒液y 瓶,根据题意列出方程组求解; (2)设购买甲种消毒液a 瓶,根据总费用不超过9600元,列不等式求解.【详解】解:(1)设购买甲种消毒液x 瓶,购买乙种消毒液y 瓶,依题意得:30030187500x y x y +=⎧⎨+=⎩,解得175125x y =⎧⎨=⎩, 答:购买甲种消毒液175瓶,购买乙种消毒液125瓶;(2)设购买甲种消毒液a瓶,依题意得:30a+18(300-a)≤9600 ,解得a≤350 ,答:最多购买甲种消毒液350瓶.【点睛】本题考查二元一次方程组和不等式的应用,解题的关键是根据题意列出方程组和不等式进行求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式与不等式组单元测试卷(B 卷)
说明:请将答案或解答过程直接写在各题的空白处.本卷满分100分.考试时间90分钟
一、选择题:(每小题3分,共36分)
1.(3分)若a <b ,则下列不等式中一定成立的是( )
A .a ﹣3>b ﹣3
B .a ﹣3<b ﹣3
C .3﹣a <3﹣b
D .3ac <3bc 2.(3分)下面给出的不等式组中①




,其中是
一元一次不等式组的个数是( )
A .2个
B .3个
C .4个
D .5个
3.(3分)不等式组
整数解的个数是( )
A .1个
B .2个
C .3个
D .4个
4.(3分)不等式组
的解集在数轴上可表示为( )
A .
B .
C .
D .
5.(3分)若方程组
有2个整数解,则a 的取值范围为( ) A .﹣1<a <0 B .﹣1≤a <0
C .﹣1<a ≤0
D .﹣1≤a ≤0
6.(3分)不等式组
的解集是( )
A .x >3
B .x <6
C .3<x <6
D .x >6
7.(3分)不等式6x+5>3x+8的解集为( )
A .x >2
B .x >1
C .x <1
D .x <2
8.(3分)代数式5x ﹣4的值小于0,则可列不等式( )
A .5x ﹣4<0
B .5x ﹣4>0
C .5x ﹣4≤0
D .5x ﹣4≥0
9.(3分)现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x ,则可以列得不等式组为( )
A .
B .
C .
D .
10.(3分)如果关于x 的方程
的解不是负值,那么a 与b 的关系是( )
A .a > b
B .b ≥ a
C .5a ≥3b
D .5a=3b
11.(3分)不等式组
的所有整数解的和是( )
A .2
B .3
C .5
D .6
12.(3分)如果关于x 的不等式组
的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的
有序数对(a ,b )共有( )
A .4对
B .6对
C .8对
D .9对
二、填空题(每小题3分,共18分)
13.(3分)不等式4x ﹣3<2x +1的解集为 . 14.(3分)不等式组
的整数解为 .
15.(3分)如图,已知函数y=2x +b 与函数y=kx ﹣3的图象交于点P ,则不等式kx ﹣3>2x +b 的解集是 .
16.(3分)小亮准备用36元钱买笔和练习本,已知每支笔3.5元,每本练习本1.8元.他买了8本练习本,最
多还可以买 支笔.
17.(3分)已知:关于x 的不等式(2a ﹣b )x +a ﹣5b >0的解集是x <,则ax +b >0的解集是 .
18.(3分)用不等式表示“a 与5的差不是正数”: .
学校 姓名 年级
密 封 线 内 不 要 答 题 密 封
线
三、解答题(本部分共7题,合计46分)
19.(3分)解不等式,并把解集表示在数轴上.
20.(3分)解不等式组:.
21.(7分)x 取哪些正整数时,代数式的值不小于代数式﹣3的值.
22.(8分)已知关于x、y 的方程组的解满足x>0,y>0,求实数a的取值范围.
23.(8分)郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.
(1)每个书包和每本词典的价格各是多少元?
(2)郑老师计划用1000元为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?24.(8分)据统计某外贸公司2007年、2008年的进出口贸易总额分别为3300万元和3760万元,其中2008年的进口和出口贸易额分别比2007年增长20%和10%.
(1)试确定2007年该公司的进口和出口贸易额分别是多少万元;
(2)2009年该公司的目标是:进出口贸易总额不低于4200万元,其中出口贸易额所占比重不低于60%,预计2009年的进口贸易额比2008年增长10%,则为完成上述目标,2009年的出口贸易额比2008年至少应增加多少万元?
25.(9分)在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.
(1)求运往两地的数量各是多少立方米?
(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?
(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:
A地B地C地
运往D地(元/立方米)22 20 20
运往E地(元/立方米)20 22 21
在(2)的条件下,请说明哪种方案的总费用最少?


线
答案
一、选择题(本大题共12题,每小题3分,共36分)
1-5.BBCAB 6-10. CBADC
11.D 【解析】∵解不等式①得;x >﹣,解不等式②得;x≤3,
∴不等式组的解集为﹣<x≤3,∴不等式组的整数解为0,1,2,3,0+1+2+3=6,
故选D.
12.D 【解析】,∵解不等式①得:x >,解不等式②得:x ≤,
∴不等式组的解集为<x ≤,∵x 的不等式组的整数解仅有7,8,9,
∴6≤<7,9≤<10,解得:15≤a<17.5,21≤b<23,
∴a=15或16或17,b=21或22或23,
即(15,21),(15,22),(15,23)(16,21),(16,22)(16,23),(17,21),(17,22),(17,23)共9对,故选D.
二、填空题(本大题共6小题,每小题3分,共18分)
13.x<214.0,1.15.x<4.16. 6.
17.x <﹣18. a﹣5≤0
三、解答题(本大题共7小题,共46分)
19.【解析】去分母得:3(3x﹣2)≥5(2x+1)﹣15,
去括号得:9x﹣6≥10x+5﹣15,移项,合并同类项得:﹣x≥﹣4,
则x≤4.
20.【解析】∵解不等式①得:x≥﹣1,解不等式②得:x<5,
∴不等式组的解集为﹣1≤x<5.21.解得:x ≤.∵x是正整数,∴x=1、2、3.
22.【解析】,①×3得,15x+6y=33a+54③,②×2得,4x﹣6y=24a﹣16④,
③+④得,19x=57a+38,解得x=3a+2,把x=3a+2代入①得,5(3a+2)+2y=11a+18,
解得y=﹣2a+4,所以,方程组的解是,
∵x>0,y>0,∴,由①得,a >﹣,由②得,a<2,所以,a 的取值范围是﹣<a<2.
23.【解析】(1)设每个书包的价格为x元,则每本词典的价格为(x﹣8)元.
根据题意,得:3x+2(x﹣8)=124,解得:x=28.∴x﹣8=20.
答:每个书包的价格为28元,每本词典的价格为20元.
(2)设购买书包y个,则购买词典(40﹣y )本.根据题意得:,
解得:10≤y≤12.5.因为y取整数,所以y的值为10或11或12,
所以有三种购买方案,分别是:
①购买书包10个,词典30本;
②购买书包11个,词典29本;
③购买书包12个,词典28本.
答:共有3种购买书包和词典的方案,分别是购买书包10个,词典30本,购买书包11个,词典29本,购买书包12个,词典28本.
24.【解析】设2007年进口贸易额为x万元,出口贸易额为y万元,
则:,解得:.
答:2007年进口贸易额为1300万元,出口贸易额为2000万元.
(2)设2009年的出口贸易额比2008年增加Z万元,
由2008年的进口贸易额是:1300(1+20%)=1560万元,
2008年的出口贸易额是:2000(1+10%)=2200万元,
则:,解得:,
所以z≥374,即2009年的出口贸易额比2008年至少增加374万元.(10分)
25.【解析】(1)设运往E地x立方米,由题意得,x+2x﹣10=140,
解得:x=50,∴2x﹣10=90.
答:共运往D地90立方米,运往E地50立方米;
(2)由题意可得,,解得:20<a≤22,
∵a是整数,∴a=21或22,∴有如下两种方案:
第一种:A地运往D地21立方米,运往E地29立方米;
C地运往D地39立方米,运往E地11立方米;
第二种:A地运往D地22立方米,运往E地28立方米;
C地运往D地38立方米,运往E地12立方米;
(3)第一种方案共需费用:
22×21+20×29+39×20+11×21=2053(元),
第二种方案共需费用:
22×22+28×20+38×20+12×21=2056(元),
所以,第一种方案的总费用最少.。

相关文档
最新文档