六年级奥数行程问题

合集下载

小学奥数行程问题应用题100题及答案

小学奥数行程问题应用题100题及答案

小学奥数行程问题应用题100题及答案(1) 亮亮从家到学校需要走960米,他平时早晨7:00出发去上学,每分钟走40米,可以准时到校,亮亮今天起床晚了,他7:08才出发,为了准时到校,他每分钟需要走多少米?(2) 丹丹从家去学校,每分钟走60米,走了10分钟到达学校,问丹丹家到学校的距离有多远?(3) 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了19,结果提前一个半小时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高16,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米? (4) 有一个圆形人工湖的周长是450米,小胖在雷雷前面50米处,两人同时沿顺时针方向跑。

已知小胖速度为200米/分,雷雷速度为150米/分,问:几分钟后小胖追上雷雷?(5) 甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东西两村相距多少千米?(6) 田田和牛牛两人分别从甲、乙两地同时出发,如果两个人同向而行,田田26分钟可以赶上牛牛;如果两个人相向而行的话,6分钟就可以相遇。

已知牛牛每分钟走50米,求甲、乙两地之间的路程。

(7)上学路上当当发现田田在他前面,于是就开始追田田。

当当每分钟走70米,田田每分钟走45米,当当一共经过了30分钟才追上田田,请问:两人开始相距多远?(8)飞飞和薇薇在操场上比赛跑步,飞飞每分钟跑60米,薇薇每分钟跑40米,一圈跑道长400米,他们同时从起跑点背向出发,那么第一次相遇需要多少分钟?第二次相遇需要多少分钟?第三次相遇需要多少分钟?有什么规律呢?(9)小明在420米长的环形跑道上跑了一圈,前一半时间的速度为8米/秒,后一半时间的速度为6米/秒。

问:他后一半路程用了多少时间?(10)六年级同学从学校出发到公园春游,每分钟走72米。

15分钟以后,学校有急事要通知学生,派乐乐骑自行车从学校出发用9分钟追上同学们,乐乐每分钟要行多少米才可以准时追上同学们?(11)甲、乙两人在周长为400米的环形跑道上同时同地同向而行,甲每分钟走60米,乙每分钟走40米,甲每追上乙一次,两人就会击一次掌,当两人击了第3次掌时,甲掉头往回走,每相遇一次仍击一次掌,两人又击了5次掌,此时甲走了多少米?乙走了多少米?(12)有一个周长为100米的圆形花圃,小张和小王同时从边上同一点出发,沿着同一方向跑步,已知小张的速度是5米/秒,小王的速度是3米/秒,小张跑多少圈后才能第一次追上小王?(13)小王和小李两人分别从甲、乙两地同时出发同向而行,小李在前,小王在后面。

(word完整版)六年级奥数--行程问题

(word完整版)六年级奥数--行程问题

六年级奥数——行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

二、精讲精练【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。

甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。

甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。

这句话的实质就是:“乙48分钟行了24千米”。

可以先求乙的速度,然后根据路程求时间。

也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。

解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。

练习1:1、甲、乙两地之间的距离是420千米。

两辆汽车同时从甲地开往乙地。

第一辆每小时行42千米,第二辆汽车每小时行28千米。

第一辆汽车到乙地立即返回。

两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。

两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。

六年级奥数(行程问题)

六年级奥数(行程问题)

学习改变命运,思考成就(chéngjiù)未来!姓名(xìngmíng) _______________行程问题是我们在小学应用题中经常会遇到的,其中还包括水流问题以及一些特殊的行程问题我们在解决(jiějué)行程问题前,要牢记以下公式行程问题是研究(yánjiū)物体运动的,它研究的是物体速度、时间、行程三者之间的关系。

基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间路程一定,时间(shíjiān)和速度成反比速度一定,路程和时间成正比时间一定,路程和速度成正比关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和追及问题:追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷21、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米 ?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对(xiāngduì)开出,相向而行。

六年级下小升初典型奥数之行程问题

六年级下小升初典型奥数之行程问题

六年级下小升初典型奥数之行程问题在小学六年级的数学学习中,行程问题一直是一个重点和难点,也是小升初奥数考试中经常出现的题型。

今天,咱们就来好好探讨一下这类问题。

行程问题主要涉及速度、时间和路程这三个量之间的关系。

基本的公式就是:路程=速度×时间。

而常见的行程问题类型有相遇问题、追及问题、流水行船问题等等。

咱们先来说说相遇问题。

比如说,甲从 A 地出发,速度是每小时 5千米;乙从 B 地出发,速度是每小时 3 千米。

A、B 两地相距 16 千米,两人相向而行,问经过多长时间两人相遇。

解决这个问题,我们可以先算出两人的速度和,也就是 5 + 3 = 8千米/小时。

然后用总路程除以速度和,就能得到相遇时间:16÷8 = 2小时。

再来看一个稍微复杂点的相遇问题。

甲、乙两人分别从 A、B 两地同时出发,相向而行。

甲每小时走 4 千米,乙每小时走 6 千米,经过 3 小时两人相遇。

A、B 两地相距多远?这时候我们就可以先算出甲 3 小时走的路程是 4×3 = 12 千米,乙 3 小时走的路程是 6×3 = 18 千米。

然后把两人走的路程相加,12 + 18= 30 千米,就是 A、B 两地的距离。

接下来是追及问题。

比如甲在乙前面 10 千米处,甲的速度是每小时 3 千米,乙的速度是每小时 5 千米,问乙多长时间能追上甲。

因为乙的速度比甲快,所以每小时乙能比甲多走 5 3 = 2 千米。

而两人一开始的距离差是 10 千米,所以追上甲需要的时间就是 10÷2 = 5 小时。

再看一个例子,甲、乙两人同时同向出发,甲在前,乙在后。

甲每小时走 2 千米,乙每小时走 5 千米。

出发 4 小时后,乙追上甲。

一开始两人相距多远?我们先算出乙 4 小时走的路程是 5×4 = 20 千米,甲 4 小时走的路程是 2×4 = 8 千米。

因为乙追上了甲,所以一开始两人的距离差就是乙比甲多走的路程,即 20 8 = 12 千米。

六年级奥数行程问题解题技巧

六年级奥数行程问题解题技巧

六年级奥数行程问题解题技巧一、行程问题解题技巧之相遇问题。

1. 题目。

甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时15千米,乙的速度是每小时10千米,经过3小时两人相遇。

求A、B两地的距离。

解析。

根据相遇问题的公式:路程 = 速度和×相遇时间。

甲、乙的速度和为15 + 10=25(千米/小时),相遇时间是3小时,所以A、B两地的距离为25×3 = 75千米。

2. 题目。

A、B两地相距200千米,甲、乙两车分别从A、B两地同时相向开出,甲车的速度为每小时30千米,乙车的速度为每小时20千米。

问几小时后两车相遇?解析。

速度和为30+20 = 50千米/小时,根据相遇时间 = 路程÷速度和,可得相遇时间为200÷50=4小时。

3. 题目。

甲、乙两人在周长为400米的环形跑道上跑步,甲的速度是每秒6米,乙的速度是每秒4米。

两人同时同地反向出发,经过多少秒两人第一次相遇?解析。

在环形跑道上反向出发,相遇时两人跑的路程和就是跑道的周长。

速度和为6 + 4=10米/秒,根据时间 = 路程÷速度和,可得相遇时间为400÷10 = 40秒。

二、行程问题解题技巧之追及问题。

4. 题目。

甲、乙两人同向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,乙先走2小时后,甲才出发,问甲几小时后能追上乙?解析。

乙先走2小时,则先走的路程为6×2 = 12千米。

甲、乙的速度差为8 6 = 2千米/小时。

根据追及时间 = 路程差÷速度差,可得追及时间为12÷2 = 6小时。

5. 题目。

一辆汽车以每小时60千米的速度从A地开往B地,3小时后一辆摩托车以每小时90千米的速度也从A地开往B地,问摩托车出发后几小时能追上汽车?解析。

汽车先出发3小时,行驶的路程为60×3 = 180千米。

摩托车与汽车的速度差为90 60 = 30千米/小时。

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

六年级奥数题行程问题18题

六年级奥数题行程问题18题

六年级奥数题行程问题18题1.甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?2.静水中,甲船速度是每小时22千米,乙船速度是每小时18千米,乙船先从某港开出顺水航行,2小时后甲船同方向开出,若水流速度为每小时4千米,求甲船几小时可以追上乙船?3.一条轮船在两码头间航行,顺水航行需4小时,逆水航行需5小时,水速是2千米,求这轮船在静水中的速度.4.甲、乙两港相距360千米,一轮船往返两港需要35小时,逆流航行比顺流航行多花5小时,另一机帆船每小时行12千米,这只机帆船往返两港需要多少小时?5.一只船在河中航行,水速为每小时2千米,它在静水中航行每小时行8千米,顺水航行50千米需用_______小时.6.某船在静水中的速度是每小时13.5千米,水流速度是每小时3.5千米,逆水而行的速度是每小时_______千米.7.某船的航行速度是每小时10千米,水流速度是每小时_____千米,逆水上行5小时行40千米.8.一只每小时航行13千米的客船在一条河中航行,这条河的水速为每小时7千米,那么这只船行140千米需______小时(顺水而行).9.一艘轮船在静水中的速度是每小时15公里,它逆水航行11小时走了88公里,这艘船返回需______小时.10.一只小船第一次顺流航行56公里,逆水航行20公里,共用12小时;第二次用同样的时间,顺流航行40公里,逆流航行28公里,船速______,水速_______.11.甲、乙两个港口相距77千米,船速为每小时9千米,水流速度为每小时2千米,那么由甲港到乙港顺水航行需_______小时.12.甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,又知汽船在静水中每小时行21千米,那么汽船顺流开回乙码头需要_______小时.13.甲、乙两港相距192千米,一艘轮船从甲港到乙港顺水而下行16小时到达乙港,已知船在静水中的速度是水流速度的.5倍,那么水速______,船速是______.14.一只船在河里航行,顺流而下,每小时行18千米,船下行2小时与上行3小时的路程相等,那么船速______,水速_______.15.甲、乙两地相距48千米,一船顺流由甲地去乙地,需航行3小时;返回时间因雨后涨水,所以用了8小时才回到乙地,平时水速为4千米,涨水后水速增加多少?16.静水中甲、乙两船的速度为22千米、18千米,两船先后自港口顺水开出,乙比甲早出发2小时,若水速是每小时4千米,问甲开出后几小时可追上乙?17.一支运货船队第一次顺水航行42千米,逆水航行8千米,共用了11小时;第二次用同样的时间,顺水航行了24千米,逆水航行了14千米,求这支船队在静水中的速度和水流速度?18.已知80千米水路,甲船顺流而下需要4小时,逆流而上需要10小时,如果乙船顺流而下需5小时,问乙船逆流而上需要几小时?。

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

六年级行程问题奥数

六年级行程问题奥数

第七讲行程问题一知识点拨:发车问题1、一般间隔发车问题;用3个公式迅速作答;汽车间距=汽车速度+行人速度×相遇事件时间间隔汽车间距=汽车速度-行人速度×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔2、求到达目的地后相遇和追及的公共汽车的辆数;标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数;(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行. 接送问题根据校车速度来回不同、班级速度不同班不同速、班数是否变化分类为四种常见题型:1车速不变-班速不变-班数2个最常见2车速不变-班速不变-班数多个3车速不变-班速变-班数2个4车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间;时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针;时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”;流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船甲在上游、乙在下游在江河里相向开出:甲船顺水速度+乙船逆水速度=甲船速+水速+乙船速-水速=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关.甲船顺水速度-乙船顺水速度=甲船速+水速-乙船速+水速=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=甲船速-水速-乙船速-水速=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.例题精讲:模块一发车问题【例 1】某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了【解析】这个题可以简单的找规律求解【解析】时间车辆【解析】4分钟9辆【解析】6分钟10辆【解析】8分钟9辆【解析】12分钟9辆16分钟8辆18分钟9辆20分钟8辆24分钟8辆由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了129=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟; 【例 2】某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少电车之间的时间间隔是多少【解析】设电车的速度为每分钟x米.人的速度为每小时4.5千米,相当于每分钟75米.根据题意可列方程如下:()()757.27512x x +⨯=-⨯,解得300x =,即电车的速度为每分钟300米,相当于每小时18千米.相同方向的两辆电车之间的距离为:()30075122700-⨯=米,所以电车之间的时间间隔为:27003009÷=分钟.【巩固】 某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆【解析】 这类问题一般要求两个基本量:相邻两电车间距离、电车的速度;是人与电车的相遇与追及问题,他们的路程和差即为相邻两车间距离,设两车之间相距S ,根据公式得()10min S V V =+⨯人车,50712.55x x -+=,那么6(6)3(3)x t y x t y --=+-,解得2(3)3x t y =-,所以发车间隔T =2.5 2.53(3)x y x t y +=+-【巩固】 某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来.假设两个起点站的发车间隔是相同的,求这个发车间隔.【解析】 设电车的速度为a ,行人的速度为b ,因为每辆电车之间的距离为定值,设为l .由电车能在12分钟追上行人l 的距离知,(21)x t y =-; 由电车能在4分钟能与行人共同走过l 的距离知,112 ,所以有l =12a -b =4a +b ,有a =2b ,即电车的速度是行人步行速度的2倍;那么l =4a +b =6a ,则发车间隔上:1650(1)541211÷-=.即发车间隔为6分钟. 【例 3】 一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车【解析】 要求汽车的发车时间间隔,只要求出汽车的速度和相邻两汽车之间的距离就可以了,但题目没有直接告诉我们这两个条件,如何求出这两个量呢由题可知:相邻两汽车之间的距离以下简称间隔距离是不变的,当一辆公共汽车超过步行人时,紧接着下一辆公共汽车与步行人之间的距离就是间隔距离,每隔6分钟就有一辆汽车超过步行人,这就是说:当一辆汽车超过步行人时,下一辆汽车要用6分钟才能追上步行人,汽车与行人的路程差就是相邻两汽车的间隔距离;对于骑车人可作同样的分析.因此,如果我们把汽车的速度记作V汽,骑车人的速度为V自,步行人的速度为V人单位都是米/分钟,则:间隔距离=V汽-V人×6米,间隔距离=V汽-V自×10米,V自=3V人;综合上面的三个式子,可得:V汽=6V 人,即V人=1/6V汽,则:间隔距离=V汽-1/6V汽×6=5V汽米所以,汽车的发车时间间隔就等于:间隔距离÷V汽=5V汽米÷V汽米/分钟=5分钟;【巩固】从电车总站每隔一定时间开出一辆电车;甲与乙两人在一条街上沿着同一方向步行;甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车;那么电车总站每隔多少分钟开出一辆电车【解析】这类问题一般要求两个基本量:相邻两电车间距离、电车的速度;甲与电车属于相遇问题,他们的路程和即为相邻两车间距离,根据公式得65411,类似可得65(1210)6054651111-⨯-=,那么56511,即112,解得54米/分,因此发车间隔为9020÷820=11分钟;【例 4】甲城的车站总是以20分钟的时间间隔向乙城发车,甲乙两城之间既有平路又有上坡和下坡,车辆包括自行车上坡和下坡的速度分别是平路上的80%和120%,有一名学生从乙城骑车去甲城,已知该学生平路上的骑车速度是汽车在平路上速度的四分之一,那么这位学生骑车的学生在平路、上坡、下坡时每隔多少分钟遇到一辆汽车【解析】先看平路上的情况,汽车每分钟行驶汽车平路上汽车间隔的1/20,那么每分钟自行车在平路上行驶汽车平路上间隔的1/80,所以在平路上自行车与汽车每分钟合走汽车平路上间隔的1/20+1/80=1/16,所以该学生每隔16分钟遇到一辆汽车,对于上坡、下坡的情况同样用这种方法考虑,三种情况中该学生都是每隔16分钟遇到一辆汽车.【例 5】甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车.已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了分钟.【解析】由题意可知,两辆电车之间的距离10电车行8分钟的路程每辆电车都隔4分钟遇到迎面开来的一辆电车10电车行5分钟的路程1小张行5分钟的路程24电车行6分钟的路程72小王行6分钟的路程由此可得,小张速度是电车速度的10,小王速度是电车速度的12,小张与小王的速度和是电车速度的10,所以他们合走完全程所用的时间为电车行驶全程所用时间的12,即53分钟,所以小张与小王在途中相遇时他们已行走了60分钟.【例 6】小峰骑自行车去小宝家聚会,一路上小峰注意到,每隔9分钟就有一辆公交车从后方超越小峰,小峰骑车到半路,车坏了,小峰只好打的去小宝家,这时小峰又发现出租车也是每隔9分钟超越一辆公交车,已知出租车的速度是小峰骑车速度的5倍,那么如果公交车的发车时间间隔和行驶速度固定的话,公交车的发车时间间隔为多少分钟【解析】间隔距离=公交速度-骑车速度×9分钟;间隔距离=出租车速度-公交速度×9分钟所以,公交速度-骑车速度=出租车速度-公交速度;公交速度=骑车速度+出租车速度/2=3×骑车速度.由此可知,间隔距离=公交速度-骑车速度×9分钟=2×骑车速度×9分钟=3×骑车速度×6分钟=公交速度×6分钟. 所以公交车站每隔6分钟发一辆公交车.【例 7】某人乘坐观光游船沿顺流方向从A港到B港;发现每隔40分钟就有一艘货船从后面追上游船,每隔20分钟就会有一艘货船迎面开过,已知A、B两港间货船的发船间隔时间相同,且船在净水中的速度相同,均是水速的7倍,那么货船发出的时间间隔是__________分钟; 【解析】由于间隔时间相同,设顺水两货船之间的距离为“1”,逆水两货船之间的距离为7-1÷7+1=3/4;所以,货船顺水速度-游船顺水速度=1/40,即货船静水速度-游船静水速度=1/4,货船逆水速度+游船顺水速度=3/4×1/20=3/80,即货船静水速度+游船静水速度=3/80,可以求得货船静水速度是1/40+3/80÷2=1/32,货船顺水速度是1/32×1+1/7=1/28,所以货船的发出间隔时间是1÷1/28=28分钟;模块二火车过桥【例 8】小李在铁路旁边沿铁路方向的公路上散步,他散步的速度是 1.5 米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用了20秒.已知火车全长 390米,求火车的速度.答案18米/秒【例 9】小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗【解析】火车的时速是:100÷20-15×60×60=72000米/小时,车身长是:20×15=300米【例 10】列车通过 250 米的隧道用 25秒,通过 210 米长的隧道用 23秒.又知列车的前方有一辆与它同向行驶的货车,货车车身长320米,速度为每秒17米.列车与货车从相遇到相离需要多少秒【解析】列车的速度是250-210÷25-23 =20米/秒,列车的车身长:20×25-250 =250米.列车与货车从相遇到相离的路程差为两车车长,根据路程差速度差追击时间,可得列车与货车从相遇到相离所用时间为:250+320÷20-17= 190秒.【例 11】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟【解析】根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20米/秒,某列车的速度为:25O-210÷25-23=40÷2=20米/秒某列车的车长为:20×25-250=500-250=250米,两列车的错车时间为:250+150÷20+20=400÷40=10秒;【例 12】李云靠窗坐在一列时速 60千米的火车里,看到一辆有 30节车厢的货车迎面驶来,当货车车头经过窗口时,他开始计时,直到最后一节车厢驶过窗口时,所计的时间是18秒.已知货车车厢长15.8米,车厢间距1.2 米,货车车头长10米.问货车行驶的速度是多少【解析】本题中从货车车头经过窗口开始计算到货车最后一节车厢驶过窗口,相当于一个相遇问题,总路程为货车的车长.货车总长为:×30+×30+10÷1000 = 千米,【解析】火车行进的距离为:60×18/3600= 千米,【解析】货车行进的距离为:-=千米,【解析】货车的速度为:÷18/3600=44千米/时.【例 13】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少【解析】行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒;火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差;如果设火车的速度为x米/秒,那么火车的车身长度可表示为x-1×22或x-3×26,由此不难列出方程;法一:设这列火车的速度是x米/秒,依题意列方程,得x-1×22=x-3×26;解得x=14;所以火车的车身长为:14-1×22=286米;法二:直接设火车的车长是x, 那么等量关系就在于火车的速度上;可得:x/26+3=x/22+1这样直接也可以x=286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决;两次的追及时间比是:22:26=11:13,所以可得:V车-1:V 车-3=13:11,可得V车=14米/秒,所以火车的车长是14-1×22=286米【例 14】一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行;14时10分时火车追上这位工人,15秒后离开;14时16分迎面遇到一个向南走的学生,12秒后离开这个学生;问:工人与学生将在何时相遇【解析】工人速度是每小时15/3600=3.6千米学生速度是每小时0.11/12/3600-30=3千米14时16分到两人相遇需要时间6/60/+3=小时=24分钟14时16分+24分=14时40分【例 15】同方向行驶的火车,快车每秒行30米,慢车每秒行22米;如果从辆车头对齐开始算,则行24秒后快车超过慢车,如果从辆车尾对齐开始算,则行28秒后快车超过慢车;快车长多少米,满车长多少米【解析】快车每秒行30米,慢车每秒行22米;如果从辆车头对齐开始算,则行24秒后快车超过慢车,每秒快8米,24秒快出来的就是快车的车长192m,如果从辆车尾对齐开始算,则行28秒后快车超过慢车那么看来这个慢车比快车车长,长多少呢长得就是快车这4秒内比慢车多跑的路程啊4×8=32,所以慢车224.【例 16】两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长.【解析】首先应统一单位:甲车的速度是每秒钟36000÷3600=10米,乙车的速度是每秒钟54000÷3600=15米.此题中甲车上的乘客实际上是以甲车的速度在和乙车相遇;更具体的说是和乙车的车尾相遇;路程和就是乙车的车长;这样理解后其实就是一个简单的相遇问题;10+15×14=350米,所以乙车的车长为350米.【例 17】 在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米【解析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=米; 列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=米. 考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟720秒,从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=米,那么铁桥的长度为1060280780-=米,货车的长度为1260780480-=米.【例 18】 一条单线铁路上有A ,B ,C ,D ,E 5个车站,它们之间的路程如图所示单位:千米.两列火车同时从A ,E 两站相对开出,从A 站开出的每小时行60千米,从E 站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟两列火车同时从A ,E 两站相对开出,假设途中都不停.可求出两车相遇的地点,从而知道应在哪一个车站停车等待时间最短. 从图中可知,AE 的距离是:225+25+15+230=495千米 B E C A D 225千米 25千米15千米 230千米两车相遇所用的时间是:495÷60+50=小时相遇处距A站的距离是:60×=270千米而A,D两站的距离为:225+25+15=265千米由于270千米>265千米,从A站开出的火车应安排在D站相遇,才能使停车等待的时间最短.因为相遇处离D站距离为270-265=5千米,那么,先到达D站的火车至少需要等待:2:1小时,x小时=11分钟模块三流水行船【例 19】乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时【解析】乙船顺水速度:120÷2=60千米/小时.乙船逆水速度:120÷4=30千米/小时;水流速度:60-30÷2=15千米/小时.甲船顺水速度:12O÷3=4O千米/小时;甲船逆水速度:40-2×15=10千米/小时.甲船逆水航行时间:120÷10=12小时;甲船返回原地比去时多用时间:12-3=9小时.【例 20】船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时;由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时【解析】本题中船在顺水、逆水、静水中的速度以及水流的速度都可以求出.但是由于暴雨的影响,水速发生变化,要求船逆水而行要几小时,必须要先求出水速增加后的逆水速度.船在静水中的速度是:180÷10+180÷15÷2=15千米/小时.暴雨前水流的速度是:180÷10-180÷15÷2=3千米/小时.暴雨后水流的速度是:180÷9-15=5千米/小时.暴雨后船逆水而上需用的时间为:180÷15-5=18小时.【例 21】2009年“学而思杯”六年级甲、乙两艘游艇,静水中甲艇每小时行112千米,乙艇每小时行54千米.现在甲、乙两游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距27千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.水流速度是每小时千米.【解析】两游艇相向而行时,速度和等于它们在静水中的速度和,所以它们从出发到相遇所用的时间为10小时.相遇后又经过4小时,甲艇到达乙艇的出发地,说明甲艇逆水行驶27千米需要10小时,那么甲艇的逆水速度为1千米/小时,则水流速度为24千米/小时.【例 22】一艘轮船顺流航行 120 千米,逆流航行 80 千米共用 16 时;顺流航行 60 千米,逆流航行 120 千米也用 16 时;求水流的速度; 【解析】两次航行都用16时,而第一次比第二次顺流多行60千米,逆流少行40千米,这表明顺流行60千米与逆流行40千米所用的时间相等,即顺流速度是逆流速度的倍;将第一次航行看成是16时顺流航行了120+80×=240千米,由此得到顺流速度为240÷16=15千米/时,逆流速度为15÷=10千米/时,最后求出水流速度为15-10÷2=千米/时;【例 23】一条河上有甲、乙两个码头,甲在乙的上游 50 千米处;客船和货船分别从甲、乙两码头出发向上游行驶,两船的静水速度相同且始终保持不变;客船出发时有一物品从船上落入水中,10 分钟后此物距客船 5 千米;客船在行驶 20 千米后折向下游追赶此物,追上时恰好和货船相遇;求水流的速度;【解析】5÷1/6=30千米/小时,所以两处的静水速度均为每小时30千米; 50÷30=5/3小时,所以货船与物品相遇需要5/3小时,即两船经过5/3小时候相遇; 由于两船静水速度相同,所以客船行驶20千米后两船仍相距50千米; 50÷30+30=5/6小时,所以客船调头后经过5/6小时两船相遇; 30-20÷5/3-5/6=6千米/小时,所以水流的速度是每小时6千米; 【例 24】江上有甲、乙两码头,相距 15 千米,甲码头在乙码头的上游,一艘货船和一艘游船同时从甲码头和乙码头出发向下游行驶,5 小时后货船追上游船;又行驶了 1 小时,货船上有一物品落入江中该物品可以浮在水面上,6 分钟后货船上的人发现了,便掉转船头去找,找到时恰好又和游船相遇;则游船在静水中的速度为每小时多少千米【解析】此题可以分为几个阶段来考虑;第一个阶段是一个追及问题;在货舱追上游船的过程中,两者的追及距离是15千米,共用了5小时,故两者的速度差是15÷5=3千米;由于两者都是顺水航行,故在静水中两者的速度差也是3千米;在紧接着的1个小时中,货船开始领先游船,两者最后相距3×1=3千米;这时货船上的东西落入水中,6分钟后货船上的人才发现;此时货船离落在水中的东西的距离已经是货船的静水速度×1/10千米,从此时算起,到货船和落入水中的物体相遇,又是一个相遇问题,两者的速度之和刚好等于货船的静水速度,所以这段时间是货船的静水速度1/10÷货船的静水速度=1/10小时;按题意,此时也刚好遇上追上来的游船;货船开始回追物体时,货船和游船刚好相距3+31/10=33/10 千米,两者到相遇共用了 1/10 小时,帮两者的速度和是每小时 33/10÷1/10=33 千米,这与它们两在静水中的速度和相等;解释一下又已知在静水中货船比游船每小时快 3 千米,故游船的速度为每小时33-3÷2=15 千米;【例 25】 2008年三帆中学考题一艘船往返于甲、乙两港之间,已知船在静水中的速度为每小时9千米,平时逆行与顺行所用的时间比是2:1.一天因下暴雨,水流速度为原来的2倍,这艘船往返共用10小时,问:甲、乙两港相距 千米.【解析】 设平时水流速度为x 千米/时,则平时顺水速度为()9x +千米/时,平时逆水速度为()9x -千米/时,由于平时顺行所用时间是逆行所用时间的一半,所以平时顺水速度是平时逆水速度的2倍,所以()929x x +=-,解得3x =,即平时水流速度为3千米/时.暴雨天水流速度为6千米/时,暴雨天顺水速度为15千米/时,暴雨天逆水速度为3千米/时,暴雨天顺水速度为逆水速度的5倍,那么顺行时间为逆行时间的15,故顺行时间为往返总时间的16,为151063⨯=小时,甲、乙两港的距离为515253⨯=千米. 【例 26】 一条小河流过A ,B , C 三镇.A ,B 两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B ,C 两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A ,C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇上船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时.那么A ,B 两镇间的距离是多少千米【解析】 如下画出示意图有A →B 段顺水的速度为11+=12.5千米/小时,有B →C 段顺水的速度为+=5千米/小时.而从A →C 全程的行驶时间为8-1=7小时.设AB 长x 千米,有50712.55x x -+=,解得x =25.所以A ,B 两镇间的距离是25千米.【例 27】 河水是流动的,在 B 点处流入静止的湖中,一游泳者在河中顺流从。

六年级奥数简单行程问题试题及答案【三篇】

六年级奥数简单行程问题试题及答案【三篇】

愿你信心满满,尽展聪明才智;妙笔生花,谱下锦绣第几篇。

学习的敌人是自己的知足,要使自己学一点东西,必需从不自满 开始。

【第一篇】甲乙两地相距 6 千米.陈宇从甲地步行去乙地,前一 半时间每分钟走 80 米,后一半的时间每分钟走 70 米.这样他在前一 半的时间比后一半的时间多走米. 考点简单的行程问题. 分析解设陈宇从甲地步行去乙地所用时间为 2 分钟,根据题意, 前一半时间和后一半的时间共走 007+008 千米,已知甲乙两地相距 6 千米,由此列出方程 007+008=6,解方程求出一半的时间,因此前一 半比后一半时间多走 80-70×40 米,解决问题. 解答解设陈宇从甲地步行去乙地所用时间为分钟,根据题意得 007+008=6, 015=6, =40; 前一半比后一半时间多走 80-70×40, =10×40, =400 米. 答前一半比后一半的时间多走 400 米. 故答案为 400. 点评根据题目特点,巧妙灵活地设出未知数,是解题的关键.【第二篇】1 甲乙两地相距 6 千米.陈宇从甲地步行去乙地,前一半时间 每分钟走 80 米,后一半的时间每分钟走 70 米.这样他在前一半的时 间比后一半的时间多走米.分析解设陈宇从甲地步行去乙地所用时间为 2 分钟,根据题意, 前一半时间和后一半的时间共走 007+008 千米,已知甲乙两地相距 6 千米,由此列出方程 007+008=6,解方程求出一半的时间,因此前一 半比后一半时间多走 80-70×40 米,解决问题.解答解设陈宇从甲地步行去乙地所用时间为分钟,根据题意得 007+008=6, 015=6, =40; 前一半比后一半时间多走 80-70×40, =10×40, =400 米. 答前一半比后一半的时间多走 400 米. 故答案为 400. 点评根据题目特点,巧妙灵活地设出未知数,是解题的关键.【第 三篇】例 1 甲、乙二人沿运动场的跑道跑步,甲每分钟跑 290 米,乙 每分钟跑 270 米,跑道一圈长 400 米.如果两人同时从起跑线上同方 向跑,那么甲经过多长时间才能第一次追上乙? 分析这是一道封闭线路上的追及问题.甲和乙同时同地起跑,方向一致.因此,当甲第一次追上乙时,比乙多跑了一圈,也就是甲与 乙的路程差是 400 米.根据路程差÷速度差=追及时间即可求出甲追 上乙所需的时间.解答解 400÷290-270 =400÷20, =20 分钟; 答甲经过 20 分钟才能第一次追上乙. 点评此类题根据追及拉开路程÷速度差=追及拉开时间,代入数 值计算即可.【六年级奥数简单行程问题试题及答案【三篇】】。

小学六年级奥数列方程解行程问题

小学六年级奥数列方程解行程问题

小学六年级奥数列方程解行程问题1.小学六年级奥数列方程解行程问题1、甲从A地以6千米/小时的速度向B地行走,40分钟后,乙从A地以8千米/小时的速度追甲,结果在甲离B地还有5千米的地方追上了甲,求A、B两地的距离。

2、甲、乙两车都从A地开往B地,甲车每小时行40千米,乙车每小时行50千米,甲车出发半小时后,乙车出发,问乙车几小时可追上甲车?3、一轮船从甲码头顺流而下到达乙码头需要8小时,逆流返回需要12小时,已知水流速度是3千米/小时,求甲、乙两码头的距离。

4、甲乙两港相距120千米,A、B两船从甲乙两港相向而行6小时相遇。

A船顺水,B船逆水。

相遇时A船比B船多行走49千米,水流速度是每小时15千米,求A、B两船的静水速度。

5、一列火车以每分钟1千米的速度通过一座长400米的桥,用了半分钟,则火车本身的长度为多少米?2.小学六年级奥数列方程解行程问题1、甲、乙两地间的路程为160千米,A骑自行车从甲地出发骑行速度为每小时20千米,B骑摩托车从乙地出发速度是甲的3倍,两人同时出发。

相向而行经过几个小时相遇?2、甲、乙两人骑车同时从相距65千米的两地相向而行,甲的速度为每小时17.5千米,乙的速度为每小时15千米,求经过几小时甲、乙两人相距32.5千米?3、一辆慢车每小时行48千米,一辆快车每小时行55千米,慢车在前快车在后,两车相隔14千米,快车追上慢车需要几小时?4、甲、乙两人环湖竞走,环湖一周520米,甲每分钟走100米,乙每分钟走80米,甲在乙的前面120米,经过几分钟两人第一次相遇?5、已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车在桥上的时间为40秒,则火车的速度为多少?3.小学六年级奥数列方程解行程问题1、AB两地相距300千米,甲乙两人分别从AB两地同时出发,相向而行,甲每小时行30千米,乙每小时行20千米,几小时后两人相遇?分析:甲行驶的路程+乙行驶的路程=AB的距离甲行驶的路程=甲的速度x相遇时间乙行驶的路程=乙的速度x相遇时间解:设X小时后两人相遇。

六年级 行程问题(综合)奥数 答案

六年级 行程问题(综合)奥数 答案

正比例和反比例的性质参考答案典题探究一、行程问题考点1)一般行程问题:基本公式:路程=速度×时间高级公式:(务必倒背如流,此两公式太重要了)相遇问题(速度和×相遇时间=路程和),追击问题(速度差×追击时间=路程差)2)流水问题:水速对追击和相遇时间无影响。

原因?四者中只要知2就可求另外2个量。

基本公式:顺水速度=船速+水速逆水速度=船速-水速高级公式:船速=(顺+逆)÷2,水速=(顺-逆)÷23)非环形跑道多次相遇问题:要注意“第一次相遇行的全程数”与“第二次相遇行的全程数”的关系。

环形跑道:每相遇一次,总路程多了一圈,不存在以上关系。

所以如果速度和不变,则每相遇一次所用时间相同。

二:行程问题主要方法:(1)列方程求解;(2)画图分析;(3)抓住原因分析求解;(4)比例(常用到设数的方法)例1小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合.问:小明解这道题用了多长时间?分析这道题实际上是一个行程问题.开始时两针成一直线,最后两针第一次重合.因此,在我们所考察的这段时间内,两针的路程差为30分格,又因分格/分钟,所以,当它们第一次重合时,一定是分针从后面追上时针.这是一个追及问题,追及时间就是小明的解题时间。

例2甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A 地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。

画图如下:分析结合上图,如果我们设甲、乙在点C相遇时,丙在D点,则因为过15分钟后甲、丙在点E相遇,所以C、D之间的距离就等于(40+60)×15=1500(米)。

又因为乙和丙是同时从点B出发的,在相同的时间内,乙走到C点,丙才走到D点,即在相同的时间内乙比丙多走了1500米,而乙与丙的速度差为50-40=10(米/分),这样就可求出乙从B到C的时间为1500÷10=150(分钟),也就是甲、乙二人分别从A、B出发到C点相遇的时间是150分钟,因此,可求出A、B的距离。

有关行程问题的应用题六年级奥数题

有关行程问题的应用题六年级奥数题

行程问题(一)例1 客车从甲地,货车从乙地同时相对开出5小时后,客车距乙地还有全程的六分之一,货车距甲地还有142千米。

客车比货车每小时多行12千米,甲、乙两地间的路程是多少千米?两地间的路程是多少千米?练习1 AB 两地相距21千米,上午8时甲乙分别从AB 两地出发相向而行,当甲到达B 地后立即返回,地后立即返回,乙到达乙到达A 地后也立即返回,地后也立即返回,上午上午10时他们第2次相遇时,此时甲走的路程比乙走的路程多9千米,甲每小时走多少千米?千米,甲每小时走多少千米?练习2当甲在60米赛跑中冲过终点线时,比乙领先10米,比丙领先20米。

如果乙和丙按原来的速度继续冲向终点,当乙到达终点的时候,将比丙领先多少米?米?例2 两辆汽车同时从某地出发,运送一批货物到距离165千米的工地,甲车比乙车早到0.8小时,当甲车到达目的地时,乙车距离目的地还有24千米,甲车行完全程用了多少时间?行完全程用了多少时间?练习3 甲乙两地之间的距离是420千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行42千米,千米,它到乙地立即返回,它到乙地立即返回,它到乙地立即返回,第二辆汽车每小时行第二辆汽车每小时行28千米。

千米。

两两辆车从开出到相遇共用多少小时?辆车从开出到相遇共用多少小时?练习4 4 AA 、B 两地相距900千米,甲车从A 地开到B 地需要15小时,乙车从B 地到A 地需要10小时。

两车同时从两地开出,相遇时,甲车距B 地还有多少千米?米?练习5 甲、乙两辆汽车早上8点钟分别从A 、B 两城同时相向而行。

到10点钟时两车相距112.5千米。

继续行进到下午1时,两车相距还是112.5千米。

AB 两地间的距离是多少千米?两地间的距离是多少千米?例3 甲乙两车同时从AB 两站相对开出,5小时后甲车到达中点,乙车离中点还有60千米。

已知乙车的速度是甲车的2/3,AB 两地相距多少千米?两地相距多少千米?练习6 客车从甲城到乙城要行10小时,货车从乙城到甲城要行15小时。

(奥数典型题)行程问题-2023-2024学年六年级下册小升初数学思维拓展含答案

(奥数典型题)行程问题-2023-2024学年六年级下册小升初数学思维拓展含答案

(奥数典型题)行程问题-2023-2024学年六年级下册小升初数学思维拓展第8讲行程问题【知识点归纳】1.、速度:指单位时间内所行的路程。

因为速度=路程÷时间,所以速度的单位名称是路程单位/时间单位,即千米/时,米/分,米/秒,千米/分……2、路程、时间与速度的关系:(1)已知路程和时间,求速度:速度=路程÷时间;(2)已知路程和速度,求时间:时间=路程÷速度;(3)已知速度和时间,求路程:路程=速度×时间。

在路程、时间和速度三个量中,知道其中的任何两个量,都能求出第三个量。

【方法总结】1、路程、时间和速度之间的关系:路程=速度×时间时间=路程÷速度速度=路程÷时间1.客车和货车分别从甲、乙两地同时出发,相向而行,3h相遇,相遇后客车又行驶2h到达乙地,已知货车每时行驶50km,问甲、乙两地相距多少千米?2.甲乙两列火车分别从南、北两地同时相对开出,6小时后相遇。

甲车的速度是120千米/时,乙车的速度是130千米/时。

求南、北两地的路程。

(先画图整理条件和问题,再解答。

)3.客、货两车同时从甲乙两地相对开出在离乙地80千米的地方第一次相遇,相遇后继续行驶,到达对方出发点后立即返回,第二次在距离甲地50千米的地方相遇。

求甲、乙两地间相距多少千米?(画图可以帮助理解!)4.甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。

相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。

求甲原来的速度。

5.从电车总站每隔一定时间开出一辆电车。

甲和乙两人在一条街上沿着同一方向步行,甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。

则电车总站每隔多少分钟开出一辆电车?6.甲乙两地相距1200千米。

一辆大客车和一辆小客车分别从两地同时出发,相向而行,6小时相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数行程问题Last revision on 21 December 2020行程问题(一)【知识点讲解】基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度×时间; 路程÷时间=速度; 路程÷速度=时间关键:确定运动过程中的位置和方向。

相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追及问题:追及时间=路程差÷速度差(写出其他公式)主要方法:画线段图法基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

相遇问题:例1、甲乙两车同时从AB 两地相对开出,第一次相遇后两车继续行驶,各自到达对方出发点后立即返回,第二次相遇时离B 地的距离是AB 全程的51。

已知甲车在第一次相遇时行了120千米。

AB 两地相距多少千米例2、甲、乙两车分别从A 、B 两城同时相对开出,经过4小时,甲车行了全程的80%,乙车超过中点35千米,已知甲车比乙车每小时多行10千米。

问A 、B 两城相距多少千米例3、甲、乙和丙同时由东、西两城出发,甲、乙两人由东城到西城,甲步行每小时走5千米,乙骑自行车每小时行15千米,丙也骑自行车每小时20千米,已知丙在途中遇到乙后,又经过1小时才遇到甲,求东、西城相距多少千米例4、 甲乙两站相距470千米,一列火车于中午1时从甲站出发,每小时行52千米,另一列火车下午2时30分从乙站开出,下午6时两车相遇,求乙站开出的那辆火车的速度是多少例5、小李从A 城到B 城,速度是50千米/小时,小兰从B 城到A 城,速度是40千米/小时。

两人同时出发,结果在距A 、B 两城中点10千米处相遇。

求A 、B 两城间的距离。

例6、绕湖的一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以每小时4千米的速度每走1小时休息5分钟,小张以每小时6千米的速度每走5分休息10分钟.两人出发后多长时间第一次相遇习题1.一列客车和一列货车同时从两地相向开出,经过18小时两车在某处相遇,已知两地相距1488千米,货车每小时比客车少行8千米,货车每行驶3小时要停驶1小时,客车每小时行多少千米2、一个600米长的环形跑道上,兄弟两人如果同时从同一起点按顺时针反方向跑步,每隔12分钟相遇一次;如果两人同从同一起点反方向跑步,每隔4分中相遇一次。

兄弟两人跑一圈各要几分钟、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分4.一辆小轿车,一辆货车两车分别从A、B两地出发,相向而行。

出发时,小轿车,货车的速度比是4:5相遇后,小轿车的速度减少了20%,货车的速度增加20%,这样,当小轿车到达B地时,货车距离A地还有10千米,那么A、B两地相距多少千米5、一辆汽车在甲乙两站之间行驶.往返一次共用去4小时.汽车去时每小时行45米,返回时每小时行驶30千米,那么甲,乙两站相距多少千米追及问题例7、甲、乙两人同时从A地到B地,乙出发3小时后甲才出发,甲走了5小时后,已超过乙2千米,已知甲每小时比乙多行4千米。

甲、乙两人每小时各行多少千米例8、猎犬发现在离它9米远有一只奔跑的兔子,立刻追赶,猎犬的步子大,它跑5步的路程,兔要跑9步,但兔子的动作快,猎犬跑2步的时间,兔子跑3步,猎犬至少跑多少米才能追上兔子例9、甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲例10、两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63 千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车例11、一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇习题1、哥哥和弟弟两人同时在一个学校上学,弟弟以每分钟80米的速度先去学校,3分钟后,哥哥骑车以每分钟200米的速度也向学校骑去,那么哥哥几分钟追上弟弟2、两名运动员在湖周围环形道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇3、姐妹两人在同一小学上学,妹妹以每分钟50米的速度从家走向学校,姐姐比妹妹晚10分钟出发,为了不迟到,她以每分钟150米的速度从家跑步上学,结果两人却同时到达学校,求家到学校的距离有多远4、龟兔进行10000米跑步比赛.兔每分钟跑400米,龟每分钟跑80米,龟每跑5分钟歇25分钟,谁先到达终点5、在周长400米的圆的一条直径的两端,甲、乙两人分别以每分钟60米和50米的速度,同时同向出发,沿圆周行驶,问2小时内,甲追上乙多少次6、甲乙两地相距48千米,其中一部分是上坡路,其余是下坡路,某人骑自行车从甲地到乙地后沿原路返回。

去时用了4小时12分,返回时用了3小时48分。

已知自行车的上坡速度是每小时10千米,求自行车下坡的速度。

行程问题(二)【知识点讲解】基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.关键:确定运动过程中的位置和方向。

顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。

过桥问题:关键是确定物体所运动的路程。

流水问题:例1、一船逆水而上,船上某人于大桥下面将水壶遗失被水冲走,当船回头时,时间已过20分钟.后来在大桥下游距离大桥2千米处追到了水壶.那么该河流是每小时多少千米例2、一只船从甲码头到乙码头往返一次共用4小时,回来时顺水比去时每小时多行12千米.因此后2小时比前2小时多行18千米,那么甲、乙两个码头距离是几千米例3、(14广益)一架飞机所带燃料最多可以用小时。

飞机去时顺风,每小时可以飞行1200千米;回时逆风,每小时可以飞行800千米。

那么这架飞机最多飞出多远就要返航例4、(14广益)自动扶梯以均匀的速度由下往上行驶,两位性急的孩子要从扶梯上楼。

已知男孩每分钟走20阶,女孩每分钟走15阶。

结果,男孩用了5分钟到达,女孩用了6分钟到达楼上。

扶梯露在外面的部分共有多少阶例5、只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米例6、一船从甲港顺水而下到乙港,马上又从乙港逆水行回甲港,共用了8小时。

已知顺水每小时比逆水多行20千米,又知前4小时比后4小时多行60千米,那么,甲、乙两港相距多少千米习题1、一艘货轮顺流航行36千米,逆流航行12千米共用了10小时,顺流航行20千米,再逆流航行20千米也用了10小时。

顺流航行12千米,又逆流航行24千米要用多少小时2、从甲地到乙地的路程分为上坡、平坡、下坡三段,各段路程之和比1:2:3,某人走这三段路所用的时间之比是4:5:6。

已知他上坡时的速度为每小时千米,路程全长为20千米。

此人从甲地走到乙地需要多长时间3、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间4.一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用多少秒5.在商场里,小明从正在向上移动的自动扶梯顶部下120 级台阶到达底部,然后从底部上90 级台阶回到顶部。

自动扶梯从底部到顶部的台阶数是不变的,假设小明单位时间内向下的台阶数是他向上的台阶数的2倍.则该自动扶梯从底到顶的台阶数为多少过桥问题例1、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。

求这列火车的速度是每秒多少米车长多少米例2、一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.例3、一支队伍1200米长,以每分钟80米的速度行进。

队伍前面的联络员用6分钟的时间跑到队伍末尾传达命令。

问联络员每分钟行多少米例4、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过例5、某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为千米.求步行人每小时行多少千米习题1.一个人站在铁道旁,听见行近来的火车汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度2、人以每分钟60米的速度沿铁路边步行,一列长144米的客车从他身后开来,从他身边通过用了8秒钟,求列车的速度。

3、铁路旁的一条平行小路上,有一行人与一骑车人同时向南行进。

行人速度为千米/小时,骑车人速度为千米/小时。

这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒。

这列火车的车身总长是多少米4、已知快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向而行,当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是多少秒。

相关文档
最新文档