函数的奇偶性、对称性与周期性总结,史上最全
(完整版)函数奇偶性、对称性、周期性知识点总结,推荐文档

抽象函数的对称性、奇偶性与周期性常用结论一.概念:抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于定义域内的每一个,都存在非零常数,使得()f x x T ()()f x T f x +=恒成立,则称函数具有周期性,叫做的一个周期,则(()f x T ()f x kT )也是的周期,所有周期中的最小正数叫的最小正周期。
,0k Z k ∈≠()f x ()f x 分段函数的周期:设是周期函数,在任意一个周期内的图像为C:)(x f y =),(x f y =。
把个单位即按向量[]a b T b a x -=∈,,)()(a b K KT x x f y -==轴平移沿在其他周期的图像:)()0,(x f y kT a ==平移,即得。
[]b kT a kT x kT x f y ++∈-=,),(2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若。
为偶函数则称)()()(x f y x f x f ==-分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。
2025届高考数学一轮复习讲义函数之 函数的奇偶性、周期性与对称性

f ( x + T )= f (做周期函数.非零
常数 T 叫做这个函数的周期.
(2)最小正周期
如果在周期函数 f ( x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫
做 f ( x )的⑩
注意
最小
正周期.
并不是所有的周期函数都有最小正周期,如 f ( x )=5.
1
f(x)= +|x|
4. 已知函数 f ( x )为R上的偶函数,且当 x <0时, f ( x )= x ( x -1),则当 x >0时,
f ( x )= x ( x +1)
.
5. 已知定义在R上的函数 f ( x )满足 f ( x )= f ( x -2),当 x ∈[0,2)时, f ( x )= x 2-4
x ,则当 x ∈[4,6)时, f ( x )=
x 2-12 x +32
.
[解析] 设 x ∈[4,6),则 x -4∈[0,2),则 f ( x -4)=( x -4)2-4( x -4)= x 2-12 x
+32.又 f ( x )= f ( x -2),所以函数 f ( x )的周期为2,所以 f ( x -4)= f ( x ),所以当 x
a |;
(2)若函数 f ( x )的图象既关于点( a ,0)对称,又关于点( b ,0)对称,则函数 f ( x )的周
期为2| b - a |;
(3)若函数 f ( x )的图象既关于直线 x = a 对称,又关于点( b ,0)对称,则函数 f ( x )的
周期为4| b - a |.
二、基础题练习
,那么
函数奇偶性、对称性与周期性有关结论

函数奇偶性、对称性与周期性奇偶性、对称性和周期性是函数的重要性质,下面总结关于它们的一些重要结论及运用它们解决抽象型函数的有关习题。
一、几个重要的结论(一)函数)(x f y =图象本身的对称性(自身对称)2、)2()(x a f x f -=⇔)(x f y =的图象关于直线a x =对称。
3、)2()(x a f x f +=-⇔)(x f y =的图象关于直线a x =对称。
4、)()(x b f x a f -=+⇔)(x f y =的图象关于直线22)()(b a x b x a x +=-++=对称。
5、b x a f x a f 2)()(=-++⇔)(x f y =的图象关于点),(b a 对称。
6、b x a f x f 2)2()(=-+⇔)(x f y =的图象关于点),(b a 对称。
7、b x a f x f 2)2()(=++-⇔)(x f y =的图象关于点),(b a 对称。
8、c x b f x a f 2)()(=-++⇔)(x f y =的图象关于点),2(c b a +对称。
(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称。
2、函数)(x f y =与)2(x a f y -=图象关于直线a x =对称3、函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称4、函数)(x a f y +=与)(x b f y -=图象关于直线0)()(=--+x b x a 对称 即直线2a b x -=对称 5、函数)(x f y =与)(x f y -=图象关于X 轴对称。
6、函数)(x f y =与)(x f y -=图象关于Y 轴对称。
7、函数)(x f y =与)(x f y --=图象关于原点对称(三)函数的周期性1、)()(x f T x f =+⇔)(x f y =的周期为T2、)()(b x b f a x f ++=+)(b a <⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+⇔)(x f y =的周期为a T 2= 6、)(1)(1)(x f x f a x f +-=+⇔)(x f y =的周期为a T 3= 7、1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 3= 8、)(1)(1)(x f x f a x f -+=+⇔)(x f y =的周期为a T 4= 9、)()()2(x f a x f a x f -+=+⇔)(x f y =的周期为a T 6=10、)(x f y =有两条对称轴a x =和b x =()b a <⇔)(x f y =周期)(2a b T -=11、)(x f y =有两个对称中心)0,(a 和)0,(b ⇔)(x f y =周期)(2a b T -=12、)(x f y =有一条对称轴a x =和一个对称中心)0,(b ⇔)(x f y =周期)(4a b T -=13、奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y =周期a T 4=。
函数的周期、对称公式大总结

函数的周期、对称公式一、函数的周期性(识别方法:看括号里面的x 系数相同为周期)()()()..1a b x f b x f a x f -+=+的周期为,则若 ()()().2.2a x f x f a x f 的周期为,则若-=+ ()()().21.3a x f x f a x f 的周期为,则若=+()()().21.4a x f x f a x f 的周期为,则若-=+()()()().211.5a x f x f x f a x f 的周期为,则若+-=+()()()().411.6a x f x f x f a x f 的周期为,则若-+=+()()()().62.7a x f x f a x f a x f 的周期为,则若-+=+二、函数的轴对称(识别方法:看括号里面的x 系数相反为对称,若f()外的系数相同则为轴对称,简称对称轴)()()()()()()()()()()()()()().2.4.2.3..2.22.1对称的图象关于直线对称的图象关于直线对称的图象关于直线对称图象关于直线若a x x f y x a f x f a x x f y x a f x f a x x f y x a f x a f b a x b x a x x f y x b f x a f ==⇔+=-==⇔-===⇔-=++=-++==⇔-=+三、函数的点对称(识别方法:看括号里面的x 系数相反为对称,若f()外的系数相反则为点对称,简称对称中心)()()()()()()()()()()()()()()()()()()().0,.5.,22.4.,22.3.,2.2.,22.1对称的图象关于点对称的图象关于点对称的图象关于点对称的图象关于点对称图象关于点若a x f y x a f x a f b a x f y b x a f x f b a x f y b x a f x f b a x f y b x a f x a f c b a x f y c x b f x a f =⇔--=+=⇔=++-=⇔=-+=⇔=-++⎪⎭⎫⎝⎛+=⇔=-++四、奇偶性的拓展()().)0,()()(,.2;.1对称关于件是是奇函数的充分必要条对于任意对称关于件是是偶函数的充分必要条,对于任意a x f y a x f x a x x f y a x f x =+==+五、对称与周期的关系()()().2.1a b x f b x a x x f -==的周期为对称,则、关于直线若函数两线对称型()()()()().20,0,.2a b x f b a x f -的周期为对称,则、点关于点若函数两点对称型()()()().40,.3a b x f b a x x f -=的周期为对称,则及点关于直线若函数一线一点对称型六、对称与周期常用的小结论.2)()()(.1对称还关于对称,那么关于直线,且的周期为若Ta x x f a x x f T x f ±==().02)(0,)()(.2对称,还关于对称,那么关于点,且的周期为若⎪⎭⎫ ⎝⎛±T a x f a x f T x f(在已有的对称轴,对称中心上加减半个周期即可得到新的对称轴与对称中心)七、三种关系的转化(已知其一必写其二,总有一个能用于解题)()()()为偶函数对称关于直线已知a x f x a f x a f a x x f +⇔-=+⇔=)(.1。
函数的奇偶性周期性和对称性

返回目录
退出
奇偶函数的性质
(1) 奇函数在对称区间上的单调性相同,偶 函数在对称区间上的单调性相反。 (2) 奇函数如果在x=0有意义,则f(0)=0。 (3) 奇函数的最大值与最小值互为相反数。
返回目录
退出
2.周期性 (1)周期函数:对于函数 y=f(x),如果存在一个非零常数 T,使得当 x 取定 义域内的任何值时,都有 f(x+T)= f(x) ,那么就称函数 y=f(x)为周期函数, 称 T 为这个函数的周期. (2)最小正周期:如果在周期函数 f(x)的所有周期中 存在一个最小的正 数,那么这个 最小正数就叫做 f(x)的最小正周期.
B.
2 3
C. D.1
4
3
3.函数 f(x)=(m-1)x +2mx+3 为偶函数,则 f(x)在区间(-5,-3)上( A.先减后增 B.先增后减 C.单调递减 D.单调递增
D ).
返回目录
退出
4.若 f(x)是 R 上周期为 5 的奇函数,且满足 f(1)=1,f(2)=2,则 f(3)-f(4)=( A ). A.-1 B.1 C.-2 D.2
返回目录
退出
1.函数 f(x)= -x 的图象关于(
������
1
C
).
A.y 轴对称 B.直线 y=-x 对称 C.坐标原点对称 D.直线 y=x 对称
返回目录
退出
������ 2.若函数 f(x)= 为奇函数,则 a=( (2������+1)(������-������)
A
).
A.
1 2
2
1.
3
2
23 .奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单 调性相同,偶函数在关于原点对称的区间上的单调性相反.
函数奇偶性对称性周期性知识点总结文档

函数奇偶性对称性周期性知识点总结文档函数的奇偶性、对称性和周期性是函数图像特征的重要方面。
在数学中,研究函数的这些特性可以帮助我们更好地理解函数的行为和性质。
本文将对函数的奇偶性、对称性和周期性进行总结。
一、函数的奇偶性奇偶性是指函数关于坐标原点或者其中一点的对称性。
如果函数f(x)满足f(x)=f(-x),则称函数为偶函数;如果函数f(x)满足f(x)=-f(-x),则称函数为奇函数。
1.偶函数的特点:(1)关于y轴对称,即函数的图像关于y轴对称;(2)具有对称性质,即对于任意x,有f(x)=f(-x);(3)如果函数f(x)在定义域内可导,则偶函数的导函数也是偶函数。
2.奇函数的特点:(1)关于原点对称,即函数的图像关于原点对称;(2)具有对称性质,即对于任意x,有f(x)=-f(-x);(3)如果函数f(x)在定义域内可导,则奇函数的导函数也是奇函数。
二、函数的对称性对称性是指函数图像关于其中一直线、其中一点或者其中一中心进行对称的性质。
1.关于y轴对称:如果函数f(x)满足f(x)=f(-x),则函数关于y轴对称。
这意味着函数的图像在y轴左右对称。
2.关于x轴对称:如果函数f(x)满足f(-x)=-f(x),则函数关于x轴对称。
这意味着函数的图像在x轴上下对称。
3.关于原点对称:如果函数f(x)满足f(-x)=-f(-x),则函数关于原点对称。
这意味着函数的图像在原点对称。
三、函数的周期性周期性是指函数在一定区间内以一些特定的周期重复出现的性质。
1.周期函数:如果函数f(x)在定义域的一些区间内满足f(x+T)=f(x),其中T为正数,则称函数为周期函数,T为函数的周期。
周期函数的图像在段区间内重复出现。
2.周期函数的性质:(1)在一个周期内,函数具有相同的性质和特点;(2)相邻两个周期之间的函数值关系相同;(3)周期函数的图像在一个周期内是相似的。
四、函数的判断在实际问题中,我们根据函数的表达式或者图像来判断函数的奇偶性、对称性和周期性。
函数奇偶性对称性周期性知识点总结

函数奇偶性对称性周期性知识点总结函数的奇偶性、对称性和周期性是数学中经常研究的重要性质。
它们描述了函数的特征和性质,对于理解函数的行为和解决问题都具有重要意义。
下面将分别对这三个概念进行总结。
一、函数的奇偶性1.奇函数:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数为奇函数。
即函数在原点关于y轴对称。
奇函数的特点:-奇函数的图像关于原点(0,0)对称。
-当函数的定义域包括0时,即使x等于0,函数值仍然等于0。
常见的奇函数有:- 正弦函数sin(x)。
-奇数次幂的多项式函数,如x^3、x^5等。
2.偶函数:如果对于函数f(x),对任意的x,都有f(-x)=f(x),那么称该函数为偶函数。
即函数在原点关于x轴对称。
偶函数的特点:-偶函数的图像关于x轴对称。
-当函数的定义域包括0时,对于任意的x,f(0)=f(-x)=f(x)。
常见的偶函数有:- 余弦函数cos(x)。
-偶数次幂的多项式函数,如x^2、x^4等。
3.奇偶性的判断方法:-对于已知函数,可以通过代数运算证明是否满足奇偶性的定义。
-函数图像的轴对称性可以直接判断奇偶性。
-对于周期函数,可以利用周期性的性质判断奇偶性。
二、函数的对称性1.关于y轴对称:如果对于函数f(x),对任意的x,都有f(-x)=f(x),那么称该函数关于y轴对称。
即函数的图像左右对称。
2.关于x轴对称:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数关于x轴对称。
即函数的图像上下对称。
3.关于原点对称:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数关于原点对称。
即函数的图像关于原点对称。
三、函数的周期性1.周期函数:如果存在一个正实数T,对于函数f(x),对于任意的x,都有f(x+T)=f(x),那么称该函数为周期函数,T为函数的周期。
周期函数的特点:-周期函数在一个周期内的函数值是相同的。
专题——函数的奇偶性,周期性,对称性

专题1函数的奇偶性,周期性,对称性知识梳理【题型解读】【知识储备】一.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数关于y 轴对称奇函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数关于原点对称二.关于函数对称性的结论扩充1.若函数y =f (x )的图象关于x =a 对称⇔对定义域内任意x 都有f (a +x )=f (a -x )⇔对定义域内任意x 都有f (x )=f (2a -x )⇔y =f (x +a )是偶函数。
2.函数y =f (x )的图象关于点(a,0)对称⇔对定义域内任意x 都有f (a -x )=-f (a +x )⇔f (2a -x )=-f (x )⇔y =f (x +a )是奇函数。
3.若函数y =f (x )对定义域内任意x 都有f (x +a )=f (b -x ),则函数f (x )的图象的对称轴是x =a +b2。
4.若函数y =f (x )对定义域内任意x 都有f (a +x )+f (b -x )=c ,则函数f (x )的图象的对称中心为22a b c+(,)。
5.函数y =f (|x -a |)的图象关于x =a 对称。
三.关于函数周期性的结论扩充1.若满足f (x +a )=-f (x ),则f (x +2a )=f ((x +a )+a )=-f (x +a )=f (x ),所以2a 是函数的一个周期(a ≠0)。
2.若满足f (x +a )=1f (x ),则f (x +2a )=f ((x +a )+a )=1f (x +a )=f (x ),所以2a 是函数的一个周期(a ≠0)。
3.若函数满足f (x +a )=-1f (x ),同理可得2a 是函数的一个周期(a ≠0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的奇偶性、对称性与周期性常用结论,史上最全函数是高中数学的重点与难点,在高考数学中占分比重巨大。
高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。
本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。
需要WORD 电子文档的同学,可以入群领取。
1.奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。
①若为奇函数;则称)(),()(x f y x f x f =-=-()()()0,1()f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。
()()-()0,1()f x f x f x f x -==- 2.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y =[]a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x)()(kT x f x f x f函数周期性的几个重要结论2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+⇔)(x f y =的周期为a T 2=6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3=7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2= 8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4=9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6= 10、若.2, )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。
关于点与(函数),(0)2,2(0),b a y b x a F y x F =--= (2)轴对称:对称轴方程为:0=++C By Ax 。
①))(2,)(2(),(),(2222//BA C By AxB y B AC By Ax A x B y x B y x A +++-+++-=与点关于直线成轴对称;0=++C By Ax②函数))(2()(2)(2222B A C By Ax A x f B A C By Ax B y x f y +++-=+++-=与关于直线0))(2,)(2(0),(2222=+++-+++-=BA C By AxB y B AC By Ax A x F y x F 与0=++C By Ax 成轴对称。
③关于直线0=++C By Ax 成轴对称。
二、函数对称性的几个重要结论(一)函数)(x f y =图象本身的对称性(自身对称)若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。
推论1:)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称 2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数 3、函数)(x f y =与()y f x =-图象关于X 轴对称4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称(三)抽象函数的对称性与周期性1、抽象函数的对称性性质1 若函数y=f(x)关于直线x=a轴对称,则以下三个式子成立且等价:(1)f(a+x)=f(a-x) (2)f(2a-x)=f(x) (3)f(2a+x)=f(-x)性质2 若函数y=f(x)关于点(a,0)中心对称,则以下三个式子成立且等价:(1)f(a+x)=-f(a-x)(2)f(2a-x)=-f(x)(3)f(2a+x)=-f(-x) 易知,y=f(x)为偶(或奇)函数分别为性质1(或2)当a=0时的特例。
2、复合函数的奇偶性定义1、若对于定义域内的任一变量x,均有f[g(-x)]=f[g(x)],则复数函数y=f[g(x)]为偶函数。
定义2、若对于定义域内的任一变量x,均有f[g(-x)]=-f[g(x)],则复合函数y=f[g(x)]为奇函数。
说明:(1)复合函数f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]而不是f[-g(x)]=f[g(x)],复合函数y=f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]而不是f[-g(x)]=-f[g(x)]。
(2)两个特例:y=f(x+a)为偶函数,则f(x+a)=f(-x+a);y=f(x+a)为奇函数,则f(-x+a)=-f(a+x)(3)y=f(x+a)为偶(或奇)函数,等价于单层函数y=f(x)关于直线x=a轴对称(或关于点(a,0)中心对称)3、复合函数的对称性性质3复合函数y=f(a+x)与y=f(b-x)关于直线x=(b-a)/2轴对称性质4、复合函数y=f(a+x)与y=-f(b-x)关于点((b-a)/2,0)中心对称推论1、复合函数y=f(a+x)与y=f(a-x)关于y轴轴对称推论2、复合函数y=f(a+x)与y=-f(a-x)关于原点中心对称4、函数的周期性若a是非零常数,若对于函数y=f(x)定义域内的任一变量x点有下列条件之一成立,则函数y=f(x)是周期函数,且2|a|是它的一个周期。
①f(x+a)=f(x-a) ②f(x+a)=-f(x) ③f(x+a)=1/f(x) ④f(x+a)=1/f(x)5、函数的对称性与周期性性质5 若函数y =f(x)同时关于直线x =a 与x =b 轴对称,则函数f(x)必为周期函数,且T =2|a -b|性质6、若函数y =f(x)同时关于点(a ,0)与点(b ,0)中心对称,则函数f(x)必为周期函数,且T =2|a -b|性质7、若函数y =f(x)既关于点(a ,0)中心对称,又关于直线x =b 轴对称,则函数f(x)必为周期函数,且T =4|a -b| 6、函数对称性的应用(1)若k y y h x x k h x f y 2,2),)(//=+=+=对称,则关于点(,即k x h f x f x f x f 2)2()()()(/=-+=+nk x h f x h f x h f x f x f x f n n n 2)2()2()2()()()(1121=-++-+-++++-(2)例题 1、1)1()(2121)(=-++=x f x f a a a x f xx)对称:,关于点(; 2)()(1012214)(1=-++--=+x f x f x x f x x )对称:,关于(1)1()2121)0,(11)(=+≠∈+=x f x f x R x x f ()对称:,关于(αα2、奇函数的图像关于原点(0,0)对称:0)()(=-+x f x f 。
3、若)(),()()2()(x f y x a f x a f x a f x f =+=--=则或的图像关于直线a x =对称。
设个不同的实数根,则有n x f 0)(=na x a x x a x x a x x x x n n n =-+++-++-+=+++)2()2()2(22221121 .),212(111a x x a x k n =⇒-=+=时,必有当用函数奇偶性、周期性与对称性解题的常见类型生分析问题与解决问题的能力有重要作用.下面通过实例说明其应用类型。
1.求函数值例1.(高考题)设)(x f 是),(+∞-∞上的奇函数,),()2(x f x f -=+当10≤≤x 时,x x f =)(,则)5.7(f 等于(-0.5) (2)()(4)(2)f x f x f x f x +=-+=-+得 4T =(A )0.5; (B )-0.5; (C )1.5; (D )-1.5.例2.(竞赛题)已知)(x f 是定义在实数集上的函数,且[])(1)(1)2(x f x f x f +=-+,,32)1(+=f 求)1989(f 的值.23)1989(-=f 。