函数的奇偶性、对称性与周期性总结,史上最全
(完整版)函数奇偶性、对称性、周期性知识点总结,推荐文档
抽象函数的对称性、奇偶性与周期性常用结论一.概念:抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于定义域内的每一个,都存在非零常数,使得()f x x T ()()f x T f x +=恒成立,则称函数具有周期性,叫做的一个周期,则(()f x T ()f x kT )也是的周期,所有周期中的最小正数叫的最小正周期。
,0k Z k ∈≠()f x ()f x 分段函数的周期:设是周期函数,在任意一个周期内的图像为C:)(x f y =),(x f y =。
把个单位即按向量[]a b T b a x -=∈,,)()(a b K KT x x f y -==轴平移沿在其他周期的图像:)()0,(x f y kT a ==平移,即得。
[]b kT a kT x kT x f y ++∈-=,),(2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若。
为偶函数则称)()()(x f y x f x f ==-分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。
2025届高考数学一轮复习讲义函数之 函数的奇偶性、周期性与对称性
f ( x + T )= f (做周期函数.非零
常数 T 叫做这个函数的周期.
(2)最小正周期
如果在周期函数 f ( x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫
做 f ( x )的⑩
注意
最小
正周期.
并不是所有的周期函数都有最小正周期,如 f ( x )=5.
1
f(x)= +|x|
4. 已知函数 f ( x )为R上的偶函数,且当 x <0时, f ( x )= x ( x -1),则当 x >0时,
f ( x )= x ( x +1)
.
5. 已知定义在R上的函数 f ( x )满足 f ( x )= f ( x -2),当 x ∈[0,2)时, f ( x )= x 2-4
x ,则当 x ∈[4,6)时, f ( x )=
x 2-12 x +32
.
[解析] 设 x ∈[4,6),则 x -4∈[0,2),则 f ( x -4)=( x -4)2-4( x -4)= x 2-12 x
+32.又 f ( x )= f ( x -2),所以函数 f ( x )的周期为2,所以 f ( x -4)= f ( x ),所以当 x
a |;
(2)若函数 f ( x )的图象既关于点( a ,0)对称,又关于点( b ,0)对称,则函数 f ( x )的周
期为2| b - a |;
(3)若函数 f ( x )的图象既关于直线 x = a 对称,又关于点( b ,0)对称,则函数 f ( x )的
周期为4| b - a |.
二、基础题练习
,那么
函数奇偶性、对称性与周期性有关结论
函数奇偶性、对称性与周期性奇偶性、对称性和周期性是函数的重要性质,下面总结关于它们的一些重要结论及运用它们解决抽象型函数的有关习题。
一、几个重要的结论(一)函数)(x f y =图象本身的对称性(自身对称)2、)2()(x a f x f -=⇔)(x f y =的图象关于直线a x =对称。
3、)2()(x a f x f +=-⇔)(x f y =的图象关于直线a x =对称。
4、)()(x b f x a f -=+⇔)(x f y =的图象关于直线22)()(b a x b x a x +=-++=对称。
5、b x a f x a f 2)()(=-++⇔)(x f y =的图象关于点),(b a 对称。
6、b x a f x f 2)2()(=-+⇔)(x f y =的图象关于点),(b a 对称。
7、b x a f x f 2)2()(=++-⇔)(x f y =的图象关于点),(b a 对称。
8、c x b f x a f 2)()(=-++⇔)(x f y =的图象关于点),2(c b a +对称。
(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称。
2、函数)(x f y =与)2(x a f y -=图象关于直线a x =对称3、函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称4、函数)(x a f y +=与)(x b f y -=图象关于直线0)()(=--+x b x a 对称 即直线2a b x -=对称 5、函数)(x f y =与)(x f y -=图象关于X 轴对称。
6、函数)(x f y =与)(x f y -=图象关于Y 轴对称。
7、函数)(x f y =与)(x f y --=图象关于原点对称(三)函数的周期性1、)()(x f T x f =+⇔)(x f y =的周期为T2、)()(b x b f a x f ++=+)(b a <⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+⇔)(x f y =的周期为a T 2= 6、)(1)(1)(x f x f a x f +-=+⇔)(x f y =的周期为a T 3= 7、1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 3= 8、)(1)(1)(x f x f a x f -+=+⇔)(x f y =的周期为a T 4= 9、)()()2(x f a x f a x f -+=+⇔)(x f y =的周期为a T 6=10、)(x f y =有两条对称轴a x =和b x =()b a <⇔)(x f y =周期)(2a b T -=11、)(x f y =有两个对称中心)0,(a 和)0,(b ⇔)(x f y =周期)(2a b T -=12、)(x f y =有一条对称轴a x =和一个对称中心)0,(b ⇔)(x f y =周期)(4a b T -=13、奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y =周期a T 4=。
函数的周期、对称公式大总结
函数的周期、对称公式一、函数的周期性(识别方法:看括号里面的x 系数相同为周期)()()()..1a b x f b x f a x f -+=+的周期为,则若 ()()().2.2a x f x f a x f 的周期为,则若-=+ ()()().21.3a x f x f a x f 的周期为,则若=+()()().21.4a x f x f a x f 的周期为,则若-=+()()()().211.5a x f x f x f a x f 的周期为,则若+-=+()()()().411.6a x f x f x f a x f 的周期为,则若-+=+()()()().62.7a x f x f a x f a x f 的周期为,则若-+=+二、函数的轴对称(识别方法:看括号里面的x 系数相反为对称,若f()外的系数相同则为轴对称,简称对称轴)()()()()()()()()()()()()()().2.4.2.3..2.22.1对称的图象关于直线对称的图象关于直线对称的图象关于直线对称图象关于直线若a x x f y x a f x f a x x f y x a f x f a x x f y x a f x a f b a x b x a x x f y x b f x a f ==⇔+=-==⇔-===⇔-=++=-++==⇔-=+三、函数的点对称(识别方法:看括号里面的x 系数相反为对称,若f()外的系数相反则为点对称,简称对称中心)()()()()()()()()()()()()()()()()()()().0,.5.,22.4.,22.3.,2.2.,22.1对称的图象关于点对称的图象关于点对称的图象关于点对称的图象关于点对称图象关于点若a x f y x a f x a f b a x f y b x a f x f b a x f y b x a f x f b a x f y b x a f x a f c b a x f y c x b f x a f =⇔--=+=⇔=++-=⇔=-+=⇔=-++⎪⎭⎫⎝⎛+=⇔=-++四、奇偶性的拓展()().)0,()()(,.2;.1对称关于件是是奇函数的充分必要条对于任意对称关于件是是偶函数的充分必要条,对于任意a x f y a x f x a x x f y a x f x =+==+五、对称与周期的关系()()().2.1a b x f b x a x x f -==的周期为对称,则、关于直线若函数两线对称型()()()()().20,0,.2a b x f b a x f -的周期为对称,则、点关于点若函数两点对称型()()()().40,.3a b x f b a x x f -=的周期为对称,则及点关于直线若函数一线一点对称型六、对称与周期常用的小结论.2)()()(.1对称还关于对称,那么关于直线,且的周期为若Ta x x f a x x f T x f ±==().02)(0,)()(.2对称,还关于对称,那么关于点,且的周期为若⎪⎭⎫ ⎝⎛±T a x f a x f T x f(在已有的对称轴,对称中心上加减半个周期即可得到新的对称轴与对称中心)七、三种关系的转化(已知其一必写其二,总有一个能用于解题)()()()为偶函数对称关于直线已知a x f x a f x a f a x x f +⇔-=+⇔=)(.1。
函数的奇偶性周期性和对称性
返回目录
退出
奇偶函数的性质
(1) 奇函数在对称区间上的单调性相同,偶 函数在对称区间上的单调性相反。 (2) 奇函数如果在x=0有意义,则f(0)=0。 (3) 奇函数的最大值与最小值互为相反数。
返回目录
退出
2.周期性 (1)周期函数:对于函数 y=f(x),如果存在一个非零常数 T,使得当 x 取定 义域内的任何值时,都有 f(x+T)= f(x) ,那么就称函数 y=f(x)为周期函数, 称 T 为这个函数的周期. (2)最小正周期:如果在周期函数 f(x)的所有周期中 存在一个最小的正 数,那么这个 最小正数就叫做 f(x)的最小正周期.
B.
2 3
C. D.1
4
3
3.函数 f(x)=(m-1)x +2mx+3 为偶函数,则 f(x)在区间(-5,-3)上( A.先减后增 B.先增后减 C.单调递减 D.单调递增
D ).
返回目录
退出
4.若 f(x)是 R 上周期为 5 的奇函数,且满足 f(1)=1,f(2)=2,则 f(3)-f(4)=( A ). A.-1 B.1 C.-2 D.2
返回目录
退出
1.函数 f(x)= -x 的图象关于(
������
1
C
).
A.y 轴对称 B.直线 y=-x 对称 C.坐标原点对称 D.直线 y=x 对称
返回目录
退出
������ 2.若函数 f(x)= 为奇函数,则 a=( (2������+1)(������-������)
A
).
A.
1 2
2
1.
3
2
23 .奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单 调性相同,偶函数在关于原点对称的区间上的单调性相反.
函数奇偶性对称性周期性知识点总结文档
函数奇偶性对称性周期性知识点总结文档函数的奇偶性、对称性和周期性是函数图像特征的重要方面。
在数学中,研究函数的这些特性可以帮助我们更好地理解函数的行为和性质。
本文将对函数的奇偶性、对称性和周期性进行总结。
一、函数的奇偶性奇偶性是指函数关于坐标原点或者其中一点的对称性。
如果函数f(x)满足f(x)=f(-x),则称函数为偶函数;如果函数f(x)满足f(x)=-f(-x),则称函数为奇函数。
1.偶函数的特点:(1)关于y轴对称,即函数的图像关于y轴对称;(2)具有对称性质,即对于任意x,有f(x)=f(-x);(3)如果函数f(x)在定义域内可导,则偶函数的导函数也是偶函数。
2.奇函数的特点:(1)关于原点对称,即函数的图像关于原点对称;(2)具有对称性质,即对于任意x,有f(x)=-f(-x);(3)如果函数f(x)在定义域内可导,则奇函数的导函数也是奇函数。
二、函数的对称性对称性是指函数图像关于其中一直线、其中一点或者其中一中心进行对称的性质。
1.关于y轴对称:如果函数f(x)满足f(x)=f(-x),则函数关于y轴对称。
这意味着函数的图像在y轴左右对称。
2.关于x轴对称:如果函数f(x)满足f(-x)=-f(x),则函数关于x轴对称。
这意味着函数的图像在x轴上下对称。
3.关于原点对称:如果函数f(x)满足f(-x)=-f(-x),则函数关于原点对称。
这意味着函数的图像在原点对称。
三、函数的周期性周期性是指函数在一定区间内以一些特定的周期重复出现的性质。
1.周期函数:如果函数f(x)在定义域的一些区间内满足f(x+T)=f(x),其中T为正数,则称函数为周期函数,T为函数的周期。
周期函数的图像在段区间内重复出现。
2.周期函数的性质:(1)在一个周期内,函数具有相同的性质和特点;(2)相邻两个周期之间的函数值关系相同;(3)周期函数的图像在一个周期内是相似的。
四、函数的判断在实际问题中,我们根据函数的表达式或者图像来判断函数的奇偶性、对称性和周期性。
函数奇偶性对称性周期性知识点总结
函数奇偶性对称性周期性知识点总结函数的奇偶性、对称性和周期性是数学中经常研究的重要性质。
它们描述了函数的特征和性质,对于理解函数的行为和解决问题都具有重要意义。
下面将分别对这三个概念进行总结。
一、函数的奇偶性1.奇函数:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数为奇函数。
即函数在原点关于y轴对称。
奇函数的特点:-奇函数的图像关于原点(0,0)对称。
-当函数的定义域包括0时,即使x等于0,函数值仍然等于0。
常见的奇函数有:- 正弦函数sin(x)。
-奇数次幂的多项式函数,如x^3、x^5等。
2.偶函数:如果对于函数f(x),对任意的x,都有f(-x)=f(x),那么称该函数为偶函数。
即函数在原点关于x轴对称。
偶函数的特点:-偶函数的图像关于x轴对称。
-当函数的定义域包括0时,对于任意的x,f(0)=f(-x)=f(x)。
常见的偶函数有:- 余弦函数cos(x)。
-偶数次幂的多项式函数,如x^2、x^4等。
3.奇偶性的判断方法:-对于已知函数,可以通过代数运算证明是否满足奇偶性的定义。
-函数图像的轴对称性可以直接判断奇偶性。
-对于周期函数,可以利用周期性的性质判断奇偶性。
二、函数的对称性1.关于y轴对称:如果对于函数f(x),对任意的x,都有f(-x)=f(x),那么称该函数关于y轴对称。
即函数的图像左右对称。
2.关于x轴对称:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数关于x轴对称。
即函数的图像上下对称。
3.关于原点对称:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数关于原点对称。
即函数的图像关于原点对称。
三、函数的周期性1.周期函数:如果存在一个正实数T,对于函数f(x),对于任意的x,都有f(x+T)=f(x),那么称该函数为周期函数,T为函数的周期。
周期函数的特点:-周期函数在一个周期内的函数值是相同的。
专题——函数的奇偶性,周期性,对称性
专题1函数的奇偶性,周期性,对称性知识梳理【题型解读】【知识储备】一.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数关于y 轴对称奇函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数关于原点对称二.关于函数对称性的结论扩充1.若函数y =f (x )的图象关于x =a 对称⇔对定义域内任意x 都有f (a +x )=f (a -x )⇔对定义域内任意x 都有f (x )=f (2a -x )⇔y =f (x +a )是偶函数。
2.函数y =f (x )的图象关于点(a,0)对称⇔对定义域内任意x 都有f (a -x )=-f (a +x )⇔f (2a -x )=-f (x )⇔y =f (x +a )是奇函数。
3.若函数y =f (x )对定义域内任意x 都有f (x +a )=f (b -x ),则函数f (x )的图象的对称轴是x =a +b2。
4.若函数y =f (x )对定义域内任意x 都有f (a +x )+f (b -x )=c ,则函数f (x )的图象的对称中心为22a b c+(,)。
5.函数y =f (|x -a |)的图象关于x =a 对称。
三.关于函数周期性的结论扩充1.若满足f (x +a )=-f (x ),则f (x +2a )=f ((x +a )+a )=-f (x +a )=f (x ),所以2a 是函数的一个周期(a ≠0)。
2.若满足f (x +a )=1f (x ),则f (x +2a )=f ((x +a )+a )=1f (x +a )=f (x ),所以2a 是函数的一个周期(a ≠0)。
3.若函数满足f (x +a )=-1f (x ),同理可得2a 是函数的一个周期(a ≠0)。
专题05 函数周期性,对称性,奇偶性问题(学生版)-2024年高考二级结论速解技巧
f (a + x)= f (a − x)
最常逆应用:若 y
=
f (x) 关于 x
=
a
对称:可得到如下结论中任意一个:
f= ( x)
f (2a − x)
;
f (−x=) f (2a + x)
周期性与对称性记忆口诀:同号周期,异号对称.
(2)点对称:若 f (a + x) =− f (b − x) + c ,则 y = f (x) 的图象关于点 ( a + b , c ) 对称. 22
C. f (2022) = 0
D. f (2023) = 2
三、填空题
6.(2023·四川南充·四川省南部中学校考模拟预测)已知函数 f ( x) 是定义在 R 上的奇函数,对任意的 x∈ R
都有
f
x
+
3 2
= − f
(
x)
,当
x
∈
−
3 4
,
0
时, = f ( x)
log2 (1+ x) ,则 f (2021) + f (2022) = _________
当 x ∈[−2, 0] 时, f= ( x)
1 x 3
+
b
,则
f
(log3 162)
= ___________.
11.(2023·全国·高三专题练习)已知定义在 R 上的函数 f (x) 满足 f (2 + x) =f (x) ,当 x ∈[0, 2]时,
f (x) = −x(x − 2) ,则方程 f (x) = lg x 有___________个根.
最常逆应用:若 y
函数的对称性与周期性(归纳总结)
∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1+2﹣1+0+(﹣1)+0=1,
∴f(1)+f(2)+f(3)+…+f(2012)
=[f(1)+f(2)+f(3)+…+f(2010)]+f(2011)+f(2012)=335×1+f(1)+f(2)
解:因为函数f(x+1)为偶函数,所以f(x+1)的对称轴为x=0,
所以f(x)的对称轴为x=1,所以f(x+1)=f(1﹣x),
又因为f(x)是R上的奇函数,所以f(x+1)=f(1﹣x)=﹣f(x﹣1),
所以f(x+2)=﹣f(x),f(x+4)=﹣f(x+2)=f(x),所以f(x)的周期为4,
(3)若函数 满足: ,则 的图象的对称中心为________.
【解析】⑴ ;⑵ ;⑶ .
3.4函数的周期性
知识点睛
1.对于函数 ,如果存在一个非零常数 ,使得当 取定义域内的每一个值时,都有
,那么函数 就叫做周期函数.非零常数 叫做这个函数的一个周期.
2.如果周期函数 的所有周期中存在一个最小的正数,那么这个最小的正数就叫做 的最小正周期.
故选:C.
8.(2016•新课标Ⅱ)已知函数f(x)(x∈R)满足f(x)=f(2﹣x),若函数y=|x2﹣2x﹣3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则 xi=( )
A.0B.mC.2mD.4m
函数的奇偶性对称性与周期性总结史上最全
函数的奇偶性对称性与周期性总结史上最全1.函数的奇偶性在介绍函数的奇偶性之前,我们先来回顾一下函数的定义。
函数是一种映射关系,它将一个集合的元素映射到另一个集合的元素上。
在数学中,常用的函数表示方法是y=f(x),其中x表示自变量,y表示因变量。
一个函数被称为奇函数,当且仅当对于任意x,f(-x)=-f(x)成立。
换句话说,奇函数关于y轴对称。
例如,y=x^3就是一个奇函数,因为f(-x)=(-x)^3=-x^3=-f(x)。
一个函数被称为偶函数,当且仅当对于任意x,f(-x)=f(x)成立。
换句话说,偶函数关于y轴对称。
例如,y=x^2就是一个偶函数,因为f(-x)=(-x)^2=x^2=f(x)。
有些函数既不是奇函数也不是偶函数,它们被称为非奇非偶函数。
例如,y=x是一个非奇非偶函数,因为f(-x)=-x=-f(x)不成立,f(-x)也不等于f(x)。
2.函数的对称性函数的对称性是指函数图像在其中一种变换下保持不变。
常见的对称性有关于y轴对称、关于x轴对称和关于原点对称。
关于y轴对称是指函数图像关于y轴对称,即对于任意的x,f(-x)=f(x)。
这时函数的奇偶性可以被判断出来,如果f(-x)=f(x),则函数是一个偶函数;如果f(-x)=-f(x),则函数是一个奇函数。
关于x轴对称是指函数图像关于x轴对称,即对于任意的x,f(x)=f(-x)。
这时函数可以被看作是一个非奇非偶函数。
关于原点对称是指函数图像关于原点对称,即对于任意的x,f(x)=-f(-x)。
这时函数可以被看作是一个非奇非偶函数。
3.函数的周期性一个函数被称为周期函数,当且仅当存在一个正数T,对于任意的x,f(x+T)=f(x)成立。
换句话说,函数的值在周期T内不发生变化。
周期函数的最小正周期被称为函数的周期。
周期函数是一类特殊的函数,它在一些范围内不断重复。
我们可以通过观察函数的图像来判断函数是否具有周期性。
如果函数的图像在一个范围内不断重复,则函数是一个周期函数;如果函数的图像没有重复的部分,则函数是一个非周期函数。
函数的奇偶性、周期性、对称性
【知识梳理】 一、函数的奇偶性
1.函数奇偶性的定义:函数 f (x) 的定义域必须关于原点对称,对定义域内的任意一个 x 都满足
① f (x) f (x) 函数 f (x) 为偶函数;
② f (x) f (x) f (x) f (x) 0 函数 f (x) 为奇函数. 2.奇函数的图像关于原点对称,偶函数的图像关于 y 轴对称;反过来如果一个函数的图像关于原点对称,
②函数 y f (x) 的图像关于点 (a,0) 对称 f (x) f (2ax) f (a x) f (a x) .
③函数 y f (x) 满足 f (a x) f (b x) ,则 y f (x) 的图像关于直线 x ba 对称. 2
④若函数 y f (x) 对定义域中任意 x 均有 f (a x) f (b x) c 0 ,则函 b](0 a b) 上单调递增(减),则 f (x) 在区间[b, a] 上也是单调递增(减);
③偶 函数 在 关于 原 点 对称 的 区间 上 若有 单 调 性, 则 其单 调 性恰 恰 相反 .即 偶函 数 f (x) 在 区间
[a, b](0 a b) 上单调递增(减),则 f (x) 在区间[b, a] 上也是单调递减(增);
( a b , c ) 成中心对称图形. 22
5.高中涉及对称性问题的几个基本函数的对称轴、对称中心的问题 ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直 线均为它的对称轴. ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直 线均为它的对称轴.
④ 任 意 定 义 在 R 上 的 函 数 f (x) 都 可 以 唯 一 地 表 示 成 一 个 奇 函 数 与 一 个 偶 函 数 的 和 . 即
函数奇偶性、对称性与周期性结论汇总
函数奇偶性、对称性与周期性结论汇总奇偶性、对称性和周期性是函数的重要性质,下面总结关于它们的一些重要结论及运用它们解决抽象型函数的有关习题。
一、几个重要的结论(一)函数)(x f y =图象本身的对称性(自身对称)1、)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称。
2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称。
3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称。
4、)()(x b f x a f -=+ ⇔)(x f y =的图象关于直线22)()(b a x b x a x +=-++=对称。
5、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称。
6、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称。
7、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称。
8、c x b f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),2(c b a +对称。
(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称。
2、函数)(x f y =与)2(x a f y -=图象关于直线a x =对称3、函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称4、函数)(x a f y +=与)(x b f y -=图象关于直线0)()(=--+x b x a 对称,即直线2a b x -=对称 5、函数)(x f y =与)(x f y -=图象关于X 轴对称。
6、函数)(x f y =与)(x f y -=图象关于Y 轴对称。
函数的基本性质(奇偶性、单调性、周期性、对称性)
函数的性质(奇偶性、单调性、周期性、对称性)“定义域优先”的思想是研究函数的前提,在求值域、奇偶性、单调性、周期性、换元时易忽略定义域,所以必须先考虑函数的定义域,离开函数的定义域去研究函数的性质没有任何意义。
1. 奇偶性奇偶性的判定法:首先考察定义域是否关于原点对称,再计算f(-x)与f(x)之间的关系:①f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数; ②f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇; ③f(-x)÷f(x)=1是偶;f(x)÷f(-x)=-1为奇函数. (1)若定义域关于原点对称(2)若定义域不关于原点对称 非奇非偶 例如:3x y =在)1,1[-上不是奇函数 常用性质:1.0)(=x f 是既奇又偶函数;2.奇函数若在0=x 处有定义,则必有0)0(=f ; 3.偶函数满足)()()(x f x f x f =-=;4.奇函数图象关于原点对称,偶函数图象关于y 轴对称;5.0)(=x f 除外的所有函数的奇偶性满足:(1)奇函数±奇函数=奇函数 偶函数±偶函数=偶函数 奇函数±偶函数=非奇非偶(2) 奇函数×奇函数=偶函数 偶函数×偶函数=偶函数 奇函数×偶函数=奇函数6.任何函数)(x f 可以写成一个奇函数2)()()(x f x f x --=ϕ和一个偶函数2)()()(x f x f x -+=ψ的和。
2. 单调性 定义:函数定义域为A ,区间,若对任意且①总有则称在区间M 上单调递增②总有则称在区间M 上单调递减应用:(一)常用定义法来证明一个函数的单调性一般步骤:(1)设值(2)作差(3)变形(4)定号(5)结论 (二)求函数的单调区间定义法、图象法、复合函数法、导数法(以后学) 注:常用结论(1) 奇函数在对称区间上的单调性相同 (2) 偶函数在对称区间上的单调性相反 (3) 复合函数单调性-------同增异减3. 周期性(1)一般地对于函数,若存在一个不为0的常数T ,使得一切值时总有,那么叫做周期函数,T 叫做周期,kT (T 的整数倍)也是它的周期(2)如果周期函数在所有周期中存在一个最小正数,就把这个最小正数叫最小正周期。
函数性质专题 函数的奇偶性、周期性、对称性
函数性质专题 函数的奇偶性、周期性、对称性第一部分 函数的奇偶性一、奇偶函数的定义 偶函数 奇函数定义 设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I且f (-x )=f (x ),那么函数f (x )就叫做偶函数且f (-x )=-f (x ),那么函数f (x )就叫做奇函数 图象特征 关于y 轴对称 关于原点对称一、函数的奇偶性常用结论1、奇(偶)函数定义的等价形式①f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数; ②f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数. 2、如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0.如果函数f (x )是偶函数,那么f (x )=f (|x |).3、在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.二、函数的奇偶性常见题型(一)函数奇偶性的判断例1判断下列函数的奇偶性.(1)f (x )=x 3-1x; (2)f (x )=x 2-1 +1-x 2 ;(3)f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x >0,x 2+2x -1,x <0.跟踪练习1、下列函数中为偶函数的是( )A .f (x )=2x +1B .f (x )=x 3+xC .f (x )=1x 2 D .f (x )=x +1x2、函数f (x )=1x -x 的图像( )A .关于y 轴对称B .关于直线y =x 对称C .关于坐标原点对称D .关于直线y =-x 对称3、已知函数f (x )=x ·|x |-2x ,则下列结论正确的是( )A .f (x )是偶函数,递增区间是(-∞,0)B .f (x )是偶函数,递减区间是(-∞,1)C .f (x )是奇函数,递减区间是(-1,1)D .f (x )是奇函数,递增区间是(0,+∞)4、设函数f (x )=1-x1+x ,则下列函数中为奇函数的是( )A .f (x -1)-1B .f (x -1)+1C .f (x +1)-1D .f (x +1)+15、设函数f (x )在(-∞,+∞)内有定义,下列函数必为奇函数的是( )A .y =-|f (x )|B .y =xf (x 2)C .y =-f (-x )D .y =f (x )+f (-x )6、已知函数f (x )=9-x 2|6-x |-6,则函数f (x )( )A .既是奇函数也是偶函数B .既不是奇函数也不是偶函数C .是奇函数,但不是偶函数D .是偶函数,但不是奇函数7、已知定义在R 上的函数f (x )满足对任意x 1,x 2∈R ,有f (x 1+x 2)=f (x 1)+f (x 2)-1,则() A .f (x )是偶函数 B .f (x )是奇函数C .f (x )-1是偶函数D .f (x )-1是奇函数8、(多选)下列函数是奇函数的是( )A .y =2x 2-3B .y =x 3C .y =x 2,x ∈[0,1]D .y =x9、(多选)下列说法中正确的是( )A .图象关于坐标原点对称的函数是奇函数B .图象关于y 轴对称的函数是偶函数C .函数y =x 2在x ∈(0,+∞)上是偶函数D .若函数f (x )为奇函数,则一定有f (0)=010、(多选)已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( )A .y =f (|x |)B .y =f (-x )C .y =xf (x )D .y =f (x )+x11、(多选)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的有( )A .f (x )g (x )是偶函数B .|f (x )|+g (x )是偶函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数12、(多选)如果f (x )是定义在R 上的奇函数,那么下列函数中,一定为具有奇偶性的函数的是( )A .y =x +f (x )B .y =xf (x )C .y =x 2+f (x )D .y =x 2f (x )13、(多选)函数f (x )的定义域为R ,且f (x )与f (x +1)都为奇函数,则( )A .f (x -1)为奇函数B .f (x )为周期函数C .f (x +3)为奇函数D .f (x +2)为偶函数14、判断下列函数的奇偶性:(1)f (x )=3-x 2+x 2-3;(2)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0;15、判断下列函数的奇偶性:(1)f (x )=x 3-x 2x -1; (2)f (x )=x 2-x 3;(3)f (x )=|x -2|-|x +2|;(4)f (x )=x 2+a x(x ≠0,a ∈R).16、(1)已知函数f (x ),x ∈R ,若∀a ,b ∈R ,都有f (a +b )=f (a )+f (b ),求证:f (x )为奇函数;(2)已知函数f (x ),x ∈R ,若∀x 1,x 2∈R ,都有f (x 1+x 2)+f (x 1-x 2)=2f (x 1)·f (x 2),求证:f (x )为偶函数;(3)设函数f (x )定义在(-l ,l )上,证明:f (x )+f (-x )是偶函数,f (x )-f (-x )是奇函数.17、已知f (x )是定义在R 上的函数,设g (x )=f (x )+f (-x )2,h (x )=f (x )-f (-x )2. (1)试判断g (x )与h (x )的奇偶性;(2)试判断g (x ),h (x )与f (x )的关系;(3)由此你能猜想出什么样的结论?(二)根据奇偶性求函数值例2(2022·重庆模拟)已知函数f (x )=ax 5+bx 3+2,若f (2)=7,求f (-2)的值.跟踪练习1、(2022·青岛模拟)已知f (x )=x 5+ax 3+bx -8(a ,b 是常数),且f (-3)=5,则f (3)=( )A .21B .-21C .26D .-262、如图,给出奇函数y =f (x )的局部图像,则f (-2)+f (-1)的值为( )A.-2 B .2 C .1 D .03、已知f (x )为奇函数,在区间[3,6]上是增函数,且在此区间上的最大值为8,最小值为-1,则2f (-6)+f (-3)=( )A .-15B .-13C .-5D .54、已知f (x )=ax 3+bx +1(ab ≠0),若f (2019)=k ,则f (-2019)=( )A .kB .-kC .1-kD .2-k5、已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( )A .-3B .-54C .54D .36、已知定义在R 上的偶函数f (x )满足f (2-x )-f (x )=0,f (0)=3 ,则f (10)=________.7、已知y =f (x )是奇函数,当x <0时,f (x )=x 2+ax ,且f (3)=6,则a 的值为________.8、若函数f (x )=⎩⎪⎨⎪⎧g (x ),x <0,2x -3,x >0为奇函数,则f (g (-1))=________. 9、已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x (1+x ),则f (-1)=________.10、已知f (x )是奇函数,当x <0时,f (x )=x 2+2x ,则f (1)的值是________.11、若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0),f (1),f (-2)从小到大的排列是____________.(三)根据奇偶性求函数的解析式例3(1)已知y =f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (x -2),则当x <0时,求f (x )的表达式.(2)已知函数f (x )为偶函数,且当x <0时,f (x )=x +1,则x >0时,求f (x )的表达式跟踪练习1、(2022·广东模拟)已知函数f (x )是定义在R 上的奇函数,当x ∈(0,+∞)时,f (x )=x 2-x -1,则当x ∈(-∞,0)时,f (x )=________.2、已知函数f (x )是定义在R 上的奇函数,当x ≥0,f (x )=2x -2x +a ,则a =________;当x <0时,f (x )=_______.3、已知函数y =f (x )是定义在R 上的偶函数,当x ≤0时,f (x )=x (x +1),f (x )=_______.4、已知函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=x 2-2x .(1)求出函数f (x )在R 上的解析式;(2)画出函数f (x )的图像.5、已知函数f (x )=x 2-mx (m >0)在区间[0,2]上的最小值为g (m ).求函数g (m )的解析式;6、设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式.7、已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝⎛⎭⎫12=25. (1)求函数f (x )的解析式;(2)用定义证明f (x )在(-1,1)上是增函数;(3)解关于实数t 的不等式f (t -1)+f (t )<0.(四)函数奇偶性的应用例4已知定义在(-1,1)上的函数f (x )=x x 2+1. (1)试判断f (x )的奇偶性及在(-1,1)上的单调性;(2)解不等式f (t -1)+f (2t )<0.跟踪练习1、已知函数y =f (x )是定义在R 上的偶函数,当x ≤0时,f (x )=x (x +1),则下列说法正确的是( )A.函数f (x )有3个单调区间B .当x >0时,f (x )=x (x -1)C .函数f (x )有最小值14D .不等式f (x )<0的解集是(-1,1)2、已知定义在R 上的函数f (x )在(-∞,2)上单调递减,且f (x +2)为偶函数,则f (-1),f (4),f ⎝⎛⎭⎫112 的大小关系为( )A .f (4)<f (-1)<f ⎝⎛⎭⎫112B .f (-1)<f (4)<f ⎝⎛⎭⎫112 C .f ⎝⎛⎭⎫112 <f (4)<f (-1) D .f (-1)<f ⎝⎛⎭⎫112 <f (4) 3、定义在R 上的奇函数f (x )满足f (x -3)=-f (x ),当x ∈[0,3]时,f (x )=x 2-3x ,则以下关于f (x )的结论错误的是( )A .周期为6B .图象关于⎝⎛⎭⎫32,0 对称C .f (2 021)=2D .图象关于x =32对称 4、若函数f (x )(f (x )≠0)为奇函数,则必有( )A .f (x )·f (-x )>0B .f (x )·f (-x )<0C .f (x )<f (-x )D .f (x )>f (-x )5、(2022·白银模拟)已知f (x )=a x -2x (a ≠2)为奇函数,则“m <-12”是“f (m )>0”的( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件6、设f (x )是R 上的偶函数,且在[0,+∞)上单调递增,则f (-2),f (-π),f (3)的大小顺序是( )A .f (-π)>f (3)>f (-2)B .f (-π)>f (-2)>f (3)C .f (3)>f (-2)>f (-π)D .f (3)>f (-π)>f (-2)7、如果奇函数f (x )在[3,7]上单调递增且最小值为5,那么f (x )在区间[-7,-3]上( )A .单调递增且最小值为-5B .单调递减且最小值为-5C .单调递增且最大值为-5D .单调递减且最大值为-58、已知f (x )是定义在R 上的奇函数,且对任意的x ∈R 都有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=x 2+ax +b ,则a +b 等于( )A .0B .-1C .-2D .29、已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2)10、设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}11、已知定义在R 上的偶函数f (x )满足在[0,+∞)上单调递增,f (3)=0,则关于x 的不等式f (x +2)+f (-x -2)x>0的解集为( ) A .(-5,-2)∪(0,+∞)B .(-∞,-5)∪(0,1)C .(-3,0)∪(3,+∞)D .(-5,0)∪(1,+∞)12、设f (x )为偶函数,且在区间(-∞,0)内是增函数,f (-2)=0,则xf (x )<0的解集为( )A .(-1,0)∪(2,+∞)B .(-∞,-2)∪(0,2)C .(-2,0)∪(2,+∞)D .(-2,0)∪(0,2)13、(多选)(2022·岳阳质检)设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,也叫取整函数.令f (x )=x -[x ],以下结论正确的有( )A .f (-1.1)=0.9B .函数f (x )为奇函数C .f (x +1)=f (x )+1D .函数f (x )的值域为[0,1)14、(多选)已知定义在区间[-7,7]上的一个偶函数,它在[0,7]上的图象如图,则下列说法正确的有( )A .这个函数有两个单调递增区间B .这个函数有三个单调递减区间C .这个函数在其定义域内有最大值7D .这个函数在其定义域内有最小值-715、若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则a =________,函数g (x )=bx +a x,x ∈[-4,-1]的值域为________. 16、已知f (x )=ax 2+bx +1是定义在[a -1,2a ]上的偶函数,则a +b =________.17、若函已知f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a +b =________18、单调递减区间是_______.数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =________. 19、已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (2)=1,若f (x +a )≤1对x ∈[-1,1]恒成立,则实数a 的取值范围是________.20、若函数f (x -2)为奇函数,f (-2)=0,且f (x )在区间[-2,+∞)上单调递减,则不等式f (3-x )>0的解集为________.21、已知实数a ,b 满足(a -1)5+(b -3)5=2 020(1-a )3+2 020(3-b )3,则a +b =________.22、函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是________.23、(2022·福建质检)已知f (x )是定义在R 上的偶函数,其图象关于点(1,0)对称.以下关于f (x )的结论:①f (x )是周期函数;②f (x )在(0,2)上单调递减;③f (x )满足f (x )=f (4-x );其中正确的结论是________(写出所有正确结论的序号).24、设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π);(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成的图形的面积.25、已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值; (2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.26、设函数f (x )=x 2-2|x -a |+3,x ∈R .(1)王鹏同学认为,无论a 取何值,f (x )都不可能是奇函数.你同意他的观点吗?请说明你的理由;(2)若f (x )是偶函数,求a 的值;(3)在(2)的情况下,画出y =f (x )的图象并指出其单调递增区间.第二部分 函数的周期性一、函数周期的定义(1)周期函数:一般地,设函数f (x )的定义域为D ,如果存在一个非零常数T ,使得对每一个x ∈D 都有x +T ∈D ,且f (x +T )=f (x ),那么函数f (x )就叫作周期函数.非零常数T 叫作这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫作f (x )的最小正周期.二、函数周期性常用结论对f (x )定义域内任一自变量的值x :(1)若f (x +a )=-f (x ),则T =2a (a >0).(2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0). 三、函数周期性的应用例1定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2,当-1≤x <3时,f (x )=x ,则f (1)+f (2)+f (3)+…+f (2 023)等于( )A .336B .338C .337D .339跟踪练习1、(2022·重庆质检)已知函数f (x )是定义在R 上的奇函数,对任意的实数x ,f (x -2)=f (x +2),当x ∈(0,2)时,f (x )=x 2,则f ⎝⎛⎭⎫132等于( )A .-94B .-14 C.14 D.942、在R 上函数f (x )满足f (x +1)=f (x -1),且f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,|2-x |,0≤x <1, 其中a ∈R ,若f (-5)=f (4.5),则a =( )A .0.5B .1.5C .2.5D .3.53、定义在R 上的偶函数f (x )满足f (x +3)=f (x ).若f (2)>1,f (7)=a ,则实数a 的取值范围为( )A .(-∞,-3)B .(3,+∞)C .(-∞,-1)D .(1,+∞)4、(2022·宿州市模拟(一))已知f (x )是定义在R 上的奇函数,且满足f (x )=f (2-x ),当x ∈[0,1]时,f (x )=4x -1,则在(1,3)上,f (x )≤1的解集是( )A .⎝⎛⎦⎤1,32 B .⎣⎡⎦⎤32,52 C .⎣⎡⎭⎫32,3 D .[2,3)5、已知定义在R 上的函数f (x )满足f (-x )=-f (x ),f (3-x )=f (x ),则f (2 025)=( )A .-3B .0C .1D .36、已知函数y =f (x )是定义在R 上的奇函数,且满足f (2+x )+f (x )=0,当x ∈[-2,0]时,f (x )=-x 2-2x ,则当x ∈[4,6]时,y =f (x )的最小值为( )A .-8B .-1C .0D .17、已知函数f (x )的图象关于原点对称,且周期为4,f (3)=-2,则f (2 021)等于( )A .2B .0C .-2D .-48、已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2)9、已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎫x +32 ,f (-1)=1,f (0)=-2,且f ⎝⎛⎭⎫x -34 为奇函数,则下列说法错误的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )是周期为3的周期函数D .f (0)+f (1)+…+f (2 021)=010、函数f (x )满足f (x )=-f (x +4),若f (2)=3,则f (2 022)=( )A .3B .-3C .6D .2 02211、已知f (x )为R 上的偶函数,且f (x +2)是奇函数,则( )A .f (x )的图象关于点(2,0)对称B .f (x )的图象关于直线x =2对称C .f (x )的周期为4D .f (x )的周期为812、函数f (x )满足f (x )f (x +2)=13,且f (1)=2,则f (2 023)=________.13、若函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,f (x -1)-f (x -2),x >0,则f (2 023)=________. 14、函数f (x )满足f (x +1)=f (x -1),且f (x )为定义在R 上的奇函数,则f (2 021)+f (2 022)=________.15、已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点个数为________.16、已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x ),若函数f (x -1)的图象关于直线x =1对称,f (-6)=0,则f (2 022)=________.17、已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x ),若函数f (x -1)的图象关于直线x =1对称,f (-2)=2,则f (2 026)=_______.18、已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.19、设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式.第三部分 函数的对称性一、函数对称性常用结论(1)f (a -x )=f (a +x )⇔f (-x )=f (2a +x )⇔f (x )=f (2a -x )⇔f (x )的图象关于直线x =a 对称.(2)f (a +x )=f (b -x )⇔f (x )的图象关于直线x =a +b 2对称. f (a +x )=-f (b -x )⇔f (x )的图象关于点⎝⎛⎭⎫a +b 2,0对称.(3) f (2a -x )=-f (x )+2b ⇔f (x )的图象关于点(a ,b )对称.二、函数对称性的应用例已知函数y =f (x )-2为奇函数,g (x )=2x +1x,且f (x )与g (x )图象的交点分别为(x 1,y 1),(x 2,y 2),…,(x 6,y 6),则y 1+y 2+…+y 6=________.跟踪练习1、(2022·山东师大附中第二次月考)定义在R 上的奇函数f (x )满足f (x -3)=-f (x ),当x ∈[0,3]时,f (x )=x 2-3x ,则以下关于f (x )的结论错误的是( )A .周期为6B .图象关于⎝⎛⎭⎫32,0 对称C .f (2 021)=2D .图象关于x =32对称 2、已知函数f (x )的图象关于原点对称,且周期为4,f (3)=-2,则f (2 021)等于( )A .2B .0C .-2D .-43、已知f (x )是定义在R 上的奇函数,且对任意的x ∈R 都有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=x 2+ax +b ,则a +b 等于( )A .0B .-1C .-2D .24、(多选)(2022·湖北新高考9+N 联盟模拟)已知f (x )为R 上的偶函数,且f (x +2)是奇函数,则( )A .f (x )的图象关于点(2,0)对称B .f (x )的图象关于直线x =2对称C .f (x )的周期为4D .f (x )的周期为85、(2022·承德模拟)已知函数f (x )的定义域为R ,对任意x 都有f (2+x )=f (2-x ),且f (-x )=f (x ),则下列结论正确的是( )A .f (x )的图象关于直线x =2对称B .f (x )的图象关于点(2,0)对称C .f (x )的周期为4D .y =f (x +4)为偶函数6、已知定义在R 上的奇函数f (x )对∀x ∈R 都有f (x +2)=-f (x ),则下列判断正确的是( )A .f (x )是周期函数且周期为4B .f (x )的图象关于点(1,0)对称C .f (x )的图象关于直线x =-1对称D .f (x )在[-4,4]上至少有5个零点7、函数f (x )的周期为6,且f (x +2)为偶函数,当x ∈[0,2]时,f (x )=2x -1,则f (2 025)=________.8、已知函数f (x )满足对∀x ∈R ,有f (1-x )=f (1+x ),f (x +2)=-f (x ),当x ∈(0,1)时,f (x )=x 2+mx ,若f ⎝⎛⎭⎫352=12,则m =______.9、函数f (x )的周期为6,且f (x +2)为偶函数,当x ∈[0,2]时,f (x )=2x -1,则f (2 025)=______.10、已知函数f (x )满足:①f (0)=0;②在[1,3]上是减函数;③f (1+x )=f (1-x ).请写出一个满足以上条件的f (x )=_______.11、已知函数y =f (x )-2为奇函数,g (x )=2x +1x,且f (x )与g (x )图象的交点分别为(x 1,y 1),(x 2,y 2),…,(x 6,y 6),则y 1+y 2+…+y 6=________.12、函数y =f (x )对任意x ∈R 都有f (x +2)=f (-x )成立,且函数y =f (x -1)的图象关于点(1,0)对称,f (1)=4,则f (2 020)+f (2 021)+f (2 022)=________.13、若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则a =________,函数g (x )=bx +a x,x ∈[-4,-1]的值域为________.。
函数的奇偶性与周期性知识点总结
函数的奇偶性与周期性知识点总结函数是数学中一个重要的概念,它描述了两个变量之间的关系。
在学习函数的过程中,我们会遇到一些特殊的函数类型,包括奇函数、偶函数和周期函数。
本文将对这些函数类型的特点进行总结,并介绍函数的奇偶性和周期性的相关知识点。
一、奇函数和偶函数1. 奇函数:奇函数是指满足以下性质的函数:对于任意实数x,若f(-x) = -f(x),则函数f(x)为奇函数。
奇函数以原点对称,图像在坐标系的左右两侧关于原点对称。
例如,f(x) = x^3 和 f(x) = sin(x) 都是奇函数。
2. 偶函数:偶函数是指满足以下性质的函数:对于任意实数x,若f(-x) = f(x),则函数f(x)为偶函数。
偶函数以y轴对称,图像在坐标系的左右两侧关于y轴对称。
例如,f(x) = x^2 和 f(x) = cos(x) 都是偶函数。
二、奇偶性的性质1. 奇函数的性质:(1)奇函数的图像关于原点对称,即若点(x, y)在图像上,则点(-x, -y)也在图像上。
(2)奇函数的定义域可以是全体实数,也可以是一部分实数。
(3)奇函数的一个性质是:奇函数与偶函数的乘积仍为奇函数。
2. 偶函数的性质:(1)偶函数的图像关于y轴对称,即若点(x, y)在图像上,则点(-x, y)也在图像上。
(2)偶函数的定义域可以是全体实数,也可以是一部分实数。
(3)偶函数的一个性质是:奇函数与偶函数的乘积仍为偶函数。
三、周期函数周期函数是指在一定范围内,函数值呈现重复的规律性变化。
具体来说,对于函数f(x),存在一个正数T,使得对于任意实数x,有f(x+T) = f(x)。
T称为函数的周期,一个周期内的函数值是相同的。
例如,f(x) = sin(x) 和 f(x) = cos(x) 都是周期函数。
周期函数的性质:1. 周期函数的图像以某个区间为一个完整的重复单位。
2. 周期函数的定义域可以是全体实数,也可以是一部分实数。
3. 周期函数的一个重要性质是:周期函数与周期函数的乘积仍为周期函数。
最全最详细抽象函数的对称性、奇偶性和周期性常用结论
性质 1 若函数 y=f(x)关于直线 x=a 轴对称,则以下三个式子成立且等价: (1)f(a+x)=f(a-x) (2)f(2a-x)=f(x) (3)f(2a+x)=f(-x) 性质 2 若函数 y=f(x)关于点(a,0)中心对称,则以下三个式子成立且等价: (1)f(a+x)=-f(a-x) (2)f(2a-x)=-f(x) (3)f(2a+x)=-f(-x)
(2)例题
1、 f (x) a x 关于点( 1 ,1)对称: f (x) f (1 x) 1;
ax a
22
f
(x)
4x 2
1( 0,1)对称:
f
(x)
f
(x)
2
f
(x)
1 x
1
(
R, x
0)关于(1 ,1)对称:f(x) 22
f
(1) x
1
2、奇函数的图像关于原点(0,0)对称: f (x) f (x) 0 。
12、 y f (x) 有两个对称中心 (a,0) 和 (b,0) (b a) y f (x) 周期T 2(b a)
推论:奇函数 y f (x) 满足 f (a x) f (a x) y f (x) 周期T 4a
13、 y f (x) 有一条对称轴 x a 和一个对称中心 (b,0) (b a) f (x) 的T 4(b a)
3、若 f (x) f (2a x)或f (a x) f (a x), 则y f (x) 的图像关于直线 x a 对
称。设 f (x) 0有n个不同的实数根,则
x1 x2 xn x1 (2a x1) x2 (2a x2 ) xn (2a xn ) na .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的奇偶性、对称性与周期性常用结论,史上最全函数是高中数学的重点与难点,在高考数学中占分比重巨大。
高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。
本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。
需要WORD 电子文档的同学,可以入群领取。
1.奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。
①若为奇函数;则称)(),()(x f y x f x f =-=-()()()0,1()f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。
()()-()0,1()f x f x f x f x -==- 2.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y =[]a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x)()(kT x f x f x f函数周期性的几个重要结论2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+⇔)(x f y =的周期为a T 2=6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3=7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2= 8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4=9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6= 10、若.2, )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。
关于点与(函数),(0)2,2(0),b a y b x a F y x F =--= (2)轴对称:对称轴方程为:0=++C By Ax 。
①))(2,)(2(),(),(2222//BA C By AxB y B AC By Ax A x B y x B y x A +++-+++-=与点关于直线成轴对称;0=++C By Ax②函数))(2()(2)(2222B A C By Ax A x f B A C By Ax B y x f y +++-=+++-=与关于直线0))(2,)(2(0),(2222=+++-+++-=BA C By AxB y B AC By Ax A x F y x F 与0=++C By Ax 成轴对称。
③关于直线0=++C By Ax 成轴对称。
二、函数对称性的几个重要结论(一)函数)(x f y =图象本身的对称性(自身对称)若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。
推论1:)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称 2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数 3、函数)(x f y =与()y f x =-图象关于X 轴对称4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称(三)抽象函数的对称性与周期性1、抽象函数的对称性性质1 若函数y=f(x)关于直线x=a轴对称,则以下三个式子成立且等价:(1)f(a+x)=f(a-x) (2)f(2a-x)=f(x) (3)f(2a+x)=f(-x)性质2 若函数y=f(x)关于点(a,0)中心对称,则以下三个式子成立且等价:(1)f(a+x)=-f(a-x)(2)f(2a-x)=-f(x)(3)f(2a+x)=-f(-x) 易知,y=f(x)为偶(或奇)函数分别为性质1(或2)当a=0时的特例。
2、复合函数的奇偶性定义1、若对于定义域内的任一变量x,均有f[g(-x)]=f[g(x)],则复数函数y=f[g(x)]为偶函数。
定义2、若对于定义域内的任一变量x,均有f[g(-x)]=-f[g(x)],则复合函数y=f[g(x)]为奇函数。
说明:(1)复合函数f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]而不是f[-g(x)]=f[g(x)],复合函数y=f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]而不是f[-g(x)]=-f[g(x)]。
(2)两个特例:y=f(x+a)为偶函数,则f(x+a)=f(-x+a);y=f(x+a)为奇函数,则f(-x+a)=-f(a+x)(3)y=f(x+a)为偶(或奇)函数,等价于单层函数y=f(x)关于直线x=a轴对称(或关于点(a,0)中心对称)3、复合函数的对称性性质3复合函数y=f(a+x)与y=f(b-x)关于直线x=(b-a)/2轴对称性质4、复合函数y=f(a+x)与y=-f(b-x)关于点((b-a)/2,0)中心对称推论1、复合函数y=f(a+x)与y=f(a-x)关于y轴轴对称推论2、复合函数y=f(a+x)与y=-f(a-x)关于原点中心对称4、函数的周期性若a是非零常数,若对于函数y=f(x)定义域内的任一变量x点有下列条件之一成立,则函数y=f(x)是周期函数,且2|a|是它的一个周期。
①f(x+a)=f(x-a) ②f(x+a)=-f(x) ③f(x+a)=1/f(x) ④f(x+a)=1/f(x)5、函数的对称性与周期性性质5 若函数y =f(x)同时关于直线x =a 与x =b 轴对称,则函数f(x)必为周期函数,且T =2|a -b|性质6、若函数y =f(x)同时关于点(a ,0)与点(b ,0)中心对称,则函数f(x)必为周期函数,且T =2|a -b|性质7、若函数y =f(x)既关于点(a ,0)中心对称,又关于直线x =b 轴对称,则函数f(x)必为周期函数,且T =4|a -b| 6、函数对称性的应用(1)若k y y h x x k h x f y 2,2),)(//=+=+=对称,则关于点(,即k x h f x f x f x f 2)2()()()(/=-+=+nk x h f x h f x h f x f x f x f n n n 2)2()2()2()()()(1121=-++-+-++++-(2)例题 1、1)1()(2121)(=-++=x f x f a a a x f xx)对称:,关于点(; 2)()(1012214)(1=-++--=+x f x f x x f x x )对称:,关于(1)1()2121)0,(11)(=+≠∈+=x f x f x R x x f ()对称:,关于(αα2、奇函数的图像关于原点(0,0)对称:0)()(=-+x f x f 。
3、若)(),()()2()(x f y x a f x a f x a f x f =+=--=则或的图像关于直线a x =对称。
设个不同的实数根,则有n x f 0)(=na x a x x a x x a x x x x n n n =-+++-++-+=+++)2()2()2(22221121 .),212(111a x x a x k n =⇒-=+=时,必有当用函数奇偶性、周期性与对称性解题的常见类型生分析问题与解决问题的能力有重要作用.下面通过实例说明其应用类型。
1.求函数值例1.(高考题)设)(x f 是),(+∞-∞上的奇函数,),()2(x f x f -=+当10≤≤x 时,x x f =)(,则)5.7(f 等于(-0.5) (2)()(4)(2)f x f x f x f x +=-+=-+得 4T =(A )0.5; (B )-0.5; (C )1.5; (D )-1.5.例2.(竞赛题)已知)(x f 是定义在实数集上的函数,且[])(1)(1)2(x f x f x f +=-+,,32)1(+=f 求)1989(f 的值.23)1989(-=f 。