圆柱的体积公式的推导教学设计
数学人教版六年级下册圆柱体积公式的推导

1.引导发现
1)用“将圆转化成长方形来求出圆的面积”的 方法来推导圆柱的体积。 2)由于我们分的不够细,所以看起来还不太像 长方体;如果分成的扇形越多,拼成的立体 图形就越接近于长方体了。
2.引导学生推导出公式
长方体的底面积等于圆柱的底面积, 长方体的高 就是圆柱的高。(长方体的体积=底面积× 高,所以圆柱的体积=底面积×高,V=Sh)
2
c 22 h
应用 知识 教学 手记 本节课注重学生推导、表达等学习能力的培养,取得了较好的教学效果;不足之处是: 由于学生自由讨论、实践和思考的时间较多,练习的时间较少。
观察
交流 展示 一
一.小组交流 1.观察比较拼成的长方体和原来的圆柱,你能发 现什么? 2.根据你的发现,你能推导出圆体的公式吗?你 是怎么想的? 二.小组汇报 三. 练习: (1)一根圆形的木料,底面积为 75 厘米,长 90 厘米。它的体积是多少? (2)一个圆柱体的体积是 84 立方厘米,底面积 是 21 平方厘米,高是多少?
重点
导学 提纲
10cm
5dm 2.我们能不能将圆柱转化成学过的图形,计算出它的体积呢?你是怎么转化的? 3cm 2cm 5dm 3 .观察比较转化后的图形,你发现了什么? ( 提示圆柱拼成了近似的什么图形?它们之间有什么联系?它的底面积和高与圆柱的底面积 和高有什么关系呢?) 4.根据你的转化,你能推导出圆体的计算公式吗? 5.通过预习,你还有什么疑问? 教学活动及主要预设 学 案 导案 1.物体所占空间的大小叫做物体的体积 2.比较,引出共同公式:底面积×高 3.点明:转化法 思考:观察比较拼成的长方体和原来的圆 柱,你能发现什么?
课题 学习 目标
《圆柱的体积》教学案
《圆柱的体积》教学设计6篇

《圆柱的体积》教学设计6篇《圆柱的体积》教学设计6篇《圆柱的体积》教学设计1 教材简析:本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积,第十一册圆柱的体积公开课。
教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比拟找两个图形之间的关系,可推导出圆柱的体积计算公式。
教学目的:1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的才能4.借助实物演示,培养学生抽象、概括的思维才能。
教具:圆柱的体积公式演示教具,多媒体课件教学过程:一、情景引入1、出示圆柱形水杯。
〔1〕老师在杯子里面装满水,想一想,水杯里的水是什么形状的?〔2〕你能用以前学过的方法计算出这些水的体积吗?〔3〕讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
〔4〕说一说长方体体积的计算公式。
2、创设问题情景。
〔课件显示〕假如要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚刚那样的方法吗?刚刚的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。
〔出示课题:圆柱的体积〕〔设计意图:问题是思维的动力。
通过创设问题情景,可以引导学生运用已有的生活经历和旧知,积极考虑,去探究和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究气氛。
〕二、新课教学:设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,如今能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来讨论这个问题。
板书课题:圆柱的体积。
1.探究推导圆柱的体积计算公式。
《圆柱的体积》教学设计

《圆柱的体积》教学设计《圆柱的体积》教学设计1教学目标1、知识与技能:理解教材中形体转化的过程,掌握圆柱体积的计算公式,会用公式计算圆柱的体积,解决有关简单的实际问题。
拓展教材内容,初步了解直柱体的相关知识。
2、过程与方法:利用教材空间,为学生搭建思维平台。
让学生经历观察、想象、思考、交流等教学活动过程,理解圆柱体积计算公式的推导过程,提高学生思维能力,同时体验转化和极限的思想。
3、情感与态度:挖掘教材内涵,把图形的变换过程,转变为学生思维能力的培养、提高的过程,并进一步发展其空间观念,领悟学习数学的方法,激发学生学习兴趣,渗透事物是普遍联系的唯物辩证思想。
教学重点:理解圆柱体积计算公式的推导过程,运用圆柱体积计算公式准确解决实际问题。
教学难点:正确理解圆柱体积计算公式的推导过程。
教学过程一、情境导入:老师手拿一个圆柱形橡皮泥(大小适宜)。
1、师:通过前面的学习,关于圆柱你已经知道什么?还想了解它的哪些知识?生1:(已学知识)。
生2:圆柱是一种立体图形,那么它的体积怎么计算?【学情分析:在学习圆柱的认识和表面积的基础上,学生能够顺利回忆已学的知识,而且质疑提出即将学习的知识,明确学习目标,为本节课的学习找到思维与认知源泉。
】2、师:联系已经掌握的有关立体图形的知识,你能想办法求出这个圆柱体的体积吗?生1:圆柱体的体积计算没有学过,无法计算。
生2:将这个圆柱放入一个盛有水的长方体容器中,量出上升了的水的长、宽、高,就可以求出它的体积。
生3:圆柱体在水中必须完全浸没,而且水还不能溢出。
【学情分析:学生在五年级学习长方体、正方体有关知识的基础上,很容易想到运用“排水法”来解决问题,所以这一环节也充分给予学生展示自我的机会,培养思维中的自信心。
】教师在学生中找出小助手,帮助测量有关数据,全体同学计算水的体积,并作记载。
师:运用转化思想,联系已学知识,解决新生问题,同学们真了不起!【设计意图:学生的学习活动要建立在已有的知识和认知基础上,通过水的变形把圆柱的体积转化为长方体的体积来计算,使学生初步感知数学转化思想在解决问题中的价值,同时提高学生解决问题能力和思维能力。
《圆柱的体积》数学教学设计(优秀4篇)

《圆柱的体积》数学教学设计(优秀4篇)《圆柱的体积》数学教案篇一教学目标:1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力4、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。
教学过程:一、复习1、复习圆柱体积的推导过程长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。
2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、解决实际问题1、练习三第7题。
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2、练习三第5题。
(1)指导学生变换公式:因为V=Sh,所以h=VS。
也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习三第8题。
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习三第9、10题(1)学生独立审题,完成9、10两题。
(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。
利用这个底面积再求出另一个圆柱的体积。
三、布置作业完成一课三练的相关练习。
《圆柱的体积》数学教案篇二一、教学目标(一)知识与技能用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
小学数学圆柱的体积教案6篇

小学数学圆柱的体积教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、培训计划、心得体会、条据文书、活动方案、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of classic sample essays for everyone, such as work plans, work summaries, training plans, experiences, document documents, activity plans, emergency plans, teaching materials, essay summaries, other sample essays, etc. If you want to learn about different sample essay formats and writing methods, please stay tuned!小学数学圆柱的体积教案6篇教案是教师评估学生的学习成果和教学效果,为学生的个性化发展提供指导,有了教案教师对教学问题进行解决和处理,这有助于提高教师的问题管理能力,下面是本店铺为您分享的小学数学圆柱的体积教案6篇,感谢您的参阅。
圆柱的体积计算公式的推导教案

圆柱的体积计算公式的推导教案学科:数学年级:高中一年级学习目标:1.掌握圆柱的定义和性质。
2.理解圆柱的体积公式,并能够推导出该公式。
3.能够灵活运用圆柱的体积公式解决实际问题。
学习内容:1.圆柱的定义和性质。
2.推导圆柱的体积公式。
前置知识:1.平面几何的基本概念。
2.代数运算技巧,如因式分解和方程的变形。
学习活动:活动1:引入圆柱的定义和性质(15分钟)教师在黑板上绘制一个圆柱的示意图,并向学生介绍圆柱的定义和性质。
强调圆柱的底面是一个圆,圆柱的侧面是一个曲面,由底面上的所有点与相应高度上的直线连结而成。
活动2:体验探究圆锥的体积公式(35分钟)将一个圆柱垂直放置在一块白纸上,使用一支铅笔将圆柱在纸上投影。
接着,通过将纸沿着圆柱底面的边缘剪开,并将纸展开,将其投影折叠成一个长方形。
让学生观察并推测这个长方形的面积与圆柱的体积之间是否存在关联。
活动3:推导圆柱的体积公式(40分钟)步骤1:根据示意图,设圆柱的底面半径为r,高度为h。
将圆柱按照高度h切成n个薄片。
每个薄片的厚度为Δh=h/n,宽度为2πr。
步骤2:将第i个薄片通过旋转变成一个扇形,其弧长为2πr,半径为r。
步骤3:计算每个扇形的面积。
根据扇形的面积公式S=1/2*r*l,其中l为扇形的弧长,将弧长2πr代入,得到每个扇形的面积为S=1/2*r*2πr=πr²。
步骤4:计算每个薄片的体积。
每个薄片的体积为V=S*Δh=πr²*Δh。
步骤5:将所有的薄片的体积加起来,得到整个圆柱的体积。
根据数学定义的积分思想,用Σ表示求和运算,将每个薄片的体积求和,得到圆柱的体积公式V=Σ(πr²*Δh)。
步骤6:令n趋近于无穷大,即Δh趋近于0,用极限思想推导出圆柱的体积公式。
利用极限的性质,得到Δh趋近于0时,Σ(πr² * Δh)趋近于圆柱的体积V = ∫(πr² * dh)。
由于圆柱的高度是从0到h的,将积分上下限分别变为0和h,得到圆柱的体积公式V = ∫[0,h](πr² * dh)。
《圆柱的体积》数学教案

《圆柱的体积》数学教案《圆柱的体积》数学教案1圆柱的体积教材简析:本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。
教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。
教学目的:1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2。
会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3。
引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力4。
借助实物演示,培养学生抽象、概括的思维能力。
教具:圆柱的体积公式演示教具,多媒体课件教学过程:一、情景引入1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
(4)说一说长方体体积的计算公式。
2、创设问题情景。
(课件显示)如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。
(出示课题:圆柱的体积)(设计意图:问题是思维的动力。
通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究氛围。
)二、新课教学:设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。
板书课题:圆柱的体积。
1。
探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。
人教版六年级下册数学《圆柱的体积》教案6篇

人教版六年级下册数学《圆柱的体积》教案6篇人教版六年级下册数学《圆柱的体积》教案1教学目标圆柱的体积(1)圆柱的体积(教材第25页例5)。
探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。
教学重难点1.掌握圆柱的体积公式,并能运用其解决简单实际问题。
2.理解圆柱体积公式的推导过程。
教学工具推导圆柱体积公式的圆柱教具一套。
教学过程【复习导入】1.口头回答。
(1)什么叫体积?怎样求长方体的体积?(2)怎样求圆的面积?圆的面积公式是什么?(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。
2.引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。
今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?教师板书:圆柱的体积(1)。
【新课讲授】1.教学圆柱体积公式的推导。
(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。
(3)启发学生思考、讨论:①圆柱切开后可以拼成一个什么立体图形?学生:近似的长方体。
②通过刚才的实验你发现了什么?教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。
近似长方体的高就是圆柱的高,没有变化。
故体积不变。
(4)学生根据圆的面积公式推导过程,进行猜想:①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?(5)启发学生说出:通过以上的观察,发现了什么?①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。
《圆柱的体积》教学设计(精选9篇)

《圆柱的体积》教学设计(精选9篇)《圆柱的体积》数学教案篇一探究目标:1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。
2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。
3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。
4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。
教学重难点:学生会应用圆柱体积公式解决实际问题。
探究过程:一、迁移引入提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。
提问:如果已知的是底面半径和高,该怎么求呢?二、自主探究1、出示长方体鱼缸。
要计算这个长方体鱼缸能装多少水,就是求什么?怎样求这个长方体的容积呢?2、出示圆柱形鱼缸。
⑴估测。
这个圆柱形鱼缸的容积大约是多少?⑴操作、汇报。
如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。
学生可能的回答有:生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)生2:我们小组测量的是底面直径和高。
底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)生3:我们测量的是底面半径和高。
3.14×152×12=8478(立方厘米)⑴评价。
组织学生间进行评价。
你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。
⑴反思。
引导学生将实际计算结果与自己的估测结果进行对比。
自己矫正偏差。
⑴延伸。
如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?3、自学例题。
《圆柱的体积》教案(15篇)

《圆柱的体积》教案(15篇)《圆柱的体积》教案1教学目标:1、使同学掌控圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。
2、让同学经受观测、操作、争论等数学活动过程,理解圆柱体积公式的推导过程,引导同学探讨问题,体验转化和极限的思想。
3、在图形的变换中,培育同学的迁移技能、规律思维技能,并进一步进展其空间观念,领悟学习数学的方法,激发同学爱好,渗透事物是普遍联系的唯物辨证思想。
教学重点:圆柱体积计算公式的推导过程并能正确应用。
教学难点:借助教具演示,弄清圆柱与长方体的关系。
教具预备:多媒体课件、长方体、圆柱形容器假设干个;同学预备推导圆柱体积计算公式用学具。
教学设想:《圆柱的体积》是同学在有了圆柱、圆和长方体的相关的基础上进行教学的。
在知识与技能上,通过对圆柱的详细讨论,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经受和体验中思索,培育同学科学的思维方法;贴近同学生活实际,创设情境,解决问题,表达数学知识从生活中来到生活去的理念,激发同学的学习爱好和对科学知识的求知欲,使同学乐于探究,擅长探究。
教学过程:一、创设情境,激疑引入水是生命之源!节省用水是我们每个公民应尽的义务。
前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。
1、出示装了水的圆柱容器。
〔1〕启发思索:容器里面的水形成了什么外形?〔圆柱〕你能知道这些水的体积?〔2〕争论后汇报生1:用量筒或量杯径直量出它的体积;生2:用秤称出水的重量,然后进一步知道体积;生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。
师:现在老师只有这些工具〔圆柱形容器,长方形容器,半圆形容器和其他不规章容器〕,你怎么办?生1:把水到入长方体容器中生2:我们学过了长方体的体积计算,只要量出长、宽、高就行[设计意图:通过本环节,给同学创设一个生活中的情境,提出问题,学习身边的数学,激起同学的学习爱好;依据需要渗透圆柱体〔新问题〕和长方体〔已知〕的知识联系为所学内容作了铺垫的预备]2、创设问题情境。
圆柱的体积计算公式的推导

《圆柱的体积》教学设计教学目标:1、知识技能结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、引导学生逐步学会转化的数学思想和数学方法,培养学生解决实际问题的能力。
3、情感态度价值观通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论确实定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式。
教学难点:圆柱体积计算公式的推导过程[教学过程]一、回忆旧知,引出新知复习铺垫。
〔1〕复习长方体体积和正方体体积计算公式(2)提出问题:圆柱能否也运用同样的公式:底面积X高=体积二、自主探究学习新知〔一〕简单回忆圆的面积公式推导过程把一个圆平均分成假设干份,然后组合在一起,就可以得到一个近似长方形的图形。
这个圆的面积跟组合成的长方形的面积相等。
由此过渡到探究推导圆柱的体积计算公式〔二〕探究推导圆柱的体积计算公式1 “圆柱体的体积〞〕:〔1〕把圆柱的平均分成16份,拼成的图形近似于长方体。
〔2〕把圆柱的平均分成32份,拼成的图形更接近长方体。
〔3〕把圆柱的平均分成128份,拼成的图形越来越接近长方体。
〔4〕平均分成的份数越多,拼成的形状就越接近长方体。
2、推导圆柱的体积公式〔动画演示推导过程〕〔2〕用字母表示圆柱的体积公式。
因为长方体的体积=底面积×高↓↓↓所以圆柱的体积=底面积×高↓↓↓V = S h↓↓↓V=πr²h三、教学例题1、出示地面半径为2厘米,高为2厘米的圆柱。
2、引导学生根据公式V=πr²h×2²×24、算出结果得25.12〔cm³〕。
四、学生谈收获。
《圆柱的体积》教案【6篇】

《圆柱的体积》教案【6篇】《圆柱的体积》数学教案篇一第二课时教学目标1.经历同桌合作,测量、计算圆柱形物体体积的过程。
2.会测量圆柱形物体的有关数据,能根据圆柱的高及底面直径或周长计算圆柱的体积。
3.能与同伴合作寻找解决问题的有效方法,能表达解决问题的大致过程和结果。
教学重点能根据学生自己测量的数据进行圆柱体积的计算。
教学难点给出圆柱底面周长如何计算圆柱的体积。
教具准备学生自备的茶叶筒或露露瓶。
教学过程一、测量茶叶筒的体积1.师:同学们,我们要想计算这个茶叶筒的体积,应该首先知道哪些数据?生:茶叶筒的高,底面直径或半径。
师:很好,那么我们就来亲手量一量你们手里的圆柱体的各个数据,并计算出它们的体积。
学生同桌合作测量并计算。
2.交流测量数据的方法和计算的结果。
3.刚才同学大部分都测量的是茶叶筒的高和直径或半径,有没有测量茶叶筒的底面周长的?如果有,就说说是怎么测量和计算的。
如果没有,就提示大家,如果给出了圆柱底面周长,怎样计算圆柱的体积呢?生:利用周长先求出半径,再进行计算。
师:你们会不会测量茶叶筒的底面周长呢?如果已经忘记,就进行一下提示:在圆柱的底面上做一标记,然后把圆柱体在直尺上进行滚动。
或用皮尺测量。
请大家实际测量一下底面周长,并进行计算,看看和刚才计算的结果是否一致。
二、巩固练习1.一根圆柱形水泥柱子,它的底面周长是6.28分米,高200分米,求它的体积?2.独立完成练一练的1-3题。
三、家庭作业1.练一练的第4小题。
2.①一个圆柱的的体积是141.3立方厘米,底面半径3厘米,它的高是多少厘米?②一根圆柱形钢材,截下2米,量得它的横截面的直径是4厘米,如果每立方厘米钢重7.8克,截下的这段钢材重多少克?圆柱的体积第三课时容积教学目标1.结合具体事例,经历探索容积计算问题的过程。
2.掌握计算容积的方法,能解决有关容积的简单实际问题。
3.在解决容积问题的过程中,体验数学与日常生活的密切联系。
《圆柱的体积》教案5篇

《圆柱的体积》教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《圆柱的体积》教案5篇作为一名为他人授业解惑的教育工作者,时常需要准备好教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
《圆柱的体积》教案八篇

《圆柱的体积》教案八篇《圆柱的体积》教案篇1最近,本人在《小学教学设计》看到一则“圆柱的体积”教学实录精彩片段,它以一种全新的视角诠释了新课标所倡导的理念,给我留下了较为深刻的印象。
现把它撷取下来与各位同行共赏。
……师:圆柱有大有小,你觉得圆柱体积应该怎样计算呢?生:(绝大部分学生举起了手)底面积乘高。
师:那你们是怎样理解这个计算方法的呢?生1:我是从书上看到的。
(举起的手放下了一大半。
很明显,大部分同学都看到或听到这个结论,并不理解实质的涵义。
但仍有几位学生的手高高举起,跃跃欲试,脸上的神情告诉老师:他们有更高明的答案。
老师便顺水推舟,让他们来讲。
)生2:我是这样思考的:长方体、正方体和圆柱体它们都是立体图形,体积都是指它们所占空间的大小。
而长方体、正方体的体积都可以用底面积乘高来计算,所以我想计算圆柱体的体积时也应该可以用底面积乘高吧!师:你能迅速地把圆柱体与以前学过的长方体、正方体联系起来,进而联想到圆柱体的体积计算方法。
真行!当然这仅是你的猜测,要是再能证明就好了。
生3:我可以证明。
推导长方体体积公式时,我们是采用摆体积单位的方法,用每层个数(底面积)×层数(高)现在求圆柱体积我们也可以沿袭这种思路,在圆柱体内部同样摆上合适的体积单位,用每层个数×层数,每层的个数也就是它的底面积,摆的层数也就是高。
那不就证明了圆柱体积的计算公式就是用底面积乘高吗?(教室里立刻响起了热烈的掌声,许多同学被他精彩的发言折服了,理性的思维散发出诱人的魅力。
)师:你真聪明,能用以前学过的知识解决今天的难题!(这时举起的手更多了。
)生4:我有个想法不知是否可行、在推导圆面积计算方法时,我们是把圆转化成了长方形,圆柱的底面就是一个圆,所以我就想是否可以把圆柱体转化成长方体呢?师:(翘起了大拇指)你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。
生5:我还有一种想法:我们可以把圆柱体看成是无数个同样大小的圆片叠加而成的。
《圆柱的体积》教案范文(通用5篇)

《圆柱的体积》教案《圆柱的体积》教案范文(通用5篇)作为一名老师,时常会需要准备好教案,教案有助于顺利而有效地开展教学活动。
那要怎么写好教案呢?以下是小编整理的《圆柱的体积》教案范文(通用5篇),希望能够帮助到大家。
《圆柱的体积》教案1教学目标:1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。
2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。
教学重点:理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。
教学准点:掌握圆柱体积公式的推导过程。
教学准备:圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。
教学过程:一、情境激趣导入新课1、课始师首先出示一个长方体和一个正方体,说说怎样求它们的体积,接着师往正方体容器中倒入一定量的水,然后拿出一个圆柱形物体准备投入水中并让学生观察:有什么现象发生?由这个发现你想到了些什么?2、提问:“能用一句话说说什么是圆柱的体积吗?”(板书课题)二、自主探究,学习新知(一)设疑1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式(二)猜想1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?(三)验证1、为了证实刚才的猜想,我们可以通过实验来验证。
怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。
(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。
《圆柱的体积》教案

《圆柱的体积》教案五篇教学目标:1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。
2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。
3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式进行正确计算。
教学难点:理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。
教学过程:一、情景导入:1、教师:(出示)多么温馨的场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗?学生:1、比平日多了两个蛋糕。
2、两个蛋糕一个大一个小。
3、蛋糕都是圆柱形的。
2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗?学生:蛋糕大,意味着圆柱的体积大。
3、教师:那你还知道什么是圆柱的体积吗?学生:圆柱的体积就是圆柱体占空间的大小。
4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢?学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的方法并展示。
教师:板书:圆柱的体积二、课上探究1、教师:同学们回忆一下我们还学过那些立体图形?学生:还学过正方体和长方体。
教师:它们的体积怎样计算?(多媒体出示长方体)有什么共同点?学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。
2、猜测圆柱的体积与什么有关师:拿出圆柱体,让学生猜想圆柱体积与什么有关。
圆柱体积计算公式的推导

《圆柱体积计算公式的推导》教学设计新城镇中心小学余琼艳六年级(3)班教学目的1.让学生经历观察、操作、讨论等教学活动过程,理解圆柱体积计算公式的推导过程,并会正确地计算圆柱的体积.2.在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念.3.引导学生探索和解决问题,体验转化及极限的思想方法.教学过程一、情景引入1.出示橡皮泥捏成的圆柱.提问:你有办法求出这个圆柱形橡皮泥的体积吗?(把它捏成长方体或是正方体就可以计算了.)反馈时,着重引导学生说说转化的过程及长方体体积计算的方法.2.出示圆柱形模型.提问:这个圆柱形的体积又该怎么求呢?(学生讨论后回答:把这个圆柱形投入装了水的长方体或正方体的容器中,求出上升部分水的体积.教师评价:刚才同学们都能想出办法,把一些圆柱形的物体转化成长方体或正方体,而后求出它们的体积.4.创设问题情境.(课件显示.)如果要求大厅里圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,你有办法吗?今天,就让我们一起来研究圆柱体积的计算方法.二、探究新知1.回顾旧知,帮助迁移.请大家想一想:在学习圆的面积时,我们是怎样把圆转化成已学的图形,来推导圆面积的计算公式的.配合学生的回答,课件动态演示:把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积的计算公式.2.小组合作,实践迁移.(1)启发:现在该怎样来计算圆柱的体积呢?能不能把圆柱转化成我们已学过的立体图形,来计算它的体积?学生相互讨论,思考应如何转化,而后组织全班汇报.(把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了.)(2)操作:学生操作学具,进行拼组.CAI课件动态演示拼组的过程,同时演示一组动画(将圆柱底面等分成32份、64份、128份……)让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体.(3)讨论:圆柱与所拼成的近似长方体之间有什么联系?学生分四人小组展开讨论.(4)汇报:近似长方体的体积等于圆柱的体积;近似长方体的底面积等于圆柱的底面积;近似长方体的高就是圆柱的高.(配合学生的回答演示课件,闪烁相应的部位,并板书相应内容.)(5)概括:试着让学生根据圆柱与近似长方体的关系,推导公式:长方体的体积=底面积×高↓↓↓圆柱的体积=底面积×高引导学生用字母表示计算公式:V=Sh3.运用新知,尝试解答例题.(1)尝试:学生理解题意后,自己尝试解答.(2)展示:将学生可能出现的三种情况展示于平台上.①50×2.1=105(立方厘米)②2.1米=210厘米50×210=10500(平方厘米)③2.1米=210厘米50×210=10500(立方厘米)(3)辨析:几号解答是完全正确的?为什么?组织学生讨论,明确必须先统一单位后再计算及计算体积应用体积单位.(4)拓展:如果已知圆柱底面的半径r和高h,该怎么来计算圆柱的体积呢?自己先写出计算公式,再相互交流.(先计算出底面积,再求出体积.公式是:V=πr2h)如果已知的是底面直径d和高h呢?三、巩固练习1.完成练习八的第1题.底面积S(平方米)高h(米)圆柱的体积V(立方米)15 36.4 4学生先独立填表,而后全班汇报.2.求下面圆柱的体积.(单位:厘米)学生独立完成,教师行间巡视,注意对部分学生给予必要的指导.3.实际运用.(返回课始部分课件,出示压路机图.)一个压路机的前轮是圆柱形,轮宽2.5米,半径1米.它的体积是多少立方米?独立完成后全班汇报,汇报时让学生先说说“轮宽”的意思,再汇报算式及结果.板书设计教学反思“圆柱体积计算公式的推导”是在学生已经学习了“圆的面积计算”、“长方体的体积”、“圆柱的认识”等相关的形体知识的基础上教学的.同时又是为学生今后进一步学习其他形体知识做好充分准备的一堂课.课始,教师创设问题情境,不断地引导学生运用已有的生活经验和旧知,探索和解决实际问题,并制造认知冲突,形成了“任务驱动”的探究氛围.展开部分,教师为学生提供了动手操作、观察以及交流讨论的平台,让学生在体验和探索空间与图形的过程中不断积累几何知识,以帮助学生理解现实的三维世界,逐步发展其空间观念.练习安排注重密切联系生活实际,让学生运用自己刚推导的圆柱体积计算公式解决引入环节中的两个问题,使其认识数学的价值,切实体验到数学存在于自己的身边,数学对于了解周围世界和解决实际问题是非常有作用的.教师无论是导入环节,还是新课部分都恰当地引导学生进行知识迁移,充分地让学生感受和体验“转化”这一解决数学问题重要的思想方法.同时,还合理地运用了多媒体技术,形象生动地展示了“分成的扇形越多,拼成的立体图形就越接近于长方体”,有机地渗透了极限的初步思想.。
圆柱体积公式的推导教学设计

《圆柱体体积公式的推导》教学设计曾明奉节县荆竹小学概述《圆柱体体积公式的推导》是小学数学人教版第十二册中第二单元中的一课时内容。
本节课,主要是利用旧知识的迁移,充分利用资源、学具等有效手段来进行教与学,培养学生积极的小组合作学习习惯,提高探究圆柱体体积的公式推导的兴趣,掌握圆柱体体积公式的推导过程,理解并掌握计算公式,并能根据公式解决生活中的实际问题,本节课的学习为学习圆锥体的体积计算奠定基础。
教学目标分析一、知识技能:1.理解圆柱体体积公式的推导过程,掌握计算公式.2.会运用公式计算圆柱的体积,解决生活中的实际问题。
二、过程与方法:通过学生的小组合作学习,充分利用资源、学具等去探究推导圆柱体体积的计算公式。
三、情感态度价值观:1、充分利用资源、学具,,通过小组合作学习以及采用与课情、班情相匹配的激励机制,激励和培养学生的学习兴趣,求知欲望。
2、培养学生动手操作、实验、观察等良好的学习态度和良好的科学素养。
教学策略选择与设计本节课,以“三维”目标为依据,以学生的原有学习状况为基础,主要是利用旧知识的迁移,充分利用资源、学具等有效手段来进行教与学,培养学生积极的小组合作学习习惯,提高探究圆柱体体积的公式推导的兴趣,掌握圆柱体体积公式的推导过程,理解并掌握计算公式,并能根据公式解决生活中的实际问题。
基于本节课的具体情况,我采用“演示法”、“操练-反馈法”等教学策略。
教学资源与工具设计1、教学资源:多媒体课件、圆柱体教具。
2、学具:圆柱体模型教学重点圆柱体体积公式的推导.教学难点理解圆柱体体积公式的推导过程.教学过程一、复习准备(一)教师提问(课件出示)1.什么叫体积?怎样求长方体的体积?正方体的体积?2、长方体、正方体体积计算的统一公式是什么?2.圆的面积公式是什么?3.圆的面积公式是怎样推导的?(二)谈话导入同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)二、教学新知(一)教学圆柱体的体积公式.(演示动画“圆柱体的体积”)1.教师演示()把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.2.学生利用学具操作.3.启发学生思考、讨论:(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)(2)通过刚才的实验你发现了什么?①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.③近似长方体的高就是圆柱的高,没有变化.4.学生根据圆的面积公式推导过程,进行猜想.(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?5.启发学生说出通过以上的观察,发现了什么?(1)平均分的份数越多,拼起来的形体越近似于长方体.(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.6.推导圆柱的体积公式(1)学生分组讨论:圆柱体的体积怎样计算?(2)学生汇报讨论结果,并说明理由.因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积×高)(3)用字母表示圆柱的体积公式.(板书:V=Sh)三、课堂小结通过本节课的学习,你有什么收获?1.圆柱体体积公式的推导方法.2.公式的应用.四、课堂练习(一)填表(二)求下面各圆柱的体积.五、板书设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱的体积公式的推导教学设计
三小陈国宝
教学目标
1. 通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程。
2.能够运用公式正确地计算圆柱的体积。
教学重点
圆柱体体积的计算.
教学难点
理解圆柱体体积公式的推导过程.
教具准备:圆柱的体积公式演示课件
教学过程:
一、以旧联新,积累经验
1、圆柱的侧面积怎么求?
(圆柱的侧面积=底面周长×高。
)
2、长方体的体积怎样计算?
学生回答,教师引导学生想到长方体和正方体体积的统一公式“底面积×高”。
板书:长方体的体积=底面积×高
3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?
二、创设情境,发现问题
师:请大家想一想,我们在学习圆的面积时,是怎样把因变成已学过的图形再计算面积的?
让学生回忆,说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
三,急需设疑,提出问题
师:今天将要学习的圆柱的体积大家能不能把圆柱转化成我们已经学过的图形来求出它的体积?
学生相互讨论,思考应怎样进行转化。
说出自己想到的方法。
师:这节课我们就让我们一起来研究圆柱的体积。
板书课题:圆校的体积
四,参与活动,分析问题
师:看到这个标题你想知道的什么?
学生回答后老师出示教学目标及重难点
1、圆柱体积计算公式的推导。
师出示一个圆柱,让学生观察底面提问:“大家看,这是不是一圆?”(是。
)
“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?”
学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。
然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。
展示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形?
学生回答后,老师操作演示,“大家看,圆柱的底面被拼成了什么图形?”
生:长方形。
师:大家再看看整个圆柱,它又被拼成了什么形状?
(有点接近长方体:)
师:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
五,辨析交流,解决问题
师:把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求?
引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。
师:“长方体的体积等于什么?”让全班学生齐答,教师接着板书:“长方体的体积=底面积×高”。
师:请大家观察,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系?
通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是
圆柱的高。
板书:圆柱的体积=底面积×高
师:如果用V表示圆柱的体积,S表示圆柱的底面积,H表示圆柱的高,可以得到圆柱的体积公式;V=SH(板书)
2、公式应用出示例4。
(1)教师指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。
(2)出示下面几种解答方案,让学生判断哪个是正确的?
①V=SH=50×2.1=105 答:它的体积是105立方厘米。
②2.1米;210厘米
V=SH=50×210=10500 答:它的体积是10500立方厘米。
③50平方厘米=0,5平方米
V=SH=0.5×2,1=1.05 答:它的体积是1.05立方米。
④50平方厘米=0.005平方米
V=SH=0.005×2.1=0.0105立方米答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。
对不正确的说说错在什么地方。
关于以上内容还有不明白的地方吗?
六.达标检测,解释与应用
1、做“做一做”的第1题。
让学生独立做后集体订正。
2、完成练习八的1、2题
这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。
要求学生审题后,知道底面直径的要先求出底面积,再求圆柱的体积。
总结:你还有不明白的地方或是提醒大家注意的地方吗?
2014-2-19。