“数学”简介含义起源历史与发展

合集下载

数学的起源历史是什么

数学的起源历史是什么

数学的起源历史是什么数学是人类思维的产物,是人类在长期实践中逐渐形成的学科。

数学的起源可以追溯到远古时期,至少可以追溯到距今五千年前的古代文明中。

从古代到现代,数学随着人类的文明进程不断发展壮大,成为了一门极为重要的学科,涉及到几乎所有领域和行业。

本文将从古代文明中的数学开始,探究数学的起源及其发展历程。

一、古印度数学古印度数学可以追溯到距今3500年前的哈拉帕文明时期。

在古印度,数学的发展与宗教息息相关。

印度古籍《吠陀》中,对数学的记载达到了非常高的水平,其中著名的一篇《数学经》成为了印度数学史上的巨著。

这篇文章共收录了1129个问题,涉及到计算、代数、几何等多个数学领域,并且提出了负数、零、分数等概念,对后世的数学有极大的影响。

二、古埃及数学古埃及数学也可以追溯到至少距今四千年前。

在埃及法老王世界中,数学是一项不可或缺的技能,在建筑、农业、贸易、税收等领域都有极为重要的应用。

古埃及数学主要涉及到计算,包括基本的加减乘除,以及分数的运算等。

另外,古埃及人还开发了一套独特的标记法,用于计算货物的量和成本。

三、古希腊数学古希腊数学兴起于公元前600年,发展到公元前3世纪达到了较为鼎盛的阶段。

古希腊数学家以毕达哥拉斯、欧几里得、阿基米德等人为代表,发展了代数、几何、数论等多个数学领域。

其中,欧几里得著作《几何原本》提出了经典的欧几里得几何学,至今仍有较大影响。

四、古中国数学古中国数学可以追溯到距今四千年前的黄河流域文明时期。

在古代中国,数学的发展主要与天文、历法、度量衡、农业、商业等有关。

古代中国数学家留下来的文献中,最著名的是《九章算术》和《孙子算经》。

其中,《九章算术》是针对实际问题提出的,包括代数、几何、计算等领域;而《孙子算经》则是关于战争中的数学策略的记录,主要涉及到数学和形式逻辑。

五、中世纪数学中世纪数学起始于公元500年,面临着罗马帝国衰落、基督教的兴起等诸多因素的影响。

但在负面影响之下,中世纪数学却取得了出人意料的成就。

数学的由来简单介绍

数学的由来简单介绍

数学的由来简单介绍
数学的由来:
1、从人类的角度:
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。

从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

2、从时间的角度:
数学起源于公元前4世纪。

公元前6世纪前,数学主要是关于“数”的研究。

这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法,几何学则可以看作是应用算术。

扩展资料:
数学的发展史:
1、从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。

数学于是成为了关于数与形的研究。

公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。


2、直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。

在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。


3、在19世纪,根据恩格斯的论述,数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。


4、从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。


5、现代数学已包括多个分支,数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。

数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。

虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。

2024版数学史简介

2024版数学史简介
促进文化多样性和包容性
数学史涉及不同文化、不同民族和不同时期的数学成就, 可以促进文化多样性和包容性,推动不同文化之间的交流 与融合。
弘扬科学精神和创新精神
数学史中充满了科学家们的探索精神、创新精神和求真精 神,这些精神对于推动人类文明进步具有重要意义。
数学史对未来发展的启示
推动数学教育的改革 与发展
代数学的繁荣
阿拉伯数学家在代数学方面取得了显著成就,如解方程的方法、二次方程的求根公式等。他 们还研究了多项式、根的性质以及方程的解法。
三角学和几何学的贡献
阿拉伯数学家对三角学和几何学也有深入研究,如球面三角学、相似三角形性质等。他们还 编制了精确的三角函数表和天文表。
中国中世纪数学
《九章算术》的编
欧洲数学的复兴
文艺复兴时期,欧洲数学家开始重新发 掘古希腊数学遗产,并在此基础上发展 出解析几何、微积分等新的数学分支。
近代数学的兴起
微积分的创立
非欧几何的诞生
17世纪,牛顿和莱布尼茨分别独立发 明了微积分学,为现代数学和物理学 的发展奠定了基础。
19世纪,高斯、罗巴切夫斯基和波尔 约等人发现了非欧几里德几何,打破 了欧几里德几何一统天下的局面。
上的算子理论。
计算机与数学的结合
03
随着计算机技术的发展,数学与计算机科学紧密结合,产生了
计算数学、离散数学等新的数学分支。
02
古代数学的重要成就
古希腊数学
欧几里得几何学
古希腊数学家欧几里得在《几何原本》中创立了完整的几何学体 系,为后世数学发展奠定了基础。
阿基米德数学物理学
阿基米德在浮力、杠杆原理和圆周率等方面做出了杰出贡献,将 数学与物理学紧密结合。
三角学

关于数学的由来简介3篇

关于数学的由来简介3篇

关于数学的由来简介第一篇:数学的起源和发展数学作为一门学科,其起源可以追溯到古代。

在人类的文明历程中,各个文明古国都有自己的数学思想和数学成果,如古埃及、古印度、古希腊、古罗马等。

科学技术的进步推动了数学的飞速发展,数学也成为了现代科学的基础和重要组成部分。

首先,古埃及是世界上最早的数学文明之一,其数学成就主要表现在测量、几何和代数方面。

例如,古埃及人使用极其简单的方法进行高精度的土地测量。

他们还学会了推导和使用勾股定理,以及计算圆周率等。

古印度数学发展的历史同样悠久,隋末唐初,印度《一百至一千的称数》和《大乘法经》广传中国。

印度数学家阿耳戈摩哥的《九章算术》对中国《九章算术》也有很大的影响。

印度数学的代表成就之一是无穷级数的概念,还有计算出了$2^{216}-1$为质数。

其次,古希腊的数学成就尤为显著,视为世界上最早的发扬光大的数学文明。

希腊数学的代表人物是欧几里得,他所创立的《几何原本》被视为数学史上的里程碑。

对几何的研究,让古希腊数学家不断地发现新的定理和方法,打下了一定的代数基础。

此外,希腊人还发明了一些几何工具,如竖劈仪、刻度尺等,用于测量距离、角度等。

古罗马数学的贡献主要体现在实用性方面。

罗马人对数字的发明使用、商业计算都有极其扎实的功底,达到了非常高的精度。

再者,中世纪欧洲的数学发展又格外活跃。

欧洲学者将古代各国的数学思想和成果进行整理、推广和吸收,开展了广泛而深入的数学研究,如对等式、代数式、解析几何等的深入探究,推进了几何、代数、微积分、数论等数学领域的发展。

伟大的意大利数学家菲波那契在欧洲广泛传播印度阿拉伯算术之后,自创了一套计算工具,被誉为欧洲数学的重要里程碑,菲波那契数列至今仍是数学研究的重要问题之一。

总的来说,数学在不同时期有着不同的发展阶段和成就,但它作为一门高度抽象、逻辑精密的学科,在实践和理论中不断提高人类的认知水平和创造力,并且在现代社会中发挥了重要的作用,也为科学技术的进步提供了强有力的支持。

数学发展的历史介绍

数学发展的历史介绍

引言概述:数学作为一门古老而且普遍存在的学科,在人类文明发展的过程中扮演着重要的角色。

数学的发展历史可以追溯到古代文明,并随着时间的推移逐渐演化和发展。

本文将介绍数学的历史发展,从古代数学的起源开始,逐步展开正文,分五大点来阐述数学的进展与演化。

正文内容:一、古代数学的起源1.原始数学:人类最早的数学思想主要是基于实际需求的,主要应用于计数和测量。

2.古代数学的典范:古埃及的几何学和古代巴比伦的代数学。

3.古希腊数学的诞生:毕达哥拉斯定理和欧几里得的几何学。

二、中世纪数学的发展1.印度数学的传播:阿拉伯数学家将印度数字系统和代数学引入欧洲。

2.贝克勒尔学派:贝克勒尔、纳西尔丁·图西和奥马尔·海亚姆等数学家对代数和几何学作出了重要贡献。

3.罗益席尔皮和方程的大发现:罗益席尔皮在解决高次方程时提出了新的解法。

三、现代数学的崛起1.十七世纪的数学革命:笛卡尔几何学的诞生和数学分析的发展。

2.牛顿和莱布尼茨的微积分学:微积分的发明进一步推动了数学的进步。

3.概率论与统计学的兴起:贝努利家族和拉普拉斯等人对概率论和统计学的贡献。

四、数学的现代化与应用1.抽象代数学的兴起:伽罗华和埃尔米特等人将代数学从具体问题中抽象出来。

2.黎曼几何学:黎曼将几何学从平面拓展到曲面,为现代几何学奠定了基础。

3.数学与信息科学的结合:在计算机科学和密码学领域,数学的应用越来越广泛。

五、当代数学的发展1.数学的交叉学科:数学与物理学、工程学等学科的交叉研究成为当代数学的一个重要方向。

2.数学的开放性问题:著名的费马猜想和黎曼猜想等问题一直未能得到证明。

3.数学的计算机辅助研究:计算机技术的进步使得数学研究更加高效和精确。

总结:数学发展的历史演化是一段源远流长的故事。

从原始数学到古代数学的起源,再到中世纪数学的发展,数学以其独特的逻辑和思维方式为人类文明进程提供了重要的支撑。

现代数学的崛起与应用为科学技术的发展和社会进步提供了坚实的基础。

数学史简介

数学史简介

数学史简介数学,作为人类智慧的结晶,自古以来就与人类文明的发展紧密相连。

从最初的计数和测量,到抽象的代数和几何,再到现代的计算机科学和量子力学,数学始终在各个领域发挥着重要作用。

本文将简要介绍数学的发展历程,以展示这一学科的无穷魅力。

一、古代数学数学的起源可以追溯到史前时期,当时的人们为了解决实际问题,如土地测量、天文观测等,开始研究数学。

古埃及和巴比伦是数学发展最早的地区之一,他们研究了几何学和算术,并制定了一些数学规则。

约公元前300年,古希腊数学家欧几里得发表了《几何原本》,这是一部系统地阐述了平面几何知识的著作,对后世产生了深远影响。

二、中世纪数学在中世纪,阿拉伯世界成为了数学研究的中心。

阿拉伯数学家对古希腊数学进行了翻译和传承,并在此基础上进行创新。

他们引入了印度数学中的数字系统,即阿拉伯数字,这一系统在当时比罗马数字更为先进。

阿拉伯数学家还研究了代数学,提出了方程的解法和代数符号。

三、文艺复兴时期数学文艺复兴时期,欧洲数学迅速发展。

这一时期的数学家开始研究更为复杂的数学问题,如三次方程的解法、无穷级数等。

意大利数学家伽利略和德国数学家开普勒在天文学领域取得了重要成果,为后来牛顿和莱布尼茨创立微积分奠定了基础。

四、现代数学17世纪,英国数学家牛顿和德国数学家莱布尼茨几乎同时发明了微积分。

这一学科的出现标志着现代数学的诞生。

此后,数学家们开始研究更为抽象的数学问题,如拓扑学、群论等。

19世纪,法国数学家庞加莱提出了拓扑学的基本概念,为现代几何学的发展奠定了基础。

20世纪,数学家们继续深入研究各个领域,如概率论、数论、计算机科学等,使数学得到了空前的发展。

五、数学在中国中国古代数学也有着悠久的历史。

早在商周时期,我国就有了甲骨文中的数学记载。

汉代,数学家赵爽提出了勾股定理的证明,被称为“赵爽定理”。

唐代,数学家李冶、秦九韶等人研究了高次方程的解法。

宋代,数学家贾宪、杨辉等人研究了几何学和算术。

数学的由来介绍

数学的由来介绍

数学的由来介绍关于数学的由来介绍数学,是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

数学家和哲学家对数学的确切范围和定义有一系列的看法。

下面是店铺整理的关于数学的由来介绍,欢迎阅读!数学的由来介绍篇1数学的由来:数学,我国古代叫算术,后来叫算学,又叫数学。

近几十年来才确定统一叫做数学。

古代“算”字有三种写法:筹、笄、算。

从字形的结构,可以看到事物演变的一些痕迹。

许慎《说文解字》对这几个字作如下解释:“笄”,“长六寸,计历数者,从竹从弄言常弄乃不误也”。

“算,数也,从竹上具,读若”。

“示示”,或“算”原来都一种竹制的工具,是几寸长的竹签,也叫筹码。

用来记数、计算或卜卦。

摆弄这些“算”,有一套技术基学问,自然就叫做“算术”或“算学”。

我国盛产竹子,是世界上最善于利用竹子的国家。

用竹子做计算工具,使我国古代数学带有许多和西方不同的特色。

“示示”由两个“示”字合成。

《说文》解释“示”字说:“示,神事也。

”“二”是古文的上字,三竖(后来写成一竖两点)是日、月、星。

古人以为天上有神灵,神的表示是从上面下来的。

矫同时也用来占筮,因此“示示”字带有迷信色彩,是不奇怪的。

“算”字是什么时候开始使用的?李约瑟认为在甲骨文或金文中从未发现过这个算字,因此它出现的年代不可能早于公元前3世纪。

无论如何,“算术”这个名称在汉代已经通行。

正式使用,是在《九章算术》一书中。

它的涵义是指当时的数学,和现代算术的意义不同。

宋、元两代,我国数学发展居世界前列。

那时“算学”和“数学”这两个词是并用的。

算学、数学并用的情况,一直延续了几百年,1935年“中国数学会名词审查委员会”仍主张两词并用。

直到1939年6月,为了划一起见,才确定用“数学”,而不用“算学”。

数学的由来介绍篇2人们在生活中经常会遇到各种相反意义的量。

比如,在记账时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。

为了方便,人们就考虑了相反意义的数来表示。

数学的发展与演变从一到无穷大的数学进程

数学的发展与演变从一到无穷大的数学进程

数学的发展与演变从一到无穷大的数学进程在人类文明的进步过程中,数学作为一门基础科学,始终起着举足轻重的作用。

从最早的数数到无穷大的概念,数学一直在不断发展与演变。

本文将从古代数学的起源开始,逐步追溯数学的进程,展示数学的发展与演变过程。

一、古代数学的起源最早的数学可以追溯到约5000年前的古埃及和美索不达米亚文明。

古埃及人运用数学知识来解决土地测量和建筑工程问题,而美索不达米亚人则用数学进行商业交易和税收计算。

这些最早的数学思想体现了人们对数数和计算的需求。

二、希腊数学的兴起古希腊是数学发展史上的重要时期。

毕达哥拉斯学派的出现使数学融入了哲学的范畴。

毕达哥拉斯定理是他们最著名的成果之一,该定理说明了直角三角形斜边的平方等于两直角边平方和。

同时,欧几里得也在古希腊时期确立了几何学的基本原理,他的《几何原本》成为欧洲学习几何学的标准教材。

三、中世纪与文艺复兴时期的数学革命中世纪的数学受到了基督教教义的束缚,但在文艺复兴时期,数学的地位逐渐恢复。

意大利的数学家费拉拉克里奥和卢卡·帕西奥利在代数学和几何学方面作出了重要的贡献。

此外,文艺复兴时期的数学家卡布拉诺也发现了复数的存在,这一发现在数学发展史上具有重要意义。

四、十七世纪的数学革命十七世纪是数学史上的黄金时期,伽利略、笛卡尔、费马等众多数学家的贡献使数学呈现出前所未有的发展势头。

伽利略提出了匀速运动的概念,笛卡尔则运用代数符号将几何问题转化为代数问题。

此外,牛顿和莱布尼茨的微积分发现被誉为数学的革命,为后来科学的发展奠定了基础。

五、现代数学的新兴进入现代,数学的领域日益增加。

在几何学方面,黎曼几何为后来的广义相对论奠定了基础;在代数学中,群论、环论等新的分支先后出现;在概率论和统计学中,人们开始研究随机事件和数据分析。

同时,计算机的发明和普及也为数学的发展带来了重大影响,数值计算、优化问题等新的数学分支应运而生。

六、数学的无穷大数学的进展并不止于此,无穷大的概念是数学领域中重要的发展方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学数学是研究现实世界中数量关系和空间形式的,简单地说,是研究数和形的科学。

由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。

在中国,至迟在商代,即已出现用十进制数字表示大数的方法;又至迟至秦汉之际,即已出现完满的十进位值制。

在成书不迟于1世纪的《九章算术》中,已载有只有位值制才有可能的开平、立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。

刘徽在他注解的《九章算术》(3世纪)中,还提出过用十进小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪S.斯蒂文以后)十进小数才获通用。

在这本着作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率更精确值的一般方法。

虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。

至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。

早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。

古希腊发现了有非分数的数,即现称的无理数。

16世纪以来,由于解高次方程又出现了复数。

在近代,数的概念更进一步抽象化并依据数的不同运算规律而对一般的数系统进行独立的理论探讨,形成数学中的若干不同分支。

开平方和开立方是解最简单的高次方程。

在《九章算术》中,已出现解某种特殊形式的二次方程。

发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。

与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。

在中国以外,9世纪阿拉伯的花拉子米的着作阐述了二次方程的解法,通常被视为代数学的鼻祖,其解法实质上与中国古代依赖于切割术的几何方法具有同一风格。

中国古代数学致力于方程的具体求解,而导源于古希腊、埃及传统的欧洲数学则不同,一般致力于探究方程解的性质。

16世纪时,F.韦达以文字代替方程系数,引入了代数的符号演算。

对代数方程解的性质的探讨,则从线性方程组导致行列式、矩阵、线性空间、线性变换等概念与理论的出现;从代数方程导致复数、对称函数等概念的引入以至伽罗瓦理论与群论的创立。

而近代极为活跃的代数几何,则无非是高次联立代数方程组解所构成的集体的理论研究。

形的研究属于几何学的范畴。

古代民族都具有形的简单概念而往往以图画来表示,形之成为数学对象是由工具的制作与测量的要求所促成。

规矩以作圆方,中国古代夏禹治水时即已有规、矩、准、绳等测量工具。

《墨经》中对一系列的几何概念,有抽象概括,作出了科学的定义。

《周髀算经》与刘徽《海岛算经》给出了用矩观天测地的一般方法与具体公式。

在《九章算术》及刘徽注解的《九章算术》中,除勾股理论外,还提出了若干一般原理以解多种问题。

例如出入相补原理以求任意多边形面积;阳马鳖臑的二比一原理(刘徽原理)以求多面体的体积;5世纪祖暅提出“幂势既同则积不容异”的原理以求曲形体积特别是球的体积;还有以内接正多边形逼近圆周长的极限方法(割圆术)。

但自五代(约10世纪)以后,中国在几何学方面的建树不多。

中国几何学以测量与面积体积的量度为中心,古希腊的传统则重视形的性质与各种性质间的相互关系。

欧几里得的《几何原本》,建立了用定义、公理、定理、证明构成的演绎体系,成为近代数学公理化的楷模,影响及于整个数学的发展。

特别是平行公理的研究,导致了19世纪非欧几里得几何学的产生。

欧洲自文艺复兴时期起出现了射影几何学。

18世纪,G.蒙日应用分析方法于形的研究,开微分几何学的先河。

C.F.高斯的曲面论与(G.F.)B.黎曼的流形理论开创了脱离周围空间以形作为独立对象的研究方法;19世纪(C.)F.克莱因以群的观点对几何学进行统一处理。

此外,如G.(F.P.)康托尔的点集理论扩大了形的范围;(J.-)H.庞加莱创立了拓扑学,使形的连续性成为几何研究的对象。

这些都使几何学面目一新。

在现实世界中,数与形,如影之随形,难以分割。

中国的古代数学反映了这一客观实际,数与形从来就是相辅相成,并行发展的。

例如勾股测量提出了开平方的要求,而开平、立方的方法又奠基于几何图形的考虑。

二次、三次方程的产生,也大都来自几何与实际问题。

至宋元时代,由于天元与相当于多项式概念的引入,出现了几何代数化。

在天文与地理中的星表与地图的绘制,已用数来表示地点,不过并未发展到坐标几何的地步。

在欧洲,14世纪N.奥尔斯姆的着作中已有关于经纬度与函数图形表示的萌芽,而17世纪R.笛卡儿提出了系统的把几何事物用代数表示的方法及其应用,在其启迪之下,经G.W.莱布尼茨、I.牛顿等的工作,发展成了现代形式的坐标制解析几何学,使数与形的统一更臻完美,不仅改变了几何证题过去遵循欧几里得几何的老方法,还引起了导数的产生,成为微积分学产生的根源。

这是数学史上的一件大事。

在20世纪中,由于科学与技术上的要求促使数学家们研究运动与变化,包括量的变化与形的变换(如投影),还产生了函数概念和无穷小分析即现在的微积分,使数学从此进入了一个研究变量的新时代。

18世纪以来,以解析几何与微积分这两个有力工具的创立为契机,数学以空前的规模迅猛发展,出现了无数分支。

由于自然界的客观规律大多是以微分方程的形式表现的,微分方程的研究一开始就受到重视。

微分几何基本上与微积分同时诞生,高斯与黎曼的工作又产生了内在的现代微分几何。

19、20世纪之交,庞加莱创立了拓扑学,开辟了对连续现象进行定性与整体研究的途径。

对客观世界中随机现象的分析,产生了概率论。

第二次世界大战军事上的需要以及大工业与管理的复杂化产生了运筹学、系统论、信息论、控制理论与数理统计学等学科。

实际问题要求具体的数值解答,产生了计算数学。

选择最优途径的要求又产生了各种优化的理论、方法。

力学、物理学同数学的发展始终是互相影响互相促进的,特别是相对论与量子力学推动了微分几何与泛函分析的成长。

此外在19世纪还只用到一次方程的化学和几乎与数学无缘的生物学,都已要用到最前沿的一些高深数学。

19世纪后期,出现了集合论,还进入了一个批判性的时代,由此推动了数理逻辑的形成与发展。

也产生了把数学看作一个整体的各种思潮和数学基础学派。

特别是1900年D.希尔伯特关于当代数学重要问题的演讲,以及30年代开拓以结构概念统观数学的法国布尔巴基学派的兴起,对20世纪数学发展的影响至深且巨。

科学的数学化一语也往往为人们所乐道。

数学的外围向自然科学、工程技术甚至社会科学不断渗透扩大并从中吸取营养,出现了一些边缘数学。

数学本身的内部需要也孳生了不少新的理论与分支。

同时其核心部分也在不断巩固提高并有时作适当调整以适应外部需要。

总之,数学这棵大树茁壮成长,既枝叶繁茂又根深蒂固。

本卷详细地介绍了数学的各个分支与各种流派。

在数学的蓬勃发展过程中,数与形的概念不断扩大,日趋抽象化,以至于不再有任何原始计数与简单图形的踪影。

虽然如此,在新的数学分支中仍有着一些对象和运算关系借助于几何术语来表示。

如把函数看成是某种空间的一个点之类。

这种做法之所以行之有效,归根结蒂还是因为数学家们已经熟悉了那种简易的数学运算与图形关系。

而后者又有着长期深厚的现实基础。

而且,即使是最原始的数字如1、2、3、4,以及几何形象如点与直线,也已经是经过人们高度抽象化了的概念。

因此,如果把数与形作为广义的抽象概念来理解,则前面提到的把数学作为研究数与形的科学这一定义,对于现阶段的近代数学,也是适用的。

由于数学研究对象的数量关系与空间形式都来自现实世界,因而数学尽管在形式上具有高度的抽象性,而实质上总是扎根于现实世界。

生活实践与技术需要始终是数学的真正源泉,反过来,数学对改造世界的实践又起着重要的、关键的作用。

理论上的丰富提高与应用的广泛深入在数学史上始终相伴相生,相互促进。

但由于各民族各地区的客观条件不同,数学的具体发展过程是有差异的。

大体说来,古代中华民族以竹为筹,以筹运算,自然地导致十进位值制的产生。

计算方法的优越有助于对实际问题的具体解决。

由此发展起来的数学形成了一个以构造性、计算性、程序化与机械化为其特色,以从问题出发进而解决问题为主要目标的独特体系。

而在古希腊则着重思维,追求对宇宙的了解。

由此发展成以抽象了的数学概念与性质及其相互间的逻辑依存关系为研究对象的公理化演绎体系。

中国的数学体系在宋元时期达到高峰以后,陷于停顿且几至消失。

而在欧洲,经过文艺复兴、宗教革命、资产阶级革命等一系列的变革,导致了工业革命与技术革命。

机器的使用,不论中外都由来已久。

但在中国,则由于明初被帝王斥为奇技淫巧而受阻抑。

在欧洲,则由于工商业的发展与航海的刺激而得到发展,机器使人们从繁重的体力劳动中解放出来,并引导到理论力学和一般的运动和变化的科学研究。

当时的数学家都积极参与了这些变革以及相应数学问题的解决,产生了积极的效果。

解析几何与微积分的诞生,成为数学发展的一个转折点。

17世纪以来数学的飞跃,大体上可以看成是这些成果的延续与发展。

20世纪出现各种崭新的技术,产生了新的技术革命。

特别是计算机的出现,使数学又面临一个新时代。

这一时代的特点之一就是部分脑力劳动的逐步机械化。

与17世纪以来数学之以围绕连续、极限等概念为主导思想与方法不同,由于计算机研制与应用的需要,离散数学与组合数学开始受到重视。

计算机对数学的作用已不限于数值计算,符号运算的重要性日趋明显(包括机器证明等数学研究)。

计算机还广泛应用于科学实验。

为了与计算机更好地配合,数学对于构造性、计算性、程序化与机械化的要求也显得颇为突出。

代数几何是一门高度抽象化的数学,最近出现的计算性代数几何与构造性代数几何的提法,即其端倪之一。

总之,数学正随着新的技术革命而不断发展。

相关文档
最新文档