proe自顶向下设计
《Pro ENGINEER企业实施与应用》第3章:自顶向下设计
3. 比较运算符
关系式中的比较运算符如表3-3所示。 (参见教 材P75)
10
3.3.4 关系式中的函数
1. 数学函数
关系式中的数学函数如表3-4所示。(参见教材P75)
2. 曲线表计算函数
可利用曲线表计算函数,并使用曲线表特征驱动尺寸。 这些尺寸可为截面、零件或组件尺寸。格式如下:
15
3.4 布
3.4.1 布局概述
在Pro/ENGINEER中,提供了一种 绘制结构草图的工具,称为“布 局”。布局是一种非参数化的草绘, 它允许设计人员像绘制草图那样绘 制一些示意性的图形,然后在图形 上定义一些参数和尺寸等,这些数 据可以在进行具体的设计时向下传 递到骨架模型、装配、零件中,从 而在设计产品的零件和部件时,不 丢失整体的设计意图,从整体上控 制产品的设计。 要创建一个布局,可以在新建文件 时选择新建的文件类型为“布局”, 如图3-58所示。确定后弹出“新布 局”对话框,如图3-59所示。
evalgraph("graph_name", x)
3. 复合曲线轨道函数
可在关系中使用复合曲线的轨迹参数 trajpar_of_pnt。 下列函数返回一个 0.0 和 1.0 之间的值。
trajpar_of_pnt("trajname", "pointname")
11
3.3.5 字符串运算符和函数
20
3.4.6 声明布局
创建布局后,要用“声明”使其与其他布局或 模型关联起来,布局的内容才能起作用。 各个命令功能说明如下。
声明布局 取消声明布局 表 声明名称 取消声明名称 列出声明
PROE中自上而下设计
加湿器照片01加湿器照片02新建prt文件,建加湿器总长宽高的两个草绘。
进入ISDN模块,在草绘框架下画加湿器的两个外轮廓线。
按shift画底轮廓线,两端点法向front。
依法画另一侧底面轮廓线。
在总高一半处建新基准面。
按shift画一侧轮廓线,两端点法向front。
依法画另一侧轮廓线。
完成并退出ISDN,用修剪把外轮廓线修成两段。
用修剪把另一条外轮廓线修成两段。
重新进入ISDN,利用曲面工具形成曲面。
利用曲面工具形成曲面。
利用曲面工具形成全部曲面。
完成并退出ISDN,利用填充工具填充底面。
把底面和外轮廓合并。
倒圆角。
利用拉伸曲面,把加湿器分割成上下两部分。
加湿器上半部曲面。
加湿器下半部曲面。
新建asm组件文件。
在组件中新建元件,选择-骨架模型。
选择-复制现有。
打开刚才建好的外轮廓曲面prt文件。
外轮廓进入组件,并保存,形成skel骨架模型文件。
隐藏骨架模型,在组件中新建文件“上盖”。
选择-创建特征。
建XYZ三个方向的偏移平面。
插入-共享数据-复制几何。
选择-将参考类型设置为外部。
打开skel文件。
确定-放置。
选择-仅限发布几何,出现加湿器曲面。
选择加湿器上盖曲面。
加湿器上盖进入组件,激活组件。
再次新建元件-下盖。
选择-创建特征。
选择-偏移平面,建立XYZ基准平面。
插入-共享数据-复制几何。
依法选择加湿器下盖曲面。
加湿器下盖曲面进入组件。
至此,在组件中完成加湿器上盖和下盖两个零件。
激活上盖。
加厚。
形成有厚度的上盖实体。
依法加厚下盖。
形成有厚度的下盖实体。
效果。
激活下盖,切割圆孔。
完成。
。
proe骨架模型——自顶向下的设计方法
Pro/ENGINEER 用设计来简化复杂的装配采用自顶向下的设计方法设计小组或个人便能够使用集中式信息来同时处理多项工作,自顶向下设计是一种在上层处理关键信息并把这些数据向较低的产品结构层传递的方法。
通过使用六种主要功能(布局『可选』、装配结构、骨架、数据通讯、发布/复制几何体、以及建立零件/装配几何体),个人或设计小组可以缩短设计时间,提高质量,并能在高层实现更改控制。
始于布局规划Pro/ENGINEER提供了一个电子记事薄,随着设计概念的发展,可以在此获取和更新设计意图。
采用自顶向下方法,可以把实体模型链接到布局,并随着布局的变化自动更新模型。
虽然它们不是自顶向下设计的必要条件,但是,布局能把设计信息集中保存,这有助于在建立实体模型之前建立设计意图。
- 技巧-在检索引用了布局的模型时,通常会把布局调出到缓存区中。
即使装配不在缓存区中,模型需要的所有关系也都有效。
定义装配结构在建立装配结构的过程中,用户实质上建立了一个虚拟的物料清单(BOM)。
这是一种确定设计小组主要工作的方法,如果只有一个人负责项目,那么,这种结构就可以起到类似标签或标记的作用,它们可以指出需要完成或需要处理的地方。
虚拟物料清单可以帮助用户为各个小组成员分配工作,从而使用户把精力放在某些具体的工作上,而不是整个装配上。
另外,虚拟物料清单还允许关联前面的零件库,把模型提交给Pro/INTRALINK或PDMLink,并把它们分配给适当的库或文件夹。
- 技巧-用户可以在Pro/INTRALINK 或PDMLink中建立虚拟物料清单,然后把装配拖到Pro/ENGINEER中。
建立虚拟物料清单的步骤:建立顶层装配。
用户可以输入名称,使用缺省的模板,或者复制另一个文件。
在设计需要的时候添加空组件或子装配。
添加一些散件,比如润滑油,用以表示物料清单中不用建模的项目。
骨架为装配设计提供了框架。
当骨架发生变化时,所连接的实体模型也跟着发生变化。
proe topdown 自顶向下设计
5.组织后续设计
在已经明确了设计意图并定义了包括骨架模型在内的产品基本结构和清晰的产品框架后,下一步将围绕设计意图和基本框架展开零件和子装配的详细设计。
6.管理元件间的相互性
用Pro/E软件设计的好处之一是利用它的相关性,具备设计意图修改后目标零件作相应的自动更新的能力。这需要通过外部参考关系、零件间的相互依赖性或参考控制来实现。尽管创建外部参数功能是Pro/E软件最强有力的武器,但对于大型设计仍是非常复杂的工作。因此,可以通过软件提供的外部参数管理工具来调查或管理这些参考。
组织:Top-Down设计组织并强化了装配中元件之间的交互性和依赖性。许多交互和依赖性存在于实际的装配设计中并且在设计模型中是需要提取的。举一个关于依赖性的例子,一个零件上有一个安装孔而另外零件的相应位置也存在孔,如果第一个零件的安装孔的位置发生改变,利用Top-Down技术可以控制第二个零件孔的位置也随之改变。这种依赖性用户是可以控制的,利用从动模型的模型树中的工具进行设置可使用户得到或限制元件的依赖性。
二Top-Down设计的六个步骤
Top-Down设计在组织方式上展开装配设计时通常包括六个主要步骤,这些步骤包括:规划、创建产品结构;通过产品的结构层次共享设计信息;独立元件之间获取信息。在构建大型装配的概念设计时,Top-Down设计是驾御和控制Pro/ENGINEER软件相关性设计工具最好的方法。
1.定义设计意图
所有的产品在设计之前要有初步的规划,如设计草图、提出各种想法和建议及设计规范等来实现产品设计的目的和功能。这个规划帮助设计者更好地理解产品并开始系统地设计或元件的详细设计。设计者可以利用这些信息开始定义设计结构和独立元件的详细需求并利用Pro/ENGINEER软件完成设计。
proe自顶向下设计的基础原理.
本课程将讲授自顶向下设计的基础原理。
该设计方式有力而稳定地扩展了参数设计,使产品设计更为有效。
自顶向下设计使您可以在产品组件的环境中创建零件,并在创建新零件特征时参照现有几何。
图 1该设计方法不同于传统的自底向上设计方法,在自底向上设计方法中,各个元件是独立于组件进行设计的,然后再将这些元件组合到一起来开发顶级组件。
图 2自顶向下设计是一种逐步进行的过程:1.使用标准的起始组件创建一个顶级组件文件。
2.使用标准的起始零件在顶级组件中创建一个骨架。
3.在骨架元件中创建所需的骨架几何。
4.使用骨架模型参照创建并装配所需元件。
5.在元件中对所需特征进行建模,并使用骨架几何作为唯一的参数参照。
6.在组件中的适当级创建并装配一个映射零件。
7.在映射零件中创建所需参照。
8.创建并装配参照映射零件的元件。
9.在参照映射零件(如有必要,参照骨架的元件中建立几何。
请注意,有更多关于自顶向下设计方面的高级功能和方法,例如,布局和发布几何,这些功能和方法将在高级组件指南和大型组件指南两个课程中进行介绍。
当您决定使用“自顶向下设计”法时,需要了解一些Pro/ENGINEER的特点。
零件模式对组件模式使用Pro/ENGINEER零件和组件文件有两种不同的方法。
要对设计进行更改,可以在“零件模式”中修改零件文件本身,也可以在“组件模式”中的“组件”内容中修改零件文件。
在“零件模式”中,您仅操作零件的几何,且操作窗口中仅包含该零件。
在“组件模式”中,您操纵的是该组件,可以操作组件中的几何或其中零件的几何。
工作在“组件模式”时,若要为零件添加几何,必须选取考虑中的元件,右键单击并选择激活。
这向系统表明您正在创建的特征属于所选的特定元件。
如未“激活”(Active该元件,则需要按上一课中的做法创建组件级特征。
当组件中使用的零件发生变更时(可能是尺寸修改或添加特征,这些变更在组件中是可见的,意识到这一点很重要。
当零件单独打开并更改或在组件的内容中更改时,尤为如此。
TOP-DOWN设计思想
第一章布局及组件结构简介可以使用Pro/ENGINEER Wildfire 3.0 采用自顶向下设计流程来创建复杂的组件。
在自顶向下设计流程中,组件设计是通过创建布局来开始的。
布局包括可用于控制整个组件的规范和参数。
您将创建一个初步的组件结构,其中包含一个子组件和元件的列表以及它们在该组件内部的层次。
创建了布局后,就可使用骨架来定义关键元件尺寸、安装位置、空间要求和组件各元件之间的运动。
最终,通过参照骨架和共享组件结构各级之间的设计信息来创建单个元件几何。
目标学习此模块后,您将能够:说明自顶向下设计流程。
使用布局记录设计信息。
创建组件结构。
简介自顶向下设计流程可以使用Pro/ENGINEER Wildfire 3.0 采用自顶向下设计流程来创建复杂的组件。
在自顶向下设计流程中,组件设计是通过创建布局来开始的。
布局包括可用于控制整个组件的设计规范和参数。
您将创建一个初步的组件结构,其中包含一个子组件和元件的列表以及它们在该组件内部的层次。
然后,使用骨架来定义组件的设计框架。
使用骨架可定义关键元件尺寸和安装位置、空间要求和组件各元件之间的运动。
接着,可声明布局的骨架和组件元件。
这样就能够分布关键设计信息,包括整个组件结构中心位置的设计更改。
下一步,使用发何和复制几何功能,将关键设计参照从骨架中选取并复制到低级元件中。
最后,通过参照包含来自骨架的关键设计参照的复制几何特征,在单独的元件中完成设计几何。
自顶向下设计流程传统设计流程∙使用传统设计流程(又称为自底向上方式)可以创建独立于组件的单独元件。
∙将元件放置到子组件中,然后装配子组件来创建顶级组件。
∙创建顶级组件之后,经常发现某些元件无法正确拟合(例如两个模型的关键界面不匹配),您必须手工调整元件和组件来纠正这些问题。
∙当装配更多的元件时,查找和纠正干涉可能要花费大量的时间。
如果出现影响很多元件的重大设计更改(如更改设计的整体宽度),则必须手工标识并修改每个受影响的元件以适应更改。
ProE自顶向下
Global Reference Viewer
可以知道哪個特徵, 可以知道哪個特徵,在哪裡 哪個特徵 哪個檔案的哪個特徵發生 與哪個檔案的哪個特徵發生 參考關係
Top Down Design 第五步:零件間的幾何參考 - Shared Data
在進行設計時,零件幾何參考技術可提供以下便利: 在進行設計時,零件幾何參考技術可提供以下便利: 提供一種在頂級組件中,對次組件驅動, 提供一種在頂級組件中,對次組件驅動,維持配合及功能的機 制。 提供了在次組件中,與頂級資訊的溝通渠道, 提供了在次組件中,與頂級資訊的溝通渠道,而不會增加再生 及重畫的時間。 及重畫的時間。 使多個使用者能完成同期工程。 使多個使用者能完成同期工程。 減少裝配等級的衝突。 減少裝配等級的衝突。
Package的方法
在Assembly中 中 Assemble → Move → 直接將零件移動至適當位置 → Ok Package - 3D Layout
• Add
加入零件至assembly中
• Move
將零件移至適當的位置
Package的延伸使用
零件固定的方法: 將Package零件固定的方法 零件固定的方法 Package → Finalize
Top Down Design 第二步:建構好Model tree ( ME 人員做 )
Top Down Design 第三步:骨架模型 Skeleton
Space Claimons as Design Interfaces
Plastic container interfaces
ID Design
ID外觀檔案來源分成兩類 : Pro/E檔案或非 Pro/E檔案
若是非 Pro/E檔案, 則只保留 iges 格式檔案與 jpg格式檔案, 但 必須 ID Eng.必須將參考資料皆建構成Pro/E檔案, 稱為 ID
ProE自顶向下设计简介
Capture conceptual design parameters within the context of the assembly 在组装环境下捕捉概念设计参数 Capture & control critical object interfaces in a single, convenient location 在一个单一方便的位置捕捉和控制关键对象的接口 Skeleton Models…使用骨架模型的好处 Centralized pathway for communication参数传递的集中场所,集中了产品设计的设计信息 Facilitate task distribution方便任务分配 Promote well-organized design environments提升设计环境 Enable faster, more efficient propagation of change快速设变 Special Treatment in BOMs, Simplified Reps, Drawings, Model Tree & Mass Property Calculations Uniquely supported Scope Control Setting独特的参考控制设定,控制外部参考的传播 简化了装配的创建,清晰了装配关系(可定义配合位,使配合位的组件始终吻合) 确定组件空间位置,协助创建机构组合,设计机构运动 避免创建不期望的父子关系 允许以任何顺序装配组件
proe自上而下设计详解
Top_down设计方法严格来说只是一个概念,在不同的软件上有不同的实现方式,只要能实现数据从顶部模型传递到底部模型的参数化过程都可以称之为Top Down设计方法,从这点来说实现的方法也可以多种多样。
不过从数据管理和条理性上来衡量,对于某一特定类型都有一个相对合适的方法,当产品结构的装配关系很简单时这点不太明显,当产品的结构很复杂或数据很大时数据的管理就很重要了。
下面我们就WildFire 来讨论一下一般的Top Down的实现过程。
不过在讨论之前我们有必要先弄清楚WildFire中各种数据共享方法,因为top down的过程其实就是一个数据传递和管理的过程。
弄清楚不同的几何传递方法才能根据不同的情况使用不同的数据共享方法在WildFire中,数据的共享方法有下面几种:λFrom File...(来自文件….)λCopy Geometry…(复制几何…)λShrinkwrap…(收缩几何..)λMerge…(合并)λCutout…(切除)λPublish Geometry…(发布几何…)λInheritance…(继承…)λCopy Geometry from other Model…(自外部零件复制几何…)λShrinkwrap from Other Model…(自外部零件收缩几何..)λMerge from Other Model…(自外部模型合并…)λCutout from Other Model..(自外部模型切除…)λInheritance from Oth er Model…(自外部模型继承…)From File…(来自文件…)实际就是输入外部数据。
Wildfire可以支持输入一般常见的图形格式,包括igs,step,parasolid,catia,dwg,dxf,asc等等,自己试试就可以看到支持的文件类型列表。
在同一个文件内你可以任意输入各种不同的格式文件。
输入的数据的对齐方式是用坐标对齐的方法,所以你要指定一个坐标系统。
creo自顶向下设计方法
CREO自顶向下设计方法TOP-down一、方法介绍设计思路:在产品开发的前期按照产品的功能要求,预先定义产品架构并考虑组件与零件、零件与零件之间的约束和定位关系,在完成方案和结构设计之后进行详细设计。
其设计方法分为两种:一种是骨架Top-down设计方法;另一种是主控模型Top-down设计方法。
骨架Top-down设计方法如图1所示,先在装配特征树的最上端建立顶级骨架,然后在各组件下建立次级骨架,参照次级骨架进行零部件设计。
该方法可以通过控制不同层级的骨架对相应的零件进行更改,但不利于数据重用。
主控模型Top-down设计方法(如图2所示)是将顶级骨架从整个装配关系中剥离出来,然后在各组件下建立次级骨架,零件设计参照次级骨架,但在数据重用时各组件互不干涉。
底盘产品在开发过程中模型共享现象较多,因此,宜采用主控模型Top-down设计方法。
图2主控模型Top-down设计方法中组件1和组件2是相互独立的组件。
鉴于此特点,在本次示例中采用模块化设计思路。
根据模块划分的原则:模块间的依赖程度要尽量小,模块内部的关联要尽可能多;再依据底盘的功能分布,将底盘划分为5个模块(如图3)。
这几个模块在底盘的位置相对固定、功能相对集中,因此,各模块可以作为一个独立的组件进行开发。
采用主控模型结合模块化设计思想,底盘主控模型的结构框图如图4所示。
在此框图中,顶级骨架独立于装配产品,在各模块下建立二级骨架,其必要设计信息参照顶级骨架。
Top-down的设计流程包括设计意图定义、产品结构定义、骨架模型定义、设计信息发布、部件详细设计。
在底盘的开发中,首先根据底盘的基本参数建立骨架即三维总布置,其次建立分模块内部系统骨架布置方案,最后进行详细的部件设计。
采用PTC公司的CREO软件和Windchill系统搭建协同设计环境,需先在Windchill系统建立各个模块的工作文件夹,然后在本地建立对应工作区并与之关联。
具体的开发流程如图5所示,三维总布置包括整车主要参数的拟定、布局和骨架的建立。
如何在Proe中使用自顶向下方法设计连杆
如何在Pro/ENGINEER 中使用自顶向下方法设计连杆此组件由一个液压圆柱体、几个连杆零件和一个滚柱装置组成。
我们先使用标准模板创建一个组件,以此开始建模过程:将此组件命名为top-level.asm;接着在top-level.asm 中创建一个骨架模型;选择“在组件模式下创建元件”图标,在当前组件中创建一个新的零件;选择“骨架模型”,接受缺省的名称:使用“复制现有”方法,然后选择您公司的起始零件以用作骨架模板。
如果没有起始零件,则使用Pro/ENGINEER 的缺省模板创建一个。
然后,可以浏览到此零件,并将其用作“复制自”选项。
接下来,右键单击TOP-LEVEL_SKEL.PRT,并在其自己的窗口中打开它。
我们在此窗口中将创建连杆系统的布局。
这类似于在2D 软件包中放置连杆。
接着,为基础位置创建三个点,这些点将代表不会移动的点。
可以在建模过程的后面阶段使用Pro/ENGINEER 行为建模扩展来优化这些点。
利用草绘基准点工具能很好地创建这些点。
也可以在“插入”à“模型基准”à“点”à“草绘”下找到此特征。
选择在其上进行草绘的平面,然后创建三个点。
在本例中,使用“前”平面作为草绘平面,并使用“右基准”平面作为右查看参照。
(图1)请注意,有一个点在缺省的坐标系上,而另外两个点标出了尺寸:PNT0 将用于确定圆柱的销钉接头位置;PNT1 将用于确定“V”形支架的位置;PNT2 将用于确定滚柱拉杆的固定位置。
接下来,我们将为连杆草绘以下部分:“V”形支架;滚柱拉杆;从V 形支架到滚柱拉杆的连接连杆。
让我们从V 形支架开始:创建一个草绘基准曲线特征;使用在草绘基准点特征时所用的同一草绘平面和视图参照,只需选择“使用先前的”按钮即可。
图2中显示了创建草绘的步骤:草绘一个圆,圆心在PNT1,半径值为6”;将此圆切换为构造圆;草绘两条中心线,使它们各偏离垂直中心线22.5 度,如图所示;创建三个直径为1” 的圆,一个圆心在PNT1,另两个圆心在半径为6” 的构造圆与两条22.5 度中心线的相交处。
Pro/Engineer自顶向下方法在模具设计中的应用
fr
o m
th e to p
,
(T o p
s ts
—
D o
w n
)
d e s ig n
m e tho
d b a s ic p h i lo
o
s o
p hy th e d e s ig n
,
c
y c le
n
a n
d th e
m a
in f e a t u
m o
re
.
A
n
d t h is
m e tho
d
要 求 出发 品 的功 能
m e r it
K
e
yw
o r
ds
:P r o
~E
n
g in
e e r
t op do
—
w n
M
o
ld D
e s
ig
n
C r 7 、. 【 着 C A D / A M -’ _一
技术的发
视
。
目前
,
白顶 向下 设 计 方 法 是 缩 短 模
最 先进 、有效 的设 计
结 构 设计 之 后
设计
。
,
再 进 行 单个零 件 的 详 细
a
p p lic a t io
in t h e in j e c t i o
ld de s ig n
m a n
ife
th r o u g h t h e e x
a m
p l e in tr
du c tio
n
fr o
m
th e
to
p
the
d e s ig
proe自顶向下组件设计
骨架建立工具
• 建成各类零件—只包括需要的曲面与基准参考
• 建成各类零件—包括能表现整个组装件的内容
• 直接组装到现有组装中—会自动排序到任何实体 组件之前
4.管理关联性
外部参考 • 在设计过程中产生与现在设计模型外零件与组 装件的关联 • 快速作大型组装设计时产生的复杂关联需要被 管理与组织 为何外部的参考很重要 • 完全扩展参数关联设计的威力与弹性 • 能更有效率的管理相关联或不相关联对象之间 的资料交换 • 控制能重复使用资料的使用量 • 确保整个设计意念配置的一致性
• 建立起始的产品结构
组装建构环境(Pro/E与模型树弹出选单, Pro/INTRALINK与Pro/PDM)。
• 组件建立方式 空的组件,复制起始件,自动以内定基 准组装,以现有组装组件为基础,未定位 的组件。 • 部分和完全约束的组件
拟定产品的初步架构
先建立组件再组装 建立组件 组装
在组装直接建立组件
Top-Down Design的六个阶段:
1. 概念设计(设定设计规范) Conceptual Engineering 2. 设定初步的产品架构 Define Preliminary Product Structure 3. 攫取设计意念(骨架) Capture Design Intent (Skeletons) 4. 管理关联性 Manage Interdependencies 5. 相关设计意念沟通与传递 Associative Communication of Design Intent 6. 进行组装设计 Population of the Assembly
概念草图 模型 窗体
现有 2D,3D 资料
记录
注记
产品结构
基于Pro E自顶向下的铰孔夹具设计
基于Pro/E自顶向下的铰孔夹具设计图1所示为简化结构的气缸盖,该零件是某单位L4R01型柴油发动机上的一个很重要的零件,工艺要求先镗铰图中白色加亮的两个f 45mm孔,后续加工工序需要以其作为两个定位销孔做准备,为此必须先设计一套供镗铰孔所用的夹具,其导向套内径与刀具直径的配合关系、导向套外径与模板的配合关系等等要求都很高,若使用“自底向上”的设计方法,分别设计完成各个零件,难免在装配时出现装配面配合不良的现象,或者说,当产品上f 45mm的孔一旦有所调整,与其相关的导向套及模板上的孔就需要重新绘制。
另一方面,该单位有大大小小不同型号的柴油机100多种,两个定位销孔的间距与孔径各不相同,但它们的夹具结构很相似,如果一一重复大小不同零件的绘制,就会占用设计人员大量的设计时间。
这时,就应该使用“自顶向下”的设计方法,一套完整的夹具设计完成后,通过修改其中几个参数,就会完成另一套相似结构夹具的设计。
1. L4R01气缸盖铰孔夹具的三维设计自顶向下设计是一种设计方法,也是一种对整个产品设计过程的管理工具。
(1)自顶向下设计,首先设计最顶层的产品结构,如产品的整体外形或各零件的组成框架;然后通过一定的方法将这个产品结构传递到每个部件或零件中;最后,再从顶层传递下来的产品结构的基础上,完成零件的设计。
如图2所示,在这套夹具的设计过程中,首先在Pro/E的组件模块下,根据气缸体的外形尺寸选择Pro/E中的偏移工具按钮,设计其夹具体的整体外形、配合面及螺钉孔位置,然后将此模型传递到各个零件模型中,得到最终的零件模型。
下面通过“使用边界”按钮,以夹具体的外形为基准,创建模板的外形,确定尺寸190mm 和740mm的边界位置与夹具体一致,通过偏移工具按钮,以气缸体上两个f 45mm孔边界为基准,单边偏移10mm,确定模板上镗削导向套孔2个f 65H7的位置和大小(见图3)。
用同样的方法,在Pro/E的组件模块下,“插入”→“元件”→“创建新零件”,利用旋转特征创建导套,通过“使用边界”按钮,以模板上2个f 65H7孔的棱边为基准,创建导套的外形,导套的壁厚确定后,就可确定内孔的尺寸;再以导套的内孔尺寸为基准分别创建工件气缸盖上孔加工时所需要的定位销和进气门铰刀的外径尺寸。
自顶向下设计-布局和骨架
零件控制着从属零件的尺寸。 • 笔记本中的零件和组件关系 – 可以在中心布局中进行所有修
改,因为所有零件和组件都被结合在布局中。
第1-12页
设计基础
NOTES
课堂练习
目标
在本课中,将在设计过程中创建和开发布局,而无需进行零件或 组件建模。
方法
在练习 1 中,将使用布局在整个组件传播一个改变。此设计改变 的影响力非常大,很难手动控制。
在练习 2 中,将开发一个布局来驱动发动机组件中的元件,在不 用组件或元件的情况下产生参数和关系。还可实现对组件中现有 元件的控制。
• 通过重定义复制几何特征的依赖关系来控制变化的传递。 • 为“零件”模式中的特征设计而将骨架数据复制到零件中,或
为子组件窗口中的设计而将骨架数据复制到子组件或其骨架 中。 • 创建映射零件。 • 为外部参照提供可见的实体。 • 将外部特征合并到单个特征中。 • 将参照复制到可以具有外部参照的子组件。
• 草绘初步几何。 • 定义极限尺寸和配合信息。 • 建立模型参数之间的关系。 • 指定元件的装配方式。 然后便可以在整个开发过程中,利用布局功能随时控制设计。
定义组件结构
下列方法在创建或装配所有元件之前定义组件的结构:
创建新的子组件
要创建新的子组件,可以使用“创建选项”(Creation Options) 对 话框来复制现有组件、将三个缺省的基准平面直接放置到组件中 (无需手工增加放置约束),或者只在组件结构中定义子组件的 存在。
模块
1
自顶向下设计和布局
在本模块中,您将学习如何在自顶向下设计的环境下使用协调 一致的设计技术来开发模型。 也将学习如何使用“布局”,布局用于在自顶向下的设计环境 中控制组件的设计意图。学习如何创建布局以及如何在布局中 使用关系。
自顶向下设计补充
自顶向下设计补充
Pro/E工业设计院基础训练(摘选)
二代震龙工作室
1、骨架(Skeleton)文件的绘制
骨架实际上就产品的机构骨干,必须考虑机构的自由度、零件的尺寸、机构边界空间约束以及相关的设计意图。
骨架文件绘制重点步骤如下:
表1 骨架文件绘制重点步骤
2、将机构分割成若干局部组装
完成骨架后,就必须进行分割局部组装的动作。
那么,机构的分割是否正确?分割后的局部组装,是否可以只依赖骨架上的信息进行设计工作?如何分配呢?
3、设计细分工作的人员分工
局部组装分割完成后,就必须进行人员分工及权限设置。
这部分的工作将影响到未来设计工作是否冲突,如果权限设计由问题,将造成机构的规格(骨架的架构)会被不相关的人员无意或有意变更,机构将问题丛生。
因此,表3列出了建议的设置原则。
参照控制。
1)通过【编辑】-【设置】-【参照控制】打开对话框。
2)通过【右键】单击零件,【参照控制】打开对话框。
proe自顶向下设计
PRO/e自顶向下设计1自顶向下设计的一些概念很多事或物都有这样的规律:在实践中探索,总结,提升出理论,再用理论指导实践。
正确高效的实践一定离不开理论的指导。
只有方向,思路,方法正确后,我们的工作才会事半功倍。
1.1自顶向下(TOP-DOWN)设计的意义1.1.1自底向上设计和自顶向下设计从设计过程看有两种设计方法:自底向上设计和自顶向下设计。
这两种方法的区别是传导的方向不同,结果产生的顺序不同。
自底向上是较传统稳健的设计方法,根据现有的条件,装备,成熟的方法,采用已经过检验测试或认可的零件或工艺,设计出保证可以量产的产品。
优点是可靠性高,成本低,缺点是竞争力低,市场时效滞后,设计和体验感差。
自顶向下设计是创新的设计方法,是根据市场预期和用户需求,规划定义产品,选型或开发符合定义需求的零件或工艺,最后达到产品量产。
优点是能保证产品的先进性夺取制高点,缺点是成本高风险巨大。
在实际应用中很多时候这两种方法混合着用的,根据情况有所侧重。
1.1.2自顶向下设计的先进意义?自顶向下设计简单说就是以最高目标实现为导向,尽最大可能在各个环节实现这个最高目标。
有这个目标在,每个环节的工作才是最接近目标,从而才是最有效的。
不以最终目标为导向而追求自身所处环节的便利性,舒适性,必然导致工作的反复性和修改增加,最终也会增加目标实现的折扣率。
在设计,制造,供应链等各个环节,每个环节要有自顶向下的目标导向意识,这创新和实践才有最好的结果。
1.1.3什么是PRO/E的自顶向下设计?用PRO/E做产品设计,个人认为自顶向下设计体现在两个方面,一个是你的设计思路是以最高目标为导向的,二个是运用PRO/E命令的方法是自顶向下的。
PRO/E的最大优点就是参数化,参数化是把双刃剑,用不好作茧自缚最后丧失这个优点。
怎样发挥参数化这个优点呢?就是应用好PRO/E自顶向下设计。
本篇的目的就是讲PRO/E自顶向下设计的具体方法。
简单的说是:自底向上就是先建零件图,然后去组装装配图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使用族表实现互换
替换不合规格的螺栓
使用布局实现互换
自动装配布局
声明替换模型
声明替换模型
替换模型操作
使用互换装配实现互换
建立互换装配零件的参照图元
2 3 1
2 3 1
实现自动替换
PROE自顶向下设计理念
产品设计
概念设计 设计装配结构和零部件 创造性思维过程,设计的是产品实现其功 能的原理和方法。 设计人员追求的目标:将概念设计中的设 计思想正确地传达到每个零件中,使这些 零件装配在一起能够实现概念设计预期的 目标。 PROE提供一个整体性、关联性的 设计平台
自底向上设计
常用工具5:互换设计
在设计时某些零件可能需要更换成其他 的零件,这就需要一种便捷的方法实现 更换,而不是把原来的零件删除再重新 装上新的零部件。 有时互换是为了在设计变更后将某些零 件更改为更合适的型号。 有时互换是为了扩展产品的规格。
几种实现互换的方法
族表:用零部件族表中的其他规格 替换。 互换:用互换装配中的其他零件或 部件替换。 参照模型:用包含外部参考的其他 零件替换。 布局:组件中可利用布局来替换元 件并自动替换模型。 通过复制:用新创建的模型副本替 换元件模型。
自顶向下设计常用工具
数据共享:可实现装配到零件或零件到零件的数
据传递,不仅能够在装配体内部实现数据传递, 也能调用装配体外的数据传递。 关系:控制参数与参数之间的关系。关系是产品 进行设计控制的基础,存在于:零件及装配,布 局及骨架。 布局:定义产品中的主要参数和尺寸,并通过关 系式控制参数间的关系。 骨架模型:在装配中提供零件或子装配的设计参 照,使设计信息集中在骨架模型中,并通过修改 骨架模型实现对整个产品的控制。
实例:铰链四杆机构
运动骨架详解
根据骨架生成零件
根据骨架生成零件
根据骨架生成零件
拖动机构运动
修改骨架尺寸
骨架驱动模型
骨架修改前模型
骨架修改后模型
小结:骨架模型
骨架模型文件不是实体文件,在装配明
细表中也不包括骨架模型。其具有如下优 点: 集中提供设计数据; 零部件位置自动变更; 减少不必要的父子关系; 可以任意确定零部件的装配顺序; 改变参考控制。
常用工具1:数据共享
内部共享模式
外部共享模式
几何共享模式
常用工具2:关系
建立周长关系式
建立其他控制关系式
关系式控制设计变更
常用工具3:布局
创建布局
提供布局对应零件
用声明创建关联
设计变结:布局
核心功能:定义产品的主要参数和主要尺
存在的问题:零件 之间没有数据联系 和约束;其装配过 程是通过坐标变换 将设计好的零件拼 凑在一起的过程; 零件不会因为其他 数据的改变而改变。 适用范围:装配无 关联的结构,例如 标准件或外购件的 装配。
自顶向下设计
实现目标:设计 数据从原理布局 向装配结构传递, 然后再向零件传 递;零件与零件 之间也能进行数 据的传递;保证 了装配结构的整 体的数据关联性 及约束信息;
实例:硬盘盒设计
建立骨架
骨架驱动设计修改
骨架模型控制运动机构
带有运动机构的产品在设计时,机构的 概念设计常常决定了产品的性能。 骨架模型为运动机构的概念设计提供了 一个强大的工具,使骨架模型作为设计 中心控制运动机构的尺寸和位置,使得 设计和优化机构的尺寸时更加方便,设 计者更容易控制整个产品的设计意图。
骨架模型的三种类型: 标准骨架 标准骨架是根据组件中某一元件的设计意图 而创建的零件。 运动骨架 运动骨架用来定义组件中实体之间的运动。 主体骨架 主体骨架可在运动骨架中创建,相当于运动 骨架中的零件。
骨架模型控制产品结构
使用骨架模型在设计产品装配结构时非 常方便,零件可以参照骨架模型中的曲 线或曲面创建特征,同时也参照骨架模 型中的基准特征,从而可以通过骨架模 型方便地控制零件的尺寸、形状和装配 位置。
寸,并设定这些参数和尺寸之间的关系。 然后通过声明,使其他设计部分与布局关 联,从而实现布局对整个产品的控制。 次要功能:绘制产品的外形和组成部分, 以形成对产品的直观认识。由于布局的几 何部分是非参数化的,布局中的几何形状 和外形等没有任何意义,只起到一个视觉 作用。
常用工具4:骨架模型
骨架模型是根据组件内的上下关系创建 的特殊零件模型,它作为一个元件放置 在装配体中,用来控制装配结构和尺寸, 其他零件参照骨架模型并以骨架模型作 为设计规范。 骨架模型也可通过声明与布局建立关联, 可实现布局控制骨架、骨架控制装配和 零件的自顶向下设计的数据传递关系。