2019七年级上数学竞赛试题

合集下载

初中数学竞赛专题复习 第二篇 平面几何 第10章 四边形试题(无答案) 新人教版

初中数学竞赛专题复习 第二篇 平面几何 第10章 四边形试题(无答案) 新人教版

第10章 四边形§10.1 平行四边形与梯形10.1.1★如图(a),在四边形ABCD 中,AC 、BD 是对角线,已知ABC △是等边三角形,30ADC ∠=︒,3AD =,5BD =,求边CD 的长.DABC DAB CE(a)(b)解析 如图(b),以CD 为边向四边形ABCD 外作等边CDE △,连结AE .由于AC BC =,CD CE =, BCD BCA ACD ∠=∠+∠DCE ACD =∠+∠ACE ∠. 所以BCD △≌ACE △,从而BD AE =.又因为30ADC ∠=︒,5BD =,3AD =,于是90ADE ∠=︒,从而在Rt ADE △中,4DE =.所以4CD =.10.1.2★在ABCD 中,2AB AD =,F 为AB 中点,CE AD ⊥D 交AD (或延长线)于E .求证:3BFE AEF ∠=∠.解析 如图,取CD 中点G ,连结FG 、CF .A FBE DGC易知四边形ADGF 与FGCB 均为菱形,FG 垂直平分CE ,于是EFG ∠CFG CFB =∠=∠,于是33BFE EFG AEF ∠=∠∠=∠.10.1.3★AD 、BE 、CF 是ABC △的三条中线,FG BE ∥,EG AB ∥,四边形ADCG 是平行四边形. 解析 如图,连结EF ,则EF 是中位线.AGFEB D C由条件知EG BF ∥,故EG AF ∥,于是AG EF CD ∥∥,故结论成立. 10.1.4★延长矩形ABCD 的边CB 到E ,使CE CA =,F 是AE 的中点,求证:BF FD ⊥.解析 如图,取BD 中点G ,连结FG ,则()11112222FG AD BE CE CA BD =+===,于是BF FD ⊥. ADBCADFGEBC题10.1.4题10.1.510.1.5★菱形ABCD中,2BD AC -=120BAD ∠=︒,求菱形的面积. 解析 如图,易知ABC △与ACD △均为正三角形.设菱形边长为x ,则由120BAD ∠=︒,得BD ,AC x =,所以)12x =x =此菱形面积为212BD AC ⋅=. 10.1.6★在梯形ABCD 中,AD BC ∥,中位线MN 分别交AB 、CD 、AC 、BD 于M 、N 、P 、Q ,若延长AQ 、DP 的交点正好位于BC 上,求BCAD. ADMQPNB RC解析 设AQ 、DP 延长后交于R ,且R 在BC 上,则由中位线知2AD PQ =,2AD PN =,2BC QN =,故2BCAD=. 10.1.7★★四边形ABCD 中,135ABC ∠=︒,120BCD ∠=︒,AB =5BC =6CD =,求AD . 解析 如图所示,作AF BC ⊥,DE BC ⊥分别交BC 所在直线于F 、E ,作FG AD ∥交DE 于G ,则AFB △为等腰直角三角形,90AFB ∠=︒,AB =故FB A F =;90DEC ∠=︒,60DCE ∠=︒,6CD =,故3CE =,DE =.F BCEADG所以EF FB BC CE =++538+=,GE DE DG DE AF =-=-==从而AD FG ==10.1.8★★★已知ABC △中,90A ∠=︒,D 是BC 上一点,D 关于AB 、AC 的对称点分别为F 、E ,若BE CF =,12AD BC =.解析 如图,连结AF 、AE 、BF 、CE .FAEBDC由对称,有22180FAD EAD BAD CAD ∠+∠=∠+∠=︒,故F 、A 、E 共线.又180BFE FEC ADB ADC ∠+∠=∠+∠=︒,故FB ∥EC ,而BE CF =,所以梯ECBF 为等腰梯形.又AF AD AE ==,于是1122AD EF BC ==.10.1.9★★将梯形的各个顶点均作关于不包含该顶点的对角线的对称点,证明:如果所得到的四个像点也形成四边形,则必为一个梯形.B'C'ADBCA'D'O解析 如图,AD BC ∥,A 、B 、C 、D 关于对应对角线的对称点分别为A ′、B ′、C ′、D ′. 设AC 、BD 交于O ,连结A ′O 、B ′O 、C ′O 、D ′O .则A ∠′OB =AOB COD C ∠=∠=∠′OD ,故A ′、O 、C ′共线,且A O AO C O CO '=',同理B ′、O 、D ′共线,B O D O ''BO DO =,所以由1BO CODO AO=≠得1B O C OD O A O''=≠''. 故如A ′、B ′、C ′、D ′不位于同一直线上,则A ′D ′∥B ′C ′,即A ′B ′C ′D ′成梯形.10.1.10★已知:直角梯形ABCD ,AD BC ∥,AB BC ⊥,AB BC =,E 是AB 上一点,AE AD =,75CEB ∠=︒,求ECD ∠.A DE BC解析 如图,连结AC ,则由AB BC =,AB BC ⊥,得45BAC DAC ∠=︒=∠. 又AE AD =,故AEC △≌ADC ,EC CD =.又180754560DEC ∠=︒-︒-︒=︒,故DEC △为正三角形,于是60ECD ∠=︒.10.1.11★★在四边形ABCD 中,60A ∠=︒,90B D ∠=∠=︒,2AB =,1CD =,求BC 、AD 和BD 的长.ACED解析 如图,延长AD 、BC 至E ,则60DCE ∠=︒,22CE CD ==.又60A ∠=︒,故BE =2BC =,又4AE =,CE,故4AD =.至于求BD ,有多种方法,如勾股定理或余弦定理,也可用A 、B 、C 、D 四点共圆的性质:AC,sin 60BD AC =⋅︒=§10.2 正方形10.2.1★在正方形ABCD 中,E 为BC 的中点,F 为CD 上的点,且AF BC CF =+.求证:2BAF BAE ∠=∠.ADBECFP解析 如图,延长AE 、DC ,设交于P ,则B E C E =得CP AB BC ==,FP FC CP FC BC AF =+++=.于是BAE P FAP ∠=∠=∠,即2BAF BAE ∠=∠.10.2.2★正方形边长等于1,通过它的中心引一条直线,求正方形的四个顶点到这条直线的距离平方和的取值范围.AMDONBCl解析 如图,设O 是正方形ABCD 的中心,l 通过O ,AM 、DN 分别与l 垂直于M 、N . 由于90MAO AOM DON ∠=︒-∠=∠,AO OD =,故AMO △≌OND △,2222212AM DN AM MO AO +=+==.对B 、C 的垂线也有类似结论,因此所求距离的平方和是常数1.10.2.3★正方形ABCD 的对角线交于O ,BAC ∠的平分线交BD 于G ,交BC 于F ,求证:2CFOG =. 解析 如图,作OE FC ∥,交AF 于E ,OE 为ACF △中位线,2CF EO =. 问题变为证明EO GO =.因为么4545GEO OAF FAF OGE ∠=︒+∠=∠+︒=∠,于是结论成立.ADE OG BFC10.2.4★设M 、N 分别为正方形ABCD 的边AD 、CD 的中点,且CM 与BN 交于P ,求证:PA AB =. 解析 如图,由MD CN =知BNC △≌CMD △,故90PBC PCB NCM PCB ∠+∠=∠+∠=︒,故C M B N ⊥.延长CM 、BA ,设交于Q ,则QA CD AD ==,A 为直角三角形QPB 斜边BQ 之中点,于是AP AB =.QADMBCN P题10.2.410.2.5★已知两个正方形ABCD 、AKLM (顶点均按照顺时针方向排列),求证:这两个正方形的中心和BM 、DK 的中点组成一个正方形.题10.2.5MAQBP CDRSLK解析 如图,设DB 、BM 、MK 、KD 的中点分别为P 、Q 、R 、S .由于DA AB =,AK AM =,90DAM BAM BAK ∠=︒+∠=∠,于是DAM △≌BAK △,由此得KB 与DM 垂直且相等.由于12SR DM PQ ∥∥,12SP KB RQ ∥∥,故四边形PQRS 为正方形.10.2.6★★M 是正方形ABCD 内一点,若2222AB MA MB -=,90CMB ∠=︒,求MCD ∠.解析 如图,作MN AB ⊥于N ,则22222,2,AB AN BN AM BM AN BN AB ⎧-=-=⎪⎨⎪+=⎩ADBLCMN解得34AN AB =,14BN AB =. 不妨设3AN =,3BN =,MN x =,则 ()22229(4)DM AN AD MN x =+-=+-, ()2222()14CM BN CM MN x =+-=+-,由条件90CMD ∠=︒,知222DM CM CD +=,即()2102416x +-=,解得4x = 又作ML BC ⊥于L,于是4LC x =-1ML NB ==,故60MCD LMC ∠=∠=︒.10.2.7★O 是正方形ABCD 的两对角线的交点,P 是BD 上异于O 的任一点,PE AD ⊥于E ,PF AB⊥于F ,G 是EO 的延长线和BC 的交点,求OFG ∠.CGB OPFDEA解析 如图,易知AF EP ED ==,AO DO =,45FAO EDO ∠=︒=∠,于是AFO △≌DEO △≌BGO △,于是OF OG =,90AOB FOG ∠=︒-∠,故OFG △为等腰直角三角形,45OFG ∠=︒.10.2.8★★K 是正方形ABCD 的边AB 的中点,点L 分对角线AC 的比为:3AL LC =,证明:90KLD ∠=︒.解析 连结BL ,由正方形关于AC 对称,知BL DL =. 又作LJ AB ⊥于J ,由3AL LC =,易知1142JB AB KB ==,故J 为KB 中点,JL 垂直平分KB ,于是LK LB =,LKB LBK ADL ∠=∠=∠,或180AKL ADL ∠+∠=︒,故90KLD ∠=︒.A EDFPOB GC10.2.9★已知ABC △,向外作正方形ABEF 和ACGH .直线AK 垂直BC 于K ,反向延长交FH 于M ,求证:M 是FH 的中点.解析 如图,作FQ 、HP 分别与直线KA 垂直,垂足为Q 、P .P HMFQ AEBKC G易见,90QFA QAF BAK ∠=︒-∠=∠,又90FQA AKB ∠=︒=∠,FA AB =,故有AQF △≌BKA △,FQ AK =,同理PH AK =,于是FQ PH =,FM MH =.10.2.10★已知:正方形ABCD 中,E 、F 分别在BC 、CD 上,AG EF ⊥于G .若45EAF ∠=︒,求证:AG AB =.反之,若AG AB =,则45EAF ∠=︒.解析 如图,延长CB 至H ,使BH DF =,连结AH ,则AHB △≌AFD △,90HAF BAD ∠=∠=︒,904545HAE EAF ∠=︒-︒=︒=∠,又AH AF =,AE AE =,故AHE △≌AFE △,AB 、AG 为其对应 边上的高,于是AG AB =.A D F GH B E C反之,若AG AB =,则Rt ABE △≌Rt AGE △,EAG BAE ∠=∠,同理,FAG DAF ∠=∠,于是1452EAF BAD ∠=∠=︒.10.2.11★★在梯形ABCD 中,AD BC ∥(BC >AD ),90D ∠=︒,12BC CD ==,E 在边CD 上,45ABE ∠=︒,若10AE =,求CE 的长.解析 延长DA 至M ,使BM BE ⊥过B 作BG AM ⊥,G 为垂足.易知四边形BCDG 为正方形,所以BC BG =.又CBE GBM ∠=∠,Rt BEC △≌Rt BMG △,故BM BE =. 又45ABE ABM ∠=∠=︒,故ABE △≌ABM △,10AM AE ==. 设CE x =,则10AG x =-,()12102AD x x =--=+,12DE x =-.在Rt ADE △中,222AE AD DE =+,故()()22100212x x =++-,即210240x x -+=,解之,得14x =,26x =.故CE 的长为4或6.DEC BAGM10.2.12★★在正方形ABCD 的边BC 上任取一点M ,过C 作CQ DM ⊥于Q ,且延长交AB 于N ,设正方形对角线的交点为O ,连结OM 、ON ,求证:OM ON ⊥.解析 如图,易知MDC NCB ∠=∠,故DMC △≌CNB △,故NB MC =,又45NBO OCM ∠=︒=∠,BO CO =,于是ONB △≌OMC △,90NOM BOC ∠=∠=︒.\ADBCMQON10.2.13★★四边形ABCD 是正方形,四边形ACEF 是菱形,E 、F 、B 在一直线上.求证:AE 、AF 三等分CAB ∠.解析 如图,作BM 、FN 与AC 垂直,垂足为M 、N ,于是由AB BF ∥知1122FN BM AC AF ===,于是30FAC ∠=︒.又45CAB ∠=︒,于是15BAF ∠=︒,15FAE CAE ∠=∠=︒,AE 、AF 三等分CAB ∠. ADBCMNFE。

初一创新杯数学邀请赛模拟试题集锦(5套)

初一创新杯数学邀请赛模拟试题集锦(5套)

初一数学“创新杯”邀请赛赛前训练题-1一、选择题1.如图,已知B 是线段AC 上的一点,M 是线段AB 的中点,N 是线段AC 的中点,P 为NA 的中点,Q 是AM 的中点,则MN:PQ=( )QP M N A CBA.1B.2C.3D.4 2.若0<a ,0>b ,0<+b a ,则下列关系中正确的是( )A.a b b a ->->>B.b b a a ->>->C.a b a b ->->>D.a b b a >->>-3.若a ,b ,c 是非零有理数,且0=++c b a ,则abc abcc c b b a a +++所有可能值为( )A.0B.1或-1C.-1D.14.计算:)514131)(615141311()61514131)(5141311(++++++-++++++=( )A.21B.31C.41D.61 5.已知实数a ,b 满足ab =1且b a M +++=1111,bba a N +++=11,则( ) A.N M > B.N M < C.N M = D.M 、N 的大小不能确定 6.观察以下数组:(1),(3,5),(7,9,11),(13,15,17,19),……2011在( )A.第44组B.第45组C.第46组 D 无法确定 7.已知:523=-++x x ,54+-=x y ,则y 的最大值是( )A.12B.15C.17D.无法确定 8.有一块试验地形状为等边三角形(设其为△ABC ),为了解情况,管理员甲从顶点A 出发,沿AB —BC —CA 的方向走了一圈回到顶点A 处。

管理员乙从BC 边上的一点D 出发,沿DC —CA —AB —BD 的方向走了一圈回到出发点D 处,则甲、乙两位管理员从出发到回到原处,在途中身体( )A.甲、乙都转过︒180B.甲转过︒120,乙转过︒180C.甲、乙都转过︒360D.甲转过︒240,乙转过︒3609.在九张卡片上分别写着数字1,2,3,……9,现将卡片顺序打乱,让空白面朝上,再写出1,2,3……,9,然后将每张卡片上的两个数字作差,则九个差的积( ) A.一定是奇数 B.可能是奇数也可能是偶数 C.一定是偶数 D.一定是负数 10.一个四位数能被9整除,去掉末位数字后所得的三位数恰好是4的倍数,这样的四位数中最大的一个的末位数字是( )A.6B.4C.3D.2二、填空题11.已知两个不相等的质数的和是一个质数,则较小的质数的倒数是 。

初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题一、选择题(每题3分,共30分)1. 若实数a,b满足 a + 2 +(b - 4)² = 0,则a + b的值为()。

A. - 2B. 2C. 6D. - 6答案:B。

解析:因为绝对值是非负的,一个数的平方也是非负的,要使 a + 2 +(b - 4)² = 0,那么a+2 = 0且b - 4 = 0,解得a=-2,b = 4,所以a + b=2。

2. 把多项式x² - 4x+4分解因式,结果正确的是()。

A. (x - 2)²B. (x+2)²C. (x - 4)²D. (x+4)²答案:A。

解析:x²- 4x + 4符合完全平方公式a²- 2ab+b²=(a - b)²的形式,这里a=x,b = 2,所以分解因式结果为(x - 2)²。

3. 已知一元二次方程x² - 3x - 2 = 0的两个实数根为x1,x2,则(x1 - 1)(x2 - 1)的值是()。

A. - 4B. - 2C. 0D. 2答案:C。

解析:根据韦达定理,对于一元二次方程ax²+bx + c = 0(a≠0),x1+x2=-b/a,x1x2=c/a。

在方程x² - 3x - 2 = 0中,a = 1,b=-3,c = - 2,所以x1+x2 = 3,x1x2=-2。

(x1 - 1)(x2 - 1)=x1x2-(x1+x2)+1=-2 - 3+1 = 0。

4. 一个三角形的三个内角之比为1:2:3,则这个三角形是()。

A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B。

解析:设三个内角分别为x,2x,3x,因为三角形内角和为180°,所以x+2x+3x = 180°,解得x = 30°,那么三个角分别为30°,60°,90°,所以是直角三角形。

“大梦杯”福建省初中数学竞赛试题参考答案

“大梦杯”福建省初中数学竞赛试题参考答案

2019年“大梦杯”福建省初中数学竞赛试题参考答案考试时间2019年3月17日9∶00-11∶00满分150分一、选择题(共5小题,每小题7分,共35分)。

每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若一次函数2y x =+与反比例函数4y x=的图像交于11()A x y ,,22()B x y ,两点,则1212x x y y +的值为()A .8B .6C .6-D .8-【答案】D【解答】由24y x y x =+⎧⎪⎨=⎪⎩,得2240x x +-=……………①。

依题意,1x ,2x 是方程①的两根,于是122x x +=-,124x x =-。

∴121212121212441616484x x y y x x x x x x x x +=+⋅=+=-+=--。

2.如图,ABC △为圆O 的内接三角形,D 为BC 中点,E 为OA 中点,40ABC ∠=︒,80BCA ∠=︒,则OED ∠的大小为()A .15︒B .18︒C .20︒D .22︒【答案】C【解答】如图,连结OC 。

由40ABC ∠=︒,80BCA ∠=︒,得60BAC ∠=︒。

∵D 为BC 中点,∴OD BC ⊥,1602DOC BOC BAC ∠=∠=∠=︒。

∴30OCD ∠=︒,12OD OC =。

又E 为OA 中点,∴12OE OA OD ==。

结合40ABC ∠=︒,知24060140EOD AOC COD ∠=∠+∠=⨯︒+︒=︒,(第2题图)(第2题答题图)11(180)(180140)2022OED EOD ∠=︒-∠=︒-︒=︒。

3.已知二次函数2()2f x x ax b =++,若()(1)f a f b =+,其中1a b ≠+,则(1)(2)f f +的值为()A .8B .10C .12D .14【答案】A【解答】由已知条件及二次函数图像的对称性,知124a b a++=-。

七年级超难数学竞赛题带解析

七年级超难数学竞赛题带解析

七年级超难数学竞赛题带解析一、代数部分。

1. 已知a,b为有理数,且a + b√(2)=(1 - √(2))^2,求a^b的值。

- 解析:- 先将(1-√(2))^2展开,根据完全平方公式(a - b)^2=a^2 - 2ab+b^2,这里a = 1,b=√(2),则(1-√(2))^2=1-2√(2)+2 = 3 - 2√(2)。

- 因为a + b√(2)=3 - 2√(2),所以a = 3,b=-2。

- 那么a^b = 3^-2=(1)/(9)。

2. 若x^2 - 3x + 1 = 0,求x^4+(1)/(x^4)的值。

- 解析:- 由x^2 - 3x + 1 = 0,因为x = 0不满足方程,所以方程两边同时除以x得x-3+(1)/(x)=0,即x+(1)/(x)=3。

- 对x+(1)/(x)=3两边平方得(x +(1)/(x))^2=x^2+2+(1)/(x^2)=9,所以x^2+(1)/(x^2)=7。

- 再对x^2+(1)/(x^2)=7两边平方得(x^2+(1)/(x^2))^2=x^4 + 2+(1)/(x^4)=49,所以x^4+(1)/(x^4)=47。

3. 化简(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(2019×2020)。

- 解析:- 因为(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。

- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(2019)-(1)/(2020))- 去括号后中间项都可以消去,得到1-(1)/(2020)=(2019)/(2020)。

4. 已知a^2 + b^2=6ab,且a>b>0,求(a + b)/(a - b)的值。

- 解析:- 因为a^2 + b^2 = 6ab,所以(a + b)^2=a^2+2ab + b^2=8ab,(a - b)^2=a^2-2ab + b^2 = 4ab。

【名师整理】2019-2020学年人教版七年级数学上册同步精品课堂3-4-3 实际问题与一元一次方程(球赛积分表)

【名师整理】2019-2020学年人教版七年级数学上册同步精品课堂3-4-3 实际问题与一元一次方程(球赛积分表)

第三章一元一次方程3.4.1 实际问题与一元一次方程(球赛积分表)精选练习答案一、选择题(共10小题)1.(2019·中山市期末)在2018﹣2019赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=74【答案】C【详解】设曼城队一共胜了x场,则平了(30﹣x﹣4)场,依题意,得:3x+(30﹣x﹣4)=74,即3x+(26﹣x)=74.故选:C.【名师点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.2.(2019·广州市期末)足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场【答案】C【详解】设共胜了x场,则平了(14-5-x)场,由题意得:3x+(14-5-x)=19,解得:x=5,即这个队胜了5场.故选C.【名师点睛】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.3.(2018·大庆市期末)小彬是学校的篮球队长,在一场篮球比赛中,他一人得了25分,其中罚球得了5分,他投进的2分球比3分球多5个,则他本场比赛3分球进了()A.1个B.2个C.3个D.4个【答案】B【详解】解: 设他本场比赛3分球进了x个,根据题意得5+2(x+5)+3x=25,解得x=2.故他本场比赛3分球进了2个.故选:B.【名师点睛】本题考查一元一次方程的应用:利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.解题关键是找出之间的相等关系列方程.4.(2018·重庆市期末)在12月4日全国普法日中,我去某校进行了法律知识竞赛,竞赛内容是10道有关中学生应该了解的法律常识,竞赛规则规定:答对一题得5分,不答或答错一题倒扣3分,若七年级1班某同学得了34分,则该同学答对题的个数是()A.9 B.8 C.7 D.6【答案】B【详解】解:设答对的题数为x道,则不答或答错的有(10﹣x)道,由题意可得,5x﹣3(10﹣x)=34解得:x=8.∴该同学答对题的个数是8个.故选B.【名师点睛】本题考查了一元一次方程的应用,正确找出题目中的等量关系,根据等量关系列出方程是解决问题的关键.5.(2018·仙桃市期末)一次知识竞赛共有20道选择题,规定答对一道得5分,不做或错一题扣1分,结果某学生得分为88分,则他做对题数为()A.16 B.17 C.18 D.19【答案】C【详解】解:设他做对题数为x道,则不做或做错了(20-x)道,根据题意得:5x-(20-x)=88,解得:x=18.即他做对题数为18道.故选:C.【名师点睛】本题考查的知识点是一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.(2019·咸阳市期末)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【答案】B【详解】设该队获胜x场,则负了(6-x)场.根据题意得3x+(6-x)=12,解得x=3.经检验x=3符合题意.故该队获胜3场.故选B.【名师点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键7.(2019·武汉市期末)一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A.17道B.18道C.19道D.20道【答案】C【详解】设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.【名师点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.8.(2018·佛山市期末)在“足球进校园”活动中规定:胜一场得3分,平一场得1分,负一场得0分某班足球队踢了10场球,负了3场,得17分,这个足球队共胜了A.2场B.4场C.5场D.7场【答案】C【详解】解:设这个足球队共胜了x场,则平了场,由题意,得,解得:.故选:C.【名师点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据三种比赛结果的得分之和为17分建立方程是关键.9.(2018·大连市期末)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,若小明得了94分,则小明答对的题数是()道.A.17 B.18 C.19 D.20【答案】B【详解】设小明答对了题,根据题意可得:,解得:.故选:.【名师点睛】此题主要考查了一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,正确利用代数式表示出小明的得分.10.(2019·锦州市期末)数学考试出了15道题,做对一题得4分,做错一题倒扣2分,若王刚做了全部15道题,共得36分,则他做对了( )A.10道题B.11道题C.12道题D.13道题【答案】B【详解】解:设做对了道,则做错了道,由题意得:,解得:=11.故答案选:B.【名师点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据做对的得分+做错的得分=最后总得分36建立方程是关键.提高篇二、填空题(共5小题)11.(2019·厦门市期末)在某足球比赛的前11场比赛中,A队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,设A队胜了x场,由题意可列方程为________________【答案】【详解】设设该队共胜了x场,根据题意得:3x+(11-x)=23.故答案为:3x+(11-x)=23.【名师点睛】此题考查了列一元一次方程.列一元一次方程解足球赛问题的关键是抓住胜的场数与平的场数的关系,根据积分总数列出方程.12.(2018·河间市期末)在一场NBA篮球比赛中,姚明共投中a个2分球,b个3分球,还通过罚球得到9分.在这场比赛中,他一共得了____________分.【答案】2a+3b+9【详解】解:2×a+3×b+9=2a+3b+9(分).答:他一共得了(2a+3b+9)分.故答案为:2a+3b+9.【名师点睛】本题考查了一元一次方程的应用,解题关键是找出数量关系,再列式解答.13.(2018·仙桃市期末)下表是2015﹣2016赛季欧洲足球冠军杯第一阶段G组赛(G组共四个队,每个队分别与其它三个队进行主客场比赛各一场,即每个队要进行6场比赛)积分表的一部分.(备注:总积分=胜场积分+平场积分+负场积分)本次足球小组赛中切尔西队总积分是___分.球队场次胜平负总积分切尔西 6 ?? 1 ?基辅迪纳摩 6 3 2 1 11波尔图 6 3 1 2 10【答案】13【详解】解:由特拉维夫马卡比队负6场积0分,可知负一场积0分,根据基辅迪纳摩队和波尔图队的胜场数相同,负场数相差1,积分差1,得平一场得1分,设胜一场积x分,根据题意得3x+1=10解得x=3,即胜一场积3分,平一场积1分,负一场积0分,又因为胜场数=负场数,所以切尔西队胜1+1+2+6-3-3=4场,平6-4-1=1场,总积分是3×4+1=13场,故答案为13.【名师点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.14.(2019·高平市期末)某次数学测验,共16个选择题,评分标准为:答对一题给6分,答错一题扣2分,不答得0分.某个学生只有1题未答,他想自己的分数不低于70分,他至少要答对________道题.【答案】13【详解】解:设他要对x题,依题意得:6x-2(15-x)≥70,解之得x≥12.5;因为题数应该是整数,所以至少要对13题.故答案为:13.【名师点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式组.准确的解不等式是需要掌握的基本计算能力.注意:根据题意,未知数应该是最小整数.15.(2018·十堰市期末)小丽和爸爸一起玩投篮球游戏,两人商定规则为:小丽投中1个得3分,爸爸投中1个得1分,结果两人一共投中了20个,得分刚好相等.小丽投中了_____个.【答案】5【详解】设小丽投中x个,根据题意得出:3x=20﹣x解得:x=5.故答案为:5.【名师点睛】本题考查了一元一次方程的应用,根据已知得出等量关系是解题的关键.三、解答题(共5小题)16.(2018·石家庄市期末)数学课上,教师出示某区篮球赛积分表如下:(1)从表中可以看出,负一场积多少分,胜一场积多少分;(2)请你帮忙算出二队胜了多少场?(3)在这次比赛中,一个队胜场总积分能不能等于它的负场总积分?(4)在计算五队、六队胜出场次的时候,老师还没等同学们计算出来就立刻说出了答案,老师解释说:“我是通过找到积分与胜场之间的数量关系求出来的”,请你说出其中的奥秘.【答案】(1)负1场积分2分;胜1场积3分;(2)二队胜了7场;(3)不能;(4)积分与获胜的场数之差=22.【分析】(1)根据三队负11场得22分,可知负1场,积2分;由一队胜10场负1场积分32分可得胜一场的积分;(2)设二队胜x场,负(11-x)场,根据积分29分列方程,求解即可;(3)设这次比赛一个队共胜x场,则负(11﹣x)场,然后根据得分列出方程求解即可;(4)设这次比赛一个队共胜x场,则负(11﹣x)场,积分为y,根据y=胜场积分+负场积分=3x+2(11﹣x)=x+22,即可得到结论.【详解】(1)三队负11场得22分,可知负1场积分=22÷11=2(分);由一队胜10场可知,其负1场,故胜1场积分=(32-1×2)÷10=3(分);(2)设二队胜x场,负(11-x)场.根据题意得:3x+2(11-x)=29解得:x=7.答:二队胜了7场.(3)设这次比赛一个队共胜x场,则负(11﹣x)场,根据题意得:3x=2(11-x)解得:x=.∵比赛场次x是正整数,∴一个队胜场总积分不能等于它的负场总积分.(4)设这次比赛一个队共胜x场,则负(11﹣x)场,积分为y,根据题意得:y=3x+2(11﹣x)=x+22,∴积分与获胜的场数之差=22.【名师点睛】本题考查了一元一次方程的应用以及从统计表中获取信息的能力.根据题意找出相等关系是解答本题的关键.17.(2018·南平市期末)某校七年级组织知识竞赛,共设20道选择题,各题分值相同,每题必答.右表记录了5个参赛学生的得分情况.问:参赛者答对题数答错题数得分A 20 0 100B 19 1 94C 18 2 88D 14 6 64E 10 10 40(1)答对一题得分,答错一题得分;(2)有一同学说:同学甲得了70分,同学乙得了90分,你认为谁的成绩是准确的?为什么?【答案】(1)5,﹣1;(2)同学甲的成绩是准确的,同学乙的成绩不准确.【详解】解:(1)∵答对20道题,答错0道题,得分100分,∴答对一题得5分,∵答对19道题,答错1道题,得分94分,∴答错一题得﹣1分;(2)同学甲的成绩是准确的,同学乙的成绩不准确.设同学甲答对了x道,则答错了(20﹣x)道,由题意得:5x﹣(20﹣x)=70,解得:x=15,设同学乙答对了y道,则答错了(20﹣y)道,由题意得:5y﹣(20﹣y)=90,解得:y=18,因为x,y是做对题目个数,所以x,y是自然数.因此,同学甲的成绩是准确的,同学乙的成绩不准确.【名师点睛】此题主要考查了一元一次方程的应用,正确表示出得分情况是解题关键.18.(2019·永州市期末)某次知识竞赛共有20道题,每题答对得5分,答错或不答都扣3分.小明共得了68分,那么小明答对了几道题?【答案】小明答对了16道题.【详解】设小明答对了x道题.根据题意,得5x-3(20-x)=68,解得x=16.经检验x=16符合题意.答:小明答对了16道题.【名师点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。

浙教版-学年度七年级数学竞赛试卷1(含解析)

浙教版-学年度七年级数学竞赛试卷1(含解析)

绝密★启用前浙教版2018-2019学年初一数学竞赛试卷1题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共8小题,4*8=32)1.小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是()输入…12345…输出……A.B.C.D.2.在方格中,每个方格中除9、7外其余字母各表示一个数,已知其中任何3个连续方格中的数之和为19,则A+H+M+O等于()A.21 B.23 C.25 D.263.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣24.在代数式xy2z中,若x与y的值各减少25%,z的值增加25%,则代数式的值()A.减少B.减少C.减少D.减少5.如图,数轴上每个刻度为1个单位长度,点A对应的数为a,B对应的数为b,且b﹣2a=7,那么数轴上原点的位置在()A.A点B.B点C.C点D.D点6.一种“拍7”的游戏规定:把从1起的自然数中含7的数称作“明7”,把7的倍数称作“暗7”,那么在1﹣100的自然数中,“明7”和“暗7”共有()A.22个B.29个C.30个D.31个7.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是()A.6 B.5 C.4 D.38.把四张大小相同的长方形卡片(如图①按图②、图③两种放在一个底面为长方形(长比宽多6cm)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长C2,图③中阴影部分的周长为C3,则()A.C2=C3B.C2比C3大12cmC.C2比C3小6cm D.C2比C3大3cm第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,4*8=32)9.在右图所示的4×4的方格中,记∠ABD=α,∠DEF=β,∠CGH=γ,则α,β,γ从小到大的排列顺序是.10.已知分式,当a、b扩大相同倍数时值不变,请你写出一个符合这一要求且与分母不同、只含字母a、b的分子来:.11.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是分钟.12.已知方程组有正整数解,则整数m的值为.13.一个盖着瓶盖的瓶子里面装着一些水(如图所示),请你根据图中标明的数据,则瓶子的容积为cm3.14.若x>1,y>0且满足xy=x y,,则x+y的值为.15.已知甲、乙、丙三个科技攻关小组各有人数若干.现根据不同阶段的工作需要对其人员进行调整,第一次,丙组不动,从剩下两组的一组中调8人到另一组;第二次,乙组不动,从剩下两组的一组中调8人到另一组;第三次,甲组不动,从剩下两组的一组中调7人到另一组.最后甲组有5人,乙组有14人,丙组有6人,那么原来人数最多一组是组,这组原来有人.16.由自然数组成的一列数:a1,a2,a3,…,满足a1<a2<a3<…<a n<…,当n≥1时,有a n+2=a n+1+a n,如果a6=74,则a7的值为.评卷人得分三.解答题(共6小题,56分)17.(8分)已知a+b+c=0,a2+b2+c2=1,求ab+bc+ca和a4+b4+c4的值.18.(8分)甲、乙、丙、丁四人的年龄的和是108岁,甲50岁时,乙38岁,甲34时,丙的年龄是丁的3倍,求丁现在的年龄.19.(10分)在平面上有9条直线,无任何3条交于一点,则这9条直线的位置关系如何?才能使它们的交点恰好是26个,画出所有可能的情况(要求用直尺画正确).20.(10分)一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,如果每次11颗地取出,那么正好取完,求盒子里共有多少颗糖?21.(10分)某出租汽车停车站已停有6辆出租汽车,第一辆出租车出发后,每隔4分钟就有一辆出租汽车开出,在第一辆汽车开出2分钟后,有一辆出租汽车进站,以后每隔6分钟就有一辆出租汽车回站,回站的出租汽车,在原有的出租汽车依次开出之后又依次每隔4分钟开出一辆,问:第一辆出租汽车开出后,经过最少多少时间,车站不能正点发车?22.(10分)有一堆糖果平均分给若干个小朋友,规定按下面的规则取,第一个小朋友取10颗,再取余下的;接着第二个小朋友取20颗,再取余下的;如此继续下去,最后糖果被全部取光,问原来有多少颗糖果?小朋友有多少人?参考答案与试题解析一.选择题(共8小题)1.小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是()输入…12345…输出……A.B.C.D.【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【解答】解:输出数据的规律为,当输入数据为8时,输出的数据为=,故选:C.【点评】此题主要考查数字的规律性问题,根据已有输入输出数据找出它们的规律,进而求解.2.在方格中,每个方格中除9、7外其余字母各表示一个数,已知其中任何3个连续方格中的数之和为19,则A+H+M+O等于()A.21 B.23 C.25 D.26【分析】由于任何相邻三个数字的和都是19,可由O+X+7=19倒推,即可求解.【解答】解:由题意可得:因为O+X+7=19且M+O+X=19,所以M=7;因为A+9+H=19且9+H+M=19,所以A=7;因为H+M+O=19.所以求A+H+M+O的值为19+7=26.故选:D.【点评】本题主要考查了数字变化类的一些简单的问题,关键要熟练掌握此类问题的解法.3.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2【分析】根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.【解答】解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:;②当a,b,c为两负一正时:.由①②知所有可能的值为0.应选A.【点评】本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.4.在代数式xy2z中,若x与y的值各减少25%,z的值增加25%,则代数式的值()A.减少B.减少C.减少D.减少【分析】根据题意得出x与y的值都变为原来的75%,即为原来的,z的值变为原来的125%即,然后把它们代入代数式xy2z中即可.【解答】解:由已知条件得:x与y的值都变为原来的75%,即为原来的,z的值变为原来的125%即,∴=,∴1﹣=,∴代数式的值减小.故选:D.【点评】本题考查了代数式的求值,解题的关键是找出x、y、z的变化,然后代入代数式再求值.5.如图,数轴上每个刻度为1个单位长度,点A对应的数为a,B对应的数为b,且b﹣2a=7,那么数轴上原点的位置在()A.A点B.B点C.C点D.D点【分析】本题可根据数轴,设出B点坐标,则A点坐标可表示出,然后再与b﹣2a=7联立,即可求得结果.【解答】解:根据数轴,设出B点坐标(b,0),则表示出A点(b﹣3,0),因此可得b﹣3=a,联立b﹣2a=7,解得b=﹣1,∴原点在C处.故选:C.【点评】本题考查数轴的基本概念,结合题中条件,进行分析,得出a,b之间的关系即可.6.一种“拍7”的游戏规定:把从1起的自然数中含7的数称作“明7”,把7的倍数称作“暗7”,那么在1﹣100的自然数中,“明7”和“暗7”共有()A.22个B.29个C.30个D.31个【分析】由题意得“明7”和“暗7”各有19个,14个,但既是明7,又是暗7,有3个,7,70,77,即可得出答案.【解答】解:明7一共有10+9=19个,7,17,27,37,47,57,67,77,87,97,70,71,72,73,74,75,76,78,79;暗7一共有14个,7,14,21,28,35,42,49,56,63,70,77,84,91,98,既是明7,又是暗7,3个,即7,70,77,∴共有19+14﹣3=30个.故选:C.【点评】本题考查的是有理数,是基础知识比较简单.7.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是()A.6 B.5 C.4 D.3【分析】据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:根据题意列表可得当第2颗骰子上蓝色的面数是3时,两人获胜的机会相等.故选D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.8.把四张大小相同的长方形卡片(如图①按图②、图③两种放在一个底面为长方形(长比宽多6cm)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长C2,图③中阴影部分的周长为C3,则()A.C2=C3B.C2比C3大12cmC.C2比C3小6cm D.C2比C3大3cm【分析】本题需先设小长方形的长为acm,宽为bcm,再结合图形分别得出图形②的阴影周长和图形③的阴影周长,比较后即可求出答案.【解答】解:设小长方形的长为acm,宽为bcm,大长方形的宽为xcm,长为(x+6)cm,∴②阴影周长为:2(x+6+x)=4x+12;∴③上面的阴影周长为:2(x﹣a+x+6﹣a),下面的阴影周长为:2(x+6﹣2b+x﹣2b),∴总周长为:2(x﹣a+x+6﹣a)+2(x+6﹣2b+x﹣2b)=4(x+6)+4x﹣4(a+2b),又∵a+2b=x+6,∴4(x+6)+4x﹣4(a+2b)=4x.∴C2比C3大12cm.故选:B.【点评】本题主要考查了整式的加减运算,在解题时要根据题意结合图形得出答案是解题的关键.二.填空题(共8小题)9.在右图所示的4×4的方格中,记∠ABD=α,∠DEF=β,∠CGH=γ,则α,β,γ从小到大的排列顺序是β<α<γ.【分析】根据网格,分别把α,β,γ分成两个角,然后与45°角的大小进行比较,从而即可得解.【解答】解:根据网格结构,∵∠DBM>45°,∠DFN=45°,∠ABM>∠FEN,∴∠DBM+∠ABM>∠DFN+∠FEN,即β<α,又∵∠CGH=90°,α<90°,∴α<γ,∴β<α<γ.故答案为:β<α<γ.【点评】本题利用网格考查了三角形的角的关系,把分成的角与45°角相比较是解题的关键.10.已知分式,当a、b扩大相同倍数时值不变,请你写出一个符合这一要求且与分母不同、只含字母a、b的分子来:ab.【分析】观察分式的分母,若a、b扩大相同倍数时,则分母扩大了这一倍数的平方,要使该分式的值不变,只需保证其分子也能扩大这一倍数的平方即可.【解答】解:根据分式的基本性质,则分子可以是ab.故答案为ab等.【点评】此题考查了分式的基本性质,要看已知的分母实际扩大的倍数.11.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是4分钟.【分析】根据路程=速度×时间,则此题中需要用到三个未知量:设车的速度是a,人的速度是b,每隔t分发一班车.然后根据追及问题和相遇问题分别得到关于a,b,t的方程,联立解方程组,利用约分的方法即可求得t.【解答】解:设车的速度是a,人的速度是b,每隔t分发一班车.二辆车之间的距离是:at车从背后超过是一个追及问题,人与车之间的距离也是:at那么:at=6(a﹣b)①车从前面来是相遇问题,那么:at=3(a+b)②①﹣②,得:a=3b所以:at=4at=4即车是每隔4分钟发一班.【点评】注意:此题中涉及了路程问题中的追及问题和相遇问题.考查了对方程的应用,解方程组的时候注意技巧.12.已知方程组有正整数解,则整数m的值为﹣1或0或5.【分析】先解方程组,用m表示出方程组的解,根据方程组有正整数解得出m的值.【解答】解:方程组,∴x+my﹣x﹣3=11﹣2y,解得:(m+2)y=14,y=,∵方程组有正整数解,∴m+2>0,m>﹣2,又x=,故22﹣3m>0,解得:m<,故﹣2<m<,整数m只能取﹣1,0,1,2,3,4,5,6,7.又x,y均为正整数,∴只有m=﹣1或0或5符合题意.故答案为:﹣1或0或5.【点评】本题考查了二元一次方程组的解,难度较大,关键是根据已知条件列出关于m的不等式.13.一个盖着瓶盖的瓶子里面装着一些水(如图所示),请你根据图中标明的数据,则瓶子的容积为60cm3.【分析】结合图形,知水的体积不变,从而根据第二个图空着的部分的高度是2cm,可以求得水与空着的部分的体积比为4:2=2:1.结合第一个图中水的体积,即可求得总容积.【解答】解:由已知条件知,第二个图上部空白部分的高为7﹣5=2cm,从而水与空着的部分的体积比为4:2=2:1.由第一个图知水的体积为10×4=40,所以总的容积为40÷2×(2+1)=60立方厘米.故答案为:60.【点评】此题的关键是解决不同底的问题,能够有机地把两个图形结合起来,求得水与空着的部分的体积比.14.若x>1,y>0且满足xy=x y,,则x+y的值为.【分析】首先将xy=x y变形,得y=x y﹣1,然后将其代入,利用幂的性质,即可求得y的值,则可得x的值,代入x+y求得答案.【解答】解:由题设可知y=x y﹣1,∴x=yx3y=x4y﹣1,∴4y﹣1=1,故y=,∴x=,解得x=4,于是x+y=4+=.故答案为:.【点评】此题考查了同底数幂的性质:如果两个幂相等,则当底数相同时,指数也相同,根据将xy =x y变形,得y=x y﹣1是解题关键.15.已知甲、乙、丙三个科技攻关小组各有人数若干.现根据不同阶段的工作需要对其人员进行调整,第一次,丙组不动,从剩下两组的一组中调8人到另一组;第二次,乙组不动,从剩下两组的一组中调8人到另一组;第三次,甲组不动,从剩下两组的一组中调7人到另一组.最后甲组有5人,乙组有14人,丙组有6人,那么原来人数最多一组是乙组,这组原来有15人.【分析】每个组调整了两次,可以发现最后的3个数字都比14小,所以不可能出现一个组增加14人,或者减少14人,根据丙组最后有6人,所以甲组不动时,只能是从丙组调7人到乙组,乙组不动时,只能是从甲组调8人到丙组,丙组不动时,只能是从乙组调8人到甲组,根据此调动方法分别求出甲、乙、丙三组原来的人数即可判断.【解答】解:∵8+8=16,8+7=15,而最后最多的乙组只有14人,∴每个组只能调出一次,掉进一次,又∵丙组最后有6人,∴甲组不动时,从丙组调7人到乙组,乙组不动时,从甲组调8人到丙组,丙组不动时,从乙组调8人到甲组,甲组调进8人,调出8人,人数不变,原来有5人,乙组调进7人,调出8人,人数减少1,原来有14+1=15人,丙组调进8人,调出7人,人数增加1,原来有6﹣1=5人,∴原来人数最多一组是乙组,这组原来有15人.故答案为:乙,15.【点评】本题考查了三元一次方程组的应用,正确分析理解题意,找出调整人数的顺序,得到各小组最后的人数与原来人数的变化关系是解题的关键.16.由自然数组成的一列数:a1,a2,a3,…,满足a1<a2<a3<…<a n<…,当n≥1时,有a n+2=a n+1+a n,如果a6=74,则a7的值为119或120.【分析】设a1=a,a2=b,然后根据规律表示出a6与a7,再根据a6=74求出二元一次方程的解a、b 的值,然后代入a7的表达式计算即可.【解答】解:设a1=a,a2=b,则:a3=a2+a1=a+b,a4=a3+a2=(a+b)+b=a+2b,a5=a4+a3=(a+2b)+(a+b)=2a+3b,a6=a5+a4=(2a+3b)+(a+2b)=3a+5b=74,a7=a6+a5=(3a+5b)+(2a+3b)=5a+8b,由3a+5b=74与a1<a2,解得a=3,b=13或a=8,b=10,∴a7=5a+8b=5×3+8×13=119,或a7=5a+8b=5×8+8×10=120.故答案为:119或120.【点评】本题考查了数字变化规律的问题,设出a1与a2是解题的突破口,根据规律表示出a6与a7并求解关于a、b的二元一次方程是解题的难点.三.解答题(共6小题)17.已知a+b+c=0,a2+b2+c2=1,求ab+bc+ca和a4+b4+c4的值.【分析】把a+b+c=0两边平方,根据多项式乘多项式的法则进行计算,然后再把a2+b2+c2=1代入即可求出ab+bc+ca=﹣;把ab+bc+ca=﹣两边平方并整理求出a2b2+b2c2+c2a2的值,再把a2+b2+c2=1两边平方并代入计算即可求解.【解答】解:a+b+c=0,两边平方得:a2+b2+c2+2ab+2bc+2ca=0,∵a2+b2+c2=1,∴1+2ab+2bc+2ca=0,∴ab+bc+ca=﹣;ab+bc+ca=﹣两边平方得:a2b2+b2c2+c2a2+2ab2c+2abc2+2a2bc=,即a2b2+b2c2+c2a2+2abc(a+b+c)=,∴a2b2+b2c2+c2a2=,∵a2+b2+c2=1,∴两边平方得:a4+b4+c4+2a2b2+2b2c2+2c2a2=1,∴a4+b4+c4=1﹣2(a2b2+b2c2+c2a2)=1﹣=.故答案为:﹣,.【点评】本题考查了完全平方公式的拓广,运用多项式的乘法法则进行计算即可,因运算量较大,要小心仔细运算,以避免出错.18.甲、乙、丙、丁四人的年龄的和是108岁,甲50岁时,乙38岁,甲34时,丙的年龄是丁的3倍,求丁现在的年龄.【分析】设甲、乙、丙、丁的现在年龄分别为a,b,c,d岁,根据甲、乙、丙、丁四人的年龄的和是108岁可得a+b+c+d=108,根据甲50岁时,乙38岁,可得a﹣b=12,根据甲34时,丙的年龄是丁的3倍,可得c﹣(a﹣34)=3[d﹣(a﹣34)],三式联立,逐步消元分离出d后即可得出答案.【解答】解:设甲、乙、丙、丁的现在年龄分别为a,b,c,d岁,由题意得:,由③得:2a+c﹣3d=68④,①+②得:2a+c+d=120⑤,⑤﹣④得:4d=52,故可得d=13,答:丁现在13岁.【点评】本题考查了多元一次方程组的知识,年龄问题是此类题目经常涉及的,像这样的含有四个未知元素,只有三个方程时,难点一般不在列方程,而在于通过消元,在消元前要仔细观察,有目的为之.19.在平面上有9条直线,无任何3条交于一点,则这9条直线的位置关系如何?才能使它们的交点恰好是26个,画出所有可能的情况(要求用直尺画正确).【分析】从平行线的角度考虑,先考虑二条直线都平行,再考虑三条、四条、五条平行,作出草图即可看出.【解答】解:这9条直线的位置关系为:两两相交或平行,有两种情况,分别如下:【点评】本题考查平行线与相交线的综合运用.注意运用分类讨论思想.20.一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,如果每次11颗地取出,那么正好取完,求盒子里共有多少颗糖?【分析】根据题意可知盒内糖的颗数是11的倍数,因为如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,所以盒内糖的颗数是奇数,分情况讨论是,只讨论11的奇数倍即可,确定最后结果是还要注意要不能被2、3、4、6整除.【解答】解:因为每次取11颗正好取完,所以盒内的糖果数必是11的倍数,而11的偶数倍,都能被2整除,所以不合题意,倍数列表如下:5倍7倍9倍11倍13倍15倍17倍19倍原数11557799121143165187209因为121﹣1=120,而120都能被2、3、4、6整除,所以盒子里共有121颗糖.【点评】此题主要考查了数的整除性在实际生活中的应用,体现了数学与生活的密切联系,应用了分类讨论思想.21.某出租汽车停车站已停有6辆出租汽车,第一辆出租车出发后,每隔4分钟就有一辆出租汽车开出,在第一辆汽车开出2分钟后,有一辆出租汽车进站,以后每隔6分钟就有一辆出租汽车回站,回站的出租汽车,在原有的出租汽车依次开出之后又依次每隔4分钟开出一辆,问:第一辆出租汽车开出后,经过最少多少时间,车站不能正点发车?【分析】易得6辆车全部开出需要20分钟的时间,进而得到从第五辆汽车回站就不能正点发车,依此可得最少时间.【解答】解:∵站内原有的6辆车全部开出用时为4×(6﹣1)=20分钟.此时站内又有出租车(20﹣2)÷6+1=4(辆)设再经过x分钟站内无车.+4=x=4848+20+4=72(分钟)答:经过至少72分钟站内无车.就不能正点发车.【点评】考查推理与论证;得到从第五辆汽车回站就不能正点发车,是解决本题的突破点.22.有一堆糖果平均分给若干个小朋友,规定按下面的规则取,第一个小朋友取10颗,再取余下的;接着第二个小朋友取20颗,再取余下的;如此继续下去,最后糖果被全部取光,问原来有多少颗糖果?小朋友有多少人?【分析】分别表示出2个小朋友所取走的糖果数,让其相等列式求得糖果数,进而算出每个小朋友获得的糖果数,让490除以每个小朋友获得的糖果数即为小朋友的个数.【解答】解:设共有y颗糖果,则第1个小朋友取走的糖果为10+颗,第二个小朋友取走的糖果为20+[y﹣10﹣()﹣20]×=20+颗;(3分)因为糖果是平均分配的,因此可得10+=20+(7分)解得y=490,(10分)每个小朋友分得10+60=70个糖果,有小朋友490÷70=7个.答:有490个糖果,7个小朋友.【点评】考查一元一次方程的应用;得到两个小朋友所取走的糖果数的关系式是解决本题的关键.。

“周报杯”2019年全国初中数学竞赛试题及参考答案

“周报杯”2019年全国初中数学竞赛试题及参考答案

解:由
4 ,得
4,
a 1 0,
依题意有
(a
1)2
(a
1)
0,解得,
a
0
,或
a
1

(7)小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从
迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每
隔固定时间发一辆车,那么发车间隔的时间是
分钟.
【答】4.
5a (A) 2
(B)1
3
(C) 2
(D) a
解:如图,连接OE,OA,OB. 设 D ,
则 ECA 120 EAC .
ABO 1 ABD 1 60,
所以 △ ACE ≌ △ ABO ,于是 AE OA 1.
(5)将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意
所以 s 13 可能为1,3,5,7,9,进而 (t 13)2 为337,329,313,289,257,故
5
保证原创精品 已受版权保护
s 6,s 20 只能是 (t 13)2 =289,从而 s 13 =7.有 t 4;,t 4 故
x 48,x 160
y
32,
y
32.
三、解答题(共4题,每题15分,满分60分)
定8条直线.所以,满足条件的6个点可以确定的直线最
少有8条.
(4)已知 AB 是半径为1的圆 O 的一条弦,

AB a 1 .以 AB 为一边在圆 O 内作正△ ABC ,

D 为圆 O 上不同于点A的一点,且 DB AB a , DC 的 延长线交圆 O 于点 E ,则 AE 的长为( B ).

2019-2020年七年级数学竞赛试题(不含答案)

2019-2020年七年级数学竞赛试题(不含答案)

2019-2020年七年级数学竞赛试题(不含答案)一、仔细选一选(本题共10个小题,每小题4分,共40分)1n 为( ) A .2 B. 3 C. 4 D. 5 2.已知a+b=0,a ≠b,则化简b a (a+1)+ab(b+1)得( ) A.2a B. -2 C. 2b D. +23.若m+n=3,则代数式624222-++n mn m 的值为( ) A .12B. 3C. 4D. 04.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方 体,得到一个如图所示的零件,则这个零件的表面积是( ) A .26 B .24 C . 22 D . 205.设△ABC 的三边长分别为a ,b ,c , 其中a ,b 满足0)4(|6|2=+-+-+b a b a 则第三边c 的长度取值范围是( )A .3<c<5 B. 2<c<4 C. 4<c<6 D. 5<c<66. 如图,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B ,C ,若∠A =35°,则∠ABX +∠ACX 的度数是 ( )A. 25°B. 35°C. 45°D. 55°7过100元但不超过200元一律打九折;③一次性购书超过200元一律打八折。

如果王明一次性购书付款162元,那么他所购书的原价为( )A .180元 B.202.5元 C. 180元或202.5 D. 180元或200元 8. 从长度分别为1cm 、3cm 、5cm 、7cm 、9cm 的5条线段中任取3条作边,能组成三角形的概率是( )第4题图第6题图20cm30cm12cmA .51 B. 52 C. 21 D. 103 9.如图,数轴上A 、B 两点表示的数分别为1-B 关于点A 的对称点为C ,则点C 所表示的数为( ) A.2- B.1-- C.2-D.1+10. 已知a=2555,b=3444,c=5333,d=6222 ,那么下列式子中正确的是( )A. a <b <c <dB. a <b <d <cC. b <a <c <dD. a <d <b <c二、细心填一填(本题共8个小题,每小题5分,共40分)11.若523m xy +与3n x y 的和是单项式,则m n = .12.对任意四个有理数a ,b ,c ,d 定义新运算:a b c d=ad-bc ,已知241x x-=18,则x= .13.已知x 为实数,则13x x -++的最小值为 .14.如图,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长为 cm .15.如图,一个啤酒瓶的高度为30cm ,瓶中装有高度12cm 的水,将瓶盖盖好后倒置,这时瓶中水面高度20cm, 则瓶中水的体积和瓶子的容积之比为 . (瓶底的厚度不计) 16.方程+⨯+⨯+⨯+⨯54433221x x x x … +20102009⨯x=2009的解是 .17.下列是有规律排列的一列数:325314385,,,,……其中从左至右第100个数是_______. 18.如图,在△ABC 中,∠A =α,∠ABC 的平分线与∠ACD 的平分线交于点A 1 得∠A 1 ,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2 , 得∠A 2 , ……,∠A 2009BC 的平分线与∠A 2009CD 的平分线交于点(第9题图)第14题图第15题图A 2010 ,得∠A 2010 ,则∠A 2010= .三、耐心做一做(本题4个小题,共40分)19.(本题8分)小王觉得代数式n 2—8n+7的值不是正数,因为当他用n=1,2,3代入时,n 2—8n+7的值都是非正数,继续用n=4,5,6代入时,n 2—8n+7的值还是非正数,于是小王判断:当n 为任意正整数时,n 2—8n+7的值都是非正数.小王的猜想正确吗?请简要说明你的理由.20.(本题10分)计算:222222122007200820092010-++-+-21.(本题10分)上海世博会于2010年5月1日至2010年10月31日在上海举行. 下表为世博会官方票务网站的几种门票价格.李老师家用1600元作为购买门票的资金.(1)李老师若用全部资金购买“指定日普通票”和“夜票”共10张,则“指定日普通票”和“夜票”各买多少张?(2)李老师若用全部资金购买“指定日普通票”、“平日普通票”和“夜票”共10张(每种至少一张),他的想法能实现吗?请说明理由.22.(本题12分) 如图,五边形ABCDE 中,AB = AE ,BC + DE = CD ,180.ABC AED ∠+∠=连结AD.(1)同学们学习了图形的变换后知道旋转是研究几何问题的常用方法,请你在图中作出 ⊿ABC 绕着点A 按逆时针旋转“∠BAE 的度数”后的像; (2)试判断 AD 是否平分CDE ∠,并说明理由.BE第22题图。

2019年全国初中数学联赛试题及详解

2019年全国初中数学联赛试题及详解

2019年全国初中数学联合竞赛试题及详解第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-= ( B )A .1.B .2.C .3.D .4.解: 由已知可推得011a b b c a c -=⎧⇒-=±⎨-=±⎩ 或 110a b b c a c -=±⎧⇒-=±⎨-=⎩,分别代入即得。

2.若实数,,a b c 满足等式23||6a b =,9||6a b c =,则c 可能取的最大值为 ( C )A .0.B .1.C .2.D .3.解:由已知,6492(23)15121512c a b a b b b ==-=-≤,∴2c ≤.3.若b a ,是两个正数,且,0111=+-+-ab b a 则 ( C ) A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423a b <+≤. 解:当a b =时,可计算得23a b ==,从而43a b +=。

观察4个选项,只能选C. 4.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( A )A .-13.B .-9.C .6.D . 0.解:由已知:42x ax bx c +++一定能被231x x --整除。

∵4222(31)(310)[(333)(10)]x ax bx c x x x x a a b x a c +++=--+++++++++∴(333)(10)0a b x a c +++++=,故3330213100a b a b c a c ++=⎧⇒+-=-⎨++=⎩5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( B )A .15°.B .20°.C .25°.D .30°.解:如图,由已知,ADE 是正三角形。

2019年全国初中数学竞赛预赛试题及参考解析

2019年全国初中数学竞赛预赛试题及参考解析

2019年全国初中数学竞赛预赛试题及参考解析注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

【一】选择题〔共6小题,每题6分,共36分.以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分〕1、在1,3,6,9四个数中,完全平方数、奇数、质数的个数分别是【】 〔A 〕2,3,1〔B 〕2,2,1〔C 〕1,2,1〔D 〕2,3,2 【答】A 、解:完全平方数有1,9;奇数有1,3,9;质数有3、2、一次函数(1)(1)y m x m =++-的图象经过【一】【二】三象限,那么以下判断正确的选项是【】〔A 〕1m >-〔B 〕1m <-〔C 〕1m >〔D 〕1m < 【答】C 、解:一次函数(1)(1)y m x m =++-的图象经过【一】【二】三象限,说明其图象与Y 轴的交点位于Y 轴的正半轴,且Y 随X 的增大而增大,所以10,10.m m ->⎧⎨+>⎩解得1m >、3、如图,在⊙O 中,CD DA AB ==,给出以下三个 结论:〔1〕DC =AB ;〔2〕AO ⊥BD ;〔3〕当∠BDC =30° 时,∠DAB =80°、其中正确的个数是【】 〔A 〕0〔B 〕1 〔C 〕2〔D 〕3 【答】D 、解:因为CD AB =,所以DC =AB ;因为AD AB =,AO 是半径,所以AO ⊥BD ;设∠DAB =X 度,那么由△DAB 的内角和为180°得:2(30)180x x -︒+=︒,解得80x =︒、 4.有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是【】〔A 〕34〔B 〕23〔C 〕13〔D 〕21第3题图【答】B 、解:从4张牌中任意摸出2张牌有6种可能,摸出的2张牌花色不一样的有4种可能,所以摸出花色不一样的概率是3264=. 5、在平面直角坐标系中,点A 的坐标是(1,0),点B 的坐标是(3,3)--,点C 是Y 轴上一动点,要使△ABC 为等腰三角形,那么符合要求的点C 的位置共有【】〔A 〕2个〔B 〕3个〔C 〕4个〔D 〕5个 【答】D 、解:由题意可求出AB =5,如图,以点A 为圆心AB的长为半径画弧,交Y 轴于C1和C2,利用勾股定理可求出OC1=OC2=,可得62,0(),62,0(21-C C 以点B 为圆心BA 的长为半径画弧,交Y 轴于点C3和C4,可得34(0,1),(0,7)C C -,AB 的中垂线交Y 轴于点C5,利用三角形相似或一次函数的知识可求出)617,0(5-C 、6、二次函数221y x bx =++〔b 为常数〕,当b 取不同的值时,其图象构成一个“抛物线系”,图中的实线型抛物线分别是B 取三个不同的值时二次函数的图象,它们的顶点在一条抛物线上〔图中虚线型抛物线〕,这条抛物线的解析式是【】〔A 〕221y x =-+〔B 〕2112y x =-+ 〔C 〕241y x =-+〔D 〕2114y x =-+【答】A 、解:221y x bx =++的顶点坐标是⎪⎪⎭⎫ ⎝⎛--88,42b b ,设4b x -=,882b y -=,由4b x -=得x b 4-=,所以222218)4(888x x b y -=--=-=、【二】填空题〔共6小题,每题6分,共36分〕7、假设2=-n m ,那么124222-+-n mn m 的值为、【答】7、解:71221)(212422222=-⨯=--=-+-n m n mn m 、 yxO第6题图第5题图8、方程112(1)(2)(2)(3)3x x x x +=++++的解是、【答】120,4x x ==-、解:11(1)(2)(2)(3)x x x x +++++11111223x x x x =-+-++++ 11213(1)(3)x x x x =-=++++.∴22(1)(3)3x x =++,解得120,4x x ==-.9、如图,在平面直角坐标系中,点B 的坐标是〔1,0〕, 假设点A 的坐标为〔A ,B 〕,将线段BA 绕点B 顺时针旋转 90°得到线段BA ',那么点A '的坐标是、 【答】(1,1)b a +-+、解:分别过点A 、A '作X 轴的垂线,垂足分别 为C 、D 、显然RT △ABC ≌RT △B A 'D 、由于点A 的坐标是(,)a b ,所以OD OB BD =+1OB AC b =+=+,1A D BC a '==-,所以点的A '坐标是(1,1)b a +-+、10、如图,矩形ABCD 中,AD =2,AB =3,AM =1,DE 是以点A 为圆心2为半径的41圆弧,NB 是以点M 为圆心2为半径的41圆弧,那么图中两段弧之间的阴影部分的面积为、【答】2、解:连接MN ,显然将扇形AED 向右平移可与扇形MBN 重合,图中阴影部分的面积等于矩形AMND 的面积,等于221=⨯、11、α、β是方程2210x x +-=的两根,那么3510αβ++的值为、【答】2-、解:∵α是方程2210x x +-=的根,∴212αα=-、第10题图 第9题图∴322(12)22(12)52αααααααααα=⋅=-=-=--=-, 又∵2,αβ+=-∴3510(52)5105()8αβαβαβ++=-++=++=5(2)82⨯-+=-、12、现有145颗棒棒糖,分给假设干小朋友,不管怎样分,都至少有1个小朋友分到5颗或5颗以上,这些小朋友的人数最多有个、【答】36、 解:利用抽屉原理分析,设最多有X 个小朋友,这相当于X 个抽屉,问题变为把145颗糖放进X 个抽屉,至少有1个抽屉放了5颗或5颗以上,那么41x +≤145,解得x ≤36,所以小朋友的人数最多有36个、【三】解答题〔第13题15分,第14题15分,第15题18分,共48分〕13、王亮的爷爷今年〔2018年〕80周岁了,今年王亮的年龄恰好是他出生年份的各位数字之和,问王亮今年可能是多少周岁?解:设王亮出生年份的十位数字为x ,个位数字为y 〔X 、Y 均为0~9的整数〕、∵王亮的爷爷今年80周岁了,∴王亮出生年份可能在2000年后,也可能是2000年前、故应分两种情况:…………………2分〔1〕假设王亮出生年份为2000年后,那么王亮的出生年份为200010x y ++,依题意,得2012(200010)20x y x y -++=+++,整理,得1011,2xy -=X 、Y 均为0~9的整数,∴0.x =此时 5.y =∴王亮的出生年份是2005年,今年7周岁、…………………8分〔2〕假设王亮出生年份在2000年前,那么王亮的出生年份为190010x y ++,依题意,得2012(190010)19x y x y -++=+++,整理,得111022x y =-,故X 为偶数,又1021110211,09,22x xy --=≤≤∴779,11x ≤≤∴8.x =此时7.y = ∴王亮的出生年份是1987年,今年25周岁、…………………14分 综上,王亮今年可能是7周岁,也可能是25周岁、……………15分14、如图,在平面直角坐标系中,直角梯形OABC 的顶点A 、B 的坐标分别是(5,0)、(3,2),点D在线段OA上,BD=BA,点Q是线段BD上一个动点,点P的坐标是(0,3),设直线PQ的解析式为y kx b =+、〔1〕求K的取值范围;〔2〕当K为取值范围内的最大整数时,假设抛物线25y ax ax=-的顶点在直线PQ、OA、AB、BC围成的四边形内部,求A的取值范围、解:〔1〕直线y kx b=+经过P(0,3),∴3b=、∵B (3,2),A(5,0),BD=BA,∴点D的坐标是(1,0),∴BD的解析式是1y x=-,1 3.x≤≤依题意,得1,3.y xy kx=-⎧⎨=+⎩,∴4,1xk=-∴41 3.1k-≤≤解得13.3k--≤≤……………………………………………7分〔2〕13,3k--≤≤且K为最大整数,∴1k=-.那么直线PQ的解析式为3y x=-+.……………………………………………9分又因为抛物线25y ax ax=-的顶点坐标是525,24a⎛⎫-⎪⎝⎭,对称轴为52x=、解方程组⎪⎩⎪⎨⎧=+-=.25,3xxy得⎪⎪⎩⎪⎪⎨⎧==.21,25yx即直线PQ与对称轴为52x=的交点坐标为51(,)22,∴125224a<-<、解得822525a-<<-、……………………………………15分15.如图,扇形OMN的半径为1,圆心角是90°、点B是MN上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q、〔1〕求证:四边形EPGQ是平行四边形;〔2〕探索当OA的长为何值时,四边形EPGQ是矩形;〔3〕连结PQ,试说明223PQ OA+是定值、解:〔1〕证明:如图①,∵∠AOC =90°,BA ⊥OM ,BC ⊥ON , ∴四边形OABC 是矩形、 ∴OC AB OC AB =,//、 ∵E 、G 分别是AB 、CO 的中点, ∴.,//GC AE GC AE = ∴四边形AECG 为平行四边形.∴.//AG CE ……………………………4分连接OB ,∵点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点, ∴GF ∥OB ,DE ∥OB ,∴PG ∥EQ ,∴四边形EPGQ 是平行四边形、………………………………………………6分 〔2〕如图②,当∠CED =90°时,□EPGQ 是矩形、 此时∠AED +∠CEB =90°、又∵∠DAE =∠EBC =90°,∴∠AED =∠BCE 、∴△AED ∽△BCE 、………………………………8分 ∴AD AEBE BC =、设OA =X ,AB =Y ,那么2x ∶2y =2y∶x ,得222y x =、 (10)分 又222OA AB OB +=,即2221x y +=、∴2221x x +=,解得3x =、∴当OA的长为3时,四边形EPGQ 是矩形、………………………………12分〔3〕如图③,连结GE 交PQ 于O ',那么.,E O G O Q O P O '=''='、过点P 作OC 的平行线分别交BC 、GE 于点B '、A '、由△PCF ∽△PEG 得,2,1PG PE GE PF PC FC === ∴PA '=23A B ''=13AB ,GA '=13GE =13OA ,∴1126A O GE GA OA'''=-=、AB COD E F G PQ MN图①AB CO D EF GP QMN 图②B'N M A'QP O'GF E DC BAO图③在RT △PA O ''中,222PO PA A O ''''=+,即2224936PQ AB OA =+,又221AB OA +=, ∴22133PQ AB =+,∴2222143()33OA PQ OA AB +=++=、……………………………………18分。

初一上册数学竞赛试题

初一上册数学竞赛试题

2019年武冈思源实验学校七年级数学竞赛试题满分:120分 时间:110分钟 得分一·选择题(30分) 题号 1 2 3 4 5 6 7 8 9 10 答案1.如图,在数轴上表示到原点的距离为3个单位的点有( )A.D 点B.A 点C.A 点和D 点D.B 点和C 点2.在算式4-|-3Δ5|中的“Δ”所在的位置中,要使计算出来的值最小,则应填入的运算符号为( ) A.+ B.- C.× D.÷3.a 表示一个一位数,b 表示一个两位数,把a 放到b 的左边组成一个三位数,则这个三位数可以表示为( )A.abB.10a+bC.100a+bD.a+b4.如果多项式x 2-7ab+b 2+kab-1不含ab 项,那么k 的值为( ) A.0 B.7 C.1 D.不能确定5.若x=y ,且a ≠0,则下面各式中不一定正确的是( ) A.ax=ay B.2ax=2ay C.a x =a y D.x a =ya 6.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是11()1325x x x ---+=-▲, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业.同学们,你能补出这个常数吗?它应该是( )A.2B.3C.4D.57. 两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,….那么六条直线最多有( )A.21个交点B.18个交点C.15个交点D.10个交点 8. 如图,∠1=∠2,∠3=∠4,则下列结论:①AD 平分∠BAE ;②AF 平分∠EAC ;③AE 平分∠DAF ;④AF 平分∠BAC ;⑤AE 平分∠BAC.其中正确的有( )A.4个B.3个C.2个D.1个9.一架飞机在A ,B 两城之间飞行,顺风要5.5小时,逆风要6小时,风速为24千米/时,求A ,B 两城之间的距离 x 的方程是( ) A.2465.5=-x x B.6245.524+=-x x C.245.5246-=+x x D.6245.524-=+x x 10.某超市元月份赢利a 万元,计划二、三月份平均每月的增长率为x ,那么该超市第一季度共赢利( )A.a(1+x)万元B.a(1+x)2万元C.[a(1+x)+a(1+x)2]万元D.[a+a(1+x)+a(1+x)2]万元 二·填空题(24分)11.10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是_____分. 12. .李明乘车回奶奶家,发现这条汽车线路上共有6个站(包括始发站和终点站),那么忙这条线路上有 种不同的票价。

广东省江门市第二中学2019-2020学年七年级入学竞赛数学试题

广东省江门市第二中学2019-2020学年七年级入学竞赛数学试题

2022届七年级入学竞赛数学试题时间:80分钟 满分:100一、选择。

(每题3分,共30分)1.小雪、小军、小美、小明四个好朋友站成一排拍毕业纪念照,要求男女间隔排列,共有( )种站法。

A. 4B. 6C. 8 C. 102. 某同学完成数学作业后,因不小心将墨水泼在作业纸上(如图)。

请你根据提供的条件算一算,良好的人数是()人 条件:(1)这个班数学期末考试的及格率为95%。

(2)成绩优秀的人数占全班的35%。

(3)成绩“良好”的人数比“优秀”的人数多72。

A .14 B .18 C .6 D .16 3.=-+÷+⨯%)101(9114.41096.4( ) A.0.9 B.9 C.1 D.104.某市高校12支足球代表队进行比赛,如果采用单循环赛制,一共要赛( ) A. 11场 B. 12场 C. 66场 D. 72场5.供水公司为鼓励居民节约用水,规定每人每月用水不超过2立方米时,按每立方米 1.6元收费,超过2立方米的部分按每立方米5元收费,小红家3口人,上月共交水费29.6元,请你算一算她家上月用水( )立方米? A.8 B. 9 C. 10 D.126.A 、B 两地相距72千米,甲每小时行7千米,乙每小时行5.5千米,丙每小时行3.5千米。

甲、乙两人从A 地到B 地,丙从B 地到A 地,三人同时出发,经过一定时间后,甲走到途中C 地时,离乙和丙的距离恰好相等,此时甲走了( ) 千米? A .36 B .38 C .40 D .427.一个长方体,高为5厘米,如果长和宽各增加2厘米,则体积增加200立方厘米。

问原长方体的周长是( )厘米?A.30B.40C.38D.368.右图中∠1=∠2=∠3,如果图中所有锐角的和等于180度,那么∠AOB是()度A.54B.50C.64D.609.下图△ABC为等腰直角三角形,直角边长20厘米。

以一条腰AB为直径作半圆,则阴影部分②的面积比阴影部分①大()平方厘米(π取3.14)A.42B.43C.44D.4510..自然数按一定的规律如下排列,从排列规律可知,99排在()第1列第2列第3列第4列第5列…第1行 1 4 9 16 25 …第2行 2 3 8 15 24 …第3行 5 6 7 14 23 …第4行 10 11 12 13 22 …第5行 17 18 19 20 21 ……………………A. 第2行第7列B. 第2行第8列C. 第2行第9列D. 第2行第10列二、填空。

余姚子陵中学2019年第十二年子陵杯初一学科竞赛(二试)数学试题(含解析)

余姚子陵中学2019年第十二年子陵杯初一学科竞赛(二试)数学试题(含解析)

余姚子陵中学2019年第十二年子陵杯初一学科竞赛(二试)数学试题(含解析)1、在△ABC 中,假设∠A =∠B =40︒,那么∠C 等于() A 、40︒B 、60︒C 、80︒D 、100︒2、计算23a a 正确的结果是〔〕 A 、5a B 、4a C 、5a D 、8a3、以下事件中,必然事件是〔〕 A 、打开电视机,它正在播放广告B 、通常情况下,当气温低于零摄氏度,水会结冰C 、黑暗中,我从我的一大串钥匙中随便选了一把,用它打开了门D 、任意两个有理数的和是正有理数4、小明和哥哥并排站在镜子前,小明看到镜子中哥哥的球衣号码如上图,那么哥哥球衣上的实际号码是〔〕A 、25号B 、52号C 、55号D 、22号 5、在右图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△111M N P ,那么其旋转中心可能是〔〕 A 、点AB 、点BC 、点CD 、点D 6.以下分解因式正确的选项是〔〕A 、)(23a 1-a a a -+=+ B 、2a -4b+2=2〔a -2b 〕C 、()222-a 4-a =D 、()221-a 1a 2-a =+7、假设关于,x y 的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,那么k 的值为〔〕 A 、34-B 、43C 、34D 、43- 8.五条线段的长分别是1,2,3,4,5,假设每次从中取出三条,分别以这三条线段 为三边,一共可以围成不同三角形的个数是〔〕 A 、5个 B.4个 C.3个 D.2个9、如图,AD 平分BAC ∠,AB AC =、那么以下结论错误的选项是〔〕 A 、△ADC ≌△ADB B 、AD 垂直平分BCC 、BC 垂直平分D 、四边形ABDC 是轴对称图形10、如图,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ的两条直角边、XZ分别经过点B ,C ,假设∠A =40°,那么∠ABX +∠ACX =〔〕A 、25°B 、30°C 、45°D 、50°N 1M 1D A B C (第9题)第10题11、如图△ABC 中D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =2Mcm ,那么S 阴影的值为〔〕A 、2Mcm 61B 、2Mcm 51C 、2Mcm 41D 、2Mcm 3112、如图,一只青蛙在圆周上标有数字的五个点上跳,假设它停在奇数点上,那么下一次沿顺时针方向跳两个点;假设停在偶数点上,那么下一次沿逆时针方向跳一个点、假设青蛙从5这点开始跳,那么经2017次跳后它停在的点所对应的数为〔〕A 、1B 、2C 、3D 、5【二】认真填一填〔每题3分,共18分〕13、计算:10(1)(--+=。

2019-初中数学竞赛(海南赛区)初赛试题(含答案)

2019-初中数学竞赛(海南赛区)初赛试题(含答案)

2019-2020 年初中数学比赛 ( 海南赛区 ) 初赛试题 ( 含答案 )题号 一二三总 分(1 — 10)(11 — 18)1920得 分题号 12345678910答案A .1B .2C .6D .2425 25 25 255、一辆公共汽车从车站开出,加快行驶一段时间后匀速行驶,过了一段时间,汽车抵达下一个车站.乘客上下车后汽车开始加快,一段时间后又开始匀速行驶,下边能够近似地刻画出汽车在这段时间内的速度变化状况的图象是()速度速度 速度速度O时间O时间O时间O时间A1BCD6、要使3 x存心义,则 x 的取值范围为2x1A .1x3B . 1<x 3C .1x < 3D . 1<x < 322227、菱形的两条对角线之和为L 、面积为 S ,则它的边长为()AA .1L24SB .1L22SC .12L 4SD .14S L 2E222 2 D8、如图 2,将三角形纸片 ABC 沿 DE 折叠,使点 A 落在 BC 边上的点F 处,且 DE ∥ BC ,以下结论中,必定正确的个数是( )BF C①△ CEF 是等腰三角形②四边形 ADFE 是菱形图 2y③四边形 BFED 是平行四边形④∠ BDF +∠ CEF = 2∠ AA . 1B . 2C . 3D . 41x9、如图 3,直线 x = 1 是二次函数y = ax 2+ bx + c 的图象的对称轴,则有 ()A . a + b + c = 0>a + cC .b = 2aD . abc > 0图 3B . b10、铁板甲形状为直角梯形,两底边长分别为 4cm , 10cm ,且有一内角为 60°;铁板乙形状为等腰三角形,其顶角为45°,腰长 12cm .在不改变形状的前提下,试图分别把它 们从一个直径为8.5cm 的圆洞中穿过,结果是()A .甲板能穿过,乙板不可以穿过B .甲板不可以穿过,乙板能穿过C .甲、乙两板都能穿过D .甲、乙两板都不可以穿过y 二、填空题 (本大题满分 40 分,每题 5 分)ox- 1图 411、 x 与 y 互为相反数,且x y 3 ,那么x22xy 1的值为__________.12、一次函数 y=ax+b 的图象如图 4 所示,则化简 a b b 1得 ________.13、若 x= -1 是对于 x 的方程 a2 x2+2011ax- 2012=0 的一个根,则 a 的值为 __________.14、一只船从 A 码头顺流航行到 B 码头用 6 小时,由 B 码头逆水航行到 A 码头需 8 小时,则一块塑料泡沫从 A 码头顺流漂流到 B 码头要用 ______小时(设水流速度和船在静水中的速度不变).15、如图 5,边长为 1 的正方形 ABCD 的对角线订交于点O,过点 O 的直线分别交AD、BC于 E、 F ,则暗影部分的面积是.16、如图 6,直线 l 平行于射线AM ,要在直线l 与射线 AM 上各找一点 B 和 C,使得以A、B、 C 为极点的三角形是等腰直角三角形,这样的三角形最多能画_______个.A EA DlEO B CB FC A M D图 5图 6图 717、如图 7,△与△均是等边三角形,若∠=145°,则∠的度数是 ________.ABC CDE AEB DBE18、如图 8 所示,矩形纸片ABCD 中, AB= 4cm, BC= 3cm,把∠ B、∠ D 分别沿 CE、 AG 翻折,点 B、D 分别落在对角线AC 的点 B'和 D'上,则线段EG 的长度是 ________.D G CB'D'AEB图 8三、解答题 (本大题满分30 分,每题15 分 )19、某市道路改造工程,假如让甲工程队独自工作,需要30 天达成,假如让乙工程队独自工作,则需要60 天方可达成;甲工程队施工每日需付施工费 2.5 万元,乙工程队施工每日需付施工费 1 万元 . 请解答以下问题:(1)甲、乙两个工程队一同合作几日就能够达成此项工程?(2)甲、乙两个工程队一同合作 10 天后,甲工程队因还有任务调离,剩下的部分由乙工程队独自做,请问共需多少天才能达成此项工程?(3)假如要使整个工程施工费不超出65 万元,甲、乙两个工程队最多能合作几日?(4)假如工程一定在 24 天内(含 24 天)达成,你怎样安排两个工程队施工,才能使施工费最少?请说出你的安排方法,并求出所需要的施工费.20、如图 9,四边形 ABCD 是矩形,点P 是直线 AD 与 BC 外的随意一点,连结PA、 PB、PC、 PD.请解答以下问题:(1)如图 9( 1),当点P在线段BC的垂直均分线 MN 上(对角线 AC 与 BD 的交点Q除外)时,证明△ PAC ≌△ PDB ;(2)如图 9( 2),当点 P 在矩形 ABCD 内部时,求证: PA2+PC2=PB2+PD 2;(3)若矩形 ABCD 在平面直角坐标系 xoy 中,点 B 的坐标为( 1,1),点 D 的坐标为( 5,3),如图9( 3)所示,设△PBC 的面积为y,△ PAD 的面积为x,求 y 与 x 之间的函数关系式.MPA DQB N C图 9(1)A DPB C图9 (2)yA DB CO x图 9(3)参照答案一、选择题(本大题满分50 分,每题 5 分)题号12345678910答案C D D A C B A B D B7、提示:可设菱形的两条对角线长分别为、b,利用对角线相互垂直进行解答 . a9、剖析 :由函数的图象可知:当x=1时有a+b+c<0,当x=-1时有a-b+c>0,即a+c>b,即b<a+c,函数的对称轴为x b,则 b=-2a,由于抛物线的张口向上,因此 a>0,抛物线12a与 y 轴的交点在负半轴,因此c<0,由 b=-2a 可得 b<0.因此 abc>0,因此正确答案为 D10、剖析:分别计算铁板的最窄处即可知,如图A,直角梯形, AD=4cm,BC=10cm,∠ C=60°,过点 A过 AE// CD,交 BC于点 E,过点 B作 BE⊥ CD于点 F,可求得 AB=6 3 cm>cm,BE=5 3 cmA D AFDB EC BC图B>8.5 cm 铁板甲不可以穿过,如图 B,等腰三角形 ABC 中,顶角∠ A =45°,作腰上的高线 BD ,可求得 BD =6 2 cm < 8.5 cm ,因此铁板乙能够穿过;因此选择 B二、填空题 (本大题满分 40 分,每题5 分)11、5 12 、 a+1 13、a=2012,a2=-114、 48A4115、 1单位面积16、3个17、85° 18、 10E4BC17、剖析: 易证△ CEA 与△ CDB 全等,进而有∠ DBC =∠ EAC ,由于,∠ABE +∠ BAE =180°- 145° =35°因此有∠ EAC +∠ EBC =120°- 35° =85°,D图 7因此∠ EBD =∠ EBC +∠DBC =85°18、剖析: AB = 4cm , BC =3cm ,可求得 AC=5cm ,由题意可知GCC B '=BC=3 cm ,A B ' =2cm 设 BE=x ,则 AE=4-x ,则有 (4-x)2- x 2 =2 2,DB,即,过点 G 作 GF ⊥ AB 于点 F ,则' D 'FAB可求出 EF=1 cm ,因此 EG=123210图 8E三、解答题 (本大题满分 30 分,每题 15 分)19 、此题满分 15 分,第( 1)、( 2)、( 3)小题,每题 4 分,第( 4)小题 3 分 .解:( 1)设甲、乙两个工程队一同合作x 天就能够达成此项工程,依题意得:(11)x 1 ,解得: x=20答:甲、乙两个工程队一同合作20 天就能够达成此项工程 .30 60(2)设达成这项道路改造工程共需y 天,依题意得:110 y 1 ,解得 y=40 。

浙教版-学年度七年级数学竞赛试卷(含解析)

浙教版-学年度七年级数学竞赛试卷(含解析)

绝密★启用前2018-2019学年浙教版七年级数学竞赛试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共6小题,4*6=24)1.如果=﹣1,则a的取值()A.a<0 B.a≤0 C.a≥0 D.a>02.当a=,b=时,代数式2a(a+b)﹣(a+b)2的值为()A.﹣1 B.C.2008•2009D.13.下列各图中都有一个正方体及正方体的侧面展开图.若正方体的“着地面”不动,沿着正方体的某些棱剪开并展开后,能与阴影部分重合的图是()A.B.C.D.4.两个有序正整数,和为915,最大公约数为61,这两个数有()种可能.A.4 B.6 C.8 D.145.已知方程|x|=ax+1有一个负根而且没有正根,那么a的取值范围是()A.a>﹣1 B.a=1 C.a≥1 D.非上述答案6.有一座3层的楼房失火了,一个消防队员搭了23级的梯子爬到3楼楼顶上去救人,当他爬到梯子正中一级时,二楼的窗口喷出火来,他往下退了2级,等火过去了,他又爬上了6级,这时发现楼顶有一块木头的将要掉下来,他又后退了3级,躲开了这块木头,然后又往上爬了6级,这时他距离楼顶还有()A.3级B.4级C.5级D.6级第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,4*6=24)7.已知x、y、z都是质数,且x≤y≤z,x+y+z=12,xy+yz+xz=41,则x+2y+3z的值为.8.整数11994+91994+81994+61994的奇偶性为(填奇数或偶数).9.一条大河有A、B两个港口,水由A流向B,水流速度是4千米/时,甲、乙两船同时由A向B行驶,各自不停地在A、B之间往返航行.甲在静水中的速度是28千米/时,乙在静水中的速度是20千米/时,已知两船第二次迎面相遇与甲船第二次追上乙船(不算开始时甲、乙在A处的那一次)的地点相距40千米,则A、B两港口的距离为千米.10.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc=.11.若正整数n恰好有4个正约数,则称n为奇异数,例如6、8、10都是奇异数,那么在27、42、69、111、125、137、343、899、3599、7999这10个正整数中奇异数有个.12.假设一家旅馆共有30个房间,分别编以号码l~30,现在要在每个房间的钥匙标上数字,为保密起见,要求数字用密码法,使服务员容易识别,而使局外人不易猜到、现在要求密码用两位数,左边的一个数字是原房号除以5所得的余数,右边的一个数字是原房号除以7所得的余数.那么标有36的钥匙所对应的原房号是号.评卷人得分三.解答题(共5小题,52分)13.(10分)已知非负实数x,y,z满足,记W=3x+4y+5z.求W的最大值与最小值.14.(10分)有三堆石子的个数分别为20、10、12,现进行如下操作:每次从三堆的任意两堆中分别取出1粒石子,然后把这2粒石子都加到另一堆上去.问:能否经过若干次这样的操作,使得(1)三堆石子的石子数分别为4、14、24;(2)三堆石子的石子数均为14.如能满足要求,请用最少的操作次数完成;如不能满足,请说明理由.15.(10分)妈妈给小敏101元钱买花装饰圣诞树.花店的花成束出售,规格与价格如表所示.为了使买到的花朵最多,请你给小敏提建议:每种规格的花买几束?为什么?(要写推理过程)规格 A B C每束花的朵数20 3550价格(元/束)46716.(10分)某市内轻轨从A地到B地途经8个站,火车有普快和直快两种.直快的车速是普快车速的1.2倍.普快在中间某一站停6分钟,其余站各停3分钟,当直快赶上普快时,普快需给直快让道5分钟,直快中间不停车.假设普快从A地发出40分钟后,直快也从A地发出.在以下两种情况下,分别求出直快从起点到终点所需要的时间:(Ⅰ)若两车同时到达终点;(Ⅱ)若直快较普快提前14分钟到达终点.17.(12分)有一个八位数,它的前五位数字组成的五位数与后三位数组成的三位数的和等于20436,而它的前三位数组成的三位数与后的和五位数字组成的五位数等于30606,求这个八位数.参考答案与试题解析1.解:∵a为分母,∴a≠0,∴当a>0时,=1;当a<0时,==﹣1.故选:A.2.解:原式=2a2+2ab﹣a2﹣2ab﹣b2=a2﹣b2,当a=,b=时,原式=2009﹣2008=1.故选:D.3.解:由原正方体知,带图案的面展开后A、C、D都不符合,所以能得到的图形是B.故选:B.4.解:设两数为a,b,则a+b=915,(a,b)=61,设a=61x,b=61y,由1≤x≤14,1≤y≤14,(x,y)=1,x+y=15,得(x,y)=(1,14)(14,1)(2,13)(13,2)(4,11)(11,4)(7,8)(8,7)共8组.故选:C.5.解:如图,令y=|x|和y=ax+1,而函数y=ax+1必过点(0,1),∵方程|x|=ax+1有一个负根而且没有正根,∴直线y=ax+1与函数y=|x|在第二象限只有交点,∴a≥1,故选:C.6.解:根据题意得:(23+1)÷2﹣2+6﹣3+6=12﹣2+6﹣3+6=19,23﹣19=4(级),则这时他距离楼顶还有4级.故选:B.7.解:必有一个质数为2(所以先令其中任意一个未知数为2),令z=2,x+y+2=12,x+y=10,xy+2y+2x=41,xy+2(x+y)=41,xy+20=41,xy=21,x、y分别为3和7.因为无论x、y、z哪一值是2、3、7,前面的式子都成立,所以有六组解.x+2y+3z=3+14+6=23,或=3+4+21=28,或=2+6+21=29,或=2+14+9=25,或=7+4+9=20,或=7+6+6=19.∵x≤y≤z,∴x+2y+3z=2+6+21=29.故答案为29.8.解:∵9n的个位数字为9,1,9,1…,即2次一循环,∵1994÷2=997,∴91994的个位数字为1,∵8n的个位数字为8,4,2,6,8,4,2,6…,即4次一循环,∵1994÷4=498…2,∴81994的个位数字为4,∵6n的个位数字为6,1n的个位数字为1,∴11994+91994+81994+61994的个位数字为2.∴整数11994+91994+81994+61994是偶数.故答案为:偶数.9.解:设A、B两个港口的距离为d,甲顺水速度:28+4=32千米/时,甲逆水速度:28﹣4=24千米/时,乙顺水速度:20+4=24千米/时,乙逆水速度:20﹣4=16千米/时,第二次相遇地点:从A到B:甲速:乙速=32:24=4:3,甲到B,乙到E;甲从B到A,速度24,甲速:乙速=24:24=1:1,甲、乙在EB的中点F点第一次相遇;乙到B时,甲到E,这时甲速:乙速=24:16=3:2,甲到A点时,乙到C点;甲又从A顺水,这时甲速:乙速=32:16=2:1,所以甲、乙第二次相遇地点是AC处的点H,AH=×AB=AB=d,第二次追上地点:甲比乙多行1来回时第一次追上,多行2来回时第二次追上.甲行一个来回2AB时间+=d乙行一个来回2AB时间+=,一个来回甲比乙少用时间:﹣=,甲多行2来回的时间是:×2=,说明乙第二次被追上时行的来回数是:=4,甲第二次追上乙时,乙在第5个来回中,甲在第7个来回中.甲行6个来回时间是×6=,乙行4个来回时间是×4=,﹣=,从A到B甲少用时间:﹣=,说明第二次追上是在乙行到第五个来回的返回途中.﹣=,从B到A,甲比乙少用时间:﹣=,=,追上地点是从B到A的中点C处.根据题中条件,HC=40(千米),即=40,解得d=240千米.故答案为:240.10.解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.11.解:易得奇异数有两类:第一类是质数的立方p3(p是质数),第二类是两个不同质数的乘积p1p2(p1,p2为不同的质数).∴27=3×3×3=33,是奇异数(第一类);42=2×3×7不是奇异数;69=3×23是奇异数(第二类),111=3×37是奇异数(第二类),125=53是奇异数(第一类),137是质数,不是奇异数,343=73是奇异数(第一类),899=900﹣1=(30﹣1)(30+1)=29×31是奇异数(第二类),3599=3600﹣1=(60﹣1)(60+1)=59×61是奇异数(第二类),7999=8000﹣1=203﹣1=(20﹣1)(202+20+1)=19×421是奇异数(第二类).因此符合条件的奇异数有:27,69,111,125,343,899,3599,7999共8个.故答案为:8.12.解:设所求原房间号为x,则x除以5余数为3,x除以7余数为6,由第二个条件知x只能为6,13,20,27,其中只有13符合第一个条件,故x=13.故答案为:13.13.解:设=k,则x=2k+1,y=﹣3k+2,z=4k+3,∵x,y,z均为非负实数,∴,解得﹣≤k≤,于是W=3x+4y+5z=3(2k+1)﹣4(3k﹣2)+5(4k+3)=14k+26,∴﹣×14+26≤14k+26≤×14+26,即≤W≤.∴W的最大值是35,最小值是.14.解:设20个为A堆,10个为B堆,12个为C堆,(1)为达到用最少的操作次数完成,并且满足从两堆中取出,考虑思路是有两组石子的数目要降低,∴因此需以如下方式调配石子:X=10﹣﹣>A=4 降6,Y=20﹣﹣>B=14 降6,Z=12﹣﹣>C=24 升12,∴需要6次,(2)不能满足,∵为达到三堆石子的石子数均为14,三堆石子需分别满足降6,升4,升2,意味着有两堆石子的数目要升高,这与题目不符,∴不满足.15.解:设A,B,C三种规格的花依次买a,b,c束,则4a+6b+7c=101因为4a,6b为偶数,101为奇数,从而7c为奇数,所以c为奇数.又∵A,B,C三种规格的花平均每元钱可依次买=5朵,≈6朵,≈7朵花,∴为了使买到的花朵最多,应尽可能地多买规格C的花.…10′由于=14.4…,所以c≤14又∵c为奇数,从而c=13,11,9,…15′当c=13时,4a+6b=101﹣7×13=10,从而2a+3b=5.所以a=1,b=1.答:买A,B,C三种规格的花依次为1,1,13束时,这时花朵最多,共有20×1+35×1+50×13=705(朵).…20′16.解:(Ⅰ)设A地与B地相距x千米,普快速度为y(千米/分),则特快的速度为1.2y千米,由题意,得则+27=40+,解得=78(分),因此直快从起点到终点所需时间为=65分钟(Ⅱ)设A地与B地相距x千米,普快速度为y(千米/分),则特快的速度为1.2y千米,由题意,得+27+5=40++14解得=132(分)因此直快从起点到终点所需时间为=110分钟17.解:设这个八位数为x×100000+y×1000+z 其中,x,z为三位数,y为两位数.依题意,x×100+y+z=20436;x+1000y+z=30606;易见x<204,y≤30 (1)又x(1﹣100)+y(1000﹣1)=10170﹣11x+111y=1130取x=89+111t(t>=1,因为x为三位数)此时y===19+11t,前面已得x<204,y≤30 (1)故取x=200,y=30 代入,得:z=406故这个八位数是:20030406.。

2019年捷克波兰斯洛伐克联合数学奥林匹克竞赛试题及答案详解(7页)

2019年捷克波兰斯洛伐克联合数学奥林匹克竞赛试题及答案详解(7页)

2019年捷克波兰斯洛伐克联合数学奥林匹克竞赛数学竞赛试题1、设点A 、B 、C 、X 、D 、Y 依此顺序排列在圆ω上,且满足BD 是其直径,DX=DY=DP ,其中P 是AC 与BD 的交点,直线XP 分别于AB 、BC 交于点E 、F ,求证:B 、E 、F 、Y 四点共圆.四点共圆、、、故因此四点共圆、、、即于是,对称关于,的直径是圆,证:Y F E B YBCYAP YEP Y P E A YPXYPD BDY BAY BD Y X BD DY DX ∠=∠=∠∠=∠=∠-︒=∠∴=2180ωΘ2、已知正整数n 至少有6个正因数,这些因数按递增顺序依次为)6(...121≥==k n d d d k πππ,求所有满足2625d d n +=的正整数n.5005005005|520)4()2(}4,2,,4,2,1{}{221}1{}{161|)1()1()1(1|6)11()12(1|||1)(||)gcd(22265432122125226543212622223625322224362522226252655222625*22262525266565625526625655265426255645262565=====+=========≠≠==+++====+=+=====+⨯+≠==∈========-=-+===+=----n n n m n m m m n m m m d d d d d d b d n bd d m b bm b bm d m b bm m b b d d d d d d m b d mb bm m b b m b b m bm b d b d b b b n b b b n b d b d b m b m b d d n m b d bm d a d b a b a b a a mab d bm a d N m abm d dab d b d a b a da b db a bda d d a db d d b a b a d d b d d a d d d d d d d d d d d d d d d d d d d d d n n d d n d d n k k k k 综上所述,所求时,易验证符合题意当,此时,只能是,所以因为,,,,,亦即,即为偶数,所以但,,故,即,所以而,,,,,,,,,,可知又由、、、、、个正因数:至少有从而同理可证同时成立,因此,所以不可能有,而,,时,当,,,即矛盾,故这与个正因数至少有互素,可知与,则由若,,于是,其中可设,故,可知,,又由,,即,则互素,且与,,,,设都是整数,因此,,可得由为偶数故是偶数,矛盾都是奇数,于是,为奇数,则解:若πππππ3、用凸多边形的对角线将其划分为若干个三角形,且在这些三角形的所有顶点中,不存在共线的三个顶点(某些三角形的顶点可能位于该凸多边形的内部),若能将所有三角形的每条边添上一个单向箭头,使得每个三角形的三边可按箭头方向形成一个回路,且整个凸多边形的各边也可按箭头方向形成一个回路,则称这种划分为“好”的.求所有的正整数3≥n ,满足对正n 边形,存在“好”的划分..)(3....3)1(31.)(.)(1.)()...()(3.|3|3)(|3.)(.)(..1332313332131*成立故,式,得到“好”的划分对五边形可按下图的方一个“好”的划分,边形可由归纳假设存在对凸和五边形边形边形分成凸可将凸,时,如下图,先连接当成立时,假设对显然成立时,当成立用数学归纳法证明可对的划分边形,存在一个“好”下面证明:对凸,即,,故而每个三角形由三条边数之和为,所有蓝色三角形的边数之和为则所有红色三角形的边,三角形的边条边设其内部有三角形的边形的边,也是一个蓝色都恰好是一个红色三角三角形的边边形内部的每条边于是,该凸红色;反之染蓝色回路,则将该三角形染按顺时针方向形成一个若三角形的三边箭头是行红、蓝二染色:边形所划分的三角形进按照如下方式对该凸时针方向形成一个回路边形的各边箭头是按顺可不妨设整个凸”的划分,边形,若存在一个“好解:对于凸Θ++=Θ=Θ=ΘΘ∈+++++k A A A A A A A A k k A A k m k m m m N m m n a a n a a n a n n n n k k k k k k4、给定实数α,求所有的函数R R g f →:,,使得对任意的R y x ∈,,有)()()()(y g x g y x yf y x xf +=-++α成立..0)()(1③0)()(1②0)()(①)()(.)1(.0)()(1.0)()(1.11)1()6()6...(2)1(2)1()()1()(2121)5()5...(,0)()()()(,)()(.,0)()()()()4)(1()4...(,)()()()()1(.0)()()3)(2()3...()()(0)1()2...()()(0)1(.0)0(0)1(.0.)1(0)()(.)1(,)()()()(22≠∈∈∀==-=≠∈∈∀===∈∀==≠∈∈∀==-=≠∈∈∀===-=∈∀++-==≠+=-=≠∈∀=--++-≠∈∀-=-≠∈∀=---++-≠∈∀+=-++≠≠∈∀-=∈∀=-=∈∀=====∈∀==∈∀+=-++t R t R x tx x g tx x f t R t R x tx x g t x f Rx x g x f x g x f t R t R x tx x g tx x f t R t R x tx x g t x f R z t z t z f f t y x z y z x y x R y x x y f x y y x f y x y x R y x x y f y x f y x R y x x y xf y x yf y x f y x y x R y x x g y g x y xf x y yf y x y x x y x R x x f x f R y y g y yf x R x x g x xf y g y x f R x x g x f R y x y g x g y x yf y x xf 且,其中常数,,时,当且,其中常数,,时,当,为:,综上所述,所求式果符合容易检验上面的两种结且,其中常数,,时,当且,其中常数,,时,当或式中可得,代入将,可得,,并记,式中取在,,可知:,,又由,,式可得比较,,可得,,代替,代替中用在,,可得由,,可得中取在,,可得中取在,可得中取在的情况不恒为下面考虑式符合,显然式为,解:记ααααααααααααααα5、试确定平面上是否存在100个圆盘10132...D D D ,,,,满足对*,1012N b a b a ∈≤≤≤,,有: (1)若b a |,则a D 完全被b D 所包含.(2)若1)gcd(=b a ,,则a D 与b D 无公共点.注:定义圆盘)(r O D ,为平面上到给定一点O 的距离不超过正实数r 的所有点构成的集合. ..)2(}11,7,5,3,2{}{....45)(..5)()2(.)(}.{.}.11,7,5,3,2{.5....100.11753211753211753210132故假设不成立不符,这与条件,,,,而即可知,和包含同样由可知,和包含,由交于点、设对角线边形,这四个点可形成凸四,,,中找出四个点现在,在点集凸四边形个点,这四个点可形成中选出则必可从点集边形或五边形,个点所形成的凸包为四中的若点集这四点可形成凸四边形,,,有交点,则、与线段不妨设直线的某两条边有交点必与则直线在其内部,,点角形,设为个点所形成的凸包为三中的若点集不符,这与条件也包含的圆盘和则包含,,线上,设这三点依次为中存在三点在同一条直若点集,,,,设点集四边形中存在四点,可形成凸,,,,下面先来证明:在,的圆心为设圆盘任何一个都无公共点,且与其它三个圆盘中和包含满足,和圆盘,从中任取两个不同的,,,,个圆盘考虑,,,个圆盘假设存在符合要求的解:不存在⊂≠⋂∈∈∆∆=∈d c b a D D D P D D D D P D D D P O O O O O O O O A A A iii O O O O O O O O O O O O O O O O O O O O A ii D D D D O O O A i O O O O O A O O O O O i O D D D D D D D D D D D D D D bd ac bd d b bd ac c a ac d b c a d c b a e d c b c a b a e d c b a e d e d c b a b ac c a c b a i i b a ab b a φ6、在锐角△ABC 中,︒=∠60BAC AC AB ,π,AD 、BE 、CF 为其高线,H 为垂心,BC 、CA 、AB 的中点分别为K 、L 、M.求证:四点线段AH 、DK 、EL 、FM 的中点共圆...180)3(.)(41)21(418181.414121.41)(21)(2121...21.)6)(5)(4()6...(21//)5...(//)4...(21//..(3)...)2)(1()2(....)(41)(21)(41)(21(1).....cos 2.⊙.四点共圆、、、故可知,四点共圆,又由、、、即是正三角形,于是三点共线、、定理可知,四点共圆,根据西姆松、、、故,即的中垂线,是又对称,于是关于、,四点共线、、、可知,结合的中位线,是的中位线,是直角梯形的中点,可知是又由的中点是互相平分,即与是平行四边形,四边形的中点为设是等腰梯形,故可知,四边形结合对称关于、,可知平分又由,,对称关于、,则的中点为设平分,可知又由的中垂线是,的中点是上,其中的九点圆在、、、、、熟知、、、的中点分别为、、、证:设Z P Y X ZTY ZXY ZPY ZXY Z T Y X QZ YQ FL AF AFL FL ME AF AB AF AB AD AH QX TQ AH AH AH QV TV TQ AH OK AH OK DH AD VX QX QV Y Q Z V L A M ALV CEV BMV ALV CEV EL YV CEV BMV AV E M AE AB AM X V Q T AH TV OAH TV DH VX HOKD VX AD QX DK x AK Q ML AK ALKM Q ML ZTY ZPY PTYZ AV Z Y YAZ AV AZ AY AC AB AF AM AZ AC AB AL AE AY AV T P T AO BAC AV CAO BAH OH AV AO R A R AH OH V V ABC F M E L K D Z Y X P FM EL DH AH ︒=∠+∠=∠+∠⋅==∴∆⋅=⋅=⋅=⋅=⋅=-=-=∴=-=+-=-=∠=∠=∠∠=∠∴∠=∠∴==∴∆∴∴∠=∠∠=∴+=+=+=+=∠∠=∠∴===∆ΘΘΘΘΘΘΘΘΘ。

2019-2020年初中数学竞赛初赛试题(一,含详解)

2019-2020年初中数学竞赛初赛试题(一,含详解)

及 x 轴围成的三角形面积为 sk ,则 s1 s2 s3 ... s2006 的值是

13.如图,正方形 ABCD和正方形 CGEF的边长分别是 2 和 3,且
点 B、 C、 G 在同一直线上, M 是线段 AE 的中点,连结 MF,则 MF
的长为

14.边长为整数的等腰三角形一腰上的中线将其周长分为
心 DEF 的各边与 ABC 的对应边平行,且各对应边的距离都是
1cm,
那么 DEF 的周长是(

(A)5cm (B)6cm (C)
( 6 3 )cm (D) ( 3 3 )cm
3.将长为 15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的 截法有 ( ) (A)5 种 (B) 6 种 (C)7 种 (D)8 种
( 1)随着 m 的变化,该二次函数图象的顶点 P 是否都在某条抛物线上?如果是,请求 出该抛物线的表达式;如果不是,请说明理由;
( 2)如果直线 y x 1 经过二次函数 y x 2 2( m 1 ) x m 1 图象的顶点 P,求
此时 m的值。
全国初中数学竞赛初赛试题(一)参考答案
一、选择题 1.答案 D
4.作抛物线 A 关于 x 轴对称的抛物线 B,再将抛物线 B 向左平移 2 个单位,向上平移 1 个 单位,得到的抛物线 C 的函数解析式是 y 2( x 1 ) 2 1,则抛物线 A 所对应的函数表达
式是 ( )
(A) y 2( x 3 )2 2 (B) y 2( x 3) 2 2
(C) y 2( x 1 )2 2 (D) y 2( x 3 )2 2
顶点,棋子停在顶点 D。依这样的规则,在这 10 次移动的过程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019七年级上数学竞赛试题 班级 姓名 得分:
一、填空题(每小题3分,共30分)
1、有理数在数轴上的位置如图1所示,化简
2、已知:5||=a ,且0=+b a ,则_______=-b a ;
3、若0232=--a a ,则______6252
=-+a a 4、 已知x=5时,代数式ax 3+ bx -5的值是10,当x=-5时,代数式ax 3+bx+5= 。

5.(-2124 +7113 ÷24113 -38 )÷1512
= 。

6. 已知与是同类项,则=__。

7、.有一列数,按照下列规律排列:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,……这
列数的第200个数是__________.
8、._______2019
20181431321211=⨯+⨯+⨯+⨯
9、某班学生去参加义务劳动,其中一组到一果园去摘梨子,第一个进园的学生摘了
1个梨子,第二个学生摘了2个,第三个学生摘了3个,……以此类推,后来的学生都
比前面的学生多摘1个梨子,这样恰好平均每个学生摘了6个梨子,请问这组学生
的人数为 人。

10、某班45人参加一次数学比赛,结果有35人答对了第一题,有27人答对了第二
题,有41人答对了第三题,有38人答对了第四题,则这个班四道题都对的同学至
少有 人.
二、选择题(每小题3分,共24分)
11、(-0.125)2018×(-8)2019的值为( )
(A )-4 (B )4 (C)-8 (D)8
12、若,,,a b c m 是有理数,且23,2a b c m a b c m ++=++=,那么b 与c ( )
(A )互为相反数 (B )互为倒数 (C )互为负倒数 (D )相等
13.有理数a 等于它的倒数,则a 2016是( )
A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数
14、-|-3|的相反数的负倒数是( )
(A )-13 (B )13
(C )-3 (D )3 15、已知一个多项式与x x 932+的和等于1432-+x x ,则这个多项式是( )
A 、15--x
B 、15+x
C 、113--x
D 、113+x
16、把14个棱长为1的正方体,在地面上堆叠成如图所示的立方体,
然后将露出的表面部分涂成红色,那么红色部分的面积为( )
(A )21 (B )24 (C )33 (D )37
17、如图,点C ,D ,E ,F 都在线段AB 上,点E
是AC 的中点,点F 是BD 的中点,若EF =18,
CD =6,则线段AB 的长为( )
A .24
B .12
C .30
D .42
18、请从备选的图形中选择一个正确的(a,b,c,d)填入空白方格中( )
三、解答题(共66分)
19、(8分)计算:)8(]1)3
1()1[()311(]1)21()2[(2223-÷+-÷---⨯--⨯-
F · · · · · · A B C D E
20.(8分)化简求值:13
521312323232--+--xy y x xy y x xy ,其中x =-2,y =3。

21、(8分) 代数式262x ax y +-+与
23512bx x y -+-的差与字母x 的取值无关,求下列代数式的值. 1331423232a b a b ---()
22、计算:(8分)
111111111111123200523200422005232004⎛⎫⎛⎫⎛⎫⎛⎫+++++++-++++++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭
23、请从理论上或逻辑的角度在后面的空格中填入后续字母或数字(10分)
①A, D, G, J,_____. ②21, 20, 18, 15, 11,_____.
③8, 6, 7, 5, 6, 4,_____. ④18,10,6,4,_____.
⑤0,7,26,63,_____.
24、(8分).某城市自来水收费实行阶梯水价,收费标准如下表所示:
某户5月份交水费45元,则该用户5月份的用水量是多少?
25(8分)电子跳蚤落在数轴上的某点K 0,第一步从K 0向左跳1个单位到K 1,第二步由K 1向右跳2个单位到K 2,第三步由K 2向左跳3个单位到K 3,
第四步由K 3跳4个单位到K 4,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点K 100所表示的数恰是20.04,试求电子跳蚤的初始位置K 0点所表示的数。

26. (8分)请在空格内(如图)各填入1个整数,使这两个数的积为-6,共有多少种填法?从中选出两对角线上的两数乘积之和等于-4的一种填法。

相关文档
最新文档