正激、反激、双管反激、推挽开关电路小结
反激式正激式推挽式半桥式全桥式开关电源优缺点

反激式正激式推挽式半桥式全桥式开关电源优缺点反激式开关电源是一种常见的开关电源拓扑结构,其工作原理是利用电感储能和电容滤波器来实现电压变换。
以下是反激式、正激式、推挽式、半桥式和全桥式开关电源的优缺点分析。
1.反激式开关电源:优点:-体积小,结构简单,成本较低。
-输出电流大,适用于一些高功率应用。
-效率较高,在负载率低时仍能提供稳定的输出电压。
缺点:-输出电压稳定性较差,容易受到输入电压波动的影响。
-输入电流波形不纯净,含有较高的谐波成分。
-输出电流变化较大时容易产生振荡和噪音。
2.正激式开关电源:优点:-输出电压稳定性较好,能够提供较为纯净的输出电流。
-输出电流较大,适用于一些高负载应用。
-效率较高,在大部分负载条件下都能保持较高的效率。
缺点:-体积较大,结构相对复杂。
-成本较高。
-在负载率低时效率较低。
3.推挽式开关电源:优点:-输出频率较高,适用于一些高频应用。
-输出电压稳定性较好。
-体积相对较小,结构简单。
缺点:-输出电流相对较小。
-效率较低,在大负载条件下会有较大的功率损耗。
-容易受到电容和电感等元器件的损耗影响,导致输出电压不稳定。
4.半桥式开关电源:优点:-输出电压稳定性较好。
-输出电流较大。
-效率较高。
-结构简单,成本相对较低。
缺点:-输入电流波形较复杂,含有较高的谐波成分。
-输出电流较小负载时容易出现振荡。
-适用负载范围较窄。
5.全桥式开关电源:优点:-输出电压稳定性较好。
-输出电流较大。
-效率较高。
-结构简单,成本相对较低。
缺点:-输入电流波形较复杂,含有较高的谐波成分。
-输出电流较小负载时容易出现振荡。
-适用负载范围较窄。
总结:根据以上分析,不同的开关电源拓扑在不同应用场景中具有不同的优缺点。
在选择开关电源时,应根据具体应用需求,综合考虑输出电压稳定性、输出电流、效率、结构复杂性、成本等因素,选择最适合的拓扑结构。
超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解一,先分类开关电源的拓扑结构按照功率大小的分类如下:10W以内常用RCC(自激振荡)拓扑方式10W-100W以内常用反激式拓扑(75W以上电源有PF值要求)100W-300W 正激、双管反激、准谐振300W-500W 准谐振、双管正激、半桥等500W-2000W 双管正激、半桥、全桥2000W以上全桥二,重点在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。
优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出.缺点:输出纹波比较大。
(输出加低内阻滤波电容或加LC噪声滤波器可以改善)今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。
给大家讲解如何读懂反激开关电源电路图!三,画框图一般来说,总的来分按变压器初测部分和次侧部分来说明。
开关电源的电路包括以下几个主要组成部分,如图1图1,反激开关电源框图四,原理图图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。
下面会根据这个原理图进行各个部分的设计说明。
图2 典型反激开关电源原理图五,保险管图3 保险管先认识一下电源的安规元件—保险管如图3。
作用:安全防护。
在电源出现异常时,为了保护核心器件不受到损坏。
技术参数:额定电压 ,额定电流 ,熔断时间。
分类:快断、慢断、常规计算公式:其中:Po:输出功率η效率:(设计的评估值)Vinmin :最小的输入电压2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。
0.98: PF值六,NTC和MOVNTC 热敏电阻的位置如图4。
图4 NTC热敏电阻图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。
图4中RV为MOV压敏电阻,压敏电阻是一种限压型保护器件,过电压保护、防雷、抑制浪涌电流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等七,XY电容??????????????????????????????????????????????????????????????????????????? 图5 X和Y电容?????? 如图X电容,Y电容。
正激、反激、双管反激、推挽开关电路小结

正激、反激、双管反激、推挽开关电路⼩结开关电源电路学习⼩结1.正激(Forward)电路正激电路的原理图如图1所⽰:图1、单管正激电路1.1电路原理图说明单管正极电路由输⼊Uin、滤波电容C1、C2、C3,变压器Trans、开关管VT1、⼆极管VD1、电感L1组成。
其中变压器中的N1、N2、N3三个线圈是绕在同⼀个铁芯上的,N1、N2的绕线⽅向⼀致,N3的绕线⽅向与前两者相反。
1.2电路⼯作原理说明开关管VT1以⼀定的频率通断,从⽽实现电压输出。
当VT1吸合时,输⼊电压Uin被加在变压器线圈N1的两边,同时通过变压器的传输作⽤,变压器线圈N2两边产⽣上正下负的电压,VD1正向导通。
Uin的能量通过变压器Tran传输到负载。
由于N3的绕线⽅向与N1的相反,VT1导通时,N3的电压极性为上负下正。
当VT1关断时,N1中的电流突然变为0,但铁芯中的磁场不可能突变,N1产⽣反电动势,⽅向上负下正;N3则产⽣上正下负的反向电动势,多出的能量将被回馈到Uin。
通过上述内容可以看到W3的作⽤,就是为了能使磁场连续⽽留出的电流通路,采⽤这种接线⽅式后,VT1断开器件,磁场的磁能被转换为电能送回电源。
如果没有N3,那么VT1关断瞬间要事磁场保持连续,唯有两个电流通路:⼀是击穿开关;⼆是N2电流倒流使⼆极管反向击穿。
击穿开关或⼆极管,都需要很⾼电压,使击穿后电流以较⾼的变化率下降到零;⽽很⾼的电流变化率(磁通变化率)⾃然会产⽣很⾼的感⽣电动势来形成击穿电压。
由此可见,如果没有N3,则电感反向时的磁能将⽆法回收到电源;并且还会击穿开关和⼆极管。
1.3⼩结1)正激电路使⽤变压器作为通道进⾏能量传输;2)正激电路中,开关管导通时,能量传输到变压器副边,同时存储在电感中;开关管关断时,将由副边回路中的电感续流带载;3)正激电路的副边向负载提供功率输出,并且输出电压的幅度基本是稳定的。
正激输出电压的瞬态特性相对较好;4)为了吸收线圈在开关管关断时时的反电动势,需要在变压器中增加⼀个反电动势吸收绕组,因此正激电路的变压器要⽐反激电路的体积⼤;5)由于正激电路控制开关的占空⽐都取0.5左右,⽽反激电路的占空⽐都较⼩,所以正激电路的反激电动势更⾼。
反激式开关电源的总结

反激式开关电源的总结反激式开关电源的总结 开关电源分为:隔离与⾮隔离两种形式,在这主要说⼀下隔离式开关电源的拓扑形式,隔离电源按照结构形式不同,可分为两⼤类:正激式和反激式。
反激式指在变压器原边导通时副边截⽌,变压器储能。
原边截⽌时,副边导通,能量释放到负载的⼯作状态,⼀般常规反激式电源单管多,双管的不常见。
正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。
按规格⼜可分为常规正激,包括单管正激,双管正激。
半桥、桥式电路都属于正激电路。
正激和反激电路各有其特点,在设计电路的过程中为达到最优性价⽐,可以灵活运⽤。
⼀般在⼩功率场合可选⽤反激式。
稍微⼤⼀些可采⽤单管正激电路,中等功率可采⽤双管正激电路或半桥电路,低电压时采⽤推挽电路,与半桥⼯作状态相同。
⼤功率输出,⼀般采⽤桥式电路,低压也可采⽤推挽电路。
反激式电源因其结构简单,省掉了⼀个和变压器体积⼤⼩差不多的电感,⽽在中⼩功率电源中得到⼴泛的应⽤。
在有些介绍中讲到反激式电源功率只能做到⼏⼗⽡,输出功率超过 100 ⽡就没有优势,实现起来有难度。
本⼈认为⼀般情况下是这样的,但也不能⼀概⽽论,PI 公司的TOP 芯⽚就可做300 ⽡,有⽂章介绍反激电源可做到上千⽡,但没见过实物。
输出功率⼤⼩与输出电压⾼低有关。
反激电源变压器漏感是⼀个⾮常关键的参数,由于反激电源需要变压器储存能量,要使变压器铁芯得到充分利⽤,⼀般都要在磁路中开⽓隙,其⽬的是改变铁芯磁滞回线的斜率,使变压器能够承受⼤的脉冲电流冲击,⽽不⾄于铁芯进⼊饱和⾮线形状态,磁路中⽓隙处于⾼磁阻状态,在磁路中产⽣漏磁远⼤于完全闭合磁路。
变压器初次极间的偶合,也是确定漏感的关键因素,要尽量使初次极线圈靠近,可采⽤三明治绕法,但这样会使变压器分布电容增⼤。
选⽤铁芯尽量⽤窗⼝⽐较长的磁芯,可减⼩漏感,如⽤EE、EF、EER、PQ 型磁芯效果要⽐ EI 型的好。
关于反激电源的占空⽐,原则上反激电源的最⼤占空⽐应该⼩于0.5,否则环路不容易补偿,有可能不稳定,但有⼀些例外,如美国PI 公司推出的 TOP 系列芯⽚是可以⼯作在占空⽐⼤于0.5 的条件下。
反激式开关电源的优点和缺点

反激式开关电源的优点和缺点1 反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。
即电压脉动系数等于2,电流脉动系数等于4。
反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。
由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。
2 反激式开关电源的瞬态控制特性相对来说比较差。
由于反激式开关电源仅在开关关断期间才向负载提供能量输出,当负载电流出现变化时,开关电源不能立即对输出电压或电流产生反应,而需要等到下一个周期事,通过输出电压取样和调宽控制电路的作用,开关电源才开始对已经过去了的事情进行反应,即改变占空比,因此,反激式开关电源的瞬态控制特性相对来说比较差。
有时,当负载电流变化的频率和相位与取样、调宽控制电路输出的电压的延时特性在相位保持一致的时候,反激式开关电源输出电压可能会产生抖动,这种情况在电视机的开关电源中最容易出现。
3 反激式开关电源变压器初级和次级线圈的漏感都比较大,开关电源变压器的工作效率低。
反激式开关电源变压器的铁芯一般需要留一定的气隙,一方面是为了防止变压器的铁芯因流过变压器的初级线圈的电流过大,容易产生磁饱和。
另一方面是因为变压器的输出功率小,需要通过调整电压器的气隙和初级线圈的匝数,来调整变压器初级线圈的电感量的大小。
因此,反激式开关电源变压器初级和次级线圈的漏感都比较大,从而会降低开关电源变压器的工作效率,并且漏感还会产生反电动势,容易把开关管击穿。
开关电源:单管自激,反激,推挽,半桥,全桥

3 脚为误差放大器 A1、A2 输出端。集成电路内部用于控制 PWM 比较器的同相输入, 当 A1、A2 任一输出电压升高时,控制 PWM 比较器的输出脉宽减小。同时,该输出端还引 出端外,以便与 2、15 脚间接入 RC 频率校正电路和直流负反馈电路,稳定误差放大器的增 益以及防止其高频自激。3 脚电压反比于输出脉宽,也可利用该端功能实现高电平保护。 4 脚为死区时间控制端。当外加 1V 以下的电压时,死区时间与外加电压成正比。如果 电压超过 1V,内部比较器将关断触发器的输出脉冲,起到保护作用。 5 脚为锯齿波振荡器外接定时电容端。 6 脚为锯齿波振荡器外接定时电阻端。 7 脚为共地端。 8、11 脚为两路驱动放大器 NPN 管的集电极开路输出端。当通过外接负载电阻引出输 出脉冲时,为两路时序不同的倒相输出,脉冲极性为负极性,适合驱动 P 型双极型开关管 或 P 沟道 MOS FET 管。此时两管发射极接共地。 9、10 脚为两路驱动放大器的发射极开路输出端,也是对应的脉冲参考地端。 12 脚为 Vcc、输入端。供电范围适应 8~40V。 13 脚为输出模式控制端。 外接 5V 高电平时为双端图腾柱式输出, 用以驱动各种推挽开 关电路。接地时为两路同相位驱动脉冲输出,8、11 脚和 9、10 脚可直接并联。双端输出时 最大驱动电流为 2×200mA,并联运用时最大驱动电流为 400mA。 14 脚为内部基准电压精密稳压电路端。输出 5V±0.25V 的基准电压,最大负载电流为 10mA。用于误差检出基准电压和控制模式的控制电压。 15 脚为内部 2#误差放大器的反向输入端 IN2-。 16 脚为内部 2#误差放大器的同向输入端 IN2+。 RT 取值范围 1.8~500kΩ,CT 取值范围 4700pF~10μF,最高振荡频率 fOSC≤300KHz。 TL494 在工作时, 通过 5、 6 脚分别接定时元件 CT 和 RT。 经相应的门电路去控制 TL494 内部的两个驱动三极管交替导通和截止,通过 8 脚和 11 脚向外输出相位相差 180°的脉宽调 制控制脉冲。工作波形如图 3-3 所示。TL494 若将 13 脚与 14 脚相连.可形成推挽式工作; 若将 13 脚与 7 脚相连.可形成单端输出方式。为增大输出可将 2 个三极管并联[7]。
全桥-半桥-推挽-正激-反激的优缺点比较及应用场合分析

全桥,半桥,推挽,正激,反激的优缺点比较及应用场合分析优缺点比较一、全桥式开关电源的优点和缺点1、全桥式变压器开关电源输出功率很大,工作效率很高全桥式变压器开关电源与推挽式变压器开关电源一样,由于两组开关器件轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。
因此,全桥式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,其输出电压的电压脉动系数Sv和电流脉动系数Si都很小,仅需要一个很小值的储能滤波电容或储能滤波电感,就可以得到一个电压纹波和电流纹波都很小的输出电压。
2、全桥式开关电源的优点是开关管的耐压值特别的低全桥式变压器开关电源最大的优点是,对4个开关器件的耐压要求比推挽式变压器开关电源对两个开关器件的耐压要求可以降低一半。
因为,全桥式变压器开关电源4个开关器件分成两组,工作时2个开关器件互相串联,关断时,每个开关器件所承受的电压,只有单个开关器件所承受电压的一半。
其最高耐压等于工作电压与反电动势之和的一半,这个结果正好是推挽式变压器开关电源两个开关器件耐压的一半。
3、全桥式变压器开关电源主要用于输入电压比较高的场合在输入电压很高的情况下,采用全桥式变压器开关电源,其输出功率要比推挽式变压器开关电源的输出功率大很多。
因此,一般电网电压为交流220伏供电的大功率开关电源大部分都是使用全桥式变压器开关电源。
而在输入电压较低的情况下,推挽式变压器开关电源的输出功率又要比全桥式变压器开关电源的输出功率大很多。
4、全桥式变压器开关电源的电源利用率比推挽式变压器开关电源的电源利用率低一些因为2组开关器件互相串联,两个开关器件接通时总的电压降要比单个开关器件接通时的电压降大一倍;但比半桥式变压器开关电源的电源利用率高很多。
因此,全桥式变压器开关电源也可以用于工作电源电压比较低的场合。
5、与半桥式开关电源一样,全桥式变压器开关电源的变压器初级线圈只需要一个绕组,这也是它的优点,这对小功率开关电源变压器的线圈绕制多少带来一些方便。
反激式正激式推挽式半桥式全桥式开关电源优缺点

反激式、正激式、推挽式、半桥式、全桥式开关电源优缺点反激式、正激式、推挽式、半桥式、全桥式开关电源的优点和缺点最近查了很多关于开关电源的资料,现在总结如下,以便日后的查阅,呵呵。
由于博文有字数的限制故分两部分发表,本文为第一部分为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。
在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S ;也有人用电压或电流的有效值与其平均值之比,称为波形系数K 。
因此,电压和电流的脉动系数Sv 、Si 以及波形系数Kv 、Ki 分别表示为:Sv = Up/Ua ——电压脉动系数(1-84 )Si = Im/Ia ——电流脉动系数(1-85 )Kv =Ud/Ua ——电压波形系数(1-86 )Ki = Id/Ia ——电流波形系数(1-87 )上面 4 式中,Sv 、Si 、Kv 、Ki 分别表示:电压和电流的脉动系数S ,和电压和电流的波形系数K ,在一般可以分清楚的情况下一般都只写字母大写S 或K 。
脉动系数S 和波形系数K 都是表征电压或者电流好坏的指标,S 和K 的值,显然是越小越好。
S 和K 的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。
反激式开关电源的优点和缺点1 反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5 时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。
即电压脉动系数等于2 ,电流脉动系数等于 4 。
反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源电路学习小结
1.正激(Forward)电路
正激电路的原理图如图1所示:
图1、单管正激电路
1.1电路原理图说明
单管正极电路由输入Uin、滤波电容C1、C2、C3,变压器Trans、开关管VT1、二极管VD1、电感L1组成。
其中变压器中的N1、N2、N3三个线圈是绕在同一个铁芯上的,N1、N2的绕线方向一致,N3的绕线方向与前两者相反。
1.2电路工作原理说明
开关管VT1以一定的频率通断,从而实现电压输出。
当VT1吸合时,输入电压Uin被加在变压器线圈N1的两边,同时通过变压器的传输作用,变压器线圈N2两边产生上正下负的电压,VD1正向导通。
Uin的能量通过变压器Tran传输到负载。
由于N3的绕线方向与N1的相反,VT1导通时,N3的电压极性为上负下正。
当VT1关断时,N1中的电流突然变为0,但铁芯中的磁场不可能突变,N1产生反电动势,方向上负下正;N3则产生上正下负的反向电动势,多出的能量将被回馈到Uin。
通过上述内容可以看到W3的作用,就是为了能使磁场连续而留出的电流通路,采用
这种接线方式后,VT1断开器件,磁场的磁能被转换为电能送回电源。
如果没有N3,那么VT1关断瞬间要事磁场保持连续,唯有两个电流通路:一是击穿开关;二是N2电流倒流使二极管反向击穿。
击穿开关或二极管,都需要很高电压,使击穿后电流以较高的变化率下降到零;而很高的电流变化率(磁通变化率)自然会产生很高的感生电动势来形成击穿电压。
由此可见,如果没有N3,则电感反向时的磁能将无法回收到电源;并且还会击穿开关和二极管。
1.3小结
1)正激电路使用变压器作为通道进行能量传输;
2)正激电路中,开关管导通时,能量传输到变压器副边,同时存储在电感中;开关管
关断时,将由副边回路中的电感续流带载;
3)正激电路的副边向负载提供功率输出,并且输出电压的幅度基本是稳定的。
正激输
出电压的瞬态特性相对较好;
4)为了吸收线圈在开关管关断时时的反电动势,需要在变压器中增加一个反电动势吸
收绕组,因此正激电路的变压器要比反激电路的体积大;
5)由于正激电路控制开关的占空比都取0.5左右,而反激电路的占空比都较小,所以
正激电路的反激电动势更高。
2.反激(Flyback)电路
反激电路的原理图如图2所示:
图2、反激电路原理图
2.1原理图说明
如图2所示,反激电路由输入Uin,滤波电容C1、C2、C3,变压器Tran,二极管VD1组成。
其中,变压器的原边和副边的绕线方向相反。
2.2工作原理
开关管以一定的频率导通关断,从而实现电压输出。
VT1导通时,Uin加在变压器线圈N1两端,N1的电动势上正下负;此时变压器副边线圈电动势上负下正,二极管VD1截止。
VT1关断时,流过N1的电流变为0,但是铁芯中的磁场将无法突变,N1两边将产生上负下正的电动势,此时变压器副边线圈电动势上正下负,二极管VD1导通,副边线圈的能量将被传递到负载。
2.3小结
1)VT1关断时,VT1两边的电压等于输入Uin的电压加上线圈N1反激的电压,即开关管VT1关断时需要承受两倍的输入电压;
2)反激电路中,原边线圈还需要作为电感使用,变压器有直流电流成份,且同时会工
作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂。
3.双管反激电路
双管反激电路的电路原理如图3所示:
图3.双管反激DCDC
3.1原理图说明
双管反激电路由两个同时导通和关断的开关管VT1、VT2;两个钳位二极管VD1、VD2;输入滤波电容C1、C2;输出滤波电容C3;输出整流二极管VD3,高频变压器Trans1组成。
钳位二极管在反激的过程中把开关管承受的峰值电压钳制在输入电源电压,可以大大降低每个开关管上的电压应力,扩大了开关管的选择范围;变压器原边起到储能电感的作用。
3.2工作原理
VT1和VT2同时导通,同时关断。
场效应管导通时,能量储存在变压器的磁路中;关断时,磁能转化为电能传至负载。
VD1和VD2的接法可以把过剩的反激能量反馈到电源Ui中,同时可以把场效应管承受的峰值电压和原边绕组的钳位电压都钳制在Ui。
1)VT1和VT2同时开通,直流电压Ui加在原边绕组上。
此时输出整流二极管VD3
反向偏置关断,副边绕组没有电流。
输入Ui为变压器原边储能,原边电流Ip线性增加Ui/Lp=dIp/dt。
此时变压器原边相当于电感,磁芯内磁感应强度将由剩余磁感Br上升到峰值Bp。
两只场效应管上的压降为其导通压降。
2)当VT1和VT2同时关断时,由于反激作用,变压器上所有的电压反向,钳位二极管把原边绕组的反激电压和开关管两边的电压钳制在输入电压。
储存在原边绕组的能量一部分向副边传递,同时有一部分通过钳位二极管VD1和VD2返回给电源。
当副边的电流增加至N1/N2 * Ip(N1为原边匝数,N2为副边匝数)时,两个钳位二极管停止导通,原边电压Vp降至副边绕组的反射电压(即C3上的电压这算到原边上的电压),场效应管上的压降为(Ui+Uo)。
输出三极管VD3导通,副边电流以一定速度衰减dIp/dt=Uo/Ls。
当副边绕组电流Is降到零时,原边绕组的电压也将为0,这时场效应管承受的电压为Ui。
反激过程中,磁芯磁通密度将由峰值Bp下到剩余磁感应强度Br。
经过一段时间后,VT1、VT2同时导通,进入下一个周期。
3)在VT1和VT2不同时关断的情况下,电流会通过钳位二极管继续流动。
如VT1关断,VT2导通时,电流将在VT2和VD2之间续流,直至VT2关断。
VT1和VT2不同时关断对反激影响较小,但是应保持VT1和VT2同时导通关断,因为开关管VT和钳位二极管存在导通内阻,续流将会产生大量的功率损耗,时间越长功率损耗越大,对电源效率和散热不利。
3.3小结
双管反激的优点如下:
1)续流二极管将漏感能量回馈给电源
2)有效抑制关断尖峰,是开关管电压应力为输入电压
3)不需要额外的吸收电路,开关管承受的反向电压冲击较小
由于双管反激电路减小了器件的高压应力,为功率管的选取和保护创造了有利条件,增加系统可靠性。
因此,适用用高电压输入的中小功率场合。
4.推挽开关电路
图4、推挽开关电路原理图
4.1推挽开关电路原理图说明
如图4所示,推挽开关电路原理图由互补通断的开关管VT1和VT2;隔离变压器Trans1,;整流二极管VD1和VD2;滤波电感L,滤波电容C1组成。
变压器原边的线圈除了变压,还起到储能的作用。
4.2推挽开关电路控制原理说明
如图2所示,VT1和VT2由MCU控制互补导通。
当VT1导通,VT2关断时,输入电压Ui加在原边线圈上,输入Ui对原边线圈储能,原边电流线性增加Ui/Lp=dIp/dt。
此时变压器原边相当于电感,磁芯内的磁感应强度将由剩余磁感应Br上升到峰值Bp。
当VT1关断,VT2导通时,由于反激作用,变压器上的所有电压反向。
此时,存储在原边的能量被变压器传输到副边。
此时输出的整流二极管VD1导通,副边电流以一定的速度衰减dIp/dt=U0/L,当副边的电流下降到0,原边线圈的电压也下降到0V。
在反激的过程中,磁芯的磁通密度将由峰值Bp下降到剩余磁感强度Br。
在反激的过程中,原边线圈的电压加上输入Ui电压都施加到VT1上,即VT1关断瞬
间承受的电压是额定电压的2倍。
由于VT1和VT2不可能实现完全的反相动作,当VT1关断但未完全关断,二VT2已经导通时;VT1所在的网络由于反激,产生的电流很小;而VT2所在网络的电流不受VT1线性导通的影响。
所以采用推挽结构时,VT1、VT2同时导通不会影响DCDC正常工作,且由于VT1线性状态下流过的电流很小,所以开关管的损耗也较小。
4.3电路小结
1)推挽式电路采用了对称的结构排布,相当于两个反激电路并联;
2)理论上在同一个时间点只有1个开关管导通,开关损耗很小。
适用于低输入开关电源;3)开关管在关断时,开关管两侧的电压为输入电压与反激电压之和,即两倍的输入电压;4)变压器原边的绕组只有在交替脉冲下才能激活,即利用率为50%;
5)需要在变压器的副边串联电感,在增加滤波功能的同时,使副边的电路演变为BUCK 电路拓扑。
从而可以通过调节原边开关管的占空比控制输出侧的输出电压。