微元法及其在物理中的应用(大 整理好)
微元法在高中物理中的运用及技巧简说
微元法在高中物理中的运用及技巧简说微积分在高中要求不是很高,但它的思想可以说贯穿了整个高中物理。
比如瞬时速度、瞬时加速度、感应电动势、匀变速直线运动位移公式、重力做功的特点等都用到了微元法的思想,学会这种研究问题的方法可以丰富我们处理问题的手段,拓展我们的思维,特别是在解决高层面物理问题时,常常起到事半功倍的效果。
微元法,即在处理问题时,从事物的极小部分(微元)分析入手,达到解决事物整体问题的方法。
微元法基本思想内涵可以概括为两个重要方面:一是“无限分割”(取微元);二是“逼近”(对微元作“低细节”描述)。
用微元法解决问题的特点是“大处着眼,小处着手”,具体说即是对事物作整体客观观察后,必须取出该事物的某一小单元,即微元进行分析,通过微元构造“低细节”的物理描述,最终解决整体问题。
所以微元法解决问题的两要诀就是取微元与对微元作“低细节”描述。
如何取微元呢?主要有这么几种:对整体对象进行无限分割得到“线元”、“面元”、“体元”、“角元”等;也可以分割一段时间或过程,得到“时间元”、“元过程”;还可以对各种物理量进行分割,得到诸如“元电荷”、“元功”、“元电流”等相应的元物理量;这些微元都是通过无限分割得到的,要多么小就有多么小的“无穷小量”,解决整体问题就要从它们入手。
对微元作“低细节”描述,即通过对微元性质作合理近似描述,在微元是无穷小量的前提下,通过求取极限,达到向精确描述的逼近。
关于逼近有这么常见的几种逼近:①“直”向“曲”的逼近。
例如质量为m的物体由A沿曲线运动到B时,计算重力做的功。
我们将曲线AB细分成n段小弧,任意一段元弧可以近似地看成一段直线,则重力做的元功为Wi=mglicosθ=mgHi,在无限分割下,即n→∞的条件下,WG=ΣWi=mgH;②平均值向瞬时值的逼近。
例如瞬时速度的求解,设某时刻t至邻近一时间点t’长度为△x,则物体在时间△t内平均速度为■=■,当△t→0时,该时间元的平均速度即时刻的瞬时速度。
微元法在高中物理中应用
微元法在高中物理中应用微元法是一种以计算机模拟和分析实际现象的方法,在若干学科中,如力学、热力学、流体力学、电磁学、材料力学等有广泛的应用。
物理学也是其中的重要应用领域,微元法在高中物理教学中的应用是一种新兴的教学方法,它可以使物理实验更加直观、实用和深入,也可以有效提高学生的学习效率。
一、微元法的基本原理微元法是一种基于数值模拟的方法,它将物理实验中的复杂现象分解为若干基本现象,然后逐一计算,从而获得结果。
它的基本思想是:将实际情况分解为多个简单的微元,将每个微元的物理量用数值代替,经过一系列的计算,可以得出实验结果。
二、微元法在高中物理教学中的应用1、模拟物理实验微元法可以用来模拟各种物理实验,提供学生更直观的实验体验,更加直观地理解物理现象。
比如,在学习曲线运动时,可以用微元法模拟出曲线运动的过程,使学生能够更加直观地理解曲线运动的物理原理。
同时,微元法还可以用来模拟物理实验,可以替代传统的实验方式,节省采购实验器材的时间和成本。
2、开展深入的物理探究微元法可以模拟出物理实验的过程,让学生可以更深入地探究物理现象。
比如,在学习静电场时,可以用微元法模拟出电荷在静电场中的运动,更深入地理解静电场的物理原理。
3、提高学生的学习效率微元法可以用来计算物理实验的结果,可以极大地提高学生的学习效率,节省实验时间。
比如,在学习电磁学时,可以用微元法模拟出电磁波的传播,而不需要耗费大量的时间来实验,更有效地掌握电磁学的知识。
三、微元法的不足微元法虽然在高中物理教学中有着广泛的应用,但也存在一些不足。
首先,微元法要求计算机具备较高的计算能力,而不是所有的学校都能满足这一要求;其次,微元法要求有一定的编程能力,因此,学习微元法需要耗费较多的学习时间;最后,微元法模拟的物理实验结果可能会有误差,因此,学生应该在理解物理原理的基础上,更加细致地检查模拟的结果。
总之,微元法是一种新兴的教学方法,它可以使物理实验更加直观、实用和深入,也可以有效提高学生的学习效率,但也有一定的不足,所以,在开展微元法的应用时,应该注意避免其缺陷,以取得最佳的教学效果。
方法4:微元法在物理解题中的应用
方法四:微元法在物理解题中的应用一.方法介绍利用微分思想的分析方法称为微元法。
它是将研究对象[物体或物理过程]进行无限细分,从其中抽取某一微小单元进行讨论,从而找出被研究对象变化规律的一种思想方法。
这是一种深刻的思维方法,是先分割逼近,找到规律,再累计求和,达到了解整体。
是对某事件做整体的观察后,取出该事件的某一微小单元进行分析,通过对微元的细节的物理分析和描述,最终解决整体的方法。
微元法就是将研究对象分割成许多微小的单元,或从研究对象上选取某一微元加以分析,从而可以化曲为直,化变为恒。
微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。
在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。
使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
二.典例分析例1:空间某一静电场的电势在x轴上分布如图所示,x轴上B、C两点电场强度在x方向上的分量分别是E B、E C,下列说法中正确的有()A.E B的大小大于E C的大小B.E B的方向沿x轴正方向C.电荷在o点受到的电场力在x方向上的分量最大D.负电荷沿x轴从B移到C的过程中,电场力先做正功,后做负功三、选取研究对象时利用微元法例2:如图所示,一个半径为R的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,A端固定在球面的顶点,B端恰与桌面不接触,铁链单位长度的质量为ρ.试求铁链A端受的拉力T.拓展1、电量Q均匀分布在半径为R的圆环上如图所示,求在圆环轴线上距圆心O点为x处的P点的电场强度。
四、选取研究过程时利用微元法:例3:如图所示,空间等间距分布着水平方向的条形匀强磁场,竖直方向磁场区域足够长,磁感应强度B=1 T,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为d=0.5 m,现有一边长l=0.2 m、质量m=0.1 kg、电阻R=0.1 Ω的正方形线框MNOP以v0=7 m/s的初速从左侧磁场边缘水平进入磁场,求:线框能穿过的完整条形磁场区域的个数n。
谈微元法在高中物理解题中的应用
谈微元法在高中物理解题中的应用
谈微元法在高中物理解题中的应用
微元法是一种解决科学和工程问题的方法,它是基于微元法的工程分析和应用。
微元法是一种基于有限元的工程模拟方法。
它采用小的模型对实际结构的运动特性进行建模,从而可以用来模拟复杂的结构体的运动特性,以及对工程结构进行处理和分析。
高中物理解题是一种基础性的物理学习,内容包括力、运动、动能和势能以及物理运动过程中的各种物理现象,这些概念都要求学生理解和认识,以便能够更好地解决物理问题。
在解决实际问题时,学生要运用一定的物理原理来推导和解释物理现象,以达到预期的解决方案。
在这种情况下,微元法可以提供一种有效的解决方案,通过它可以更加直观地理解和解释物理运动过程,从而更好地解决物理问题。
在物理解题方面,微元分析可以使物理问题更加深入地推导,从而更好地理解物理现象。
例如,当讨论惯性力的大小时,可以根据给定的情况,结合动量定理以及惯性定律,来推导惯性力的大小。
而采用微元分析,则可以通过构建模型得出结论,从而更加直观地了解惯性力的大小和它对物理运动的影响。
此外,微元法还可以帮助学生们更加全面而准确地认识物理现象,正如采用微元法处理热传导这一问题所能得到的结果,即可以更好地认识和理解热传导现象的性质和特征。
从而帮助学生深入分析和推导物理问题,以达到更好地理解和解决问题的目的。
总而言之,微元法可以帮助高中物理学习者更好地理解和解决物
理问题,以及更全面和准确地认识物理现象,从而提高高中生的物理知识和解答能力。
微元法在物理习题中的应用(全)
电磁感应中的“微元法”和“牛顿第四定律”江苏省特级教师,江苏省丰县中学——戴儒京所谓:“微元法”所谓“微元法”,又叫“微小变量法”,是解物理题的一种方法。
1.什么情况下用微元法解题?在变力作用下做变变速运动(非匀变速运动)时,可考虑用微元法解题。
2. 关于微元法。
在时间t ∆很短或位移x ∆很小时,非匀变速运动可以看作匀变速运动,运动图象中的梯形可以看作矩形,所以x t v ∆=∆,s x l t lv ∆=∆=∆。
微元法体现了微分思想。
3. 关于求和∑。
许多小的梯形加起来为大的梯形,即∑∆=∆S s ,(注意:前面的s 为小写,后面的S 为大写),并且0vv v -=∆∑,当末速度0=v 时,有∑=∆0v v ,或初速度00=v 时,有∑=∆v v ,这个求和的方法体现了积分思想。
4. 无论物理规律用牛顿定律,还是动量定理或动能定理,都可以用微元法.如果既可以用动量定理也可以用动能定理解。
对于使用老教科书的地区,这两种解法用哪一种都行,但对于使用课程标准教科书的地区就不同了,因为课程标准教科书把动量的内容移到了选修3-5,如果不选修3-5,则不能用动量定理解,只能用动能定理解。
微元法解题,体现了微分和积分的思想,考查学生学习的潜能和独创能力。
电磁感应中的微元法一些以“电磁感应”为题材的题目。
可以用微元法解,因为在电磁感应中,如导体切割磁感线运动,产生感应电动势为BL v E =,感应电流为RB L vI =,受安培力为v RL B B I L F 22==,因为是变力问题,所以可以用微元法.1.只受安培力的情况例1. 如图所示,宽度为L 的光滑金属导轨一端封闭,电阻不计,足够长,水平部分有竖直向上、磁感应强度为B 的匀强磁场。
质量为m 、电阻为r 的导体棒从高度为h 的斜轨上从静止开始滑下,由于在磁场中受安培力的作用,在水平导轨上滑行的距离为S 而停下。
(1) 求导体棒刚滑到水平面时的速度0v ;(2) 写出导体棒在水平导轨上滑行的速度v 与在水平导轨上滑行的距离x 的函数关系,并画出x v -关系草图。
微元法在物理中的应用
微元法在物理中的应用积分知识在物理中的应用主要是围绕at v =研究的。
一般情况下,知道其中的两个量,就可以轻易地求出第三个量,或也可以从能量角度求解v 。
但有时,加速度a 并不是一直不变的,而是随着v 或t 的变化而变化的,此时一般的思维讲不再适用。
[简单模型]某辆汽车从静止开始以加速度kv a =做加速直线运动,其中k 为常数,当运动时间为t 时,汽车通过的位移为S ,求此时小车的速度大小。
[解析]:因为此题中加速度a 是随着v 不断变化的,所以要想利用aS v 202=-求解是不可能的;若从能量角度分析,根本就求不出汽车受力的做功情况,所以也不可以解出,对于此类a 在不断变化的提型,应该应用微元法进行求解。
t a v ∆⋅=∆瞬∴t kv v ∆=∆∑∑∆⋅=∆t kvv 瞬∴kS v =所以解得t 时刻时速度大小为kS v =。
这中积分思想在考试中通常放在电磁感应中考查,同学们认为这种题型难度很大,其实不然,我认为被这种题型吓到的主要原因不是因为这真正有多大难度,而是被它所特有的“微元〞思想吓怕,事实上,真v ∆表示一小段路程。
t ∆表示很小的一段时间,瞬a 表示加速度的瞬时值,在很小的一段时间内,瞬a 可以看作t ∆内的平均加速度,v ∆则表示在t ∆ 时间内速度的变化量kv a =瞬,k 为常数,瞬v 表示某一时刻速度的瞬时值。
此式两边同时求和,依然相等为求和符号""∑v ∆为很小的一段速度,若将运动过程中所有的v ∆都加起来,结果就是总速度v ,即v v =∆∑。
v 就表示t 时刻的速度。
t ∆为很小的一段时间,一个t v ∆瞬表示很小的一段位移,若将所有的 t v ∆瞬相加,则得到总位移S ,即S t v =∆∑瞬 求和过程中常数可以直接移出,例如∑∑∆=∆⋅t v k t kv 瞬瞬正理解的上述的“简单模型〞,积分思想也是比较容易掌握的。
[典型例题讲解]1.如图所示,质量为m 导体棒垂直放在光滑足够长的U 型导轨的底端,导体棒电阻为r ,其余电阻不计,导轨宽度为l 。
微元法在高中物理中的应用
微元法在高中物理中的应用微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
它是将研究对象(物体或物理过程)进行无限细分,从其中抽取某一微小单元即“元过程”,进行讨论,每个“元过程”所遵循的规律是相同的。
对这些“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。
使用此方法可以把一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化,从而起到巩固知识、加深认识和提高能力的作用。
一、挖掘教材中微元素材,认知微元思想微元法思想在新课标教材(人教版)上时有渗透。
如在引入瞬时速度的概念时,教材从平均速度出发,提出从t到t+△t这段时间间隔内,△t越小运动快慢的差异也就越小,运动的描述就越精确。
在此基础上,再提出若△t趋向于零时,就可以认为△t的平均速度就是t 时刻的瞬时速度。
正是这种无限分割的方法,可以使原来较为复杂的过程转化为较简单的过程。
再如,我们要推导匀变速直线运动的位移公式,显然不能直接用s=vt,原因就在于速度本身是变化的,不能直接套用匀速直线运动的公式。
但是我们可以想象,如果我们把整个过程的时间分成无数微小的时间间隔,我们分得愈密,每一份的时间间隔也就愈小,此间隔内,速度的变化亦就愈小,如果分得足够细,就可以认为速度几乎不变,此时就可将每一份按匀速直线运动来处理,完毕之后,再累加即可。
必修2第五章第四节《重力势能》中,计算物体沿任意路径向下运动时重力所做的功时,先将物体运动的整个路径分成许多很短的间隔,由于每一段都很小很小,就可以将每一段近似地看做一段倾斜的直线,从而就能利用功的定义式计算出每一小段内重力的功,再累加得到整个过程重力的总功。
第五节《弹性势能》中关于在求弹簧弹力所做的功时,先将弹簧拉伸的整个过程分成很多小段,在足够小的情况下,每一小段位移中可以认为拉力是不变的,从而也能直接利用功的定义式来计算每一小段内拉力所做的功,再累加得到整个过程拉力的总功。
微元法物理意义
微元法物理意义摘要:1.微元法的概念及应用领域2.微元法的物理意义3.微元法在物理学中的重要作用4.微元法在实际工程中的应用案例5.总结与展望正文:微元法是一种数学方法,主要用于解决连续系统的问题。
在物理学领域,它具有重要的意义。
本文将介绍微元法的物理意义,应用领域以及在实际工程中的应用案例。
一、微元法的概念及应用领域微元法是将一个复杂的连续系统分解为无数个微小的部分,通过对这些微小部分的分析,来研究整个系统的性质。
这种方法适用于各种连续介质,如固体、液体和气体等。
其应用领域广泛,包括力学、热力学、电磁学、量子力学等。
二、微元法的物理意义微元法的物理意义在于,通过对系统进行微小分割,可以更好地研究系统在宏观和微观尺度上的性质。
在物理学中,许多现象和规律都可以通过微元法来阐述。
例如,在力学中,我们可以通过微元法研究物体的受力情况和运动状态;在热力学中,我们可以通过微元法分析热量的传递和转换过程;在电磁学中,我们可以通过微元法研究电场和磁场的分布规律。
三、微元法在物理学中的重要作用微元法在物理学中具有重要作用。
首先,它为研究者提供了一种处理复杂系统的方法,使得许多难以求解的问题变得易于处理。
其次,微元法揭示了许多自然界中的规律和定律,如牛顿三定律、热力学第一和第二定律等。
此外,微元法还为工程技术领域提供了理论依据,如结构力学、流体力学等。
四、微元法在实际工程中的应用案例在实际工程中,微元法有着广泛的应用。
例如,在建筑结构设计中,通过对结构进行微元分析,可以评估结构的稳定性和安全性;在航空航天领域,微元法可以帮助设计师优化飞行器的设计,提高飞行性能;在材料科学中,微元法可以用于研究材料的力学性能和疲劳寿命等。
五、总结与展望总之,微元法作为一种数学方法,在物理学领域具有重要的地位。
它为研究者提供了一种处理复杂系统的方法,揭示了自然界中的许多规律,并为实际工程应用提供了理论支持。
微元法在高中物理教学中的运用及其教学策略
微元法在高中物理教学中的运用及其教学策略随着科学技术的发展,物理教学日趋重要,物理研究也在不断横向和纵向发展,从而推动了物理教育的发展。
在物理教学的实践中,微元法的运用一直占据着重要的地位。
微元法是在不断改进的研究进程中形成的一种科学教学方法,它是以小规模元素为基础,把复杂的物理现象分解成细微、具体、易于分析理解的物理单位,以便学生在学习过程中更全面、更深刻地理解物理现象。
应用微元法的教学策略在高中物理教学中有着十分重要的地位,它们不仅能够提高学生的理解能力,而且能够引导学生系统性地探究物理现象。
在运用微元法进行教学时,教师首先要按照微元法的特点,结合物理实际,在物理实验中配合提出相应的问题,引导学生进行思考和探究;其次,在实验教学中,要灵活运用多种演示教具和实验仪器,以便帮助学生更好地了解物理现象。
最后,教师应该严格按照微元法的规范,慢慢细致地教授,指导学生准确地进行物理实验,让学生领会精致的物理实验过程中的方方面面,深入地理解物理现象。
此外,在利用微元法进行物理教学时,教师还可以采用口头报告、书面报告和图示报告等方式,教会学生正确使用微元法,让学生对物理现象有清晰的认识。
此外,为了激发学生对物理学科的兴趣,教师还可以借助互联网等信息平台,将物理现象和过程融入到学生的生活中,从而更好地推动学生对物理学科的学习。
微元法在高中物理教学中的运用及其教学策略及其重要性,不仅可以有效提高学生的学习效果,促进学生的物理素质的提高,而且还
能够培养学生的独立思考能力和创新能力,使学生具备了系统性地探究物理现象的能力,从而激发学生研究物理知识的兴趣,为学生将来自学、发现和创造物理知识奠定基础。
微元法在物理学中的应用
微元法在物理学中的应用在物理学问题中,往往是针对一个对象经历某一过程或外于某些状态来进行研究,而在这些过程或状态之间,描述研究对象的物理量有的可能是不变的,更多的则是变化的,对于那些变化量的研究,有一种方法是把全过程分成很多微小的局部来考察,然后通过这些小过程或微小局部的研究而归纳出适用于全过程或者是整体的结论,这些微小过程或者微小局部常被称为微元法。
微元法也是一种转化问题的手段,这种转化的目的主要体现在以下几点:1、将变化的问题转化为恒定的问题,比如,物体做变速直线运动,物体运动的速度是变化的,但只要取一段很小的过程,在这一段很小过程中,就可以认为物体运动的速度是不变的。
将弯曲的转化为直线的,如果物体运动的轨迹是一条曲线,只要在曲线上取段足够短的长度,这个长度就可以看成是直线的。
微元法只是解题的一种手段,或者说是一种中间过程,这种“微”的无限收缩就变成了瞬时状态,而“微”的无限累积又可以演变为全过程,所以学习和掌握微元法不但要弄清楚这种方法的基本思路,还要知道这两种不同的发展趋势。
粗细忽略,质量分布均匀,半径分别为与的两圆环相切,若在切点处放一质点m ,恰好使其两边圆环对m 的万有引力的合力为零,问大小圆环的线密度须满足什么样的条件?分析:连接O 1、O 2交两圆于A 、B ,过切点P 作弦交两圆于C 、D ,设α=∠=∠DBP CPA αcos 2R CP = αc o s 2r CD =将CD 绕P 点顺时针转动到C 'D ',如图且α∆='∠='∠D DP C CP ,再由C C '向O 1;D D '向O 2连线,则α∆='∠='∠221D DO C CO故,R C C α∆='2 r D D α∆='2所以C C '所对应的质量与D D '所对应的质量对质点的引力若满足 ()()222122DP mr GCP mR Gαραρ∆=∆αραρ222221c o s 4c o s 4r rR R=rR 21ρρ=试证明质量均,厚度均匀的球壳内一质点,受到球壳万有引力为零。
微元法在物理中的应用实践报告
前言:温馨小提示:本篇文档是通过查阅资料精心整理编制的,希望能帮助大家解决实际问题,文档内容不一定完美契合各位的需求,请各位根据需求进行下载。
文档下载后可自己根据实际情况对内容进行任意改写,确保能够帮助到大家。
除此之外,本店铺还提供各种文档材料,涉及多个领域例如活动文案、工作方案、读后感、读书笔记等,大家按需搜索查看!Warm tip:This document is prepared by consulting information carefully. Hope to help you solve practical problems. The content of the document is not necessarily perfect to match your needs. Please download according to your needs. Then you can rewrite the content according to the actualsituation to ensure that we can help. In addition, the store also provides a variety of documents and materials, covering areas such as copywriting for activities, work plans, reflections, reading notes, etc.正文如下:微元法在物理中的应用实践报告关于微元法在物理学中的实际运用研究报告关于微元法在物理学中的实际运用研究报告一、微元法概述微元法,作为一门科学的思维方式,它在数学中源于微分和积分原理,并广泛地渗透于物理学、工程学等多个学科的实际应用中。
其核心理念是通过将研究客体细分为无穷细分的个体,即"微元",然后逐个剖析这些微元,从而推演出整体特性和法则。
微元法在高中物理解题中的应用探讨
微元法在高中物理解题中的应用探讨微元法在高中物理解题中的应用探讨:一、微元法的定义1.什么是微元法:微元法(Mikroekonomische Methode)是一种用于处理复杂系统的系统分析方法。
它以最小的小元素来研究一个系统的组织、行为和状态,进而解释系统如何可能响应外部影响,以改进它的性能或解决它的问题。
2.微元法与宏观分析比较:宏观分析法注重宏观把握,看到的是统计数据和权力关系,而微观分析注重构造更深刻的理解,更侧重于详细的观察。
二、微元法在高中物理解题中的应用1. 从宏观上把握问題:在任何一道物理相关的解题中,最重要的是先让学生从宏观上理解问题的条件与数据,如关于物体的速度,位移,加速度等,以便读懂题意并准确要求问题中所具体答案。
2.用微元法运用公式:在计算出来涉及到动量,力,能量,压强等物体和系统间相互受力作用的计算中,采用微元法可以很准确的给出物体状态变化时,相应物理参量之间的关系,而不再停止于记忆所学相关公式,而是辅以微元法理解物理公式的含义。
3.计算曲线:在一些由实验结果得到的曲线拟合问题中,采用微元法可以更加准确的分析数据,更准确的进行函数拟合,解决相应的物理问题。
三、微元法在高中物理解题的优势1.理解计算:利用微元法解决物理解答,可以加深学生对物理知识的理解,掌握概念思想,把相关的物理问题关联起来,把物理知识与现实问题结合起来;2.创新思维:掌握微元法解物理解答,可以激发学生的创新性思维,让他们不再局限于传统的思维模式,从而形成完整的思维体系;3.考试就绪:学习微元法可以在若干学习中体现,真正达到物理思维及概念把握,把解答技巧及技术备到考试当中,从而实现解答题突破。
四、结论总之,微元法是一种系统分析方法,它既可以让学生更深刻地理解物理知识,掌握概念思想,也可以激发学生创新性思维,让他们运用微元法解决物理知识解题问题,从而课堂上的教学效果更加显著。
高中物理论文:微元法在物理中的应用
微元法在物理中的应用一:问题的提出 客观世界是非常复杂的,而人类的研究总是有一定方法的,物理作为一门非常重要的自然科学,对他的研究更要讲究方法。
研究物理方法有很多,其中微元法是比较重要的一种方法。
“微元法”通俗地说就是把研究对象分为无限多个无限小的部分,取出有代表性的极小的一部分进行分析处理,再从局部到全体综合起来加以考虑的科学思维方法。
有时也会对无穷小量进行等量代替或把他舍去。
高中物理中的很多物理量如瞬时速度、瞬时加速度、电流强度、感应电动势等等,都是用这种方法定义的,还有单摆的周期公式的推导,也用到了这种方法。
从数学上讲,是一种微分的思想方法,虽然现在在高考中只是偶尔出现利用微元法解决相关问题。
但从理解物理现象的本质和从竞赛角度来看,我们有必要用“微元法”来解有些问题,其实微元法确实是一种简捷明了的好办法,下面从物理的力学、热学、电学等各个方面来谈谈微元法的应用二:微元法在力学中的应用例题1(全国竞赛题):有一只狐狸以不变速度v 1沿直线AB 逃跑,一猎犬以不变的速率v 2追击,其运动方向始终对准狐狸,某时刻狐狸在F 处猎犬在D 处,FD ⊥AB ,且FD =L ,如图所示,试求此时猎犬的加速度的大小。
分析与解:设经过一段很短的时间∆t ,狐狸运动到E 点,猎犬运动到C 点,因为猎犬速率不变,所以没有切向加速度,只有向心加速度,在这很短时间内可以把猎犬的运动近似看成匀速圆周运动中的一段,设其轨迹的半径为R ,则OD =OC =R ,CE ⊥OC ,因时间很短,我们近似可以看成FD =CE =DE ,∠ECF =α,α=v 1∆t L =v 2∆t R ,所以R =v 2L v 1。
猎犬的加速度为:a =v 22R =v 1v 2L,方向与FD 垂直。
例题2:如图2所示,某个力F=10牛作用于半径为R=1米的转盘的边缘上,力F 的大小保持不变,但方向保持任时刻均与作用点的切线一致,则转动一周这个力F 做的总功为多少?分析与解:错误的解法以为F 转动一周的位移为零所以力F 做功为零。
微元法在高中物理中的应用
2、化曲线为直线
3、化斜交为正交
4、化分离为重合
8
电荷量变化→电流
9 磁通量变化→电动势
10 电流变化→电动势
公式
v x t
a v t
F p t
P E t
Fx
E x
Ex x
I q t
E n Φ t
E自
L
I t
实例 关联速度 绳连接体加速度 变质量问题与冲力 变质量问题与冲力 能量时间图象 能量位移图象 电势位置图象 电流微观表达式推导 交变电流瞬时值表达式 自感现象中的电流时间图象
微元法在高中物理中的应用
二、积分与微元法
2、典型问题
序号
p→Δy
1
速度→位置变化
2
加速度→速度变化
3
力→冲量
4
功率→能量变化
5
力→功
6
距离→电场强度
7
电势→电势能变化
8
电流→电荷量变化
9
速度→电动势
10
压强→功
公式
x vt v at I Ft E Pt
W Fxx
E
k
q r2
Ep q
q it E B l v
W pV
实例 单杆以某初速度切割磁感线
匀变速曲线运动 力-时间图象 功率-时间图象 力-位移图象
圆环、球壳的电场 电容器储存的能量
感应电量 导体棒旋转切割磁感线
压强-体积图象
微元法在高中物理中的应用
三、微元法与近似处理
微元法在高中物理中的应用
p y p dy
x
dx
微元法高中物理例子
微元法高中物理例子微元法是物理学中一种常用的计算方法,它通过将整个问题划分为许多微小的部分,然后对这些微小部分进行分析,最后将这些微小部分的结果加总起来得到整体的结果。
下面是高中物理中常用微元法的一些例子:1. 弹簧振子的运动:考虑一个弹簧振子,我们可以将弹簧分成许多微小的长度元素,每个长度元素受到的弹性力可以通过胡克定律计算得到。
然后将每个长度元素的弹性力加总起来,得到整个弹簧振子的合力,从而得到振子的运动方程。
2. 摩擦力的计算:考虑一个物体在倾斜面上滑动,我们可以将倾斜面分成许多微小的长度元素,每个长度元素受到的重力和法向力可以计算得到。
然后将每个长度元素的重力和法向力分解,并根据受力平衡条件计算出每个长度元素的摩擦力,从而得到整个物体受到的摩擦力。
3. 电场力的计算:考虑一个电荷在电场中受力,我们可以将电场分成许多微小的体积元素,每个体积元素受到的电场力可以通过库仑定律计算得到。
然后将每个体积元素的电场力加总起来,得到整个电荷受到的电场力,从而得到电荷的运动方程。
4. 磁场力的计算:考虑一个带电粒子在磁场中受力,我们可以将磁场分成许多微小的面元素,每个面元素受到的磁场力可以通过洛伦兹力计算得到。
然后将每个面元素的磁场力加总起来,得到整个带电粒子受到的磁场力,从而得到带电粒子的运动方程。
5. 热传导的计算:考虑一个导热体中的热传导过程,我们可以将导热体分成许多微小的体积元素,每个体积元素受到的热传导可以通过傅里叶定律计算得到。
然后将每个体积元素的热传导加总起来,得到整个导热体的热传导,从而得到导热体的温度分布。
6. 空气阻力的计算:考虑一个物体在空气中运动,我们可以将空气分成许多微小的体积元素,每个体积元素受到的空气阻力可以通过斯托克斯定律计算得到。
然后将每个体积元素的空气阻力加总起来,得到整个物体受到的空气阻力,从而得到物体的运动方程。
7. 光的折射和反射:考虑光在介质中的传播,我们可以将介质分成许多微小的面元素,每个面元素的折射和反射可以通过斯涅尔定律计算得到。
微元法高中物理例子
微元法高中物理例子微元法是一种在物理学中常用的数学方法,用于求解连续介质中各个微小部分的物理性质。
下面将给出10个高中物理例子,以展示微元法的应用。
1. 弹簧振子的质点振动:考虑一个弹簧振子,我们可以将弹簧分成无数个微小的微元段。
通过对每个微元段施加受力分析,可以求解弹簧振子的振动频率和振动方程。
2. 均匀带电细杆的电场:假设有一根长度为L的均匀带电细杆,我们可以将细杆分成无数个微小的微元段,并对每个微元段的电场进行叠加,最终求解整个细杆的电场分布。
3. 热传导的微元法:研究物体中的热传导过程时,可以将物体分成无数个微小的微元段,并通过对每个微元段的热量传递进行分析,得到整个物体的温度分布。
4. 电流通过导线的微元法:考虑一个直流电流通过一段导线,可以将导线分成无数个微小的微元段,并通过对每个微元段的电流密度进行分析,求解整个导线的电流分布。
5. 球形物体的重力场:研究球形物体的重力场时,可以将球体分成无数个微小的微元体积,并通过对每个微元体积的重力进行叠加,得到整个球体的重力场分布。
6. 简谐振子的动能和势能:对于一个简谐振子,可以将其振动范围分成无数个微小的微元段,并通过对每个微元段的动能和势能进行分析,求解整个振子的动能和势能关系。
7. 长直导线的磁场:考虑一根无限长直导线,可以将导线分成无数个微小的微元段,并通过对每个微元段的磁场进行叠加,得到整个导线的磁场分布。
8. 球形物体的电场:研究球形物体的电场时,可以将球体分成无数个微小的微元体积,并通过对每个微元体积的电场进行叠加,得到整个球体的电场分布。
9. 空气中的声波传播:研究声波在空气中的传播时,可以将空气分成无数个微小的微元段,并通过对每个微元段的压强变化进行分析,求解声波的传播规律。
10. 刚体的转动惯量:对于一个刚体,可以将其分成无数个微小的微元体积,并通过对每个微元体积的质量和距离进行分析,求解整个刚体的转动惯量。
通过这些例子,我们可以看到微元法在物理学中的广泛应用。
微元法在物理学中的应用
微元法在物理学中的应用
微元法在物理学中有广泛的应用,以下列举几个例子:
1. 动力学中的微元法:在分析质点的加速度、速度、位移等运动规律时,通常采用微元法。
比如,对于一个质点在一定时间间隔内的位移,可以将其时间间隔分成许多极小的时间微元,通过微元的加速度来逐步模拟质点的运动轨迹。
2. 热力学中的微元法:在热力学中,微元法常用于计算物体的温度变化、热量传递等。
以热扩散为例,可以通过微元法建立温度分布模型,即将物体分成几个微元,计算微元之间的热传递,从而预测物体温度的变化。
3. 电磁学中的微元法:在电磁学中,微元法也有广泛应用。
比如,可以通过微元法计算磁场强度,即将电流通过某一面积的微元加以分析,逐步推算出总磁场的强度和方向。
4. 光学中的微元法:在光学中,微元法的应用也相当广泛。
例如,可以通过微元法计算透镜的成像特征,即将透镜分成很多极小的微元,然后分析微元的光学性质,再综合各个微元的成像结果,从而得到整个透镜的成像特性。
微元法在解题中的应用----物理
微元法在解题中的应用瞬时速度——位移对时间的变化率dt dxv=,求位移:⎰=vdt x ; 加速度——速度对时间的变化率:dtdva =,求速度⎰=adt v ;电流强度——通过导体某一截面的电量对时间的变化率:dtdqI =,求电量⎰=idt q ;瞬时功率——功对时间的变化率:dtdWP =,求功⎰=pdt W 或⎰=Fdx W ;感应电动势——穿过线圈的磁通量对时间的变化率:dtd n E φ=。
例1.微元法求非匀变速直线运动中的应用如图所示,水平放置的导体电阻为R ,R 与两根光滑的平行金属导轨相连,导轨间距为L ,其间有垂直导轨平面的、磁感应强度为B 的匀强磁场。
导轨上有一导体棒ab 质量为m 以初速度v 0向右运动。
求这个过程的总位移.例2、微元法在变化的位移中应用例:从地面上以初速度v 0竖直向上抛出一质量为m 的球,若运动过程中受到的空气阻力与其速率成正比关系,球运动的速率随时间变化规律如图所示,t 1时刻到达最高点,再落回地面,落地时速率为v 1,且落地前球已经做匀速运动.求:(1)球从抛出到落地过程中克服空气阻力所做的功; (2)球抛出瞬间的加速度大小; (3)球上升的最大高度H .vv如图所示,六段相互平行的金属导轨在同一水平面内,长度分别为L和2L,宽间距的导轨间相距均为2L、窄间距的导轨间相距均为L,最左端用导线连接阻值为R的电阻,各段导轨间均用导线连接,整个装置处于方向竖直向下、磁感应强度为B的匀强磁场中.质量为m的导体棒可在各段导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.导轨和导体棒电阻均忽略不计.现使导体棒从ab位置以初速度v0垂直于导轨向右运动,则(1)若导体棒在大小为F、沿初速度方向的恒定拉力作用下运动,到达cd位置时的速度为v,求在此运动的过程中电路产生的焦耳热.(2)若导体棒在水平拉力作用下向右做匀速运动,求导体棒运动到cd位置的过程中,水平拉力做的功和电路中电流的有效值.(3)若导体棒向右运动的过程中不受拉力作用,求运动到cd位置时的速度大小.如图所示,两根足够长的固定的平行金属导轨位于竖直平面内,两导轨间的距离为d,导轨上面横放着两根导体棒L1和L2,与导轨构成回路,两根导体棒的质量都为m,电阻都为R,回路中其余部分的电阻可不计。
微元法在高考物理中的应用汇总
微元法在高考物理中的应用河南省信阳高级中学 陈庆威 2013.10.06微元法是高中物理中的一个重要的思想方法。
因其近年来在江苏高考物理试题中的频繁出现,尤其是它在2013年普通高等学校招生全国统一考试(课标卷I )第25题中的闪亮登场,让它在我们的高考备考中的地位变得更加重要。
很多同学在学习过程中对这类问题因陌生而感到头痛,想集中训练又苦于很难在较短时间里收集到较好的题型,对很多顶尖的学生来说这类问题做起来也往往心有余而力不足。
希望通过以下几个典型的微元法试题的训练,能让你从陌生到熟练。
一、从真题中练方法例题1.(2013全国课标卷I )如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L 。
导轨上端接有一平行板电容器,电容为C 。
导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于导轨平面。
在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。
已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g 。
忽略所有电阻。
让金属棒从导轨上端由静止开始下滑,求:⑵金属棒的速度大小随时间变化的关系。
【答案】⑴Q=CBLv ⑵ ()22sin cos m gt v m B L C θμθ-=+【解析】(1)设金属棒下滑的速度大小为v ,则感应电动势为E BLv = ①平行板电容器两极板之间的电势差为U E = ②设此时电容器极板上积累的电荷量为Q ,按定义有Q C U= ③ 联立①②③式得Q CBLv = ④(2)设金属棒的速度大小为v 时经历的时间为t ,通过金属棒的电流为i ,金属棒受到的磁场的作用力方向沿导轨向上,大小为1f BLi = ⑤设在时间间隔(),t t t +∆内流经金属棒的电荷量为Q ∆,按定义有Q i t∆=∆ ⑥ Q ∆也是平行板电容器极板在时间间隔(),t t t +∆内增加的电荷量,由④式得Q CBL v ∆=∆ ⑦式中,v ∆为金属棒的速度变化量,按定义有v a t∆=∆ ⑧ 金属棒所受的摩擦力方向斜向上,大小为2f N μ= ⑨式中,N 是金属棒对于导轨的正压力的大小,有cos N mg θ= ⑩金属棒在时刻t 的加速度方向沿斜面向下,设其大小为a ,根据牛顿第二定律有12sin mg f f ma θ--= ⑾联立⑤至⑾式得()22sin cos m a g m B L Cθμθ-=+ ⑿ 由⑿式及题设可知,金属棒做初速度为零的匀加速运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、举例例2:如图3—2所示,一个半径为R 的四分之一光 滑球面放在水平桌面上,球面上放臵一光滑均匀铁链,其 A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位 长度的质量为ρ.试求铁链A 端受的拉力T.解析:以铁链为研究对象,由由于整条铁链的长度不 能忽略不计,所以整条铁链不能看成质点,要分析铁链的受 力情况,须考虑将铁链分割,使每一小段铁链可以看成质 点,分析每一小段铁边的受力,根据物体的平衡条件得出 整条铁链的受力情况.在铁链上任取长为△L 的一小段(微元)为研究对象, 其受力分析如图3—2—甲所示.由于该元处于静止状态, 所以受力平衡,在切线方向上应满足:θθθθT G T T +∆=∆+cos θρθθcos cos Lg G T ∆=∆=∆由于每段铁链沿切线向上的拉力比沿切线向下的拉力大 △T θ,所以整个铁链对A 端的拉力是各段上△T θ的和, 即 ∑∑∑∆=∆=∆=θρθρθcos cos L g Lg T T观察 θcos L ∆的意义,见图3—2—乙,由于△θ很小,所以CD ⊥OC ,∠OCE=θ△Lcos θ表示△L 在竖直方向上的投影△R , 所以∑=∆R L θcos 可得铁链A 端受的拉力 ∑=∆=gR L g T ρθρcos例5:半径为R 的光滑球固定在水平桌面上,有一质量 为M 的圆环状均匀弹性绳圈,原长为πR ,且弹性绳圈 的劲度系数为k ,将弹性绳圈从球的正上方轻放到球上, 使弹性绳圈水平停留在平衡位臵上,如图3—5所示,若 平衡时弹性绳圈长为R π2,求弹性绳圈的劲度系数k.解析:由于整个弹性绳圈的大小不能忽略不计,弹性绳圈不能看成质点,所以应将弹性绳圈分割成许多小段,其中每一小段△m 两端受的拉力就是弹性绳圈内部的弹力F.在弹性绳圈上任取一小段质量为△m 作为研究对象,进行受力分析.但是△m 受的力不在同一平面内,可以从一个合适的角度观察.选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系.从正面和上面观察,分别画出正视图的俯视图,如图3—5—甲和2—3—5—乙.先看俯视图3—5—甲,设在弹性绳圈的平面上,△m 所对的圆心角 是△θ,则每一小段的质量 M m πθ2∆=∆ △m 在该平面上受 拉力F 的作用,合力为2sin2)2cos(2θθπ∆=∆-=F F T 因为当θ很小时,θθ≈sin 所以θθ∆=∆=F FT 22 再看正视图3—5—乙,△m 受重力△mg ,支持力N ,二力的合力与T 平衡.即 θtan ⋅∆=mg T现在弹性绳圈的半径为 R R r 2222==ππ 所以 ︒===4522sin θθR r 1tan =θ因此T=Mg mg πθ2∆=∆ ①、②联立,θπθ∆=∆F Mg 2, 解得弹性绳圈的张力为: π2MgF =设弹性绳圈的伸长量为x 则 R R R x πππ)12(2-=-=所以绳圈的劲度系数为:RMgR Mg x F k 222)12()12(2ππ+=-==例6:一质量为M 、均匀分布的圆环,其半径为r ,几何轴与水平面垂直,若它能经受的最大张力为T ,求此圆环可以绕几何轴旋转的最大角速度.解析:因为向心力F=mr ω2,当ω一定时,r 越大,向心力越大,所以要想求最大张力T 所对应的角速度ω,r 应取最大值.如图3—6所示,在圆环上取一小段△L ,对应的圆心角为△θ,其质量可表示为M m πθ2∆=∆,受圆环对它的 张力为T ,则同上例分析可得 22sin 2ωθmr T ∆=∆ 因为△θ很小,所以22sin θθ∆≈∆,即 2222ωπθθMr T ∆=∆⋅解得最大角速度 MrTπω2= 例7:一根质量为M ,长度为L 的铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图3—7所示,求链条下落了长度x 时,链条对地面的压力为多大?解析:在下落过程中链条作用于地面的压力实质就是链条对地面的“冲力”加上落在地面上那部分链条的重力.根据牛顿第三定律,这个冲力也就等于同一时刻地面对链条的反作用力,这个力的冲量,使得链条落至地面时的动量发生变化.由于各质元原来的高度不同,落到地面的速度不同,动量改变也不相同.我们取某一时刻一小段链条(微元)作为研究对象,就可以将变速冲击变为恒速冲击.设开始下落的时刻t=0,在t 时刻落在地面上的链条长为x ,未到达地面部分链条的速度为v ,并设链条的线密度为ρ.由题意可知,链条落至地面后,速度立即变为零.从t 时刻起取很小一段时间△t ,在△t 内又有△M=ρ△x 落到地面上静止.地面对△M 作用的冲量为I t Mg F ∆=∆∆-)( 因为 0≈∆⋅∆t Mg所以 x v v M t F ∆=-⋅∆=∆ρ0 解得冲力:t x vF ∆∆=ρ,其中tx ∆∆就是t 时刻链条的速度v , 故 2v F ρ= 链条在t 时刻的速度v 即为链条下落长为x 时的即时速度,即v 2=2g x ,代入F 的表达式中,得 gx F ρ2=此即t 时刻链对地面的作用力,也就是t 时刻链条对地面的冲力. 所以在t 时刻链条对地面的总压力为 .332LMgxgx gx gx N ==+=ρρρ 例8:一根均匀柔软的绳长为L ,质量为m ,对折后两端固定在一个钉子上,其中一端突然从钉子上滑落,试求滑落的绳端点离钉子的距离为x 时,钉子对绳子另一端的作用力是多大?解析:钉子对绳子另一端的作用力随滑落绳的长短而变化, 由此可用微元法求解.如图3—8所示,当左边绳端离钉子 的距离为x 时,左边绳长为)(21x l -,速度 gx v 2=, 右边绳长为).(21x l + 又经过一段很短的时间△t 以后, 左边绳子又有长度t V ∆21的一小段转移到右边去了,我们就分析这一小段绳子,这一小段绳子受到两力:上面绳子对它的拉力T 和它本身的重力l m g t v /(21=∆λλ为绳子的线密度),根据动量定理,设向上方向为正 )21(0)21(v t v t g t v T ⋅∆--=∆∆-λλ 由于△t 取得很小,因此这一小段绳子的重力相对于T 来说是很小的,可以忽略, 所以有 λλgx v T ==221 因此钉子对右边绳端的作用力为 )31(21)(21lx mg T g x l F +=++=λ例9:图3—9中,半径为R 的圆盘固定不可转动,细绳不可伸长 但质量可忽略,绳下悬挂的两物体质量分别为M 、m.设圆盘与绳间光滑 接触,试求盘对绳的法向支持力线密度.解析:求盘对绳的法向支持力线密度也就是求盘对绳的法向单位 长度所受的支持力.因为盘与绳间光滑接触,则任取一小段绳, 其两端受的张力大小相等,又因为绳上各点受的支持力方向不同, 故不能以整条绳为研究对象,只能以一小段绳为研究对象分析求 解.在与圆盘接触的半圆形中取一小段绳元△L ,△L 所对应的 圆心角为△θ,如图3—9—甲所示,绳元△L 两端的张力均为T , 绳元所受圆盘法向支持力为△N ,因细绳质量可忽略,法向合力为 零,则由平衡条件得:2sin 22sin 2sinθθθ∆=∆+∆=∆T T T N当△θ很小时,22sin θθ∆≈∆ ∴△N=T △θ 又因为 △L=R △θ则绳所受法向支持力线密度为 RTR T L N n =∆∆=∆∆=θθ ① 以M 、m 分别为研究对象,根据牛顿定律有 Mg -T=Ma ②T -mg=m a ③ 由②、③解得: mM MmgT +=2将④式代入①式得:Rm M Mm gn )(2+=例10:粗细均匀质量分布也均匀的半径为分别为R 和r 的两圆环相切.若在切点放一质点m ,恰使两边圆环对m 的万有引力的合力为零,则大小圆环的线密度必须满足什么条件?解析:若要直接求整个圆对质点m 的万有引力比较难,当若要用到圆的对称性及要求所受合力为零的条件,考虑大、小圆环上关于切点对称的微元与质量m 的相互作用,然后推及整个圆环即可求解.如图3—10所示,过切点作直线交大小圆分别于P 、Q 两点,并设与水平线夹角为α,当α有微小增量时,则大小圆环上对应微小线元αα∆⋅=∆∆⋅=∆2221r L R L其对应的质量分别为 αρρ∆⋅=∆=∆21111R l mαρρ∆⋅=∆=∆22222r l m 由于△α很小,故△m 1、△m 2与m 的距离可以认为分别是 ααcos 2cos 221r r R r ==所以△m 1、△m 2与m 的万有引力分别为222222212111)cos 2(2,)cos 2(2ααρααρr mR G r m Gm F R m R G r m Gm F ∆⋅=∆=∆∆⋅=∆=∆ 由于α具有任意性,若△F 1与△F 2的合力为零, 则两圆环对m 的引力的合力也为零, 即2221)cos 2(2)cos 2(2ααρααρr mr G R m R G ∆⋅=∆⋅ 解得大小圆环的线密度之比为:rR=21ρρ 例11:一枚质量为M 的火箭,依靠向正下方喷气在空中保持静止,如果喷出气体的速度为v ,那么火箭发动机的功率是多少?解析:火箭喷气时,要对气体做功,取一个很短的时间,求出此时间内,火箭对气体做的功,再代入功率的定义式即可求出火箭发动机的功率.选取在△t 时间内喷出的气体为研究对象,设火箭推气体的力为F ,根据动量定理,有 F △t=△m ·v 因为火箭静止在空中,所以根据牛顿第三定律和平衡条件有F=Mg 即 Mg ·△t=△m ·v △t=△m ·v/Mg对同样这一部分气体用动能定理,火箭对它做的功为: 221mv W ∆=所以发动机的功率 MgV Mg mV mv t W P 21)/(212=∆∆=∆=例12:如图3—11所示,小环O 和O ′分别套在不动的竖 直杆AB 和A ′B ′上,一根不可伸长的绳子穿过环O ′,绳的 两端分别系在A ′点和O 环上,设环O ′以恒定速度v 向下运 动,求当∠AOO ′=α时,环O 的速度.解析:O 、O ′之间的速度关系与O 、O ′的位臵有关,即 与α角有关,因此要用微元法找它们之间的速度关系. 设经历一段极短时间△t ,O ′环移到C ′,O 环移到C ,自C ′ 与C 分别作为O ′O 的垂线C ′D ′和CD ,从图中看出.ααcos ,cos D O C O OD OC ''=''=因此OC+O ′C ′=αcos D O OD ''+ ①因△α极小,所以EC ′≈ED ′,EC ≈ED , 从而OD+O ′D ′≈OO ′-CC ′ ②由于绳子总长度不变,故 OO ′-CC ′=O ′C ′ ③由以上三式可得:OC+O ′C ′=αcos C O '' 即)1cos 1(-''=αC O OC 等式两边同除以△t 得环O 的速度为 )1cos 1(0-=αv v 例13: 在水平位臵的洁净的平玻璃板上倒一些水银,由于重力和表面张力的影响,水银近似呈现圆饼形状(侧面向外凸出),过圆饼轴线的竖直截面如图3—12所示,为了计算方便,水银和玻璃的接触角可按180°计算.已知水银密度33/106.13m kg ⨯=ρ,水银的表面张力系数./49.0m N =σ当圆饼的半径很大时,试估算其厚度h 的数值大约为多少? (取1位有效数字即可)解析:若以整个圆饼状水银为研究对象,只受重力和玻璃板的支持力,在平衡方程中,液体的体积不是h 的简单函数,而且支持力N 和重力mg 都是未知量,方程中又不可能出现表面张力系数,因此不可能用整体分析列方程求解h.现用微元法求解.在圆饼的侧面取一个宽度为△x ,高为h 的体积元,,如图 3—12—甲所示,该体积元受重力G 、液体内部作用在面 积△x ·h 上的压力F ,x gh xh hg S P F ∆⋅=∆⋅==22121ρρ,还有上表面分界线上的张力F 1=ς△x 和下表面分界线上的 张力F 2=ς△x .作用在前、后两个侧面上的液体压力互相平衡,作用在体积元表面两个弯曲分界上的表面张力的合力,当体积元的宽度较小时,这两个力也是平衡的,图中都未画出.由力的平衡条件有:0cos 21=--F F F θ 即0cos 212=∆-∆-∆x x x gh σθσρ 解得:θρθσcos 1107.2)cos 1(23+⨯=+=-gh由于 ,2cos 11,20<+<<<θπθ所以 故2.7×10-3m<h<3.8×10-3m题目要求只取1位有效数字,所以水银层厚度h 的估算值为3×10-3m 或4×10-3m. 例16:如图3—15所示,一质量均匀分布的细圆环,其半径 为R ,质量为m.令此环均匀带正电,总电量为Q.现将此环平放在 绝缘的光滑水平桌面上,并处于磁感应强度为B 的均匀磁场中,磁 场方向竖直向下.当此环绕通过其中心的竖直轴以匀角速度ω沿图示 方向旋转时,环中的张力等于多少?(设圆环的带电量不减少,不 考虑环上电荷之间的作用)解析:当环静止时,因环上没有电流,在磁场中不受力,则 环中也就没有因磁场力引起的张力.当环匀速转动时,环上电 荷也随环一起转动,形成电流,电流在磁场中受力导致环中存 在张力,显然此张力一定与电流在磁场中受到的安培力有关. 由题意可知环上各点所受安培力方向均不同,张力方向也不同, 因而只能在环上取一小段作为研究对象,从而求出环中张力的 大小.在圆环上取△L=R △θ圆弧元,受力情况如图3—15—甲所示.因转动角速度ω而形成的电流 πω2Q I =,电流元I △L 所受的安培力θπω∆=∆=∆QB R LB I F 2 因圆环法线方向合力为圆弧元做匀速圆周运动所需的向心力,R m F T 22sin2ωθ∆=∆-∆ 当△θ很小时,R m QBR T 2222sin ωθπωθθθ∆=∆-∆∆≈∆ θπωθπωθθπ∆=∆-∆∴∆=∆2222Rm QB R T mm解得圆环中张力为 )(2ωπωm QB R T +=例17:如图3—16所示,一水平放臵的光滑平行导轨上放一质量 为m 的金属杆,导轨间距为L ,导轨的一端连接一阻值为R 的电阻,其 他电阻不计,磁感应强度为B 的匀强磁场垂直于导轨平面.现给金属杆一 个水平向右的初速度v 0,然后任其运动,导轨足够长,试求金属杆在导轨 上向右移动的最大距离是多少?解析:水平地从a 向b 看,杆在运动过程中的受力分析如图3—16—甲所示,这是一个典型的在变力作用下求位 移的题,用我们已学过的知识好像无法解决,其实只要 采用的方法得当仍然可以求解.设杆在减速中的某一时刻速度为v ,取一极短时间△t , 发生了一段极小的位移△x ,在△t 时间内,磁通量的变化为 △φ △φ=BL △x tRxBL tR RI ∆∆=∆∆Φ==ε金属杆受到安培力为tRxL B ILB F ∆∆==22安由于时间极短,可以认为F 安为恒力,选向右为正方向,在△t 时间内,安培力F 安的冲量为:RxL B t F I ∆-=∆⋅-=∆22安对所有的位移求和,可得安培力的总冲量为x RL B R x L B I 2222)(-=∆-=∑ ① 其中x 为杆运动的最大距离,对金属杆用动量定理可得 I=0-mV 0 ② 由①、②两式得:220L B Rm V x =例18:如图3—17所示,电源的电动热为E ,电容器 的电容为C ,S 是单刀双掷开关,MN 、PQ 是两根位于同 一水平面上的平行光滑长导轨,它们的电阻可以忽略不计, 两导轨间距为L ,导轨处在磁感应强度为B 的均匀磁场中,磁场方向垂直于两导轨所在的平面并指向图中纸面向里的方 向.L 1和L 2是两根横放在导轨上的导体小棒,质量分别为m 1和 m 2,且21m m <.它们在导轨上滑动时与导轨保持垂直并接触良 好,不计摩擦,两小棒的电阻相同,开始时两根小棒均静止在 导轨上.现将开关S 先合向1,然后合向2.求: (1)两根小棒最终速度的大小;(2)在整个过程中的焦耳热损耗.(当回路中有电流时,该电流所产生的磁场可忽略不计)解析:当开关S 先合上1时,电源给电容器充电,当开关S 再合上2时,电容器通过导体小棒放电,在放电过程中,导体小棒受到安培力作用,在安培力作用下,两小棒开始运动,运动速度最后均达到最大.(1)设两小棒最终的速度的大小为v ,则分别为L 1、L 2为研究对象得:1111v m v m t F i i -'=∆ ∑=∆v m t F i i 111 ① 同理得:∑=∆v m t Fi i 222②由①、②得:v m m t Ft F i i i i )(212211+=∆+∆∑∑又因为 11Bli F i = 21i i t t ∆=∆ 22Bli F i = i i i =+21所以∑∑∑∑∆=∆+=∆+∆i i i i t i BL t i i BL tBLi t BLi )(212211v m m q Q BL )()(21+=-=而 Q CE =, q CU CBLv ='=,所以解得小棒的最终速度 2221)(LCB m m BLCEv ++=(2)因为总能量守恒,所以热Q v m m C q CE +++=22122)(212121 即产生的热量 22122)(212121v m m C q CE Q +--=热 )(2)()()]([2121)(21)(12121222122122212122222122C L B m m CE m m L CB m m BLCEm m L CB CE v m m CBLv C CE +++=+++--=+--=5.质量为M 的平板小车在光滑的水平面上以v 0向左匀速运动,一质量为m 的小球从高h 处自由下落,与小车碰撞后反弹上升的高度仍为h.设M>>m ,碰撞弹力N>>g ,球与车之间的动摩擦因数为μ,则小球弹起后的水平速度可能是( )A .gh 2B .0C .gh 22μD .v 06.半径为R 的刚性球固定在水平桌面上.有一质量为M 的圆环状均匀弹性细绳圈,原长 2πa ,a =R/2,绳圈的弹性系数为k (绳伸长s 时,绳中弹性张力为ks ).将绳圈从球的正 上方轻放到球上,并用手扶着绳圈使其保持水平,并最后停留在某个静力平衡位臵.考 虑重力,忽略摩擦.(1)设平衡时弹性绳圈长2πb ,b=a 2,求弹性系数k ;(用M 、R 、g 表示,g 为重力加速度) (2)设k=Mg/2π2R ,求绳圈的最后平衡位臵及长度.7.一截面呈圆形的细管被弯成大圆环,并固定在竖直平面内, 在环内的环底A 处有一质量为m 、直径比管径略小的小球, 小球上连有一根穿过环顶B 处管口的轻绳,在外力F 作用 下小球以恒定速度v 沿管壁做半径为R 的匀速圆周运动, 如图3—23所示.已知小球与管内壁中位于大环外侧 部分的动摩擦因数为μ,而大环内侧部分的管内壁是光滑 的.忽略大环内、外侧半径的差别,认为均为R.试求小球从A 点运动到B 点过程中F 做的功W F .14.如图3—30所示,在光滑的水平面上,有一垂直向 下的匀强磁场分布在宽度为L 的区域内,现有一个边长 为a (a <L ),质量为m 的正方形闭合线框以初速v 0垂直 磁场边界滑过磁场后,速度变为v (v <v 0),求: (1)线框在这过程中产生的热量Q ; (2)线框完全进入磁场后的速度v ′.15.如图3—31所示,在离水平地面h 高的平台上有一相 距L 的光滑轨道,左端接有已充电的电容器,电容为C , 充电后两端电压为U 1.轨道平面处于垂直向上的磁感应 强度为B 的匀强磁场中.在轨道右端放一质量为m 的金 属棒,当闭合S ,棒离开轨道后电容器的两极电压变为U 2, 求棒落在离平台多远的位臵.16.如图3—32所示,空间有一水平方向的匀强磁场,大小 为B ,一光滑导轨竖直放臵,导轨上接有一电容为C 的电 容器,并套一可自由滑动的金属棒,质量为m ,释放后,求 金属棒的加速度a .参考答案:1.321v S ρ 2.θ=60°)223(2hsg h + 3.)cos 1/(x v + 4.2cos /θv 5.CD 6.(1)RMg 22)12(π+ (2)绳圈掉地上,长度为原长 7.22v m mgR πμ+ 8.6.25×1015,2:1 9.2322)(x R Qqx K+ 10.32R l Q Kρ∆ 11.R k λ2 12.rk λ2 13.σπR 2 14.2),(210220v v v v v m +='- 15.gh m u u CBL 2)(21- 16.22L CB m mg a +=。