天然药物化学化合物的纯度检测有哪些方法

天然药物化学化合物的纯度检测有哪些方法
天然药物化学化合物的纯度检测有哪些方法

南开大学现代远程教育学院考试卷

《天然药物化学》

主讲教师:郭远强

一、请同学们在下列(20)题目中任选五题,写成期末试卷答案,每题20分。

1. 简述天然化合物的提取、分离方法。

2. 聚酰胺分离化合物的基本原理是什么?简述其基本用途。

3. 确定化合物分子量的方法有哪些?

4. 简述测定化合物结构的四大波谱及其各自原理。

5. 化合物的纯度检测有哪些方法?

6. 简述八区律及其应用。

7. 苷键裂解方法有哪些?各有什么规律?试比较各种方法的异同点。

8. 写出 D-葡萄糖、L-鼠李糖的结构式(三种表示方法)。

9. 糖的甲基化有哪几种方法、优缺点。

10. 从结构特点看,木脂素可分为哪些类型?

11. 结合香豆素的结构特点,设计从中草药中提取、纯化香豆素化合物的方案(画

流程图并给出简单的解释)。

12. 对于蒽醌类化合物,用pH 梯度萃取法设计分离方案。

13. 简述黄酮类化合物的生物活性及其应用。

14. 青蒿素是哪类化合物?设计从植物中提取分离青蒿素的方案。

15.变形的单萜、倍半萜有哪些类型?结构上有何特征?

16. 酯苷、酚苷的苷化位移有何规律?

17. 三萜类化合物有哪些结构类型?

18. 强心苷、甾体皂苷的结构类型。

19. 生物碱显碱性的原因以及影响碱性大小的因素。

20. 从某一中药中分离得一白色结晶,质谱测得分子式为C10H8O3,该化合物的核

磁共振氢谱数据如下:1H NMR (400 MHz, CDCl3) δ ppm:7.58(1H, d. J = 9.5 Hz),

6.17(1H, d. J = 9.5 Hz), 6.78(1H, dd. J = 2.5, 8 Hz), 6.72(1H, d. J = 2.5

Hz), 7.32(1H, d. J = 8 Hz), 3.82(3H, s)。在NOE 谱中照射3.82ppm 共振峰,

6.78 和6.72ppm 共振峰有增益。请根据以上波谱数据推断化合物结构。画出该化

合物的结构式,并归属各质子信号。

二、期末试卷答案要求

学员所选题目应为授课教师指定题目内的题目,论述要层次清晰、准确;

写作要理论联系实际,同学们应结合课堂讲授内容,广泛收集与题目有关资料,含有一定案例,参考一定文献资料。

三、写作格式要求:

题目要求为宋体三号字,加粗居中;自加序号。

正文部分要求为宋体小四号字,标题加粗,行间距为1.5倍行距;

所选题目中每道题目字数要控制在200-400字之间,不要重复叙述。

四、试卷答案提交注意事项:

1、期末试卷答案一律以此文件为封面,写明学习中心、专业、姓名、学号等信息。保存为word文件,以“课程名+学号+姓名”命名。

2、期末试卷答案一律采用线上提交方式,在学院规定时间内上传到教学教务平台,逾期平台关闭,将不接受补交。

3、不接受纸质试卷答案。

4、如有抄袭雷同现象,将按学院规定严肃处理。

一、化合物的纯度检测有哪些方法?

1薄层色谱法进行纯度鉴定。

2根据熔化范围确定纯度。原理简单,纯化合物的熔点范围为1~2度。混合物的熔点降低,熔点范围变长。

三。基于高效液相色谱的纯度定义:对于高效液相色谱,由于其良好的分离效果,通常很少使用系统。一般来说,不必选择具有三种不同分子间作用力的溶剂体系,而应选择具有不同极性的三种溶剂。在这个体系中,在不同的保留时间可以达到峰值。

4基于软电离质量分析的纯度鉴定。

5根据核磁共振纯度的测定,如果有许多小峰不能整合氢谱,则样品中可能含有杂质。纯度也可以通过使用门德配对定量碳光谱来确定。

二、简述八区律及其应用

八分律是研究手性化合物构型和构象的经验法则。主要用于手性取代环己酮等化合物。从取代基与羰基的空间关系可以预测棉花效应的正负性质。例如,如果你有一个对称的酮,酮羰基有两个对称的面,而不对称的环酮羰基是在一个不对称的环境中。如果在羰基的中点再加一个平面,并垂直于原来的两个对称平面,则羰基周围的空间可分为八个区域。八区法规定,四区和最后四区的卡滕效应是积极的和消极的。一般情况下,取代基很少位于羰基的前面,因此主要讨论了取代基在后四个区域的分布。实验结果表明:(1)对表面取代基没有贡献。例如环己酮c-2的取代基、c-6上的赤道键、赤道键和垂直键对katen效应没有贡献。(2)位于正负区的取代基效应可以相互抵消。例如,3-甲基环己酮应具有正的katen效应。

三、聚酰胺分离化合物的基本原理是什么?简述其基本

用途

聚酰胺是一种高分子聚合物,该聚合物在结构中重复,具有单位氨基结合(COMH)。一般式是[NHRNHCOR2C0]n。氨基0和N原子与酸性媒体的原子结合,具有正电荷。在吸附溶液中阴离子是由静电引力形成的,因此可形成氢结合,并

二氧化氯含量和纯度的测定方法

二氧化氯含量和纯度的测定方法 1 紫外可见分光光度法 1.1 范围 本方法规定了消毒剂中二氧化氯的测定方法—紫外可见分光光度法。 本方法适合于含量在10mg/L~ 250mg/L二氧化氯的测定, 高浓度消毒剂可稀释后测定。 本方法最低检出浓度为10mg/L。 1.2 原理 使用石英比色皿,采用紫外可见分光光度计在 190nm~600nm 波长范围内扫描,观察二氧化氯水溶液特征吸收峰,二氧化氯的最大吸收峰在360nm 处,可作为定性依据。但氯气在此也有弱吸收,产生干扰。应采用二氧化氯水溶液在430nm 处的吸收,吸光度与二氧化氯含量成 正比,且氯气、CI02- CI03- Cl0在此无吸收,可作为定量依据。 1.3 试剂 分析中所用试剂均为分析纯,用水为二次蒸馏水。 1.3.1 二氧化氯标准贮备溶液: 亚氯酸钠溶液与稀硫酸反应,可产生二氧化氯。氯等杂质通过亚氯酸钠溶液除去。用恒定的空气流将所产生的二氧 二氧化氯溶液制备方法(见图A1): 在A瓶(洗气瓶)中放入300mL水,A瓶封口上有二根玻璃管,一根玻璃管(L1)下端插至近瓶底,上端与空气压缩机相接,另一根玻璃管(L2)下端

口离开液面20 mm?30mm,其另一端插入B瓶底部。B瓶为高强度硼硅玻璃 瓶,滴液漏斗(E),下端伸至液面下,玻璃管(L3)下端离开液面20 mm?30mm,另一端插入C瓶底部。溶解10g亚氯酸钠于750mL水内并倒入B 瓶中,在分液漏斗中装有20mL硫酸溶液(1+9, V/V)。C瓶结构同A瓶一样,瓶内装有亚氯酸钠饱和溶液。玻璃管(L4)插入D瓶底部,D瓶为2升硼硅玻璃收集瓶,瓶中装有1500mL水,用以吸收所发生的二氧化氯,余气由排气管排出。D瓶上的另一根玻璃管(L5)下端离开液面20 mm?30mm,上端与环境空气相通而作为排气管,尾气由排气管排出。整套装置 启动空气压缩机,使适量空气均匀通过整个装置。每隔5min 由分液漏斗加入 5mL硫酸溶液,在全部加完硫酸溶液后,空气流要持续30min。将D瓶中所获得的黄绿色二氧化氯标准溶液放于棕色玻璃瓶中,密封避光冷藏保存。 二氧化氯含量按HG/T2777稳定性二氧化氯溶液中 5.1 碘量法测定,其质量浓度为250mg/L?600mg/L。 1.3.2 二氧化氯标准溶液: 取一定量新标定的二氧化氯标准 贮备液,用二次蒸馏水稀释至所需浓度。 1.4 仪器 1.4.1 紫外可见分光光度计。 1.4.2xx 比色皿(1cm)。 1.4.3 100mL 容量瓶。 1.5分析步骤 1.5.1 标准曲线的绘制 分别取

实验室水质检测方法汇总

污水水质测定—实验常用测定指标 一、生活污水 、SS、PH、氨氮、总氮、总磷、余氯、浊度、VFA等 1.厌氧:COD、BOD 5 2.好氧:COD、BOD 、SS、PH、SV、MLSS、氨氮、总氮、总磷、余氯、浊度、DO等 5 二、工业废水 、浊度、PH、氨氮、硫化物、六价铬、铜、苯胺类、二氧化氯等 1.纺织印染废水: COD、BOD 5 2.制药废水: COD、BOD5、氨氮、硫化物、六价铬、铜、总余氯、苯胺类、总砷、总锌、挥发酚、 甲醛等 3.电镀污水:总铬、六价铬、总镉、总镍、总银、总铅、总汞、总铜、总锌、总铁、COD、PH、 氨氮、总氮、总磷、氟化物、总氰化物等 三、实验常用测定指标 1.COD的测定 a)快速消解分光光度法 HJ/T 399-2007 仪器设备:消解管(锥形瓶)、加热器(微波炉)、分光光度计 b)重铬酸盐法 GB11914-89 仪器设备:回流装置、加热装置、酸式滴定管 c)碘化钾碱性高锰酸钾法 HJ/T132-2003 d)氯气校正法 HJ/T70-2001 的测定 2.BOD 5 a)稀释与接种法HJ 505-2009 仪器设备:滤膜、溶解氧瓶、稀释容器、虹吸管、溶解氧测定仪、冰箱、恒温培养箱 b)微生物传感器快速测定法 HJ/T 86-2002 仪器设备:微生物传感器BOD快速测定仪 c)测压法 具体操作步骤详见OxDirect仪说明书 仪器设备:呼吸法BOD测量仪(OxDirect仪)和生化培养箱 3.氨氮的测定 a)纳氏试剂分光光度法 HJ 535-2009 仪器设备:可见分光光度计、氨氮蒸馏装置 b)水杨酸分光光度计法 HJ536-2009 仪器设备:可见分光光度计、氨氮蒸馏装置 c)电极法 见附件水质氨氮的测定电极法 1

亚硝酸钠纯度检测方法

亚硝酸钠纯度检测方法 1 主题内容与适用范围 本标准规定了工业亚硝酸钠的技术要求、试验方法、检验规则以及标志、包装、运输和贮存。 本标准适用于硝酸生产过程中由氧化氮气体制得的工业亚硝酸钠。该产品主要用作制造硝基化合物、偶氮染料等的原料和织物染色的媒染剂、漂白剂、金属热处理剂、水泥早强剂和防冻剂等。 分子式:NaNO2 相对分子质量:69.00(按1987年国际原子量) 2 引用标准 GB190 危险货物包装标志 GB191 包装储运图示标志 GB601 化学试剂滴定分析(容量分析)用标准溶液的制备 GB603 化学试剂试验方法中所用制剂及制品的制备 GB3051 无机化工产品中氯化物含量测定的通用方法汞量法 GB6678 化工产品采样总则 3 技术要求 3.1 外观:白色或微带淡黄色结晶。 3.2 工业亚硝酸钠应符合下表要求: 4 试验方法 本标准所用试剂和水,在没有注明其他要求时,均指分析纯试剂和蒸馏水或同等纯度的水。 试验中所需标准溶液、制剂及制品,在没有注明其他规定时均按GB601、GB603之规定配制。 4.1 亚硝酸钠含量的测定 4.1.1 方法提要 在酸性溶液中,用高锰酸钾氧化亚硝酸钠。根据高锰酸钾标准滴定溶液的消耗量计算出亚硝酸钠含量。 4.1.2 试剂和材料 4.1.2.1 硫酸(GB625):1+29溶液。按比例配制出硫酸溶液后,加热至70℃左右,滴加高锰酸钾标准 滴定溶液至溶液呈微红色为止。冷却,备用; 4.1.2.2 硫酸(GB625):1+5溶液。配制方法同4.1.2.1条; 4.1.2.5 高锰酸钾(GB643):c(1/5KMnO4)约0.1mol/L标准滴定溶液; 4.1.2.4 草酸钠(GB1289):c(1/2Na2C2O4)约0.1mol/L标准滴定溶液;

水质检测方法汇总

水质检测方法汇总 相关检测方法分别如下: 1 【pH值】水质 pH值的测定玻璃电极法GB/T6920-1986 2 -------【溶解氧】水质溶解氧的测定电化学探头法 GB/T11913-1989 碘量法《水和废水监测分析方法》(第四版)国家环保总局2002年 3 【臭和味】文字描述法《水和废水监测分析方法》(第四版)国家环保总局2002年 4 -------【侵蚀性二氧化碳】甲基橙指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年 5 【酸度】酸度指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年 6 -------【碱度(总碱度、重碳酸盐和碳酸盐)】酸碱指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年 7 【色度】水质色度的测定GB/T11903-1989 8 ------【浊度】水质浊度的测定GB/T13200-1991 9 【悬浮物(SS)】水质悬浮物的测定重量法GB/T11901-1989 10------【总可滤残渣】重量法《水和废水监测分析方法》(第四版)国家环保总局2002年

11【总残渣】重量法《水和废水监测分析方法》(第四版)国家环保总局2002 年 12 -----【全盐量(溶解性固体)】水质全盐量的测定重量法 HJ/T51-1999 13【总硬度(钙和镁总量)】水质钙和镁总量的测定 EDTA滴定法 GB/T7477-1987 14 -----【高锰酸盐指数】水质高锰酸盐指数的测定 GB/T11892-1989 15【化学需氧量(COD)】水质化学需氧量的测定重铬酸盐法 GB/T11914—1989 16 ------【生物需氧量】水质生物需氧量的测定稀释与接种法 GB/T7488—1987 17【氨氮】水质铵的测定纳氏试剂比色法 GB/T7479-1987 水杨酸-次氯酸盐光度法《水和废水监测分析方法》(第四版)国家环保总局2002年 18 -----【硝酸盐氮】水质硝酸盐氮的测定酚二磺酸分光光度法》GB/T7480-1987 水质硝酸盐氮的测定紫外分光光度法》HJ/T346-2007 19【亚硝酸盐氮】《水质亚硝酸盐氮的测定分光光度法》GB/T7493-1987

初探种子纯度检验方法

初探种子纯度检验方法 近几年来,随着生化分析和分子生物学技术的迅速发展,作物种子纯度检验方法已由外观形态发展到生理生化水平和分子水平上的鉴定。 一、蛋白质电泳技术检验法 是指利用电泳技术对备检样品的种子或幼苗的蛋白质 进行分离、染色,形成蛋白质电泳谱带的差异,并与标准品种相比较,从而鉴定品种的真实性和纯度的一种方法。不同作物品种,基因不同,基因的直接表达产物---蛋白质在种类、数量、结构等方面亦不同。该法即是利用蛋白质的多态性来反映不同品种DNA组成上的差异,从而进行品种鉴定。该法快速、可靠,不受环境影响。 1.种子贮藏蛋白电泳法种子中所含的贮藏蛋白质可分为清蛋白、球蛋白、醇溶蛋白、谷蛋白等。每一类蛋白质的比例因物种而异,但在品种鉴定上多是根据醇溶蛋白(禾谷类)和球蛋白(豆类)的多样性。不同蛋白质所带电荷不同,在电场中泳动的速度也不同,电泳之后,通过染色显示蛋白质条带的数目、位置和颜色深浅,便构成品种的"指纹" 特征,可用于品种鉴定。所用电泳技术包括聚丙烯酰胺凝胶电泳、淀粉胶电泳及等电聚焦电泳等。另外,蛋白质电泳图谱易受

种子(或幼苗)发育阶段及表达器官的影响,有时不够稳定,影响了图谱分析,从而影响了鉴定结果的准确性。 2.同工酶电泳法同工酶是指来源相同,催化相同反应而结构不同的酶分子类型,具组织、发育和品种间特异性。该法是指利用电泳技术(包括聚丙烯酰胺凝胶电泳、淀粉胶电泳等)来分离各种酶的同工酶,通过比较同工酶谱,来确定作物种子的纯度。目前,在作物种子纯度鉴定中,最常用的、多态性较强的是脂酶和过氧化物酶,所用方法多为聚丙烯酰胺凝胶电泳法。 2.1同工酶具组织、发育的特异性:不同组织、不同发育时期,同工酶的数量和组成不同。利用同工酶鉴定种子纯度所用材料多为幼苗,而将种子萌发为幼苗不光费时,还往往因为种子在萌发进程上的不一致而导致检验结果偏差较大。 2.2因酶易失活,故技术上有一定难度。 2.3谱带位点与凝胶浓度、提取液配方、电泳程序等有关。 二、形态捡验法 形态学方法是检验人员借助放大镜、解剖镜等工具,依据某一作物品种不同于其他品种的特定的外观形态特征来进行鉴定的方法。 1.田间小区种植检验法(成株期形态检验法)该法是将

纯度检测方法汇总

尿素的测定方法 尿素的测定方法可分为两大类:一类直接法,尿素直接和某试剂作用,测定其产物,最常见的为二乙酰一肟法;另一类是尿素酶法,用尿素酶将尿素变成氨,然后用不同的方法测定氨。 1)尿素酶法(直接法):尿素酶法利用尿素酶催化尿素水解生成铵盐,铵盐可用纳氏试剂直接显色、酚-次氯酸盐显色或酶偶联反应显色。 尿素测定目前多采用尿素酶偶联法:用尿素酶分解尿素产生氨,氨在谷氨酸脱氢酶的作用下使NADH氧化为NAD+时,通过34 0nm吸光度的降低值可计算出尿素含量。 此反应是目前自动生化分析仪上常用的测定原理。此外,尿素酶水解尿素产生氨的速率,也可用电导的方法进行测定,其电导的增加与氨离子浓度有关,反应只需要很短的时间,适用于自动分析仪。 2)酚-次氯酸盐显色法:尿素酶水解尿素生成氨和酚及次氯酸盐,在碱性环境中作用形成对-醌氯亚胺,亚硝基铁氰化钠催化此反应: 对-醌氯亚胺同另一分子的酚作用,形成吲哚酚,它在碱性溶液中产生蓝色的解离型吲哚酚: 此反应敏感,血清用量少(10μl),无需蛋白沉淀,一般用于手工操作测定中。 3)纳氏试剂显色法:尿素经尿素酶作用后生成氨,氨可与纳氏试剂(HgI2.2KI的强碱溶液)作用,生成棕黄色的碘化双汞铵。 尿素酶法的优点是反应专一,特异性强,不受尿素类似物的影响,缺点是操作费时,且受体液中氨的影响。 ⑵二乙酰一肟法(直接法):尿素可与二乙酰作用,在强酸加热的条件下,生成粉红色的二嗪化合物(Fearom反应),在54 0nm比色,其颜色强度与尿素含量成正比。二乙酰不稳定,用二乙酰一肟代替,后者遇酸水解成二乙酰。 试剂中加入Fe3+或Cd2+及硫氨脲,可提高灵敏度,增加显色稳定性,其中Fe3+和Cd2+有氧化作用,还能消除羟胺的干扰作用。提高酸的浓度可增加灵敏度。二乙酰一肟与尿素的反应不是专一的,与瓜氨酸也有显色。本法灵敏、简单,产生的颜色稳定,缺点是加热时有异味释放,一般临床已很少使用此方法。 尿素测定用血清或血浆,体液中尿素的浓度常用尿素中含有的氮来表示,称为尿素氮。如欲换算成尿素,可根据60g 尿素含有28g氮计算,即1g尿素相当于0.467g尿素氮,或是1g尿素氮相当于2.14g尿素。

纯度的测定

纯度的测定 图1.40给出了一组不同纯度的苯甲酸的DSC曲钱,图中示出纯度越高,熔点越高.熔融峰越尖陡。利用因材科不纯而导致镕点下降这一原理来测定物质纯度的方法叫熔点下降法。化学热力学中叫凝固点下降。熔点下降与杂质量之间的关系用Van’t Hoff方程表示。 式中△H是摩尔熔融热焓,R是气体常数,X2是杂质的摩尔数,T0是纯物质的熔点,而T m是已掺杂材料的熔点.

因为T m很难求准,一般用作图法求:定义f为试样在温度为T s时已溶化的分数 将T s对1/f作图应为直线,其斜率=To一Tm,即熔点下降值.将斜率代入Van’t Hoff 方程,就求出X2。美国Perkin—E1mer公司用DSC方法测定罩丸甾酮的纯度,如图1.4l所示。曲线上标出的几个温度值是试样熔融部分的百分比在10—50%范围内的几个点上测得的。以A点为例,从A作基线的垂线AB,AB线以前的面积即为已熔面积A1,DSC曲线下总面积为A T,所以A点的已熔分数 从A按纯金属铟(99.999%)熔融峰起始边的斜率向基线引AD,交基线于D,此点的温度即T s用同样的方法求出其它点的T s和f,把各点的T s对1/f作图,得到如图1.42所示的直线. 因此从斜率可求出X2=0.0042,即试样纯度为99.6%。

这种方法测定纯度的公式是从C1ausius-Clapeyron。方程及Raoult定律推导出来的,有一定的假设条件。只有当试样纯度高于99%时用凝固点下降原理才能够得到高的准确度。随杂质含量的增加,准确性下降. 为了改善纯度测定的准确性,考虑被忽略的预熔部分,可用偿试误差法解决T s—1/f不成直线的问题。由于DSC曲线基线取法对面积值影响很大,特别对纯度低的试样影响更严重.假设误差为δ,则

化学试剂纯度与分级标准

化学试剂纯度与分级标准 中文英文缩写或简称优级纯试剂Guaranteed reagent GR 分析纯试剂Analytial reagent AR 化学纯试剂Chemical pure CP 实验试剂Laboratory reagent LR 纯Pure Purum Pur 高纯物质(特纯)Extra pure EP 特纯Purissimum Puriss 超纯Ultra pure UP 精制Purifed Purif 分光纯Ultra violet Pure UV 光谱纯Spectrum pure SP 闪烁纯Scintillation Pure 研究级Research grade 生化试剂Biochemical BC 生物试剂Biological reagent BR 生物染色剂Biological stain BS 生物学用For biological purpose FBP 组织培养用For tissue medium purpose 微生物用For microbiological FMB

显微镜用For microscopic purpose FMP 电子显微镜用For electron microscopy 涂镜用For lens blooming FLB 工业用Technical grade Tech 实习用Pratical use Pract 分析用Pro analysis PA 精密分析用Super special grade SSG 合成用For synthesis FS 闪烁用For scintillation Scint 电泳用For electrophoresis use 测折光率用For refractive index RI 显色剂Developer <, P class=p0 style="MARGIN-TOP: 0pt; BACKGROUND: rgb(255,255,255); MARGIN-BOTTOM: 0pt; Indicator Ind LINE-HEIGHT: 16.5pt; TEXT-ALIGN: center">指 示剂 Complex 配位指示剂Complexon indicator ind 荧光指示剂Fluorescene indicator Fluor ind 氧化还原指示剂Redox indicator Redox ind

化合物纯度测定 差示扫描量热(DSC)法

《化合物纯度测定差示扫描量热(DSC)法》编制说明 1. 制标任务来源 本标准系国家认证认可监督管理委员会2009年标准制修订项目计划2009B051《化合物纯度测定差示扫描量热(DSC)法》的制订,现已完成。 2. 标准制定的目的、意义和国内外同类研究概况 差示扫描量热技术(DSC Differential Scanning Calorimetry)对低分子化合物进行纯度测定在上世纪六十年代就提出来,在八十年代逐渐发展成熟,并得到广泛应用。它是测量在程序控温下,输入到样品和参比物的功率差与温度的关系的技术。又分为功率补偿式(Power Compensation)和热流式(Heat Flux)两种。与其它测定纯度的方法相比,DSC 法测定纯度具有许多优点:试样用量少,快速,操作简便,不需要标准品,不需分离杂质,能测定物质的绝对纯度,由DSC曲线计算出的杂质含量重现性好,准确度高,适合于测定高纯度化工医药产品。ASTM在上世纪80年代中期陆续颁布了一系列有关DSC技术测定物质纯度的标准,为DSC技术的应用奠定了基础。美国药典在1980年20版开始确定DSC法作为药品纯度检验的标准方法推荐使用, 并推荐DSC为药品纯度检验及生产质量控制方面的首选方法。DSC法也被标准定值机构列为可供使用的标准定值方法。 本项标准制修订项目计划是国家认证认可监督管理委员会2009年标准制修订项目计划2009B051《化合物纯度测定差示扫描量热(DSC)法》的制订,部分工作承接山东检验检疫局1999年度科研项目《差示扫描热分析(DSC)对固体有机化工品纯度、熔点测定的研究》(SK9903)的研究内容,并于2001年完成山东省地方标准《邻苯二甲酸酐的差示扫描量热法(DSC)纯度测定》的制订。本标准的制订参考了ASTM E 928-01《纯度的差示扫描热法测定标准试验方法》。 本标准立项后,课题组积极组织攻关研究,建立了差示扫描热分析法(DSC)对化合物纯度的测定方法,并对影响检测结果的重要实验条件进行了实验,得到纯度测定的优化条件;同时,组织了多个实验室参加的一致性水平试验,获得了方法的精密度、重现性及再现性数据。 3. 原理 用DSC测定纯度的方法在六十年代中期提出,后经许多研究者对数百种物质进行纯度测

水质检测方法

水质化验分析方法(常规) 1水质pH值的测定玻璃电极法 水质-pH值的测定—玻璃电极法 1.l 围 1.1.1 本方法适用于饮用水、地面水及工业废水pH值的测定。 1.1.2水的颜色、浊度、胶体物质、氧化剂、还原剂及较高含盐量均不干扰测定;但在pH小于1的强酸性溶液中,会有所谓酸误差,可按酸度测定;在pH大于1;的碱性溶液中,因有大量钠离子存在,产生误差,使读数偏低,通常称为钠差。消除钠差的方法,除了使用特制的低钠差电极外,还可以选用与被测溶液的pH值相近似的标准缓冲溶液对仪器进行校正。温度影响电极的电位和水的电离平衡。须注意调节仪器的补偿装置与溶液的温度一致,并使被测样品与校正仪器用的标准缓冲溶液温度误差在±1℃之。 1.2 原理 pH是从操作上定义的(此定义引自GB3100-31C2-82“量和单位))第151页).对于溶液X,测出伽伐尼电池参比电极IKC1浓溶液ll溶液XIH2IPt的电动势Ex。将未知pH(x)的溶液x换成标准pH溶液S,同样测出电池的电动势E。,则pH(X) =pH(S)+(Es-Ex)F/(RTlnl0)因此,所定义的pH是无量纲的量。pH没有理论上的意义,萁定义为一种实用定义。但是在物质的量浓度小于O.lmol/dm3的稀薄水溶液有限围,既非强酸性又非强碱性(2

工业苯乙烯纯度检验国标

本方法适用于苯乙烯纯度为99%以上范围试样的测定,也可用于苯乙烯内正常杂质的测定。1,方法提要 采用毛细管气相色谱法,以内标法测定苯乙烯中正常存在的杂质含量。然后由100减去杂质的总含量,便得到苯乙烯的纯度,以质量百分数表示。 2,试剂和材料 2.1;内标物:正庚烷,纯度大于99%。 2.2;杂质标准品:纯度大于99%。 2.3;苯乙烯标准品:纯度应尽量可能高,至少大于99.6% 2.4;氮气:纯度大于99.95%。 2.5;氢气:纯度大于99.85%。 2.6;空气:经硅胶、分子筛充分干燥和净化。 3,测试过程及原理 3.1校正因子的测定: 3.1.1;制备含有99.5%(m/m)苯乙烯和适当含量典型杂质的配置混合物,分别准确称取苯、甲苯、乙苯、间-二甲苯、异丙苯、邻-二甲苯、正丙苯、间-甲乙苯、a-甲基苯乙烯,苯乙炔杂质组分,计算各自的含量,精确到0.001%,各杂质组分准确浓度、平均保留时间、峰面积及校正因子做表。 3.1.2;用微量注射器,将50ul内标物(正庚烷)加至100ml容量瓶中,该容量瓶应事先装好约75ml的配置混合物,再用配置混合物稀释至刻度,混合均匀得到校准用混合物,则该溶液中含有0.0377%(m/m)的正庚烷。 3.1.3;准备2份用于配置混合物的苯乙烯。1份苯乙烯用于色谱法显示干扰物的杂质。(如果苯乙烯中的杂质与所选的内标物同时出峰,那就必须改用其他合适的内标物);另1份苯乙烯,只加入内标物,并制成只配有内标物的苯乙烯混合物,用于色谱法确定存在于该苯乙烯中杂质与内标物色谱峰面积比率。 3.1.4,色谱柱及操作 按照色谱仪的操作条件和操作说明书,适当调整,仪器稳定运行后,把适量的校准混合物和只配有内标物的苯乙烯混合物依次加入色谱仪,以获得两个色谱图。测量苯乙烯以外的所有色谱峰的面积,包括内标峰。 3.1.5,计算各种杂质相对于内标物的质量校正因子: 式中:f′i—i杂质组分相对于内标物的质量校对因子; As—在校准混合物中内标物的峰面积; Ai—在校准混合物中i杂质的峰面积; A ib—只配有内标物的苯乙烯混合物种的i杂质的峰面积; Asb—只配有内标物的苯乙烯混合物中的内标物的峰面积; ms—校准混合物中内标物的质量百分含量; mi—校准混合物中i杂质的质量百分含量。 4.试样的测定 4.1利用经校准的微量注射器,将50.0ul内标物加至100ml容量瓶中,容量瓶中事先装有约75ml的苯乙烯试样,再用试样稀释至刻度,混匀。

NGF 纯度检测方法

一、实验名称:7S NGF 纯度检测方法建立 二、实验目的:利用HPLC检测样品纯度 三、实验方法:制样编辑检测方法运行检测方法数据分析 四、实验材料: 1.仪器设备 名称厂家/品牌型号 精密天平(千分之一)梅特勒-托利多仪器(上海)有限公司ML203 pH计梅特勒-托利多仪器(上海)有限公司S220 HPLC Waters E2695 2.主要试剂耗材 名称厂家/品牌批号 磷酸氢二钠国药集团化学试剂有限公司20131224 磷酸二氢钠国药集团化学试剂有限公司20131227 氯化钠国药集团化学试剂有限公司20130422 柱子TSKgel G3000SWXL 3.自制试剂 编号名称配制方法保质期A 0.5M磷酸氢二钠 称取Na2HPO4.12H2O 358.14g, 加水溶解,定容至 2L. B 0.5M磷酸二氢钠 取NaH2PO4.2H2O 156.01g, ,加水溶解,定容至2L. C 0.5M PB(pH6.8)量取 0.5M磷酸二氢钠溶液537ml, 0.5M磷酸氢二 钠463ml,将两种溶液混合均匀 D 50 mM PB+0.3M NaCl(PH=6.8)量取0.5M PB(pH6.8)溶液100ml,加入 NaCl8.766g溶解后定容到0.5L. E 50 mM PB+0.45M NaCl(PH=6.8)量取0.5M PB(pH6.8)溶液100ml,加入 NaCl13.149g定容到0.5L F 50 mM PB+0.6M NaCl(PH=6.8)量取 0.5M PB(pH6.8)溶液100ml,加入 NaCl17.532定容到0.5L 五、实验内容: 柱子信息:TSK gel/型号G3000SWXL/Column NO.S1721/Part NO.08541

水质检验方法

水质检验方法 一、pH的测定GB/T6904-2008) 1 范围 本标准规定了工业循环冷却水及锅炉用水中pH的测定方法。 本标准适用于循环冷却水及锅炉用水中pH值在0~14范围内的测定,本标准还适用于天然水、污水、除盐水、锅炉给水以及纯水的pH的测定。 2 原理 将规定的指示电极和参比电极浸入同一被测溶液中,成一原电池,其电动势与溶液的pH有关。通过测量原电池的电动势即可得出溶液的pH。 3 试剂和材料 3.1 草酸盐标准缓冲溶液:c[KH3(C2O4)2·2H2O]=0.05 mol/L。 称取12.61 g四草酸钾溶于无二氧化碳的水中,稀释至1000m L.。 3.2酒石酸盐标准缓冲溶液:饱和溶液。 在25℃下,用无二氧化碳的水溶解过量的(约75 g/ L)酒石酸氢钾并剧烈振摇以制备其饱和溶液。 3.3 苯二甲酸盐标准缓冲溶液:c(C6H4CO2HCO2K)=0.05 mol/L。 称取10.24 g预先于(110±5)℃干燥1h的苯二甲酸氢钾,溶于无二氧化碳的水中,稀释至1000m L.。 3.4 磷酸盐标准缓冲溶液:c(KH2PO4)=0.025 mol/L;c(Na2HPO4)=0.025 mol/L。 称取3.39 g磷酸二氢钾和3.53 g磷酸氢二钠溶于无二氧化碳的水中,稀释至1000m L.。磷酸二氢钾和磷酸氢二钠需预先在(120±10)℃干燥2h。 3.4 硼酸盐标准缓冲溶液:c (Na2B4O7·10H2O)=0.01 mol/L. 称取3.80 g十水合四硼酸钠,溶于无二氧化碳的水中,稀释至1000m L.。 3.5 氢氧化钙标准缓冲溶液:饱和溶液。 在25℃时,用无二氧化碳的水制备氢氧化钙的饱和溶液。存放时应防止空气中二氧化碳进入。一旦出现混浊,应弃去重配。 不同温度时个标准缓冲溶液的pH值列于表1 4 仪器、设备 4.1 酸度计:分度值为0.02pH单位。

天然药物化学化合物的纯度检测有哪些方法

南开大学现代远程教育学院考试卷 《天然药物化学》 主讲教师:郭远强 一、请同学们在下列(20)题目中任选五题,写成期末试卷答案,每题20分。 1. 简述天然化合物的提取、分离方法。 2. 聚酰胺分离化合物的基本原理是什么?简述其基本用途。 3. 确定化合物分子量的方法有哪些? 4. 简述测定化合物结构的四大波谱及其各自原理。 5. 化合物的纯度检测有哪些方法? 6. 简述八区律及其应用。 7. 苷键裂解方法有哪些?各有什么规律?试比较各种方法的异同点。 8. 写出 D-葡萄糖、L-鼠李糖的结构式(三种表示方法)。 9. 糖的甲基化有哪几种方法、优缺点。 10. 从结构特点看,木脂素可分为哪些类型? 11. 结合香豆素的结构特点,设计从中草药中提取、纯化香豆素化合物的方案(画 流程图并给出简单的解释)。 12. 对于蒽醌类化合物,用pH 梯度萃取法设计分离方案。 13. 简述黄酮类化合物的生物活性及其应用。 14. 青蒿素是哪类化合物?设计从植物中提取分离青蒿素的方案。 15.变形的单萜、倍半萜有哪些类型?结构上有何特征? 16. 酯苷、酚苷的苷化位移有何规律? 17. 三萜类化合物有哪些结构类型? 18. 强心苷、甾体皂苷的结构类型。 19. 生物碱显碱性的原因以及影响碱性大小的因素。 20. 从某一中药中分离得一白色结晶,质谱测得分子式为C10H8O3,该化合物的核 磁共振氢谱数据如下:1H NMR (400 MHz, CDCl3) δ ppm:7.58(1H, d. J = 9.5 Hz), 6.17(1H, d. J = 9.5 Hz), 6.78(1H, dd. J = 2.5, 8 Hz), 6.72(1H, d. J = 2.5 Hz), 7.32(1H, d. J = 8 Hz), 3.82(3H, s)。在NOE 谱中照射3.82ppm 共振峰, 6.78 和6.72ppm 共振峰有增益。请根据以上波谱数据推断化合物结构。画出该化 合物的结构式,并归属各质子信号。 二、期末试卷答案要求 学员所选题目应为授课教师指定题目内的题目,论述要层次清晰、准确; 写作要理论联系实际,同学们应结合课堂讲授内容,广泛收集与题目有关资料,含有一定案例,参考一定文献资料。 三、写作格式要求:

水质检测的标准和方法

水质检测的标准和方法 生活饮用水卫生标准GB5749-85 生活饮用水水质,不应超过下表所规定的限量。 生活饮用水水质标准 项目标准 感官性状和一般化学指标 色色度不超过15度,并不得呈现其他异色 浑浊度度不超过3度,特殊情况不超过5度 嗅和味不得有异臭、异味 肉眼可见物不得含有 PH 6.5-8.5 总硬度以CzCO3,计mg/L 450 铁Femg/L 0.3 锰Mnmg/L 0.1 铜Cumg/L 1.0 锌Znmg/L 1.0 挥发性酚类以苯酚计mg/L 0.002 硫酸盐mg/L 250 氯化物mg/L 250 溶解性总固体mg/L 1000 毒理学指标 氟化物mg/L 1.0 氰化物mg/L 0.05 砷Asmg/L 0.05 硒Semg/L 0.01 汞Hgmg/L 0.001 镉Cdmg/L 0.01 铬六价Cr6+mg/L 0.05 铅Pbmg/L 0.05 银 0.05 硝酸盐以N计mg/L 20 氯仿μg/L 60 四氯化碳*μg/L 3 苯并(a)芘*μg/L 0.01 滴滴滴*μg/L >1.0 六六六*μg/L >5.0 细菌学指标 菌落总数cfu/mL 100 总大肠菌群(MPN/100mL) 3 游离余氯 在与水接触30min后应不低于0.3mg/L。集中式给水除出厂水应符合上述要求外,

管网末梢水不应低于0.05mg/L 放射性指标总σ放射性Bq/L 0.1 总β放射性Bq/L 1.0 检验项目在一般情况下,细菌学指标和感官性状指标列为必检项目,其他指标可根据当地水质情况和需要选定。对水源水、出厂水和部分有代表性的管网末梢水,每月进行一次全分析。 自备给水和农村集中式给水水质检验的采样点数、采样次数和检验项目,可根据具体情况参照上述要求确定。

水质分析方法国家标准汇总

https://www.360docs.net/doc/6a8139636.html,/search/s_d_%CB%AE%D6%CA%B7%D6%CE%F6%B7%BD%B7%A8%B9%FA%BC %D2%B1%EA%D7%BC%BB%E3%D7%DC_1.htm下载网址 水质分析方法国家标准汇总详细下载目录 水质分析方法国家标准汇总(一) 目录:pH水质自动分析仪技术要求 氨氮水质自动分析仪技术要求 超声波明渠污水流量计 地表水和污水监测技术规范 地下水环境监测技术规范 电导率水质自动分析仪技术要求 高氯废水化学需氧量的测定(碘化钾碱性高锰酸钾法) 高氯废水-化学需氧量的测定(氯气校正法) 高锰酸盐指数水质自动分析仪技术要求 工业废水总硝基化合物的测定(分光光度法) 工业废水总硝基化合物的测定(气相色谱法) 海洋监测规范第一部分:总则 环境甲基汞的测定(气相色谱法) 水质分析方法国家标准汇总(二) 目录:环境中有机污染物遗传毒性检测的样品前处理规范 近岸海域环境功能区划分技术规范 溶解氧(DO)水质自动分析仪技术要求 水和土壤质量有机磷农药的测定(气相色谱法) 水污染物排放总量监测技术规范 水质-1,2-二氯苯、1,4-二氯苯、1,2,4-三氯苯的测定(气相色谱法) 水质-甲基肼的测定(对二甲氨基苯甲醛分光光度法) 水质-pH值的测定(玻璃电极法) 水质-氨氮的测定(气相分子吸收光谱法) 水质-铵的测定(水杨酸分光光度法) 水质-铵的测定(纳氏试剂比色法) 水质-铵的测定(蒸馏和滴定法) 水质-钡的测定(电位滴定法) 水质-钡的测定(原子吸收分光光度法) 水质-苯胺类化合物的测定(N-(1-萘基)乙二胺偶氮分光光度法) 水质-苯并(a)芘的测定(乙酰化滤纸层析荧光分光光度法) 水质-苯系物的测定(气相色谱法) 水质-吡啶的测定(气相色谱法) 水质-丙烯腈的测定(气相色谱法) 水质采样样品的保存和管理技术规定 水质分析方法国家标准汇总(三)(已下载) 目录:水质-采样方案设计技术规定

核酸纯度检测

最近重新研读了分子克隆第三版,有一个有趣的小发现,好像过去没听人说过。一般测核酸浓度都是用260nm的光吸收值来决定,同时用260/280的比值来判断有无蛋白质污染。理想的比值是1.8~2.0左右。分子克隆第三版专门提到这种判断核酸纯度的办法是不可靠的。原因在于蛋白质在260nm的消光系数比核酸小很多,即使有相当多的蛋白质污染,这个比值还是接近于理想的比值。另外,260/280比值尤其不能用于评判寡聚核甘酸的纯度,因为嘌呤的消光系数比嘧啶大好多,寡聚核甘酸嘌呤嘧啶组成很可能不平均,所以很可能出现很纯的样品260/280比值却比较小的情况。 你所说的‘消光系数‘,是否就是吸光值的意思?如果你用连续波长测过核酸的吸光度时,就会发现,OD260,恰好是核酸吸光值最大的时候,从200-750,是一条曲线,260时是波峰,而280时,刚好是曲线下降到一半左右时的吸光值。而恰好280又是蛋白质的最佳吸收值。如果纯的核酸,那曲线就是标准的,260/280就是1.8-2.0之间,如果混有蛋白质,多肽,酚之类的杂质,那280时的吸收峰就变高了,曲线随之发生变形,而260时的吸收峰不变。就如你所说的“原因在于蛋白质在260nm的消光系数比核酸小很多”,因此260的吸收峰几乎不变。但280时却不一样。这时相反,核酸的消化系数比蛋白质小的多,因此,一旦有污染,280上升很快。因此260/280在有污染的情况下就会变小。所以,用260/280的方法,还是比较可靠的。当然更可靠的,就是用200-750的波长,连续扫描。直接观察核酸的整条曲线,那比光靠260,280两个吸收值,肯定要准确很多。其实平时在我们检测时,我们也会检测230,320,两个值。至于这两值的作用,我稍后再说。其实有230,260,280,320,这四个点。基本上也能确定下这条曲线的该一段的形状了。 A 260 / A 280 的比值,用于评估样品的纯度,因为蛋白的吸收峰是 280 nm。纯净的样品,比值大于 1.8(DNA)或者 2.0(RNA)。如果比值低于 1.8 或者2.0,表示存在蛋白质或者酚类物质的影响。A 230 表示样品中存在一些污染物,如碳水化合物,多肽,苯酚等,较纯净的核酸 A 260 / A 230 的比值大于 2.0。 A 320 检测溶液的混浊度和其他干扰因子。纯样品,A 320 一般是 0。(320差不多也就是那条曲线刚下降到0的时候)。 所以,当我们检测260/280后,如果比值在1.8-2.0之间时,我们可以说其纯度可以,那OD260的值就有效。否则,OD260的值判为无效。你说的嘌噙与嘧啶的吸光值,确实没错。但一般情况下,我们测的都是基因组、tRNA,mRNA、cDNA,所以其CG含量都比较均匀。都适用于这种方法。然而,在测某些CG含量明显不均匀的情况下,比如人工合成的寡核苷酸、引物,在CG含量过大或者过小的情况下,我们就不能用260/280的方法了。不过一般自已合成的引物,都能保证纯

水质色度检测方法汇总

仪器社区?环境检测?水质检测?水质色度检测方法汇总 水质色度检测方法汇总 色度 所谓色度是指含在水中的溶解性的物质或胶状物质所呈现的类黄色乃至黄褐色的程度。溶液状态的物质所产生的颜色称为“真色”;由悬浮物质产生的颜色称为“假色”。测定前必须将水样中的悬浮物除去。 通常测定清洁的天然水是用铂钴比色法。此法操作简便,色度稳定,标准色列如保存适宜,可长期使用。但其中氯铂酸钾太贵,大量使用很不经济。铬钴比色法,试剂便宜易得。方法精密度和准确度与铂钴比色法相同,只是标准色列保存时间较短。 3.1 铂钴标准比色法 3.1.1 测定范围 本法最低检测色度为5度,测定范围5~50度。 即使轻微的浑浊度也干扰测定,故浑浊水样需先离心使之清澈,然后取上清液测定。 3.1.2 方法提要 用氯铂酸钾和氯化钴配成与天然水黄色色调相同的标准比色列,用于水样目视比色测定。规定每升水含有1mg铂和0.5mg钴所具有的颜色作为一个色度单位,称为1度。 3.1.3 试剂 3.1.3.1 铂钴标准溶液:称取1.246g氯铂酸钾(K2PtCl6)t 1.000g氯化钴(CoCl2·6H2O),溶于100mL纯水中,加入100mL盐酸,用纯水定容至1000mL。此标准溶液的色度为500度。 3.1.4 仪器、设备 3.1. 4.1 50mL成套高型具塞比色管。 3.1. 4.2 离心机。 3.1.5 分析步骤 3.1.5.1 取50mL透明水样于比色管中。如水样浑浊应先进行离心,取上清液测定。如水样色度过高,可少取水样,加纯水稀释后比色,将结果乘以稀释倍数。 3.1.5.2 另取比色管11支,分别加入铂钴标准溶液0,0.50,1.00,1.50,2.00,2.50,3.00,3.50, 4.00,4.50和 5.00mL,加纯水至刻度,摇匀。配成的标准色列依次为0,5,10,15,20,25,30,35,40,45和50度。此标准色列可长期使用,但应防止此溶液蒸发及被玷污。 3.1.5.3 在光线充足处,将水样与标准色列并列,依白纸为衬底,使光线从底部向上透过比色管,自管口向下垂直观察比色。 3.1.5.4 记录相当标准管色度的度数。 3.1.6 计算 C=(m/V)×500 (1) 式中: C──水样的色度,度; m──铂钴标准溶液的用量,mL; V──水样体积,mL。 3.2 铬钴标准比色法 3.2.1 测定范围 本法最低检测色度为5度,测定范围5~50度。 即使轻微的浑浊度也干扰测定,故浑浊水样需先离心使之清澈,然后取上清液测定。

粗硫酸铜提纯及产品的纯度检验和热重分析实验报告

WORD完美格式 粗硫酸铜的提纯及产品的纯度检验和热重分析

由Cu(OH)2与Fe(OH)2的溶度积计算,Cu2+ 与Fe2+ 似乎也可以用分步沉淀法分离,但由于Cu2+ 是主体,Fe2+ 是杂质,这样进行分步沉淀会产生共沉淀现象(Cu(OH)2沉淀吸附、包裹少量Fe2+ 杂质的现象),达不到分离目的。因此在本实验中先将Fe2+ 在酸性介质中用H2O2氧化成Fe3+: 2Fe2+ + H2O2 + 2H+ = 2Fe3+ + 2H2O 然后采用控制pH在3.7~4.0沉淀Fe3+,达到Fe3+、Fe2+ 与Cu2+ 分离的目的。从氧化反应中可见,应用H2O2作氧化剂的优点是不引入其它离子,多余的H2O2可利用热分解去除而不影响后面分离。 溶液中的可溶性杂质可采用重结晶方法分离。根据物质的溶解度不同,特别是CuSO4?5H2O晶体的溶解度随温度的降低而显著减少,当热的CuSO4饱和溶液冷却时,CuSO4?5H2O先结晶析出,而少量易溶性杂质由于尚未达到饱和,仍留在母液中,通过过滤,就能将易溶性杂质分离。 2. 目视比色法检验产品的杂质含量(铁的含量)的原理 目视比色法是确定杂质含量的常用方法,在确定杂质含量后便能定出产品的纯度级别。将产品配成溶液,在比色管中加入显色剂显色、定容,与在同样条件下显色、定容的一系列不同浓度的标准溶液(标准色阶)进行颜色比较(方法是从管口垂直向下观察),如果产品溶液的颜色比某一标准溶液的颜色浅,就可确定杂质含量低于该标准溶液中的含量,即低于某一规定的限度,所以这种方法又称为限量分析。 由于本实验的产品溶液Cu2+本身有颜色,干扰Fe3+ 的比色观察,因此在比色检验前需要首先在产品溶液中加入过量的6mol?dm–1氨水,使微量的Fe3+ 杂质沉淀、过滤分离出来,沉淀用热的2mol?dm–1HCl溶解后收集到比色管中,加入25% KSCN溶液显色(生成[Fe(SCN)n]3–n血红色络合物,n= 1~6)、定容,然后与标准色阶比较,从而确定产品中杂质铁的含量范围。 3. 热重分析的原理简介 热分析技术是一类在程序温度控制下,跟踪物质的物理性质与温度关系的技术,可通过测量物质在受热或冷却过程中物理性质参数(如质量、反应热、比热、膨胀系数等)随温度的变化情况,研究物质的组分、状态、结构及其它物化性质,评定材料的耐热性能,探索材料的热稳定性与结构的关系等。常用的热分析方法有热重分析法(TG)、差热分析法(DTA)、差示扫描量热法(DSC)等。 热重分析法(Thermogravimetry,简称TG)是在程序温度控制下,测量物质的质量与温度关系的一种技术。由TG实验获得的曲线,称为热重曲线(或TG曲线),它是以质量为纵坐标(由上到下质量减少),以温度(或时间)为横坐标(由左到右增加)。由TG可以派生出微商热重法(Deriva tive Thermogravimetry,简称DTG),它是TG曲线对温度(或时间)的一阶导数。热重分析法突出的特点是定量性强,能准确测定物质的质量随温度的变化及变化速率。 很多离子型的盐类从水溶液中析出时,常含有一定量的结晶水,结晶水与盐类结合得比较牢固,但受热到一定温度时,可以脱去结晶水的一部分或全部。由于压力、粒度、升温速率不同,有时可以得到不同的脱水温度及脱水过程。

水质检测方法总结(1)

水质 化学需氧量的测定(GB 11914--89) 1 应用范围 本标准适用于各种类型的含COD 值大于30mg/L 的水样,对未经稀释的水样的测定上限为700mg/L 。 本标准不适用于含氯化物浓度大于1000mg/L 的水样。 2 试剂配制 2.1 蒸馏水或同等纯度的水 2.2 硫酸银(Ag 2SO 4),分析纯 2.3 硫酸汞(HgSO 4),分析纯 2.4 硫酸(H 2SO 4),密度为1.84g/cm 3 2.5 硫酸银—硫酸:向500mL 硫酸中加入5g 硫酸银,放置1-2天使之溶解,并混匀,使用 前小心摇动。 2.6 重铬酸钾标准溶液C (6 1K 2Cr 2O 7)= 0.250mol/L :将12.258g 在105℃干燥2h 后的重铬酸钾溶于水中,稀释至1000mL 。 2.7 硫酸亚铁铵标准滴定溶液C[(NH 4)2Fe(SO 4)2·6H 2O] ≈ 0.10mol/L :溶解39g 硫酸亚铁 铵[(NH 4)2Fe(SO 4)2·6H 2O]于水中,加入20mL 硫酸,待其溶液冷却后稀释至1000mL 。 2.8 邻苯二甲酸氢钾标准溶液500mg/L :称取105℃时干燥2h 的邻苯二甲酸氢钾0.4251g 溶于水,并稀释至1000mL ,混匀。 2.9 1,10—菲啰啉指示剂溶液:溶解0.7g 七水合硫酸亚铁(FeSO 4·7H 2O )于50mL 水中, 加入1.5g 1,10—菲啰啉,搅动至溶解,加水稀释至100mL 。 3 试剂标定 3.1 硫酸亚铁铵标准滴定溶液C[(NH 4)2Fe(SO 4)2·6H 2O] ≈ 0.10mol/L 标定:每日临用前, 必须用重铬酸钾标准溶液准确标定此溶液的浓度。取10mL 重铬酸钾标准溶液置于 250mL 三角烧瓶中,用水稀释至约100mL ,加入30mL 硫酸,混匀,冷却后,加3滴1,10— 菲啰啉指示剂溶液,用硫酸亚铁铵标准滴定溶液滴定至溶液的颜色由黄色经蓝绿色变 为红褐色,即为终点。记录下硫酸亚铁铵的消耗量。 C[(NH 4)2Fe(SO 4)2·6H 2O] = V 50.2 式中:V ------ 滴定时消耗硫酸亚铁铵的毫升数。 3.2 重铬酸钾标准溶液C (6 1K 2Cr 2O 7)= 0.250mol/L 纯度及操作步骤检验:按操作步骤分

相关文档
最新文档