汽车车身轻量化技术(精)

合集下载

车身轻量化技术

车身轻量化技术

车身轻量化技术随着全球汽车工业的发展,车身轻量化已成为汽车制造业领域的一项重要技术。

通过采用一系列的材料和工艺创新,车身轻量化技术能够在保持汽车牢固性和安全性的同时,减轻车辆的重量,提高燃油效率和减少尾气排放。

本文将探讨几种常见的车身轻量化技术,并介绍其在汽车制造中的应用。

1. 高强度轻质材料高强度轻质材料是车身轻量化的关键所在。

与传统的钢铁材料相比,高强度轻质材料具有更高的强度和较低的密度,可以在保持结构牢固性的前提下减轻车身重量。

常见的高强度轻质材料包括铝合金、镁合金和碳纤维复合材料等。

这些材料的应用可以有效降低车身重量,并提高车辆的燃油经济性。

2. 设计优化车身设计优化也是车身轻量化的一个重要手段。

通过采用先进的设计工具和技术,汽车制造商可以优化车身结构,减少材料的使用量并保持结构强度。

例如,应用拓扑优化技术可以最大限度地减少材料的使用,使车身在不同部位的厚度适应不同的受力要求。

此外,采用仿生学原理也可以帮助设计出更轻量化的车身结构。

3. 制造工艺改进制造工艺的改进对于轻量化技术的应用至关重要。

例如,采用先进的焊接技术可以减少焊接点数量,提高焊接强度,并减轻车身重量。

而采用先进的注塑成型技术可以生产更薄壁的塑料零部件,提高车身整体的轻量化水平。

此外,采用先进的激光切割和冲压技术也可以有效降低车身零部件的重量。

4. 轻量化零部件除了整车轻量化,轻量化零部件的研发和应用也是车身轻量化技术的一个重要方向。

例如,轻量化座椅和轻量化车门等关键部件的采用可以进一步减轻整车重量。

此外,一些先进的轻量化技术还可以应用于车身附件的制造,如轻量化玻璃、轻量化天窗等。

总之,车身轻量化技术对于提高汽车燃油效率和减少尾气排放具有重要意义。

通过采用高强度轻质材料、设计优化、制造工艺改进和轻量化零部件等手段,汽车制造商可以实现车身的轻量化,并带来更节能环保的汽车产品。

在未来,随着技术的不断进步,预计车身轻量化技术将得到进一步的发展和应用。

汽车轻量化技术

汽车轻量化技术

汽车轻量化技术为了应对全球气候变化和能源危机,汽车轻量化技术得到了越来越多的关注。

轻量化技术包括材料轻量化、设计优化、制造工艺和部件集成等方面,旨在降低车辆重量、提高燃油效率和减少尾气排放。

本文将探讨轻量化技术的原理、应用和前景。

一、轻量化技术的原理轿车的重量主要包括车身、底盘、动力系统和电气系统等方面。

轻量化技术主要从材料、结构、工艺和部件方面入手,通过降低重量、提高性能和降低成本来实现节能减排目标。

材料轻量化是轻量化技术的核心和基础。

目前,汽车材料主要包括钢铁、铝合金、塑料、碳纤维复合材料和镁合金等五大类。

钢铁是最常用的材料,但其密度高、强度低、耐腐蚀性差,在某些特殊情况下易发生变形、疲劳和裂纹。

铝合金密度轻、强度高、抗腐蚀性能好,但成本高、易熔断、易生氧化皮。

塑料重量轻、成本低、塑性好,但耐热性不高、易老化、断裂性能较差。

碳纤维复合材料具有高强度、优异的抗压和抗拉性能、轻量化效果显著,但成本较高、易开裂、难以进行成形。

镁合金相对基本金属具有密度低、比强度高、抗腐蚀性好等优点,同时也存在着耐热性不好、易受害疲劳等缺点。

因此,如何选择合适的材料来实现轻量化效果将是关键。

结构优化是实现轻量化技术的另一重要方面。

通过优化构造、减少部件数量、增强组件强度、降低积件组装给予轻度化设计,可以减少重量、降低制造成本、提高车辆性能。

例如,采用双曲设计的车身可以使车身刚度得到进一步的提高。

亦或是采用空气动力学设计,使得车辆在运动时减少空气拖拽系数,能量消耗减少,进而提高车辆油耗等。

制造工艺包括成型、模具、件接、表面处理等方面。

其中,成型技术主要包括深冲压、锻造、热处理、涂层、铸造、正火渗氮和热塑弯曲等。

成型技术的发展将越来越重视对材料精度、表面质量、几何尺寸和工艺流程等方面的控制。

这需要不断加强材料表面处理、制造精度和部件集成等技术,降低制造成本和提高车辆质量。

部件集成主要是为了减少零件数量、减小构造尺寸、降低能源消耗、提高系统效率和降低成本。

汽车车身轻量化设计原理

汽车车身轻量化设计原理
9
四、白车身轻量化系数简介
标杆车型
Audi A2
Mini 2003 轿车
Volvo S60
VW Fox
BMW New X5 SUV
VW Touareg
扭转刚度 (N·m/deg)
11900
公司现有车型 XX
24500
XX
ห้องสมุดไป่ตู้轿车
20000
XX
17941
XX
27000
XX
SUV
36900
XX
扭转刚度 (N·m/deg)
9153 8866 10618 9829 15102 17000
德系车的扭转刚度相对较高,基本达到15000 N.m /deg以上, 高刚度车身可提升整车的安全性和操稳性,是未来的发展趋势。
2020-5-26
10
四、白车身轻量化系数简介
汽车轻量化设计应包括质量减轻和功能的完善和改进,为表征白车 身轻量化的效果,宝马汽车公司提出了轻量化系数的概念,该系数L可用下 式表示为:
2020-5-26
5
二、整车重量管理流程及理念
AudiA4在实现整车性能和功能时造成重量大幅提高,通过整车重 量管理采取轻量化技术设计有效平衡性能与重量之间的矛盾对立关系; 即保证性能又达成重量目标,甚至减轻整车重量,进一步提高经济性.
6
三、车身轻量化开发实施思路
建立机制
设定目标
技术预研
车身轻量化方案制定
增加 130kg
4
二、整车重量管理流程及理念
整车重量管理的理念及原则即保证整车性能,实现功能的前提下达 成整车重量目标
不采用高强钢 重量发展趋势
采用了高强钢后 重量发展趋势

6. 汽车轻量化的九大关键工艺

6. 汽车轻量化的九大关键工艺

汽车轻量化的九大关键工艺!文章来源:材加网一、激光拼焊(TWB)及不扥厚度轧制板(VRB)1.激光拼焊技术激光拼焊是将不同厚度、不同材质、不同强度、不同冲压性能和不同表面处理状况的板坯拼焊在一起,再进行冲压成形的一种制造技术。

德国大众最早于1985年将激光拼焊用于汽车。

北美于1993年也大量应用激光拼焊技术。

目前,几乎所有的著名汽车制造商都采用了激光拼焊技术。

采用拼焊板制造的结构件有身侧框架、车门内板、风挡玻璃框架/前风挡框、轮罩板、地板、中间支柱(B柱)等(见图1)。

最新统计表明,最新型的钢制车身结构中,50%采用了拼焊板制造。

图1 激光拼焊技术在车身上的应用实例激光拼焊技术在20世纪90年代末引入中国,一汽、上汽、长城、奇瑞、吉利等汽车公司在前纵梁、门内板和B柱加强板等都有应用。

宝钢已有23条激光拼焊生产线,年产2 200多万片板坯,占我国市场份额的70%以上,是世界第三、亚洲第一大激光拼焊板生产公司。

鞍钢也在与蒂森克虏伯合作,在长春等地建立激光焊接加工生产线。

2.不等厚度轧制板变厚板是轧钢机通过柔性轧制工艺生产的金属薄板,即在钢板轧制过程中,通过计算机实时控制和调整轧辊的间距,以获得沿轧制方向上按预先定制的厚度连续变化的板料。

图2显示了变厚板生产的工艺原理。

与TWB钢板相比,VRB 钢板仅可为同一种钢种,宽度也不能太宽,更适合制造梁类零部件。

图2 不等厚度轧制板生产原理德国Mubea公司有两条变厚板生产线,年产7万t。

板厚为0.7~3.5m m,原始板料的最高强度为800MP a级别。

目前,欧洲70余个车型使用变厚板或者变厚管产品。

奔驰C级车中通道加强板、前地板纵梁、后保险杠、后地板横梁等11个零件使用了VRB钢板。

我国宝钢和东北大学均开展了VRB钢板的研发和生产工作,目前具备了小批量供货的能力。

借助于强大的材料开发能力,宝钢形成了VRB零件的设计、材料开发、成形过程模拟、模具设计和产品质量评估的能力,并已试制成功前纵梁、仪表板支架、顶盖横梁等零件,同时也轧制成功了1 500MPa级别的非镀层和铝硅镀层的热冲压成形钢板,成功试制了热冲压成形VRB中通道零件。

汽车车身轻量化设计方法探究

汽车车身轻量化设计方法探究

汽车车身轻量化设计方法探究摘要:车身轻量化是实现车辆节能减排的一条重要技术路线,而车体轻量化具有较高的性价比。

本文从设计、材料、工艺三个方面探讨了汽车轻量化的技术途径。

本课题将对该方法进行深入研究,并将其应用于工程实践,最终达到在保证产品性能的前提下减重的目标,提高我国汽车轻量化技术与产品研发能力。

关键词:车身轻量化;节能减排;技术路线;研发能力引言:自从人类步入二十世纪以来,汽车已经成为了最主要的运输工具,它可以让人们在旅途中节省更多的时间,从而可以更快地抵达目的地。

但是,以往因为受到汽车设计、制造水平的制约,汽车通常都很笨重,再加上对燃油消耗的控制不得当,这就造成了极大的资源浪费,同时对环境造成的污染也不容忽视。

而在今后,环保和节能将逐渐成为汽车设计和制造的主要考虑因素,因此,在改变能源使用方式的同时,如何将汽车设计得更轻便也是一个重要的研究方向。

1.汽车车身轻量化设计的基本方法1.1结构优化设计对其进行优化设计的方法有三种,即形态优化,拓扑优化和尺度优化。

从结构拓扑优化的角度来看,设计人员必须对结构的振动特性、静动态特性等特性进行充分的了解,然后再对结构进行拓扑优化。

而拓扑优化最大的特征就是,在进行设计前,利用一定的受力条件和外部条件,可以找到最优的结构材料配置方案,从而获得结构的某些参数,为以后的设计创造条件。

从结构形态优化设计角度来说,形态优化设计的主要目的是寻求最佳的结构形态设计方法,比如,在进行汽车金属薄板外形设计时,可采用优化的肋条布局,提高金属薄板的刚性与强度,同时降低金属薄板的质量。

1.2有限单元分析技术在目前的工程问题分析中,有限单元分析技术是一种行之有效的方法,它主要是利用计算矩阵来对各个步骤进行计算,它可以将所展示的工程问题转换成数学问题来进行分析和求解。

然而,在处理复杂的工程问题时,有限单元分析技术需要设定许多条件,且计算时间比较长,这就对计算机硬件设备以及有限单元分析软件的要求都比较高。

轿车车身结构轻量化设计技术

轿车车身结构轻量化设计技术
European Union
3.6% CAGR
4,000 3,000 2,000 1,000 0 North America
20% SUVs and Pickup Trucks
Pounds Per Vehicle
200
135
5% CAGR
150 100 50 0 1990 2000 2006
7.97% Aluminu m 318.7 lb/v
底盘部件的轻量化设计 (FE-DESIGN GmbH,TOSCA)
• 底盘
– 悬架导向机构部件的拓扑 优化设计 – 油箱的拓扑优化设计
• 动力传动系
– 壳体、支承结构件 – 传动部件 – 操纵部件
油箱底面条纹的拓扑优化
汽车变速器拨叉的拓扑优化
下控制臂的优化设计 (Altair,OptiStruct)
油底壳加强筋优化设计(Altair)
车身结构轻量化设计(Altair)
发动机罩的优化设计
焊点优化设计
轿车车身结构轻量化设计技术概述
吕毅宁
清华大学汽车工程系
汽车轻量化设计
• 轻量化设计模型
Min. s.t. Safe Weight Comfortable
Fuel Efficient
Cost Effective
Environment Compatible
etc.
• 轻量化设计方法
– 拓扑优化 – 截面形状、尺寸优化 – 集总模型参数优化
车身结构轻量化设计方法研究
• 更新设计思想 • 结构优化设计 • 采用轻质材料
– 铝合金的应用 – 镁合金的应用 – 高强度钢板和特种钢板的应用 – 塑料和复合材料的应用
• 革新制造工艺

汽车轻量化技术

汽车轻量化技术

车重与燃油利用率的关系
油耗与CO2排放关系
6-294
汽车轻量化具有重要意义

一、节能减排是汽车工业发展的必然趋势 20世纪 70年代的两次石油危机 ,促进汽车工业提高了燃油经济性。
80年代中期以后,保护人类居住和赖以生存的环境又一次推动汽车工业
提高燃油经济性和排放。
《BP世界能源统计2008》的数据 , 2007年全球石油产量为 8 150万桶 , 按照这一数字 ,全球石油储量可满足 40年的需求;目前美国53 %依赖进
2-294

汽车轻量化的意义及概念
国内外汽车轻量化技术发展现状
汽车轻量化的主要途径 汽车轻量化技术应用的成功案例
3-294
汽车轻量化之
第一章 汽车轻量化意义及概念
伴随着我国现代化进程,汽车工 业的发展势头强劲,已成为我国国民经 济的支柱产业之一。 据中国汽车工业协会的统计显示, 2009年我国汽车产量达到1379万辆,首
13-294
汽车轻量化的概念
汽车轻量化不能以简单的减重多少来衡量,必须与所设计车身的尺寸和
功能相关

对于已有的功能可满足要求的汽车,轻量化的设计是降低重量而保持原功能 不变,其轻量化的效果是直接的减重;

现有功能尚不能全部满足要求或需要提升的汽车,轻量化设计是完善功能而
保持质量不变; 既要提高改进性能,同时也使汽车减重。 汽车轻量化设计实际上是功能改进,质量降低,结构优化和合理价格的
新技术项目和国家科技攻关重大项目。 促进了汽车轻量化技术的进步。

九五“期间,我国进行了铝合金材料和铸件生产成套工艺技术的开 发研究,开发出了多种铸造合金和高性能轴瓦材料:耐热铝合金、高强 高韧铝合金、铝基复合材料等新材料的研究取得了较大进展。 半固态 成型、快速凝固等先进成型技术研究与应用也取得了突破。一汽等几大 汽车生产厂家都有自己的铝合金铸造生产线; 湖南大学也正在进行汽 车大型铝合金结构件整体铸造成形技术和关键设备的研究; 重庆汽车

汽车轻量化的主要技术

汽车轻量化的主要技术

汽车轻量化的主要技术
汽车轻量化是汽车行业开发、提高汽车性能和减少燃油消耗的重要技术。

通过汽车轻量化,不仅有效的减轻汽车重量,提高汽车的加速性能,减少能耗,而且有助于减少材料和能源的消耗。

汽车轻量化的主要技术有:
1.车身材料改进:通过使用合理的车身材料,达到车身更轻、更坚固,
更好、更有效的结构,从而减少车身重量。

通常使用的材料包括:钢材、铝
合金、高强度塑料等。

2.底盘优化设计:车身下部部分是重车身重量最大的部分,通过优化设计,减少底盘的重量和面积,减少结构梁的数量,加强车身的刚性,改善汽
车行驶的舒适性,实现底盘结构的轻量化。

3.焊接工艺优化:焊接技术是车身部件轻量化的重要技术,有助于将大
型车身部件拆分,缩小模型尺寸,从而实现更轻量化的结构。

4.金属发泡:金属发泡是一种可以大大减少汽车重量的复合材料技术。

金属发泡材料特殊的复合结构,能极大的降低车身重量,同时又能满足强度
和刚性的要求。

汽车轻量化已经成为当前汽车行业的主流发展,通过应用上述多种技术,可以大大减小汽车重量,提高能源利用效率,减少燃料消耗,是提高汽车效
率和节省能源的有效措施。

车身轻量化技术的研究与实践

车身轻量化技术的研究与实践

车身轻量化技术的研究与实践在当今汽车工业的发展中,车身轻量化技术已成为一项至关重要的研究领域。

随着环保要求的日益严格和消费者对燃油经济性、车辆性能的不断追求,减轻车身重量不仅有助于降低油耗、减少尾气排放,还能提升车辆的操控性和安全性。

本文将对车身轻量化技术的研究与实践进行深入探讨。

一、车身轻量化技术的重要性汽车的燃油消耗与车辆重量密切相关。

一般来说,车辆重量每减轻10%,燃油效率可提高 6% 8%。

在全球能源紧张和环保压力增大的背景下,降低油耗和减少尾气排放是汽车行业必须面对的挑战。

轻量化车身能够显著降低车辆的能耗,为可持续发展做出贡献。

此外,轻量化车身还能提升车辆的性能。

较轻的车身重量可以使车辆在加速、制动和转弯时更加敏捷,提高操控性和驾驶乐趣。

同时,在发生碰撞时,较轻的车身能够更有效地分散和吸收能量,提高车辆的被动安全性。

二、车身轻量化的实现途径1、材料的优化选择(1)高强度钢高强度钢具有出色的强度和韧性,在保证车身结构强度的前提下,可以通过使用更薄的钢板来减轻重量。

例如,热成型钢的强度可达1500MPa 以上,能够大幅减少零部件的厚度和数量。

(2)铝合金铝合金具有低密度、高强度和良好的耐腐蚀性。

在车身中,铝合金常用于发动机罩、车门、行李箱盖等部件,能够有效减轻重量。

此外,全铝车身的应用也在逐渐增加,如奥迪 A8 等车型。

(3)镁合金镁合金是目前最轻的金属结构材料之一,其密度约为铝合金的2/3。

虽然镁合金的成本较高,但在一些高端车型中,如奔驰 SL 级,已经开始使用镁合金部件来实现轻量化。

(4)复合材料复合材料包括碳纤维增强复合材料(CFRP)和玻璃纤维增强复合材料(GFRP)等。

这些材料具有高强度、高模量和低密度的特点,但成本较高,目前主要应用于超级跑车和高性能车型中,如宝马 i3 和 i8的车身框架就采用了碳纤维复合材料。

2、结构设计的优化(1)拓扑优化通过数学算法和有限元分析,在给定的设计空间内寻找最优的材料分布,实现结构的轻量化。

新能源汽车轻量化的关键技术

新能源汽车轻量化的关键技术

新能源汽车轻量化的关键技术随着环境保护意识的增强和能源资源的日益紧缺,新能源汽车已成为汽车行业的热门发展方向。

在新能源汽车的研发和生产中,轻量化技术被视为关键技术之一。

轻量化可以有效降低汽车整体重量,提高能源利用效率,减少污染排放,增加续航里程,同时也有利于提高汽车的性能和安全性。

新能源汽车轻量化技术的研究和应用具有十分重要的意义。

本文将重点介绍新能源汽车轻量化的关键技术。

1. 轻量化材料的应用轻量化材料是实现新能源汽车轻量化的基础。

目前,常用的轻量化材料主要包括铝合金、镁合金、碳纤维复合材料、高强度钢和塑料等。

铝合金具有良好的强度和耐蚀性,适合用于制造车身结构和发动机部件;镁合金具有良好的加工性和塑性,可用于制造轻量化零部件;碳纤维复合材料具有极高的比强度和比刚度,广泛应用于车身和底盘等部件;高强度钢可用于制造车身冲击构件和安全结构;塑料材料则可以减少汽车自重,提高燃油经济性。

在新能源汽车的设计和制造中,合理选用各种轻量化材料是实现汽车轻量化的重要途径。

2. 结构设计优化结构设计优化是实现汽车轻量化的关键技术之一。

通过对汽车结构进行优化设计,可以减少材料消耗,提高结构强度和刚度,实现轻量化和性能提升的综合目标。

在新能源汽车的结构设计中,通常采用拼接结构、空间网格结构和复合结构等技术来减轻汽车自重。

还可以通过有限元分析、多目标优化和结构拓扑优化等方法,实现轻量化设计的精细化和智能化。

采用点胶连接技术可以减少焊接材料的使用,提高车身连接强度,有效降低汽车重量;采用混合材料设计可以在保证结构强度的同时减轻汽车重量,提高能源利用效率。

3. 动力系统集成新能源汽车的动力系统集成是实现轻量化的重要途径。

传统的汽车动力系统通常由发动机、变速器、传动轴和驱动桥等多个组成部件组成,结构复杂且重量较大。

而新能源汽车的动力系统通常由电机、电池、控制器和传动系统构成,结构相对简单且重量较轻。

在新能源汽车的设计和制造过程中,可以通过优化动力系统的布局和集成,减少组成部件的数量和重量,实现整车轻量化。

汽车轻量化技术方案及应用实例

汽车轻量化技术方案及应用实例

汽车轻量化技术方案及应用实例一、汽车轻量化分析轻量化技术应用给汽车带来的最大优点就是油耗的降低,并且汽车轻量化对于环保,节能,减排,可持续发展也发挥着重大效用。

一般情况下,汽车车身的重量约占总重量的30%,没有承载人或物的情况下,大概70%的油耗是因为汽车自身的质量,由此可得到结论,车身的轻量化会减少油耗,提高整车的燃料经济性。

目前轻量化技术的主要思路是:在兼顾产品性能和成本的前提下,采用轻质材料、新成型工艺并配合结构上的优化,尽可能地降低汽车产品自身重量,以达到减重、降耗、环保、安全的综合指标。

二、新材料技术1、金属材料。

(1)高强度钢。

高强钢具有强度高、质量轻、成本低等特点,而普通钢是通过减薄零件来减轻质量的,它是汽车轻量化中保证碰撞安全的最主要材料,可以说高强钢的用量直接决定了汽车轻量化的水平。

另一方面,它与轻质合金、非金属材料和复合材料相比,制造成型过程相对容易,具有经济性好的优势。

(2)铝合金的密度小(2.7g/cm3左右),仅为钢的1/3,具有良好的工艺性、防腐性、减振性、可焊性以及易回收等特点,是一种非常优良的轻量化材料。

典型的铝合金零件一次减重(传统结构件铝替钢后的减重)效果可达30%~40%,二次减重(车身重量减轻后,制动系统与悬架等零部件因负载降低而设计的减重)则可进一步提高到50%,用作结构材料替换钢铁能够带来非常显著的减重效果。

(3)镁合金。

镁的密度仅为铝的2/3,是所有结构材料中最轻的金属,具有比强度和比刚度高、容易成型加工、抗震性好等优点。

采用镁合金制造汽车零件能在应用铝合金的基础上再减轻15%〜20%,轻量化效果十分可观,但成本偏高于铝合金和钢。

2、非金属材料。

(1)塑料是重要的非金属轻量化材料,具有比重小、成本低、易于加工、耐蚀性好等特点,在汽车行业中的应用前景被看好。

(2)树脂基复合材料根据增强体和基体材料不同分为多种类型增强基复合材料,如玻璃纤维增强复合材料、碳纤维增强复合材料、生物纤维增强复合材料等。

关于新能源汽车的轻量化技术

关于新能源汽车的轻量化技术
安全性问题
车身轻量化后,可能会减少车身结构强度和刚度,从而影响车辆的安全性能。因此,需要 在保证车身轻量化的同时,确保车身的安全性能不受影响。
前景展望
政策支持
随着全球对环保和节能的日益重视,政府将加大对新能源 汽车轻量化技术的支持力度,推动相关产业的发展。
技术突破
随着科技的不断进步,新能源汽车轻量化技术将不断取得 突破,解决当前存在的技术难题,提高轻量化技术的水平 和应用范围。
随着材料技术的不断进步,高强度钢、铝合金等轻质材料在新能源汽车
上的应用范围将不断扩大。
02
模块化设计和制造技术
模块化设计和制造技术将成为轻量化技术发展的重要趋势,通过模块化
设计,可以简化车身结构,减少零部件数量,从而降低车身重量。
03
先进的制造工艺
先进的制造工艺如3D打印、激光拼焊等将在轻量化技术中发挥越来越
03
02
增加续航里程
车身轻量化可以降低新能源汽车的能耗,进而提高车辆 的续航里程,从而提高了车辆的使用便利性和市场竞争 力。
促进产业发展
轻量化技术是新能源汽车产业的核心技术之一,其研发 和应用水平将直接影响新能源汽车整车的性能和市场竞 争力,推动新能源汽车产业的快速发展。
轻量化技术的发展趋势
01
高强度钢、铝合金等轻质材料的应用
BMW i3的碳纤维复合材料车身
碳纤维复合材料
BMW i3采用碳纤维复合材料构 造车身,具有极高的比强度和比 刚度,实现车身轻量化的同时保
持优异的结构性能。
环保性
碳纤维复合材料是一种环保材料, 其生产过程中产生的污染较少,符 合新能源汽车的环保理念。
成本挑战
碳纤维复合材料的制造成本较高, 对生产工艺和技术要求严格,推广 应用仍面临一定成本压力。

新能源汽车轻量化的关键技术

新能源汽车轻量化的关键技术

新能源汽车轻量化的关键技术随着世界对环境保护和气候变化的关注日益增强,新能源汽车作为替代传统燃油车的重要选择,逐渐成为汽车行业的热点发展方向。

而轻量化技术作为新能源汽车发展的重要方向之一,对于提高汽车能效、延长续航里程、减少能源消耗和减轻环境负担具有重要的意义。

本文将重点介绍新能源汽车轻量化的关键技术,包括材料轻量化、结构轻量化、设计轻量化和制造轻量化。

一、材料轻量化材料轻量化是实现新能源汽车轻量化的基础。

目前,新能源汽车轻量化所使用的主要材料包括高强度钢、铝合金、碳纤维复合材料和镁合金等。

高强度钢具有优良的可塑性和成形性能,可以减少汽车车身的重量并提高车身刚度,从而提高汽车的安全性能。

铝合金的密度较低,具有良好的成形性能和热处理性能,可以有效降低车身重量。

碳纤维复合材料具有高强度、高模量、轻质、抗腐蚀等优点,被广泛应用于车身、车门、车顶等部件的制造中。

镁合金具有密度低、比强度高、耐腐蚀性好等特点,在减少汽车重量的同时提高了车辆的燃油经济性和减排效果。

二、结构轻量化结构轻量化是新能源汽车轻量化的重要手段,主要包括车身结构轻量化、悬挂系统轻量化和动力总成轻量化。

在车身结构轻量化方面,通过采用高强度材料和优化设计,可以在保证车身刚度和安全性的前提下大幅减轻车身重量。

悬挂系统轻量化主要通过轻量化设计和材料选用,提高悬挂系统的强度和刚度,并将其重量降至最低。

动力总成轻量化包括减少发动机重量、优化变速器结构、轻量化电动驱动系统等,从根本上降低整车的自重。

三、设计轻量化设计轻量化是新能源汽车轻量化的关键环节,需要结合材料、结构、工艺等方面进行全面优化。

优化设计可以通过采用先进的设计软件和仿真工具,对零部件及整车系统进行轻量化设计分析,以最小的质量实现最好的性能。

比如通过优化零部件的形状和结构,减少浪费材料、提高结构强度等手段来实现轻量化目标,进而提高能效和延长续航里程。

四、制造轻量化制造轻量化是实现新能源汽车轻量化的重要途径,主要包括材料加工技术的改进、焊接、拼装和铆接工艺的优化等。

汽车白车身轻量化-铝板技术的应用

汽车白车身轻量化-铝板技术的应用

车辆工程技术34 车辆技术汽车白车身轻量化-铝板技术的应用王 艳,田 野,杜媛媛(华晨雷诺金杯汽车有限公司,沈阳 110000)摘 要:随着环境污染、能源消耗日益加剧等问题的出现,汽车制造业对汽车车身的轻量化提出了更高的要求。

无论是整车厂还是零配件供应商都在尝试采用各种方式降低车身重量,如采用新材料、新的加工工艺等。

对于白车身的减重而言,目前常用的技术就是铝板技术的应用,不仅可以降低车身重量的同时,也保障和提高了车身的安全性能。

下面笔者就对此展开探讨。

关键词:汽车;轻量化;铝板技术1 铝板在汽车制造中的优缺点概述 奥迪公司是最早采用铝合金材料做车身材料的整车厂,其中AudiA8 全铝车身达到了创纪录的546kg铝件,质量减轻15%,耗油量降低5~8%。

秉承奥迪的造车理念,铝合金材料在一汽-大众的汽车制造中被广泛的应用在翼子板、门板、发动机罩和行李箱盖等重要零件上。

1.1 铝板存在一定的缺点 (1)成形性差。

钢板与铝板的成形极限曲线比较图见图1所示。

图1 钢板与铝板的成形极限曲线比较图 (2)延伸率低。

多数汽车用铝合金板总延伸率远低于冷轧钢板,甚至只能达到前者的一半。

(3)低熔点、低屈服强度、低厚向异性指数,不利于成形。

(4)机械强度低、抗凹性差。

除6XXX系部分铝合金的强度较高外,其他系列铝合金板的强度都明显低于钢板,并且抗凹性较差。

(5)焊接性能低、结合部位抗腐蚀性能差。

(6)成本高。

无论是铝板本身的单件价格还是模具制造费用、设备及生产的成本投入都比钢板的成本要高。

1.2 与钢板相比,铝合金材料有以下一些优点 (1)回收率高。

国外可达80%以上,60%以上的车用铝合金为再生铝,回收生产1t铝合金比重新生产1t铝合金少耗能95%。

(2)投资少、减重效果明显。

铝合金加工设备投资比钢铁少、车身减重效果显著(铝板的设计厚度要比钢板的厚,减重效果可以达到20%-50%)。

(3)防腐性能优异。

车身轻量化技术研究

车身轻量化技术研究

车身轻量化技术研究近年来,汽车行业的发展趋势逐渐向着低碳、环保和高效的方向发展,而轻量化技术成为了汽车制造业在这一领域的重要研究内容之一。

车身轻量化技术的研究可以在保障汽车安全的前提下,降低车辆重量,提高燃油利用率,减少环境污染和节省能源。

本文将就车身轻量化技术的研究进行探讨和讨论。

一、车身轻量化技术的意义车身轻量化技术是近年来普遍被汽车制造企业快速推广应用的一种技术,其意义在于实现汽车工业的绿色化、高效化和可持续发展。

车身轻量化技术不仅能够达到降低车辆整体重量,提高燃油利用率的效果,而且还能改善汽车行驶性能、提高操控性和加速性等多方面性能指标。

此外,车身轻量化技术还有强调车辆环保,减少对自然环境的影响的作用,具有较大的社会意义。

二、车身轻量化技术的研究方向1. 材料结构的优化设计材料是车身轻量化的核心。

目前,常见的汽车材料主要包括钢、铝、镁、碳纤维等。

创新高强度、轻量化、抗冲击性能更强的新型材料,将成为未来的发展趋势。

轻量化的方向需要考虑材料强度与密度,结构设计则是对材料强度发放最直接的体现。

针对不同的应用场景,需要进行材料的优化选择和设计。

举例来说,对于汽车轮圈这样的部分,采用具有高强度、良好可塑性和合理的成形工艺的材料,将带来重量的大幅度降低,这对燃油经济性和车辆稳定性都具有显著的促进作用。

2. 汽车尺寸和结构设计车身尺寸和结构设计是影响汽车重量的一个重要因素。

钢材和合金材料的使用可以减轻车身重量,但如果设计不合理,仍会对车身结构造成很大影响。

汽车设计师应当在尺寸和结构设计上,兼顾车身稳定加长、载荷能力、安全性和能源利用率等因素,达到权衡的效果。

近年来,一些汽车制造商开始采用较小的车身尺寸,但却在车内空间布局和驾驶舒适性方面大有提升。

3. 零部件的集成化设计汽车由许多各种各样的部件组成。

在汽车设计中,一部分的部件可能具有相同的功能。

因此,汽车制造公司的设计师和工程师可以考虑集成化的设计,利用少量的部件来减小汽车的重量。

车身轻量化技术提高能效和安全性

车身轻量化技术提高能效和安全性

车身轻量化技术提高能效和安全性在当今汽车工业的发展中,车身轻量化技术正逐渐成为一个关键的研究领域。

它不仅能够显著提高车辆的能源效率,降低油耗和排放,还能在保障安全性的前提下,为驾驶者和乘客带来更出色的驾乘体验。

让我们先来谈谈车身轻量化技术如何提高能效。

随着能源问题的日益严峻和环保要求的不断提高,汽车的燃油经济性成为了消费者在购车时重要的考量因素之一。

而减轻车身重量是提高能效的一个直接且有效的途径。

车辆在行驶过程中,需要克服各种阻力,其中包括空气阻力、滚动阻力和惯性阻力等。

车身重量越轻,车辆在加速、爬坡和维持行驶速度时所需的能量就越少。

以一辆传统燃油汽车为例,如果车身重量能够减轻 10%,燃油效率就有可能提高 6% 8%。

这意味着在相同的燃油量下,车辆能够行驶更长的距离,从而降低了车主的使用成本。

此外,对于新能源汽车来说,车身轻量化技术的意义更为重大。

电动汽车的续航里程一直是消费者关注的焦点之一。

由于电池技术的限制,目前电动汽车的续航里程相对较短。

通过采用轻量化的车身结构,可以在一定程度上弥补电池能量密度不足的问题。

减轻车身重量能够降低车辆的能耗,延长电池的续航里程,使电动汽车在市场上更具竞争力。

那么,车身轻量化技术是如何实现的呢?目前,主要的方法包括采用高强度材料、优化车身结构设计和先进的制造工艺。

高强度材料的应用是车身轻量化的重要手段之一。

例如,高强度钢、铝合金、镁合金和碳纤维复合材料等正逐渐取代传统的钢材。

高强度钢具有出色的强度和韧性,在保证车身结构强度的同时,可以大幅度减轻重量。

铝合金的密度约为钢的三分之一,但其强度却可以与某些钢材相媲美。

镁合金则比铝合金更轻,但其成本相对较高,目前应用范围相对较窄。

碳纤维复合材料具有极高的强度和极轻的重量,但由于其成本高昂,主要应用于高端车型和赛车领域。

优化车身结构设计也是实现轻量化的关键。

通过采用合理的结构形式,如采用空心结构、集成化设计和优化零部件的形状等,可以在不增加重量的情况下提高车身的强度和刚度。

汽车轻量化

汽车轻量化

(2)改善性能
•( 2)改善性能:汽车轻量化,有利于改善汽车的行驶、 转向、加速、制动等运动性能和排气性能等多方面的 性能。其中,发动机的轻量化还可改善前轮荷重分担 率,进而改善汽车的操纵稳定性,还可为降低噪声、 振动、实现大功率化创造条件。同时还有利于减轻部 件振动和降低噪声,提高舒适性能,对于某些承载件, 其承载的重量减轻,有利于降低元件疲劳,提高耐久 性。例如一辆重量1543 kg的汽车,若车重减轻25% , 可使该车加速到60 km/h的时间从原来的10 秒减少到8 秒。
美国的新一代汽车合作项目(PNGV)
欧盟超轻车身联合研发项目(ER Collaborative R&D Project SuperLIGHT-CAR)
美国汽车材料合作项目U.S. Automotive Materials Partnership (USAMP)
新型钢车身项目New Steel Body(NBS)
亨利·福特Model T 型汽车 福特Prodigy、Jaguar new XJ 法拉利360等赛车 DaimlerChrysler Prowler 大众 3L Lupo、奥迪A2、A8 本田混合动力轿车 Insight、 NSX 均采用铝制车身
PPT文档演模板
汽车轻量化
典型的镁合金汽 车零件
PPT文档演模板
碳纤维增强聚合物基复合材料。适于制造车身和底盘零部件 减重幅度通常可达50~65% 欧盟最近采用树脂传递模塑成型(RTM)工艺成功地试制出某轿车碳纤维底板 零件的数量由28个减少到8个,重量较钢约减轻50%,而白车身的性能达到
了原钢车身水平材料 美国除低成本碳纤维制备技术开发外,还在进行碳纤维增强树脂的开发,探
索碳纤维增强塑料零部件的大规模制造工艺

汽车车身轻量化技术发展趋势

汽车车身轻量化技术发展趋势

-车身结构培训模块五❝1、为什么要轻量化❝2、世界各大研究机构的轻量化项目❝3、轻量化技术方案❝4、轻量化三步走❝1、为什么要轻量化❝2、世界各大研究机构的轻量化项目❝3、轻量化技术方案❝4、轻量化三步走☐欧洲居于全球油耗目标之首,且2025年2.9L 的目标必须大量采用新能源汽车才能实现☐四阶段中国油耗法规相较上一阶段下降30%,而2025年目标进一步收紧20%,直指 4.0L/100km 4.1 2.9 5.0 5.62 4.50 2.03.04.05.06.07.020152016201720182019202020212022202320242025EU China US L /100k m (N o r m a l i z e d t o N E D C T e s t C y c l e ) 4.0全球油耗法规日益严苛汽车对能耗和排放还有潜力吗Hybird和EV是趋势整车轻量化趋势白车身大约占到整车重量的20%~25%而各大主机厂都已经充分做好轻量化的技术储备,蓄势待发 未来的5~15年的技术更新速度将大大加快❝1、为什么要轻量化❝2、世界各大研究机构的轻量化项目❝3、轻量化技术方案❝4、轻量化三步走❝1、为什么要轻量化❝2、世界各大研究机构的轻量化项目❝3、轻量化技术方案❝4、轻量化三步走虚拟CAE仿真优化通过拓扑等手段发现高效传力路经,减轻重量研究断面特性,位置等对结构性能的影响,优化料厚,实现轻量化 优化计算方法,缩短计算时间,提高精度车身用材料展望新一代超高强度钢板的使用 第三代超高强钢的推进使用抗拉强度1500Mpa, 1700Mpa 的马氏体钢薄板冲压的逐步使用液压成型技术的应用无焊点的整体连接结构形式,大大提高零件的整体刚度以及碰撞吸能效果 变截面,可弯曲的液压成型技术可满足结构设计的多种用途激光拼焊管技术的使用焊缝整体连接结构形式,大大提高零件的整体刚度以及碰撞吸能效果 领先的成型技术代替拉延可以提高碰撞区零件的材料等级铝合金的机械特性密度仅为钢的1/3,但是弹性模量也只有钢的1/3,可通过其特有的成型方式来用几何弥补其刚度方面的先天不足未来的铝板强度会不段提高,6XXX系列的屈服已接近CR340的水平,而7XXX已经可以通过T7的热处理达到DP钢的强度水平铝板冲压工艺的应用技术相对成熟,主要用于门盖,翼子板等大型覆盖件未来的铝板强度会不段提高,供应商需要应对其低延展率以及高回弹的特点,向深拉伸零件挑战铝挤出工艺的应用截面形式相对冲压来说十分多变在实现轻量化的同时有效的提高车身的的刚度,或者碰撞吸能效果真空高压铸造工艺的应用 能实现高刚度可变厚度的零件设计要求零件集成度提高,大大减少零件的数量工艺复杂,并且产品的质量控制难度较高碳纤维技术的应用 碳纤维具有低密度,高弹性模量,高强度的特点大规模使用受限于目前行业制造能力以及其成本激光焊接技术的应用 具有单面可达的特点,充分拓宽了工程应用的范围缩短焊接边长度,实现减重的同时可达到更好的顾客感知效果铝-铝焊接技术的应用AL-AL点焊技术AL-AL点焊技术可以应用到冲压件,挤出件和铸造件的相互连接中当铝板和铸件焊接的时候,需要铝板为6000系列铝材铝件电阻点焊技术大大降低铝制车身的制造成本AL-AL弧焊技术制造成本取决于焊接长度,可以作为高强度要求的单面可达区域使用 可以作为超厚板连接的工艺手段SPR铆接技术的应用SPR可以满足于铝-铝,铝-钢,钢-钢, 塑料-金属等两层和三层板连接需求目前技术能达到的最高强度板连接是DP800→DP600,由于混合式材料车身将在未来的一段时间内长期存在,所以超高强钢,甚至是PHS的SPR连接技术是目前需要攻克的难题FDS紧固技术的应用FDS仅需要单面可达,并且相对于电弧焊来说没有热变形的影响,因此可以很好的解决封闭截面结构(如Extrusion RKR, Hydro-form Rail)的连接需求其连接方式类似于螺栓连接,因此可以广泛应用于铝-钢,铝-铝,钢-钢的连接应用中Cycle Time的长短取决于连接板材的强度以及厚度,一般在3~7s之间,因此其制造成本较高❝1、为什么要轻量化❝2、世界各大研究机构的轻量化项目❝3、轻量化技术方案❝4、轻量化三步走充分挖掘钢制车身的剩余价值 设计高效的白车身结构,提高Load Path上的结构效率大比例提高高强钢,超高强钢,热成型零件的使用比例结合新型钢材的特性改良,充分利用其机械性能上的潜力克服超薄板的成型焊接等问题,扩大其使用范围TWB,TRB技术的进一步开拓,合理分配质量配合结构胶,烧焊,激光焊接等技术的大规模使用,提高连接效率 适当考虑液压成型等技术的使用推进轻质在结构件上的使用 拓展5XXX, 6XXX系列的铝板在覆盖件以及深拉伸件上的范围真空高压铸造零件技术在车身结构设计上的技术储备标准化AL-AL焊接方面的技术规范SPR,FDS等新型连接技术的经验积累玻纤增强材料在非碰撞吸能区域的大量推进碳纤维材料在结构件设计上的技术储备混合式材料车身将是未来方向Thanks。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车车身轻量化技术[摘要]介绍了车身轻量化的重要意义和相关车身性能。

从轻质材料、结构设计和制造工艺3个方面阐述轻量化技术的主要途径,并通过实例重点分析采用热成型工艺的轻量化效果,最后对比3种轻量化技术的特点和应用范围。

[主题词]轻量化,车身,汽车0 引言安全、节能和环保已成为消费者最关心的汽车性能指标。

如何开发出更安全、节能、环保的汽车也是当今汽车厂商的重点技术发展方向。

汽车安全的重要性不言而喻,涉及到人身安全;节能和环保,不仅影响到用户的用车成本,也关系到可持续发展。

目前,各国已有诸多安全和排放法规来强制规范汽车产品的安全和环保性能。

研究资料表明,汽车的燃油消耗与汽车的自身质量成正比,汽车质量每减轻1%,燃油消耗降低0.6%-1.0%,燃油消耗下降,排放也随之减少。

因此减少汽车自身质量成为提高节能环保性能的有效途径。

而白车身作为车身骨架一般占整车质量的22%—25%,其轻量化对降低整车质量意义重大。

因此,汽车车身轻量化技术成为现代汽车开发技术一个重点课题。

1 车身轻量化的基础车身轻量化必须在保证汽车安全性的前提下,同时达到车身刚度、疲劳耐久性、操控稳定性和振动舒适性等要求。

1.1 车身结构安全车身结构安全属于汽车的被动安全范畴,目的在于保护车内乘员的安全。

自20世纪50年代起,许多国家陆续开始制定汽车被动安全法规。

目前各国汽车被动安全法规有:美国联邦机动车法规体系(FMVSS)和欧洲法规体系(ECE /EEC)。

而我国强制性汽车被动安全标准(GB)主要是参考欧洲法规体系。

另外还有各国的新车评价体系(NCAP)全面地为消费者提供汽车安全性能方面的信息。

车身结构安全直接影响到汽车是否满足这些被动安全法规。

其包括正面碰撞、侧面碰撞、后面碰撞、翻滚和低速碰撞等。

车身结构在设计上一般分为低速行人保护区,相容吸能区和乘员保护区。

1.2 车身刚度评价车身结构力学性能的主要指标是车身刚度,包括动态刚度和静态刚度,静态刚度又包含扭转刚度和弯曲刚度两个方面。

在车身轻量化中,必须保证达到车身刚度的要求,这样才能使汽车的疲劳耐久性和振动舒适性等不受影响。

1.3 车身轻量化系数为了评价轻量化的效率,引申出了车身轻量化系数的概念,其可通过如下公式计算:式中,Lq 为轻量化系数;MBIW为白车身质量;CT为白车身静态扭转刚度;A为白车身投影面积,由整车轴距与轮距相乘获得。

轻量化系数Lq值越小,表示车身轻量化做得越好。

2 车身轻量化的途径2.1 采用轻质材料2.1.1 超高强度钢板按照抗拉强度的不同,钢材一般分为普通钢、高强度钢和超高强度钢。

抗拉强度小于210MPa的称为普通钢;抗拉强度在210—550MPa之间的成为高强度钢;抗拉强度超过550MPa的称为超高强度钢。

超高强度钢主要有:相变诱导塑性钢TRIP,双相钢DP,复相钢CP,以及马氏体钢Mart等。

由于马氏体钢抗拉强度约为1200MPa,其一般采用滚压成型工艺制造,用于车门防撞杆和门槛加强板等零件。

目前车身上使用的超高强度钢,主要是称为先进高强度钢(AHSS)的,其是利用金相组织强化得到的钢种,具有强度、延伸和塑性的各方面优良的综合性,其抗拉强度范围为500—1500MPa。

另外还比较多地采用热成型钢,成型后零件的材料抗拉强度达到1800MPa。

图1为目前某一较新车型的不同强度钢材分布,可以看出,目前该车型的超高强度钢比例已经达到11%,高强度钢比例为11%,普通钢只占27%。

而从保证车身碰撞安全性的角度来看,高强度钢的用量将直接决定车身轻量化的水平。

2.1.2 铝合金铝合金是在汽车轻量化中应用相对成熟的轻质材料。

奥迪汽车公司最先在Audi80和Audi100两款车型上采用了铝车门。

1994年开发了第一代全铝空间框架结构(ASF)。

ASF车身超过了现代同类钢板车身的车身刚度和被动安全性,但汽车自身质量却减轻了大约40%。

但是铝材价格相对较高,是钢材价格的3倍左右,且铝制产品成型工艺相对复杂,这是制约铝合金轻量化应用的因素。

除开发低成本的铝合金和先进的铝合金成型工艺,发展回收再生技术以进一步降低铝的成本之外,扩大铝合金应用的另一个研究方向是开发新的各种联接技术,如铸铁—铝连接、铝—钢连接、铝—镁连接等。

2.1.3 镁合金镁合金是比铝合金密度更小的轻质材料。

其耐热耐压耐腐蚀且易于回收利用。

欧洲正在使用和研制的镁合金汽车零部件有60多种。

驶多飞集团与德国大众合作,准备将其专利产品镁合金MnE21替代某车型白车身上的多个钢板零件,如前后保险杠、车顶横梁和车门防撞杆等。

如果替代成功,将大大减轻该车的车身质量。

2.1.4 工程塑料目前已有采用工程塑料的车身翼子板,其相比金属可以实现40%的减重,且其能耐侵蚀和轻微碰撞,在低速碰撞的情况下无需维修,从制造角度相比金属有更大的造型自由度提升,也便于零件集成,从满足行人保护方面考虑,也是理想的选择。

2.2 结构优化设计利用有限元法和优化设计方法可对结构力学性能进行分析和优化设计。

在车身结构优化设计中,通常采用的优化方法有:拓扑优化、形貌优化、形状和尺寸优化。

其中拓扑优化在结构的概念设计阶段应用较多。

形貌优化可以对加强筋的形式、走向和位置深度等参数进行优化,形状和尺寸优化可以对饭金件的型面和板厚进行优化。

一般优化问题可以通过下列关系表述:式中为一个n维向量,X L和X U分别是设计变量的上限和下限。

在设定优化变量时,可以通过车身钣金零件的灵敏度分析,选择对目标函数贡献较大零件尺寸参与优化设计计算,作为优化设计变量。

变量的变化范围则结合实际经验中的零件尺寸限制而定。

在发动机舱盖内板和车门防撞杆的设计中,可以应用拓扑优化、形貌优化和形状优化的组合,选择更合理的内板上开孔位置、筋的走向和深度,优化车门防撞杆的型面。

2.3 制造工艺2.3.1 热成型热成型工艺中,是将材料加热到再结晶温度以上,使板料在奥氏体状态时进行成形,降低板料成形时的流动应力,由此来提高成形性。

把材料放在加热炉加热5+10min使其温度达到900—950℃,之后进行冲压加工及冷却。

通过热成型工艺加工出的零件优势明显,其具有很高的强度和延伸性,可以大幅的减轻零件重量,能保持高的形状精度,冲压时无回弹,可加工成复杂形状。

在车身中采用一定数量的热成型零件后,可以大幅提高车身防撞安全性能。

图2为某车型热成型零件分布,该车型采用热成型的零件有:前保险杠横梁、前围下框前地板横梁、中央通道左右B柱加强板、左右A柱加强板。

8个零件所在区域正是从充分满足碰撞安全性要求而设计布置的,保险杠可增强正面碰撞和低速碰撞安全性,而其它7个零件其构成乘员保护区,在侧面碰撞和正面碰撞中都可以很好地保护车内乘员。

如图3和图4所示,原方案采用B柱加强板和B柱加强内板两个零件组合,板厚均为2.5mm;而热成型方案采用B柱加强板一个热成型零件,板厚为1.85mm。

左右两侧B柱都采用热成型方案之后,可减重接近10kg。

从设计选择的过程可知,其轻量化效果十分显著,采用更多的热成型零件,尤其在乘员保护区采用热成型零件,是车身轻量化设计的方向。

2.3.2 液压成型液压成型,是指利用液体作为传力介质或模具使工件成型的一种塑性加工技术,也称为液力成型。

其按介质可分为水压成型和油压成型两种;按加工坯料分为管材液压成型、板料液压成型和壳体液压成型。

液压成型与冲压焊接工艺比较,其仅需要凸模或凹模,液体介质作为凸模或凹模,当液体作为凸模可以制造很多刚性模无法成型的复杂零件。

且液体作为传力介质具有可控性,具有很高的工艺柔性。

车身结构中应用较多的是板料液压成型。

采用液压成型除了能实现轻量化,同时增强车身刚强度和结构安全性之外,还能减少零件数量,从而也减少了模具数量和费用,减少了后续机加工和焊接等加工工序,降低了总制造费用。

因此,液压成型工艺近年来得到快速发展。

目前车身中已有仪表板横梁、散热器支架、座椅骨架、保险杠横梁、顶侧框等零件采用了液压成型工艺制造。

2.3.3 变截面板技术在车身上应用的变截面板有激光拼焊板(TWB),连续变截面板(TRB)和搭接板(PB)。

TWB技术是指在零件冲压成形前将两块或多块具有相同厚度或不同厚度的相同钢种材料或不同钢种材料的板件通过激光焊接连接起来的一项新技术。

采用激光焊接板不仅是一种轻量化途径,还可以减少汽车零部件的数量。

车身结构的精度可以得到很大提高,许多冲压设备和加工工序可以得到缩减。

另外,采用激光焊接板可以提高原材料利用率,通过在落料工序中采用排料技术,将型号和板厚不同的钢板合理组合从而降低材料废料率。

目前,国内合资厂已有很多车型采用激光拼焊板,主要集中在上纵梁、前纵梁、前围板、中央通道、后纵梁、前地板、前门内板、B柱加强板、侧围内板等零件。

如图5为前纵梁,前面部分板厚为1.75mm,属于车身结构的相容吸能区,中间部分板厚为2.6mm,属于车身结构的乘员保护区,后面部分板厚为1.35mm,这样的板厚分布既保证了碰撞安全性,又达到了轻量化的效果。

同样地,中央通道前部板厚为1.5mm,后部板厚为1.2mm,前部属于乘员保护区。

TRB是通过计算机实时控制和调整轧辊的间距,以获取沿轧制方向上按预先定制的厚度连续变化的板材。

与TWB相比,TRB成型性能更佳,有连续、光滑的表面,可作车身外覆盖件。

但受设备的限制,连续变截面板厚度变化有局限,而且不能把不同材料轧在一起。

因此目前激光焊接板应用更广,将来连续变截面板的应用也会越来越多。

PB是指将两块钢板先搭接在一起然后一起放入模型进行冲压成型的工艺。

目前在某车型的门槛加强板上也得到应用,如图6所示。

这样使车身具有更好的碰撞安全性,同时还节省了使两个零件连接的焊接工序。

3 结语车身轻量化技术是轻质材料、结构优化设计和先进制造工艺的集成应用。

得益于近年来新材料研究的迅速发展,轻质材料可选范围不断扩大,但是目前高强度钢仍是最主要的应用最多的轻质材料。

而结构优化设计则要依托CAE的辅助,不断采用更高效的仿真计算和优化方法,创新设计出更轻量化的结构是发展方向。

而通过先进制造工艺实现轻量化,对厂家的制造工艺水平要求较高,因此国外欧美汽车制造商和国内合资厂运用较多。

如何实现汽车的轻量化,达到最好的节能环保效果,应该根据产品定位,优化设计能力和制造工艺水平进行整体考虑,同时考虑成本因素,在满足车身刚度、结构安全性、疲劳耐久性、操控稳定性等前提下,选择最合适的轻量化途径,最终增强产品的竞争力。

相关文档
最新文档