2016年中考数学专题复习 找规律题(含解析)

合集下载

2016年安徽中考数学规律题专项训练

2016年安徽中考数学规律题专项训练

2016年安徽中考规律题专项训练1.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,其行走路线如下图所示:(1)填写下列各点的坐标:4A ( , ),8A ( , ),12A ( , );(2)写出点n A 4的坐标(n 是正整数);(3)指出蚂蚁从点100A 到点101A 的移动方向.2.在由m ×n (m ×n >1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f ,(1)当m 、n 互质(m 、n 除1外无其他公因数)时,观察下列图形并完成下表:猜想:当m 、n 互质时,在m ×n 的矩形网格中,一条对角线所穿过的小正方形的个数f 与m 、n 的关系式是______________________________(不需要证明); 解:(2)当m 、n 不互质时,请画图验证你猜想的关系式是否依然成立,3 1A 2A 5A 6A 9A 10A O 3A 4A 7A 8A 11A 12A xy 第18题图3.我们把正六边形的顶点及其对称中心称作如图(1)所示基本图的特征点,显然这样的基本图共有7个特征点。

将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2),图(3),……(1;(2)如图将图(n )放在直角坐标系中,设其中第一个基本图的对称中心O 1的坐标为(x 1,2),则x 1= ;图(2013)的对称中心的横坐标为 。

4、观察下列关于自然数的等式: (1)32-4×12=5 (1) (2)52-4×22=9 (2) (3)72-4×32=13 (3) 根据上述规律解决下列问题: (1)完成第四个等式:92-4×( )2=( ); (2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性。

5.按一定规律排列的一列数: 21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜想x 、y 、z 满足的关系式是.……图(3)图(2)图(1)x图(n )。

2016中招数学规律试题

2016中招数学规律试题

2016中招数学探索规律试题1.2016•聊城)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是(21008,0).1题图3题图2. .在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,随意S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是_____________________.3.(2016•德州)如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x 轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为__________________.4.(2016.重庆) 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64 B.77 C.80 D.855. (2016.重庆)观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()A .43B .45C .51D .536. (2016•临夏州)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,则x n +x n+1=______________.7. (2016·广东)如图,在平面直角坐标系中,将△ABO 绕点B 顺时针旋转到△A 1BO 1的位置,使点A 的对应点A 1落在直线y=x 上,再将△A 1BO 1绕点A 1顺时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y=x 上,依次进行下去…,若点A 的坐标是(0,1),点B 的坐标是(,1),则点A 8的横坐标是_____________.7题图9题图8. (2016•安顺)观察下列砌钢管的横截面图:则第n 个图的钢管数是___________________(用含n 的式子表示)9. (2016.河南)如图,已知菱形OABC 的顶点是O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转450,则第60秒时,菱形的对角线交点D 的坐标为( ) A.(1,-1) B.(-1,-1) C.0) D.(0,10. (2016•大庆)如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n 个图形中共有三角形的个数为_________11. (2016•齐齐哈尔)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x 轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为_______________11题图12题图12如图,直线l:y=-4x,点A1坐标为(-3,0). 过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2016的坐标为..13. (2016•常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B (﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是____________________14. (2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为_____________15. (2016•滨州)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2016个式子为_______________________________答案1解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).2.【解答】解:设S=1+m+m2+m3+m4+…+m2016(m≠0且m≠1)①,将①×m得:mS=m+m2+m3+m4+…+m2017②,由②﹣①得:mS﹣S=m2017﹣1,即S=,∴1+m+m2+m3+m4+…+m2016=(m≠0且m≠1).故答案为:(m≠0且m≠1).3.【解答】解:观察,发现规律:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∵2017=1008×2+1,∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案为:(21008,21009).4【解答】解:通过观察,得到小圆圈的个数分别是:第一个图形为:+12=4,第二个图形为:+22=6,第三个图形为:+32=10,第四个图形为:+42=15,…,所以第n个图形为:+n2,当n=7时,+72=85,故选D.5.【解答】解:设图形n中星星的颗数是a n(n为自然是),观察,发现规律:a1=2,a2=6=a1+3+1,a3=11=a2+4+1,a4=17=a3+5+1,…,∴a n=2+.令n=8,则a8=2+=51.故选C.6.【解答】解:∵x1=1,x2═3=1+2,x3=6=1+2+3,x4═10=1+2+3+4,x5═15=1+2+3+4+5,…∴x n=1+2+3+…+n=,x n+1=,则x n+x n+1=+=(n+1)2,故答案为:(n+1)2.7.【解答】解:由题意点A2的横坐标(+1),点A4的横坐标3(+1),点A6的横坐标(+1),点A8的横坐标6(+1).故答案为6+6..8【解答】解:第一个图中钢管数为1+2=3;第二个图中钢管数为2+3+4=9;第三个图中钢管数为3+4+5+6=18;第四个图中钢管数为4+5+6+7+8=30,依此类推,第n个图中钢管数为n+(n+1)+(n+2)+…+2n=+=n2+n,故答案为:n2+n.9.【解析】:本题考查了中点坐标的求法及旋转的知识,每秒旋转450,8秒旋转一周,60秒÷8=7周余4秒,正好又转1800,由第一象限转到第三象限,前后是中心对称,点D坐标是(1,1),所求坐标是(-1,-1),故选B。

中考数学复习专题——找规律(含答案)

中考数学复习专题——找规律(含答案)

中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 2个图 3个图 …6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○○ ○ ○ ○ ○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需 根火柴棒。

8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是10、观察图4的三角形数阵,则第50行的最后一个数是 ( )1-2 3-4 5 -67 -8 9 -10。

中考数学复习材料 题型一 规律探索题(针对演练)

中考数学复习材料  题型一   规律探索题(针对演练)

目录题型一规律探索题 (2)类型一探索图形累加规律 (2)类型二探索图形循环规律 (13)拓展类型数式规律 (16)题型一规律探索题类型一探索图形累加规律针对演练1. (2016荆州改编)下列图形是将黑白两种颜色的菱形纸片按一定的规律排列组成,第1个图形有4张白色纸片,第2个图形有7张白色纸片,第3个图形有10张白色纸片,…,依此规律,则第12个图形中白色纸片的个数为()第1题图A. 34B. 37C. 42D. 462. (2016重庆八中初三(下)第三次月考)下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第⑧个图案用火柴棒的根数为()第2题图A. 33B.32C. 31D. 303. (2015重庆B卷)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依此规律,图⑩中黑色正方形的个数是()第3题图A.32B. 29C. 28D. 264. (2014重庆B卷)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是()第4题图A. 22B. 24C. 26D. 285. 如图,下列图形是由边长为2的等边三角形按照一定规律排列而成,第①个图形的周长为6,第②个图形的周长为8,第③个图形的周长为10,第④个图形的周长为12,按照这样的规律来摆放,则第⑧个图形的周长为()第5题图A. 18B. 19C. 20D. 216. (2016天水改编)将一些相同的“○”按如图所示的规律依次摆放,其中图①中“○”的个数为5个,图②中“○”的个数为7个,图③中“○”的个数为11个,图④中“○”的个数为17个,…,若图○,n)中有245个“○”,则n =()第6题图A. 10B. 12C. 14D. 167. (2016重庆外国语学校二诊)下列图案均是用长度相同的小木棒按一定的规律拼搭而成,拼搭第(1)个图案需4根小木棒,拼搭第(2)个图案需10根小木棒,…,依此规律,拼搭第(6)个图案需小木棒的根数是()第7题图A. 53B. 54C. 55D. 568. (2016重庆江津中学初三下半期考试)用同样大小的黑色五角星按如图所示的方式摆图案,按照这样的规律摆下去,第⑬个图案需要的黑色五角星的个数是()第8题图A. 18B. 19C. 21D. 229. (2016重庆十一中一诊)下列图形是将正三角形按一定规律排列,则第④个图形中所有正三角形的个数有()第9题图A. 160B. 161C. 162D. 16310. (2016重庆巴蜀一诊)如图,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6 cm2,第②个图形的面积为18 cm2,第③个图形的面积为36 cm2,…,那么第⑥个图形的面积为()第10题图A. 84 cm2B. 90 cm2C. 126 cm2D. 168 cm211. (2016重庆西大附中第九次月考)下列图形都是用同样大小的♥按一定规律组成的,则第(8)个图形中♥共有()第11题图A. 80个B. 73个C. 64个D. 72个12. (2016重庆一中三模)如图所示,图①中含“〇”的矩形有1个,图②“〇”的矩形有7个,图③中含“〇”的矩形有17个,按此规律,图⑥中含“〇”的矩形个数为()A. 70B. 71C. 72D. 7313. (2016大渡口区诊断性检测)如图是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要棋子的枚数为()第13题图A. 115B. 122C. 127D. 13914. (2016重庆一中二模)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心小圆圈的个数为()第14题图A. 61B. 63C. 76D. 7815. (2016重庆巴蜀中学保送生考试)如图,各图都由同样大小的图形①按一定规律组成,其中第①个图形中共有一个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,…,则第⑥个图形中完整菱形的个数为()第15题图A. 60B. 61C. 62D. 6316. (2016重庆一中第一次定时作业)已知四边形ABCD对角线相交于点O,若在线段BD上任意取一点(不与点B、O、D重合),并与A、C连接,如图①,则三角形个数为15个;若在线段BD上任意取两点(不与点B、O、D重合),如图②,则三角形个数为24个;若在线段BD上任意取三点(不与点B、O、D重合),如图③,则三角形个数为35个;…;以此规律,则图⑤中三角形的个数为()第16题图A. 48B. 56C. 61D. 6317. (2016徐州)如图,每个图案都由大小相同的正方形组成.按照此规律,第n 个图案中这样的正方形的总个数可用含n的代数式表示为________.第17题图18. (2016安顺改编)观察下列砌钢管的横截面图:第18题图则第5个图形中钢管数为________个.19. 如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图案中花盆的个数为6个,第2个图案中花盆的个数为12个,第3个图案中花盆的个数为20个,…,则第8个图案中花盆的个数为________.第19题图20. (2016龙岩改编)用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图①几何体表面积为6,图②几何体表面积为18,则图④中所示几何体的表面积为________.第20题图答案类型一探索图形累加规律1. B【解析】每个图形中白色纸片的个数依次是4,7,10,13,….那么,第n个图形中白色纸片的个数为3n+1,∴第12个图形中白色纸片的个数为3×12+1=37.2.A【解析】∵图①用了5根火柴,即5=5+4×0;图②用了9根火柴,即9=5+4×1;图③用了13根火柴,即13=5+4×2;…;以此规律,第○n个图形中,火柴的根数为5+4(n-1),故第⑧个图案用火柴棒的根数为5+4×(8-1)=33.3.B【解析】图①有2+3×0=2个黑色正方形;图②有2+3×1=5个黑色正方形;图③有2+3×2=8个黑色正方形;图④有2+3×3=11个黑色正方形,…,按照这个规律,图○n有2+3(n-1)个黑色正方形,故图⑩一共有2+3×9=29个黑色正方形.4.C【解析】第一个图形中有2个三角形:6×1-4=2;第二个图形中有8个三角形:6×2-4=8;第三个图形中有14个三角形:6×3-4=14;…;第n个图形中三角形的个数为:6n-4,故第五个图形中三角形的个数为:6×5-4=26.5. C【解析】第①个图形的周长为6+0×2=6,第②个图形的周长为6+1×2=8,第③个图形的周长为6+2×2=10,第④个图形的周长为6+3×2=12,…,依此规律,可知第○n个图形的周长为6+(n-1)×2,所以第⑧个图形的周长为6+7×2=20.6. D【解析】图①中有1×(1-1)+5=5个“○”,图②中有2×(2-1)+5=7个“○”,图③中有3×(3-1)+5=11个“○”,图④中有4×(4-1)+5=17个“○”,…,据此得出:图○n中有n(n-1)+5个“○”,则可得方程n(n-1)+5=245,解得n 1=16,n 2=-15(不合题意,舍去).7. B 【解析】观察图形可知,每个图案都是由横排小木棒和纵排小木棒搭建而成,且横排和纵排数相同,其中第(1)个图案有2横排,每排有1个小木棒;第(2)个图案有3横排,每排的小木棒个数分别为2,2,1;第(3)个图案有4横排,每排的小木棒个数分别为3,3,2,1;第(4)个图案有5横排,每排的小木棒个数分别为4,4,3,2,1,…;由此可推测第(n )个图案共有n +1横排,每排木棒个数分别为n ,n ,n -1,n -2,…,2,1,故第(6)个图案共有7横排,每排的小木棒个数分别为6,6,5,4,3,2,1,共有27根,则对应的纵排也有27根小木棒,则搭建第(6)个图案共需要小木棒54根.8. C 【解析】观察图形可以发现图①中黑色五角星的个数为1+2=3,图②中黑色五角星个数为1+2+1=4,图③中黑色五角星个数为1+2+1+2=6,图④中黑色五角星个数为1+2+1+2+1=7,图⑤中黑色五角星个数为1+2+1+2+1+2=9,…,则图○n 中,当n 为奇数时,黑色五角星个数为2)1(3+n ,当n 为偶数时,黑色五角星个数为123+n ,∴第⑬个图案需要的黑色五角星的个数为3×(13+1)2=21个. 9. B 【解析】第①个图形中正三角形的个数为:1+4,第②个图形中正三角形的个数为:1+4+3×4,第③个图形中正三角形的个数为:1+4+3×4+9×4,…,第○n 个图形中正三角形的个数为:1+4+3×4+9×4+…+3n -1×4,∴第④个图形中正三角形的个数为1+4+3×4+9×4+34-1×4=1+4+12+36+108=161.10. C 【解析】∵所有的小矩形都是大小相同的,第①个图形是由2个小矩形组成,面积为6,∴每个小矩形的面积是3,∵第①个图形中有2个小矩形,第②个图形中有6个小矩形,第③个图形中有12个小矩形,12=2+4+6=2×(1+2+3),第④个图形中有20个小矩形,20=2+4+6+8=2×(1+2+3+4),则第○n个图形中有2×(1+2+…+n)个小矩形,故第⑥个图形中小矩形的个数为2×(1+2+3+4+5+6)=42个,则其面积为42×3=126 cm2.11. A【解析】第(1)个图形中♥的个数为3=22-1;第(2)个图形中♥的个数为8=32-1;第(3)个图形中♥的个数为15=42-1;第(4)个图形中♥的个数为24=52-1;…,于是,第(n)个图形中♥的个数为(n+1)2-1,所以第(8)个图形中♥的个数为92-1=80(个),故选A.12.B【解析】图①中含“○”的矩形有1=2×12-1个,图②中含“○”的矩形有7=2×22-1个,图③中含“○”的矩形有17=2×32-1个,…,按此规律,则图○n中含“○”的矩形个数为2n2-1,所以图⑥中含“○”的矩形有2×62-1=71个,故选B.13. C【解析】由题意可知,摆第1个图案需要7=1+6枚棋子,摆第2个图案需要19=1+6+6×2枚棋子,摆第3个图案需要37=1+6+6×2+6×3枚棋子,…,则摆第n个图案需要1+6+6×2+6×3+…+6n=3n(n+1)+1枚棋子,所以摆第6个图案需要:3×6×(6+1)+1=127枚棋子,故选C.14. A【解析】∵第①个图形中空心小圆圈个数为:4×1-3+1×0=1个;第②个图形中空心小圆圈个数为:4×2-4+2×1=6个;第③个图形中空心小圆圈个数为:4×3-5+3×2=13个;…,依此规律,第○n个图形中空心小圆圈个数为:4n-(n+2)+n(n-1),∴第⑦个图形中空心小圆圈个数为:4×7-9+7×6=61个.15.B【解析】∵第①个图形中菱形个数为02+12=1个;第②个图形中菱形个数为12+22=5个;第③个图形中菱形个数为22+32=13个;第④个图形中菱形个数为32+42=25个,…,依此规律第○n个图形中菱形个数为(n-1)2+n2个,∴第⑥个图形中菱形个数为52+62=61个.16. D【解析】在图①中,线段BD上共有4个点,所得三角形的个数共15个,15=16-1=42-1;图②中,线段BD上共5个点,所得三角形的个数共24个,24=25-1=52-1;图③中,线段BD上共6个点,所得三角形的个数共35个,35=36-1=62-1,…,由此可猜想,图○n中,线段BD上共有n +3个点,所得三角形的个数为(n+3)2-1,∴图⑤中三角形的个数为(5+3)2-1=63.17. n(n+1)【解析】由题图知,第1、2、3个图案对应的小正方形的个数分别为2=1×2、6=2×3、12=3×4,…,∴第n个图案所对应的小正方形的个数为n(n+1).18. 45【解析】根据题意,可得序号 1 2 3 4钢管数 3 9 18 30找规律3×1 3×3=3×(1+2)3×6=3×(1+2+3)3×10=3×(1+2+3+4)综上可知,第5个图形中钢管数为3×(1+2+3+4+5)=3×15=45个.19. 90【解析】观察可得,第1个图案:正三角形每条边上有3个花盆,共计32-3个花盆;第2个图案:正四边形每条边上有4个花盆,共计42-4个花盆;第3个图案:正五边形每条边上有5个花盆,共计52-5个花盆;…;由此可知第n个图案:正(n+2)边形每条边上有(n+2)个花盆,共计(n+2)2-(n +2)个花盆,则第8个图案中花盆的个数为(8+2)2-(8+2)=90.20. 60【解析】图①几何体的表面积为:6=6×1;图②几何体的表面积为:18=6×(1+2);图③几何体的表面积为:6×(1+2+3)=36.由此规律得,图④几何体的表面积为:6×(1+2+3+4)=60.类型二探索图形循环规律针对演练1. 如图所示,两个全等的等边三角形的边长为1 m,一个微型机器人由A点开始按A→B→C→D→B→E→A的顺序沿等边三角形的边循环运动,行走2017 m 停下,则这个微型机器人停在()第1题图A. A点B. B点C. C点D. E点2.(2016重庆八中强化训练一)将正六边形ABCDEF的各边按如图所示延长,从射线F A开始,分别在各射线上标记点O1,O2,O3,…,按此规律,则点O2016所在射线是()第2题图A. ABB. DEC. BCD. EF3. 下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2017个梅花图案中,共有________个“”图案.第3题图4. 有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是________.第4题图5.如图,在平面直角坐标系中,已知点A(1, 1),B(-1, 1),C(-1, -2),D (1, -2),把一根长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在矩形ABCD的边上,则细线的另一端落在________线段上第5题图答案类型二探索图形循环规律1. B【解析】∵两个全等的等边三角形的边长为1 m,∴机器人由A点开始按A→B→C→D→B→E→A的顺序沿等边三角形的边循环运动一圈,即为6 m,∵2017÷6=336……1,即正好行走了336圈多1米,到第二个点,∴行走2017 m 停下,则这个微型机器人停在B点.2. C【解析】观察图形可知12个点依次排列在射线F A、CD、AB、DE、BC、EF、CD、F A、DE、AB、EF、BC上,依此规律循环,又因2016÷12=168,则点O2016在第12条射线BC上,故选C.3. 505【解析】观察题图可知,“”图案方向依次向上、向右、向下、向左,每四个图案为一个循环周期.∵2017÷4=504……1,∴前2017个梅花图案中,共有505个“”图案.4. 3【解析】观察可知,点数3与点数4相对,点数2与点数5相对,且循环周期为4. ∵2014÷4=503……2,∴滚动2014次后与第二次相同,∴骰子朝下一面的点数为3.5.CD【解析】∵矩形四个顶点的坐标分别为:A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴AB=CD=2,BC=AD=3,∴矩形的周长为2+3+2+3=10,则循环一周所需的单位长度是10,∵2016÷10=201……6,∴细线的另一端落在绕矩形第202圈的第6个单位长度的位置,即是点C与点D的中间位置,即在线段CD上.拓展类型数式规律针对演练1. (2016张家界)观察下列等式:71=7,72=42+92=97,73=343,74=2401,75=16807,76=117649,…,那么:71+72+73+…+72016的末位数字是() A. 9 B. 7 C. 6 D. 02. (2016丹东)观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是________.3. (2016贵港)已知a1=tt-1,a2=11-a1,a3=11-a2,…,a n+1=11-a n(n为正整数,且t≠0,1),则a2016=________(用含有t的代数式表示).4. (2016泉州)指出下列各图形中数的规律,依此,a的值为________.第4题图5. (2016南宁)观察下列等式:第1层1+2=3第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24…在上述数字宝塔中,从上往下数,2016在第________层.答案拓展类型 数式规律1. D 【解析】根据题意,7的幂的最终结果的末位数字是以7,9,3,1为循环,其和结果的末位数字是0,因为2016÷4=504,所以71+72+73+…+72016的末位数字是0.2. -12211 【解析】∵-2=-12+11,52=22+12,-103=-32+13,174=42+14,-265=-52+15,…,∴第11个数据是:-112+111=-12211. 3. t 1【解析】∵a 1=1-t t ,a 2=111--t t =1-t ,a 3=t +-111=t 1,a 4=t 111-=1-t t ,…,∴每3个一次循环,∵2016÷3=672,∴a 2016的值为t1. 4. 226 【解析】观察可得:2=1×0+2,10=2×3+4,26=4×5+6,50=6×7+8,…,可以得到规律:右下角三角形中的数字等于左下角三角形中的数字与正上方三角形中数字的积加上中间三角形中的数字,故a =14×15+16=226.5. 44 【解析】根据题中给出的式子,观察得出规律,第一层第一个数为12,第2层第一个数为22,第3层第一个数为32,…,∵442=1936,452=2025,且442<2016<452,∴2016位于第44层.。

中考数学专题复习— 探索规律问题 完整版 后附真题剖析

中考数学专题复习— 探索规律问题 完整版 后附真题剖析

解:(1)观察图 1 可知:中间的每个正方形都对应了两个等腰直角三角形, 所以每增加一块正方形地砖,等腰直角三角形地砖就增加 2 块.故答案 为 2. (2)观察图形 2 可知:中间一个正方形的左上、左边、左下共有 3 个等 腰直角三角形,它右上和右下各对应了一个等腰直角三角形,右边还有 1 个等腰直角三角形,即 6=3+2×1+1=4+2×1;图 3 和图 1 中间正方形右 上和右下都对应了两个等腰直角三角形,均有与图 2 一样的规律,图 3:8=3+2×2+1=4+2×2;归纳得:4+2n(即 2n+4); ∴若一条这样的人行道一共有 n(n 为正整数)块正方形地砖,则等腰直
中考数学专题复习
许多事物都存在着一定的规律性,只 要我们善于观察、勤于思考,就可以发现 它们,并利用它们来丰富我们的生活。
●解题思路
一、数字规律
例1
请你按照如下的数字规律,分别
写出第n个数字:(n为正整数)
① ②③ ④ ⑤
n
(1)2,4,6,8,10, … , _2_n__;
(2)1,3,5,7,9, … , 2n-1
一、选择题
1.平面上不重合的两点确定一条直线,不同三点最多可确定 3 条直线,
若平面上不同的 n 个点最多可确定 21 条直线,则 n 的值为 ( C )
A.5
B.6 C.7 D.8
2.(2021 山东临沂)实验证实,放射性物质在放出射线后,质量将减少,
减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某
•即时演练•
1.(2020 天水)观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…已

初中数学中考复习专题:找规律专项练习及答案解析(50道)

初中数学中考复习专题:找规律专项练习及答案解析(50道)

初中数学中考复习专题:找规律专项练习及答案解析(50道)以下是为大家整理的初中数学中考复习专题:找规律专项练习及答案解析(50道)的相关范文,本文关键词为初中,数学,中考,复习,专题,规律,专项,练习,答案,解析,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在中考初中中查看更多范文。

初中数学中考复习专题:找规律专项练习及答案解析(50道)一、选择题1、连结多边形不相邻的两个顶点的线段,叫做多边形的对角线.观察上述图形并阅读相关文字,思考回答问题:显然四边形对角线有2条;五边形的对角线有5条;对于六边形的对角线条数,光靠“数”数,也能数出来,但已感到较麻烦!需寻找规律!从一个顶点A 出发,显然有3条,同理从b出发也3条,每个顶点出发都是3条,但从c顶点出发,就有重复线段!用此方法算出六边形的对角线条数为a;且能归纳出n边形的对角线条数的计算方法;若一个n边形有35条对角线,则a和n的值分别为()A.12,20b.12,15c.9,10D.9,122、寻找规律计算1-2+3-4+5-6+…+20XX-20XX等于()A.0b.-1c.-1008D.10083、观察下列各式并找规律,再猜想填空:,则______.4、观察一列数:是(),,,,,……根据规律,请你写出第10个数A.c.b.D.共20页,第1页二、填空题5、观察一下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;……请你写出有以上规律的第⑤组勾股数:6、找规律填空:……7、已知察上面的计算过程,寻找规律并计算:=.…,观8、观察分析下列数据,寻找规律:0,据应是_________.,,3,2,……那么第10个数9、找规律.一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。

①2张桌子拼在一起可坐______人;(1分)3张桌子拼在一起可坐______人;(1分)n张桌子拼在一起可坐______人。

九年级数学中考规律探究题(附答案)

九年级数学中考规律探究题(附答案)

专题6 数学规律探究问题根据一列数或一组图形的特例进行归纳,猜想,找出一般规律,进而列出通用的代数式,称之为规律探究。

解决此类问题的关键是:“细心观察,大胆猜想,精心验证”。

一、数式规律探究通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法。

一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同位置的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。

数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:1.一般地,常用字母n表示正整数,从1开始。

2.在数据中,分清奇偶,记住常用表达式。

正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…偶数…2n-2,2n,2n+2…3.熟记常见的规律① 1、4、9、16......n2② 1、3、6、10……(1)2n n+数列的变化规律③ 1、3、7、15……2n -1④ 1+2+3+4+…n=(1)2n n+⑤ 1+3+5+…+(2n-1)= n2 数列的和⑥ 2+4+6+…+2n=n(n+1)数式规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:1.观察法例1.观察下列等式:①1×12=1-12②2×23=2-23③3×34=3-34④4×45=4-45……猜想第n个等式为(用含n的式子表示)分析:将等式竖排:1×12=1-12n=12×23=2-23n=23×34=3-34n=34×45=4-45n=4观察相应位置上变化的数字与序列号的对应关系(注意分清正整数的奇偶)易观察出结果为:n ×1n n +=n-1n n +例2.探索规律:31=3,32=9,33=27,34=81,35=243,36=729……,那么 32009的个位数字是 。

中考数学总复习专题一:探索规律问题含真题分类汇编解析

中考数学总复习专题一:探索规律问题含真题分类汇编解析

聚焦泰安类型一 数式规律(2016·绥化)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a 1,第二个三角数记为a 2,…第n 个三角数记为a n ,计算a 1+a 2,a 2+a 3,a 3+a 4,…,由此推算a 399+a 400= .1.(2017·遵义)按一定规律排列的一列数依次为23,1,87,119,1411,1713,…,按此规律,这列数中的第100个数是__________. 类型二 图形规律这类题目通常是给出一组图形的排列(或通过操作得到一系列的图形),探求图形的变化规律,以图形为载体考查图形所蕴含的数量关系.解决此类问题:先观察图案的变化趋势是增加还是减少,然后从第一个图形进行分析,运用从特殊到一般的探索方式,分析归纳找出增加或减少的变化规律,并用含有字母的代数式进行表示,最后用代入法求出特殊情况下的数值.(2016·重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .85【分析】 观察图形特点,可将图形分为两部分:上面的三角形和下面的正方形,因此小圆圈的个数分别是3+12,6+22,10+32,15+42,…,据此总结出规律求解即可.3.(2017·随州)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n =11时,芍药的数量为( )A .84株B .88株C .92株D .121株4.(2017·绵阳)如图,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+…+1a 19的值为( )A.2021B.6184C.589840D.431760 类型三 点的坐标规律这类问题要求探索图形在运动过程中的规律,通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.(2017·东营)如图,在平面直角坐标系中,直线l :y =33x -33与x 轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l 于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2 017的横坐标是.【分析】利用直线的表达式及等边三角形的性质计算出A1,A2,A3,A4的横坐标,得出规律,写出A2 017的横坐标即可.5.如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线y=x上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2 018的坐标是( )A.(22 017,22 017) B.(22 018,22 018)C.(22 017,22 018) D.(22 018,22 017)6.(2017·安顺)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3,…,依次均为等腰直角三角形,直角顶点都在x 轴上,则第n 个等腰直角三角形A n B n -1B n 的顶点B n 的横坐标为_________.参考答案【聚焦泰安】【例1】 ∵a 1+a 2=1+3=4=22,a 2+a 3=3+6=9=32,a 3+a 4=6+10=16=42,…,∴a n +a n +1=(n +1)2.∴a 399+a 400=4002=160 000.故答案为160 000. 变式训练 1. 299201 2.nn +1【例2】 通过观察,得到小圆圈的个数分别是: 第①个图形:3+12=(1+2)×22+12=4;第③个图形:10+32=(1+4)×42+32=19;第④个图形:15+42=(1+5)×52+42=31;…所以第n 个图形:(n +1)(n +2)2+n 2.当n =7时,图中小圆圈的个数为(7+2)(7+1)2+72=85.故选D .变式训练 3.B 4.C【例3】 由直线l :y =33x -33与x 轴交于点B 1,可得B 1(1,0),D(0,-33),∴OB 1=1,∠OB 1D =30°.如图,过A 1作A 1A⊥OB 1于A ,则OA =12OB 1=12,由题可得∠A 1B 2B 1=∠OB 1D =30°, ∠B 2A 1B 1=∠A 1B 1O =60°,∴∠A 1B 1B 2=90°,∴A 1B 2=2A 1B 1=2. 过A 2作A 2B⊥A 1B 2于B ,则A 1B =12A 1B 2=1,即A 2的横坐标为12+1=32=22-12.过A 3作A 3C⊥A 2B 3于C ,同理可得,A 2B 3=2A 2B 2=4,A 2C =12A 2B 3=2,即A 3的横坐标为12+1+2=72=23-12.同理可得,A 4的横坐标为12+1+2+4=152=24-12,由此可得,A n 的横坐标为2n -12,∴点A 2 017的横坐标为22 017-12.故答案为22 017-12.变式训练 5.A 6.2n +1-2。

2016年各地中考数学解析版试卷分类汇编(第2期)规律探索

2016年各地中考数学解析版试卷分类汇编(第2期)规律探索

A.671 B.672 C.673 D.674 【分析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加 3 个白色纸片;据此可得第 n 个图案中白色纸片数,从而可得关于 n 的方程,解方程可得. 【解答】解:∵第 1 个图案中白色纸片有 4=1+1× 3 张; 第 2 个图案中白色纸片有 7=1+2× 3 张; 第 3 个图案中白色纸片有 10=1+3× 3 张; … ∴第 n 个图案中白色纸片有 1+n× 3=3n+1(张) , 根据题意得:3n+1=2017,
规律探索
一.选择题 1.(2016· 4 分)如图,在平面直角坐标系中,函数 y=2x 和 y=﹣x 的图象分 山东省德州市· 别为直线 l1,l2,过点(1,0)作 x 轴的垂线交 l2 于点 A1,过点 A1 作 y 轴的垂线交 l2 于点 A2,过点 A2 作 x 轴的垂线交 l2 于点 A3,过点 A3 作 y 轴的垂线交 l2 于点 A4,…依次进行下 去,则点 A2017 的坐标为 (2
∴Bn(﹣2×
,1×
) ,
∵矩形 AnOCnBn 的对角线交点(﹣2×
× ,1×
× ) , 即(﹣

) ,
故答案为: (﹣

) .
4.(2016· 湖北黄 石· 3 分)观察下列等式:
第 1 个等式:a1= 第 2 个等式:a2= 第 3 个等式:a3= 第 4 个等式:a4=
= =
﹣1, ﹣ , ,
【解答】解:设图形 n 中星星的颗数是 an(n 为自然是), 观察,发现规律:a1=2,a2=6=a1+3+1,a3=11=a2+4+1,a4=17=a3+5+1,…, ∴an=2+ 令 n=8,则 a8=2+ 故选 C. 【点评】本题考查了规律 型中的图形的变化类,解题的关键是找出变化规律 “an=2+ ”.本题属于中档题,难度不大,解决该题型题目时,根据给定条 . =51.

中招数学规律探索型问题 (附答案)

中招数学规律探索型问题 (附答案)

类型一数字规律探索1.(2016.济宁)按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.2.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=117649,...则71+72+73+ (72017)末位数是——————。

3.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,…,试猜想,32017的个位数字是4.(2015•孝感)观察下列等式:1 2 =1,1+3=2 2 ,1+3+5=3 2 ,1+3+5+7=4 2 ,…,则1+3+5+7+…+2015=____________.5.(2016.南宁)观察下列等式:在上述数字宝塔中,从上往下数,2016在第层.类型二数式规律探索.6.古希腊数学家把数 1,3,6,10,15,21,······叫做三角数,它有一定的规律性,则第30个三角数减去第28个三角数的值为______7.古希腊数学家把数1,3,6,10,15,21……叫做三角形数,它有一定的规律性.若把第一个三角形数记为,第二个三角形数记为,……,第个三角形数记为,计算……,由此推算,____________,__________.8.(2015•武威)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是,2016是第个三角形数.类型三图形规律探索9. (2016.重庆)观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()A .43B .45C .51D .5310. 如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 9的值为( )A .()6B .()7C .()6 D .()711. 如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x= ,一般地,用含有m ,n 的代数式表示y ,即y=12.(2015.河南)在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则2015秒时,点P 的坐标是( )A.(2014,0)B.(2015,-1)C.(2015,1)D.(2015,0)13.(2015•宜宾)如图,以点O 为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为( )A.231πB.210πC.190πD.171π类型四坐标中的规律探索14. (2016•聊城)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是14题图15题图15. 如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等边三角形,且点A1,A3,A5,A7,A9的坐标分别为A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依据图形所反映的规律,则A100的坐标为.16.(2015•丹东,)如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△AnAn+1Bn均为等边三角形,点A1、A2、A3…An+1在x轴的正半轴上依次排列,点B1、B2、B3…Bn在直线OD上依次排列,那么点Bn的坐标为.答案1.【解答】解:把整数1化为,得,,,(),,,…可以发现后一个数的分子恰是前面数的分母,所以,第4个数的分子是2,分母是3,故答案为:.2.答案73.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,…,试猜想,32017的个位数字是3.【解答】解:设n为自然数,∵34n+1的个位数字是3,与31的个位数字相同,34n+2的个位数字是9,与32的个位数字相同,34n+3的个位数字是7,与33的个位数字相同,34n的个位数字是1,与34的个位数字相同,∴32016=3504×4的个位数字与34的个位数字相同,应为1,故答案为:34.(2015•孝感)观察下列等式:1 2 =1,1+3=2 2 ,1+3+5=3 2 ,1+3+5+7=4 2 ,…,则1+3+5+7+…+2015= ——————————.4.解答:解:因为 1=1 2 ;1+3=2 2 ;1+3+5=3 2 ;1+3+5+7=4 2 ;…,所以 1+3+5+…+2015=1+3+5+…+(2×1008﹣1)=1008 2=1016064故答案为:1016064.【解答】解:第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,∵442=1936,452=2025,又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层,故答案为:44类型二数式规律探索.由三角数规律可知,可知三角数的每一项中后一项比前一项多的点数为后一项最底层的点数,因而可知第30项比第29个项点数多30个,而第29项比第28项多29个,故可求出第30个三角数比第28个三角数多的点数59个7.解答:解:a 2-a1=3-1=2;a 3-a2=6-3=3;a 4-a3=10-6=4;…;a n -an-1=n.所以a100-a99=100.∵(a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1)=2+3+4+…+n=-1=an -a1,∴a100==5050.类型三图形规律探索9.【解答】解:设图形n中星星的颗数是a n(n为自然是),观察,发现规律:a1=2,a2=6=a1+3+1,a3=11=a2+4+1,a4=17=a3+5+1,…,∴a n=2+.令n=8,则a8=2+=51.10.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD 的边长为2,△CDE 为等腰直角三角形, ∴DE 2+CE 2=CD 2,DE=CE , ∴S 2+S 2=S 1.观察,发现规律:S 1=22=4,S 2=S 1=2,S 3=S 2=1,S 4=S 3=,…,∴S n =()n ﹣3.当n=9时,S 9=()9﹣3=()6, 故选:A .11.【解答】解:观察,发现规律:3=1×(2+1),15=3×(4+1),35=5×(6+1), ∴x=7×(8+1)=63,y=m (n +1). 故答案为:63;m (n +1). 12.【解析】:一个半圆的周长是πr=π,速度×时间=2π×2015, 设点P 走了n 个半圆,则有2π×2015=n π,所以n=20152个2,即100712个2,1007个2时正好是上半圆弧,还有12半圆弧,正好在下半圆弧的中点,因此的P 在(2015,-1)处。

2016年中考数学专题规律演练题2

2016年中考数学专题规律演练题2

2016年中考数学专题猜想、探索规律型2一、选择题1.如图,小陈从O 点出发,前进5米后向右转20O, 再前进5米后又向右转20O,……,这样一直走下去, 他第一次回到出发点O 时一共走了().A .60米 B .100米 C .90米 D .120米2.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数( )粒。

A 、12+nB 、12-nC 、n 2D 、2+n3.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭;第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭. 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( ) A .第10个数 B .第11个数 C .第12个数 D .第13个数 4.(对于每个非零自然数n ,抛物线与x 轴交于A n 、B n 两点,以表示这两点间的距离,则的值是A .B .C .D .5.观察下列图形,则第n 个图形中三角形的个数是()A .22n +B .44n +C .44n -D .4n6.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A .13 = 3+10B .25 = 9+16 C36 = 15+21 D .49 = 18+31二、填空题1.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。

中考数学备考专题复习探索规律问题含解析含答案

中考数学备考专题复习探索规律问题含解析含答案

探索规律问题一、单选题(共7题;共14分)1、(2016•重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A、64B、77C、80D、852、(2016•重庆)观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()A、43B、45C、51D、533、(2016•邵阳)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A、y=2n+1B、y=2n+nC、y=2n+1+nD、y=2n+n+1 4、(2016•临沂)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A、2n+1B、n2﹣1C、n2+2nD、5n﹣25、(2016•荆州)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A、671B、672C、673D、6746、(2016•永州)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A、①②B、①③C、②③D、①②③7、(2016•青海)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A、()6B、()7C、()6D、()7二、填空题(共14题;共15分)8、(2016•宁波)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需________根火柴棒.9、(2016•济宁)按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为________.10、(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1, P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为________.11、(2016•内江)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有________个小圆•(用含n的代数式表示)12、(2016•新疆)如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x 的值为________.13、(2016•百色)观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=________14、(2016•丹东)观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是________.15、(2016•泉州)找出下列各图形中数的规律,依此,a的值为________.16、(2016•铜仁市)如图是小强用铜币摆放的4个图案,根据摆放图案的规律,试猜想第n个图案需要________个铜币.17、(2016•益阳)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是________枚.18、(2016•徐州)如图,每个图案都由大小相同的正方形组成,按照此规律,第n个图案中这样的正方形的总个数可用含n的代数式表示为________.19、(2016•青海)如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x=________,一般地,用含有m,n的代数式表示y,即y=________.20、(2016•曲靖)等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是________.21、(2016•葫芦岛)如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线y= x于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y 轴,分别交直线y=x和y= x于A2, B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△A n B n C n的面积为________(用含正整数n 的代数式表示)三、综合题(共4题;共46分)22、(2016•连云港)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?23、(2016•台州)【操作发现】在计算器上输入一个正数,不断地按“ ”键求算术平方根,运算结果越来越接近1或都等于1.【提出问题】输入一个实数,不断地进行“乘以常数k,再加上常数b”的运算,有什么规律?【分析问题】我们可用框图表示这种运算过程(如图a).也可用图象描述:如图1,在x轴上表示出x1,先在直线y=kx+b上确定点(x1, y1),再在直线y=x上确定纵坐标为y1的点(x2, y1),然后再x轴上确定对应的数x2,…,以此类推.【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果x,怎样变化.(1)若k=2,b=﹣4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;(2)若k>1,又得到什么结论?请说明理由;(3)①若k=﹣,b=2,已在x 轴上表示出x 1(如图2所示),请在x 轴上表示x 2 , x 3 , x 4 , 并写出研究结论;②若输入实数x 1时,运算结果x n 互不相等,且越来越接近常数m ,直接写出k 的取值范围及m 的值(用含k ,b 的代数式表示)24、(2016•云南)有一列按一定顺序和规律排列的数: 第一个数是; 第二个数是; 第三个数是;…对任何正整数n ,第n 个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a ,那么 ,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 数),并且证明你的猜想满足“第n 个数与第(n+1)个数的和等于”;(3)设M 表示,,,…,,这2016个数的和,即,求证:.25、(2016•北京)已知y 是x 的函数,自变量x 的取值范围x >0,下表是y 与x 的几组对应值:y 与x 之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象; (2)根据画出的函数图象,写出: ①x=4对应的函数值y 约为________ ②该函数的一条性质:________答案解析部分一、单选题2、【答案】D【考点】探索图形规律【解析】【解答】解:通过观察,得到小圆圈的个数分别是:第一个图形为:+12=4,第二个图形为:+22=6,第三个图形为:+32=10,第四个图形为:+42=15,…,所以第n个图形为:+n2,当n=7时,+72=85,故选D.分析:此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.2、【答案】C【考点】探索图形规律【解析】【解答】解:设图形n中星星的颗数是a n(n为自然是),观察,发现规律:a1=2,a2=6=a1+3+1,a3=11=a2+4+1,a4=17=a3+5+1,…,∴a n =2+ .令n=8,则a8=2+ =51.故选C.【分析】设图形n中星星的颗数是a n(n为自然是),列出部分图形中星星的个数,根据数据的变化找出变化规律“a n =2+ ”,结合该规律即可得出结论.本题考查了规律型中的图形的变化类,解题的关键是找出变化规律“a n =2+ ”.本题属于中档题,难度不大,解决该题型题目时,根据给定条件列出部分数据,根据数据的变化找出变化规律是关键.2、【答案】B【考点】探索数与式的规律【解析】【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.【分析】由题意可得下边三角形的数字规律为:n+2n,继而求得答案.此题考查了数字规律性问题.注意根据题意找到规律y=2n+n是关键.2、【答案】C【考点】探索图形规律【解析】【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.2、【答案】B【考点】探索图形规律【解析】【解答】解:∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;…∴第n个图案中白色纸片有1+n×3=3n+1(张),根据题意得:3n+1=2017,解得:n=672,故选:B.【分析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.本题考查了图形的变化问题,观察出后一个图形比前一个图形的白色纸片的块数多3块,从而总结出第n个图形的白色纸片的块数是解题的关键.2、【答案】B【考点】实数的运算,定义新运算【解析】【解答】解:①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1= ,所以此选项正确;故选B.【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.此题考查了指数运算和新定义运算,发现运算规律是解答此题的关键.2、【答案】A【考点】勾股定理【解析】【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2, DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2= S1=2,S3= S2=1,S4= S3= ,…,∴S n=()n﹣3.当n=9时,S9=()9﹣3=()6,故选:A.【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=()n﹣3”,依此规律即可得出结论.本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=()n﹣3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.二、填空题2、【答案】50【考点】坐标与图形变化-平移【解析】【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根,令n=7可得答案.此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.2、【答案】【考点】探索数与式的规律【解析】【解答】解:把整数1化为,得,,,(),,,…可以发现后一个数的分子恰是前面数的分母,所以,第4个数的分子是2,分母是3,故答案为:.【分析】把整数1化为,可以发现后一个数的分子恰是前面数的分母,分析即可求解.此题主要考查数列的规律探索,把整数统一为分数,观察找出存在的规律是解题的关键.2、【答案】(504,﹣504)【考点】探索图形规律【解析】【解答】解:由规律可得,2016÷4=504,∴点P2016的在第四象限的角平分线上,∵点P4(1,﹣1),点P8(2,﹣2),点P12(3,﹣3),∴点P2016(504,﹣504),故答案为(504,﹣504).【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P2016的在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四项象限内点的符号得出答案即可.本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.2、【答案】4+n(n+1)【考点】探索图形规律【解析】【解答】解:根据第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,∵6=4+1×2,10=4+2×3,16=4+3×4,24=4+4×5…,∴第n个图形有:4+n(n+1).故答案为:4+n(n+1),【分析】本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.2、【答案】370【考点】探索数与式的规律【解析】【解答】解:∵左下角数字为偶数,右上角数字为奇数,∴2n=20,m=2n﹣1,解得:n=10,m=19,∵右下角数字:第一个:1=1×2﹣1,第二个:10=3×4﹣2,第三个:27=5×6﹣3,∴第n个:2n(2n﹣1)﹣n,∴x=19×20﹣10=370.故答案为:370.【分析】首先观察规律,求得n与m的值,再由右下角数字第n个的规律:2n(2n﹣1)﹣n,求得答案.此题考查了数字规律性问题.注意首先求得n与m的值是关键.2、【答案】a2017﹣b2017【考点】多项式乘多项式,平方差公式【解析】【解答】解:(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017,故答案为:a2017﹣b2017【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.此题考查了平方差公式,以及多项式乘以多项式,弄清题中的规律是解本题的关键.2、【答案】-【考点】探索数与式的规律【解析】【解答】解:∵﹣2=﹣,,﹣,,﹣,…,∴第11个数据是:﹣=﹣.故答案为:﹣.【分析】此题主要考查了数字变化类,正确得出分子与分母的变化规律是解题关键.根据题意可得:所有数据分母为连续正整数,第奇数个是负数,且分子是连续正整数的平方加1,进而得出答案.2、【答案】226【考点】探索数与式的规律【解析】【解答】解:根据题意得出规律:14+a=15×16,解得:a=226;故答案为:226.【分析】由0+2=1×2,2+10=3×4,4+26=5×6,6+50=7×8,得出规律,即可得出a的值.本题考查了数字的变化美;根据题意得出规律是解决问题的关键.2、【答案】n(n+1)【考点】数据分析【解析】【解答】解:n=1时,铜币个数=1+1=2;当n=2时,铜币个数=1+2+2=4;当n=3时,铜币个数=1+2+2+3=7;当n=4时,铜币个数=1+2+2+3+4=11;…第n 个图案,铜币个数=1+2+3+4+…+n= n(n+1).故答案为:n(n+1).【分析】找出相邻两个图形铜币的数目的差,从而可发现其中的规律,于是可求得问题的答案.本题主要考查的是图形的变化规律,找出其中的规律是解题的关键.2、【答案】13【考点】探索数与式的规律【解析】【解答】解:设第n个图形有a n个旗子,观察,发现规律:a1=1,a2=1+2=3,a3=3+1=4,a4=4+2=6,a5=6+1=7,…,a2n+1=3n+1,a2n+2=3(n+1)(n为自然数).当n=4时,a9=3×4+1=13.故答案为:13.【分析】设第n个图形有a n个旗子,罗列出部分a n的值,根据数值的变化找出变化规律“a2n+1=3n+1,a2n+2=3(n+1)(n为自然数)”,依次规律即可解决问题.本题考查了规律型中得图形的变化类,解题的关键是找出变化规律“a2n+1=3n+1,a2n+2=3(n+1)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,找出部分图形的棋子数目,根据数的变化找出变化规律是关键.2、【答案】n(n+1)【考点】探索图形规律【解析】【解答】解:设第n个图案中正方形的总个数为a n,观察,发现规律:a1=2,a2=2+4=6,a3=2+4+6=12,…,∴a n =2+4+…+2n= =n(n+1).故答案为:n(n+1).【分析】设第n个图案中正方形的总个数为a n,根据给定图案写出部分a n的值,根据数据的变化找出变换规律“a n=n(n+1)”,由此即可得出结论.本题考查了规律型中的图形的变化类,解题的关键是找出变换规律“a n=n(n+1)”.本题属于基础题,难度不大,根据给定图案写出部分图案中正方形的个数,根据数据的变化找出变化规律是关键.2、【答案】63;m(n+1)【考点】探索数与式的规律【解析】【解答】解:观察,发现规律:3=1×(2+1),15=3×(4+1),35=5×(6+1),∴x=7×(8+1)=63,y=m(n+1).故答案为:63;m(n+1).【分析】观察给定图形,发现右下的数字=右上数字×(左下数字+1),依此规律即可得出结论.本题考查了规律型中的图形的变化类以及数字的变化类,解题的关键是找出变换规律“右下的数字=右上数字×(左下数字+1)”.本题属于基础题,难度不大,解决该题型题目时,根据图形中数字的变化找出变化规律是关键.2、【答案】77【考点】等腰三角形的性质,坐标与图形变化-旋转【解析】【解答】解:由题意可得,每翻转三次与初始位置的形状相同,15÷3=5,故第15次翻转后点C的横坐标是:(5+5+6)×5﹣3=77,故答案为:77.【分析】根据题意可知每翻折三次与初始位置的形状相同,第15次于开始时形状相同,故以点B 为参照点,第15次的坐标减去3即可的此时点C的横坐标.本题考查坐标与图形变化﹣旋转,等腰三角形的性质,解题的关键是发现其中的规律,每旋转三次为一个循环.2、【答案】【考点】等腰直角三角形【解析】【解答】解:∵点A1(2,2),A1B1∥y轴交直线y= x于点B1,∴B1(2,1)∴A1B1=2﹣1=1,即△A1B1C1面积= ×12= ;∵A1C1=A1B1=1,∴A2(3,3),又∵A2B2∥y轴,交直线y= x于点B2,∴B2(3,),∴A2B2=3﹣= ,即△A2B2C2面积= ×()2= ;以此类推,A3B3= ,即△A3B3C3面积= ×()2= ;A4B4= ,即△A4B4C4面积= ×()2= ;…∴A n B n=()n﹣1,即△A n B n C n的面积= ×[()n﹣1]2= .故答案为:【分析】先根据点A1的坐标以及A1B1∥y轴,求得B1的坐标,进而得到A1B1的长以及△A1B1C1面积,再根据A2的坐标以及A2B2∥y轴,求得B2的坐标,进而得到A2B2的长以及△A2B2C2面积,最后根据根据变换规律,求得A n B n的长,进而得出△A n B n C n的面积即可.本题主要考查了一次函数图象上点的坐标特征以及等腰直角三角形的性质,解决问题的关键是通过计算找出变换规律,根据A n B n的长,求得△A n B n C n的面积.解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b.三、综合题2、【答案】(1)解:分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,0),B(3,4)代入得,解得:,∴y=﹣2x+10;②当x>3时,设y= ,把(3,4)代入得:m=3×4=12,∴y= ;综上所述:当0≤x≤3时,y=﹣2x+10;当x>3时,y=(2)解:能;理由如下:令y= =1,则x=12<15,故能在15天以内不超过最高允许的1.0mg/L【考点】一次函数的应用【解析】【分析】(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,0),B(3,4)代入得出方程组,解方程组即可;②当x>3时,设y= ,把(3,4)代入求出m的值即可;(2)令y= =1,得出x=12<15,即可得出结论.本题考查了方程式的应用、反比例函数的应用;根据题意得出函数关系式是解决问题的关键.2、【答案】(1)解:若k=2,b=﹣4,y=2x﹣4,取x1=3,则x2=2,x3=0,x4=﹣4,…取x1=4,则x2x3=x4=4,…取x1=5,则x2=6,x3=8,x4=12,…由此发现:当x1<4时,随着运算次数n的增加,运算结果x n越来越小.当x1=4时,随着运算次数n的增加,运算结果x n的值保持不变,都等于4.当x1>4时,随着运算次数n的增加,运算结果x n越来越大(2)解:当x1>时,随着运算次数n的增加,x n越来越大.当x1<时,随着运算次数n的增加,x n越来越小.当x1= 时,随着运算次数n的增加,x n保持不变.理由:如图1中,直线y=kx+b与直线y=x的交点坐标为(,),当x1>时,对于同一个x的值,kx+b>x,∴y1>x1∵y1=x2,∴x1<x2,同理x2<x3<…<x n,∴当x1>时,随着运算次数n的增加,x n越来越大.同理,当x1<时,随着运算次数n的增加,x n越来越小.当x1= 时,随着运算次数n的增加,x n保持不变(3)解:①在数轴上表示的x1, x2, x3如图2所示.随着运算次数的增加,运算结果越来越接近.②由(2)可知:﹣1<k<1且k≠0,由消去y得到x=∴由①探究可知:m= .【考点】一次函数的性质【解析】【分析】(1)分x1<4,x1=4,x1>4三种情形解答即可.(2)分x1>,x1<,x1= 三种情形解答即可.(3)①如图2中,画出图形,根据图象即可解决问题,x n的值越来越接近两直线交点的横坐标.②根据前面的探究即可解决问题.本题考查一次函数综合题以及性质,解题的关键是学会从一般到特殊探究规律,学会利用规律解决问题,属于中考常考题型.2、【答案】(1)解:由题意知第5个数a= = ﹣(2)解:∵第n个数为,第(n+1)个数为,∴ + = (+ )= ×= ×= ,即第n个数与第(n+1)个数的和等于(3)解:∵1﹣= <=1,= <<=1﹣,﹣= <<= ﹣,…﹣= <<= ﹣,﹣= <<= ﹣,∴1﹣<+ + +…+ + <2﹣,即<+ + +…+ + <,∴【考点】分式的混合运算,探索数与式的规律【解析】【分析】(1)由已知规律可得;(2)先根据已知规律写出第n、n+1个数,再根据分式的运算化简可得;(3)将每个分式根据﹣= <<= ﹣,展开后再全部相加可得结论.本题主要考查分式的混合运算及数字的变化规律,根据已知规律= ﹣得到﹣= <<= ﹣是解题的关键.2、【答案】(1)解:如图,(2)2;该函数有最大值【考点】函数的概念【解析】【解答】解:①x=4对应的函数值y约为2;②该函数有最大值.故答案为2,该函数有最大值.【分析】本题考查了函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.(1)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为4所对应的函数值即可;②利用函数图象有最高点求解.。

中考数学找规律练习题(20道-后附答案)

中考数学找规律练习题(20道-后附答案)

中考数学找规律练习题(20道,后附答案)一:数式问题1.已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a ab b+=⨯(a 、b 为正整数)则a b +=.2.有一列数a 1,a 2,a 3,a 4,a 5,…,a n ,其中a 1=5×2+1,a 2=5×3+2,a 3=5×4+3,a 4=5×5+4,a 5=5×6+5,…,当a n =2009时,n 的值等于()A.2010B.2009C.401D.3343.有一组单项式:a 2,-a 32,a 43,-a 54,….观察它们构成规律,用你发现的规律写出第10个单项式为.4.有一列数1234251017--,,,…,那么第7个数是.5.观察下列等式:111122⨯=-,222233⨯=-,333344⨯=-,……(1)猜想并写出第n 个等式;(2)证明你写出的等式的正确性.6.将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第行第列.第1列第2列第3列第4列第1行123第2行654第3行789第4行121110……7.将正整数1,2,3,…从小到大按下面规律排列.若第4行第2列的数为32,则①n=;②第i行第j列的数为(用i,j表示).第1列第2列第3列…第n列第1行123…n第2行1+n2+n3+n…n2第3行12+n22+n32+n…n3………………二:定义运算问题8、有一列数1a,2a,3a, ,n a,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a=,则2007a为()A.2007B.2C.12D.1-三:剪纸问题9.如图(9),把一个正方形三次对折后沿虚线剪下则得到的图形是()10题图四:数形结合问题10、已知,A、B、C、D、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是(用含π的代数式表示)11、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a.根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为.12、如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为.四:图形问题13.如图所示,已知:点(00)A ,,3B ,,(01)C ,在ABC △内依次作yxO P 1P 2P 3P4P 5A 1A 2A 3A 4A 5(第12题图)2y x=第14题图C 2D 2C 1D 1CD AB等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B A B △,…,则第n 个等边三角形的边长等于()14.如图,边长为1的菱形ABCD 中,︒=∠60DAB .连结对角线AC ,以AC 为边作第二个菱形11D ACC ,使︒=∠601AC D ;连结1AC ,再以1AC 为边作第三个菱形221D C AC ,使︒=∠6012AC D ;……,按此规律所作的第n 个菱形的边长为.15.如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则n S =________ABC S △(用含n 的代数式表示).16.用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角O yx(A )A 1C112B A 2A 3B 3B 2B 1第13题图BCAE 1E 2E 3D 4D 1D 2D 3(第15题)(第16题)形,则第n个图案中正三角形的个数为(用含n 的代数式表示).17.如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子枚.18.观察下列图形(每幅图中最小..的三角形都是全等的),请写出第n 个图中最小..的三角形的个数有个.19.观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有个★.五:对称问题20.在平面直角坐标系中,已知3个点的坐标分别为1(11)A ,、2(02)A ,、3(11)A ,.一只电子蛙位于坐标原点处,第1次电子蛙由原点第1个图第2个图第3个图第4个图(第18题图)第17题图图案1图案2图案3……跳到以A为对称中心的对称点1P,第2次电子蛙由1P点跳到以2A为对1称中心的对称点P,第3次电子蛙由2P点跳到以3A为对称中心的对称2点P,…,按此规律,电子蛙分别以1A、2A、3A为对称中心继续跳下3去.问当电子蛙跳了2009次后,电子蛙落点的坐标是P(_______,2009_______).参考答案1、8+63=712、D3、-a11104、-7505、(1)n×=n-;(2)证明见解析.【解析】试题分析:(1)等号左边第一个因数为整数,与第二个因数的分子相同,第二个因数的分母比分子多1;等号右边为等号左边的第一个数式-第二个因数,即n×=n-;(2)把左边进行整式乘法,右边进行通分.试题解析:(1)猜想:n×=n-;(2)证:右边==左边,即n×=n-考点:规律型:数字的变化类.6、670,第三列7、1010(i-1)+j8、D 9、C 10、13π-2611、1012、1/513、14、15、16、2n+217、30218、19、4920、(2,2)。

重庆市2016中考数学 第二部分 题型研究 一、选填重难点突破 题型一 规律探索题

重庆市2016中考数学 第二部分 题型研究 一、选填重难点突破 题型一 规律探索题

规律探索题类型一探索图形排列规律针对演练1. (2015崇左)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有( )第1题图A. 160B. 161C. 162D. 1632. (2015绵阳)将一些相同的“O”按如图所示的规律依次摆放,观察每个“龟图”中的“O”的个数,若第n个“龟图”中有245个“O”,则n=( )第2题图A. 14B. 15C. 16D. 173. (2013重庆A卷)下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为 2 cm2,第(2)个图形的面积为8 cm2,第(3)个图形的面积为18 cm2,…,则第(10)个图形的面积为 ( )第3题图A. 196 cm2B. 200 cm2C. 216 cm2D. 256 cm24. 如图①是一块瓷砖的图案,用这种瓷砖铺设地面,如果铺成一个如图②的图案,其中完整的圆共有5个,如果铺设成如图③的图案,其中完整的圆共有13个,如果铺成如图④的图案,其中完整的圆共有25个,以此规律下去,第10个图中,完整的圆共有 ( )第4题图A. 100个B. 101个C. 181个D. 221个5. 如图,某同学在沙滩上用石子摆小房子,观察图形的变化规律,写出第⑨个小房子用的石子总数为 ( )第5题图A. 155B. 147C. 145D. 1466. 下列图形都是由面积为1的正方形按一定的规律组成,其中,第①个图形中面积为1的正方形有9个,第②个图形中面积为1的正方形有14个,…,按此规律,则第⑦个图形中面积为1的正方形的个数为 ( )第6题图A. 22B. 30C. 39D. 507. (2015重庆B卷)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依此规律,图⑩中黑色正方形的个数是 ( )第7题图A. 32B. 29C. 28D. 268. (2014重庆B卷)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是 ( )第8题图A. 22B. 24C. 26D. 289. 用同样大小的黑色五角星按如图所示的方式摆图案,按照这样的规律摆下去,第13个图案需要的黑色五角星的个数是 ( )第9题图A. 20B. 21C. 22D. 2310. 如图,下列是由边长为2的等边三角形按照一定规律排列而成,第一个图形的周长为6,第二个图形的周长为8,将若干个等边三角形按照这样的规律来摆放,则第8个图形的周长为 ( )第10题图A. 18B. 19C. 20D. 2111. 观察下列一组图形,其中图①中共有6个小黑点,图②中共有16个小黑点,图③中共有31个小黑点,…,按此规律,图⑤中小黑点的个数是 ( )第11题图A. 46B. 51C. 61D. 7612. (2015内江)如图是由火柴棒搭成的几何图案,则第n个图案中有根火柴棒(用含n的代数式表示).第12题图13. (2015昆明)用火柴棒按如图所示的方式摆大小不同的“H”,依此规律,摆出第9个“H”需用火柴棒根.第13题图14. (2015深圳)观察下列图形,它们是按照一定规律排列的,依照此规律,第五个图有个太阳.第14题图15. (2015三明)观察下列图形的构成规律,依照此规律,第10个图形中共有个“●”.第15题图16. (2015山西)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…,依此规律,第n个图案有个三角形(用含n的代数式表示).第16题图17. (2015莆田)谢尔宾斯基地毯,最早是由波兰数学家谢尔宾斯基这样制作出来的:把一个正三角形分成全等的4个小正三角形,挖去中间的一个小正三角形;对剩下的3个小正三角形再分别重复以上做法…将这种做法继续进行下去,就得到小格子越来越多的谢尔宾斯基地毯(如图).若图①中的阴影三角形面积为1,则图⑤中的所有阴影三角形的面积之和是 .第17题图18. (2015随州)观察下列图形规律:当n= 时,图形中“●”的个数和“△”的个数相等.第18题图【答案】针对演练1. B【解析】第1个图形中正三角形的个数为:1+4,第2个图形中正三角形的个数为:1+4+3×4,第3个图形中正三角形的个数为:1+4+3×4+9×4,…,第n个图形中正三角形的个数为:1+4+3×4+9×4+…+3n-1×4,∴第4个图形中正三角形个数为1+4+3×4+9×4+34-1×4=1+4+12+36+108=161.2. C【解析】设每一个图形中“○”的个数为a n,则根据图形变化由图可知,每个图固定有由表知,这组图的变化规律为5+(-1),∵第个图有245个“○”,∴5+(-1)=245,解得n=16或n=-15(舍去),故n=16.3. B【解析】第(1)个图形的面积为1×1×2=2;第(2)个图形的面积为2×2×2=8;第(3)个图形的面积为3×3×2=18;第(4)个图形的面积为4×4×2=32;…;由此规律可以得出每个图形都是由小矩形所组成,共有n×n个小矩形.故第(n)个图形的总面积为n 2×2=2n 2.故第(10)个图形的面积为102×2=200 cm 2.4. C 【解析】观察图形可知,第②个图形中,每个小瓷砖有1个完整小圆,小圆的数目是4=22,而每4个小瓷砖中有一个完整的大圆,大圆个数为1;图③中,小圆有9=32个,大圆有4=(3-1)2个;图④中,小圆有16=42个,大圆有9=(4-1)2个;∴图⑩中圆的个数等于小圆个数加上大圆个数为102+(10-1)2=181个. 5. C 【解析】要找这个小房子的规律,可以分为两部分来看:第一个屋顶是1,第二个屋顶是3,第三个屋顶是6,以此类推,第n 个屋顶是2)1(+n n .第一个下边是4,第二个下边是9,第三个下边是16,以此类推,第n 个下边是(n +1)2.两部分相加即可得出第n 个小房子用的石子数是(n +1)2+2)1(+n n ,代入n =9即可确定答案.所以第⑨个小房子用的石子总数为(9+1)2+2)19(9+=100+45=145. 6. C 【解析】第①个图形面积为1的小正方形有9个,第②个图形面积为1的小正方形有9+5=14个,第③个图形面积为1的小正方形有9+5×2=19个,…第个图形面积为1的小正方形有9+5×(n -1)=5n +4个,所以第⑦个图形面积为1的小正方形有5×7+4=39个.7. B 【解析】图①有2个黑色正方形;图②有2+3=5个黑色正方形;图③有2+3×2=8个黑色正方形;图④有2+3×3=11个黑色正方形,…,按照这个规律,图⑩一共有2+3×9=29个黑色正方形. 8. C 【解析】第一个图形中有2个三角形:6×1-4=2;第二个图形中有8个三角形:6×2-4=8;第三个图形中有14个三角形:6×3-4=14;…第n 个图形中有三角形的个数为:6n -4.由以上规律可得,第五个图形中有三角形的个数为:6×5-4=26.9. B 【解析】当n 为奇数时:通过观察发现每个图形的每一行有21+n 个,故共有2)1(3+n 个.当n 为偶数时:中间一行有2n +1个,第一行、第三行有2n 个,故共有23n+1个.∴当n =13时,共有2)113(3+=21个.10. C 【解析】第1个图形的周长为6,第2个图形的周长为6+2,第3个图形的周长为6+2×2=10,第4个图形的周长为6+3×2=12,所以第8个图形的周长为6+7×2=20. 11. D 【解析】由图形①、②、③可以看出,第①个图形小黑点的个数:5×1+1=6;第②个图形小黑点的个数:5×(1+2)+1=16;第③个图形小黑点的个数:5×(1+2+3)+1=31;所以第⑤个图形小黑点的个数:5×(1+2+3+4+5)+1=76.12. 2n (n +1)【解析】由图形规律可得当n =1时,火柴棒个数为4×1=4;当n =2时,火柴棒个数为4×3=12;当n =3时,火柴棒个数为4×6=24;依次类推,可得第n 个图案中火柴棒个数为2)1(+n n ×4=2n (n +1). 13. 29【解析】先从前面三个所需的火柴棒数,得出规律来,再按照规律进行计算.具体见∴第9个“H ”所需的火柴棒的数量为3×9+2=29根. 14. 21【解析】第一行太阳的个数为1、2、3、4、…、n ,第五个图形第一行太阳的个数为5,第二行太阳的个数为1、2、4、8、…、2n -1,第五个图形第二行太阳的个数为24=16,所以第五个图形共有5+16=21个太阳.15. 111【解析】由图形可知:第1个图形中,“●”的个数为1×2+1=3,第2个图形中,“●”的个数为2×3+1=7,第3个图形中,“●”的个数为3×4+1=13,第4个图形中,“●”的个数为4×5+1=21,…,所以第n 个图形中,“●”的个数为n (n +1)+1,故第10个图形中,“●”的个数为10×11+1=111. 16. 3n +1【解析】本题考查图形规律探索.第(1)个图案中小三角形的个数为4个,第(2)个图案中小三角形的个数为7个,第(3)个图案中小三角形的个数为10个,…,依此类推.17.25681【解析】图②阴影部分面积=1-41=43,图③阴影部分面积=43×43=(43)2,图④阴影部分面积=43×(43)2=(43)3,图⑤阴影部分面积=43×(43)3=(43)4=25681.18. 5【解析】∵n =1时,“·”的个数是3=3×1;n =2时,“·”的个数是6=3×2;n =3时,“·”的个数是9=3×3;n =4时,“·”的个数是12=3×4;∴第n 个图形中“·”的个数是3n ;又∵n =1时,“△”的个数是1=2)11(1+⨯;n =2时,“△”的个数是3=2)12(2+⨯;n =3时,“△”的个数是6=2)13(3+⨯;n =4时,“△”的个数是10=2)14(4+⨯;∴第n 个“△”的个数是2)1(+⨯n n ;由3n =2)1(+⨯n n ,可得n 2-5n =0,解得n =5或n =0(舍去),∴当n =5时,图形“·”的个数和“△”的个数相等.题型一 规律探索题类型一 探索图形循环规律1. (2015河南)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线.点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是 ( )第1题图A. (2014,0)B. (2015,-1)C. (2015,1)D. (2016,0)2. 如图所示,一串梅花图案是按一定规律排列的,请你仔细观察,在前2016个梅花图案中,共有 个“”图案.第2题图 【答案】 针对演练 1. B 【解析】本题考查直角坐标系中点坐标的规律探索.∵半圆的半径r =1,∴半圆弧长=π,∴第2015秒点P 运动的路径长为:2π×2015, ∵2π×2015÷π=1007…1,∴点P 位于第1008个半圆弧的中点上,且这个半圆在x 轴的下方,∴此时点P 的横坐标为:1008×2-1=2015,纵坐标为-1,∴点P (2015,-1) . 2. 504【解析】每4次梅花图案循环一次,∵2016÷4=504,∴第2016个梅花图案共有504个“”图案.题型一 规律探索题 拓展类型 数式规律针对演练(2015泰安)下面每个表格中的四个数都是按相同规律填写的:第1题图根据此规律确定x 的值为 ( )A. 135B. 170C. 209D. 2522. (2015安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中连续的三个数,猜测x 、y 、z 满足的关系式是 . 3. (2015郴州)请观察下列等式的规律:311⨯=21 (1-31),531⨯=21 (31-51),751⨯=21 (51-71),971⨯=21 (71-91), … 则311⨯+531⨯+751⨯+…+101991⨯= .【答案】 针对演练2. xy =z 【解析】观察这一列数可得:23=21·22,25=22·23,28=23·25,213=25·28,…,即从第三个数起每个数都等于前两个数之积 ,由x 、y 、z 表示这列数中的连续三个数,则有xy =z .3.10150【解析】311⨯+531⨯+751⨯+…+101991⨯= 21 (1-31)+21 (31-51)+21(51-71)+…+21( 991-1011)=21 (1-31+31-51+51-71+…+991-1011)=21 (1-1011)=21×101100=10150.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年中考数学专题复习:找规律1.下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为【】.A.32 B.126 C.135 D.144【答案】D。

【考点】分类归纳(数字的变化类),一元二次方程的应用。

【分析】由日历表可知,圈出的9个数中,最大数与最小数的差总为16,又已知最大数与最小数的积为192,所以设最大数为x,则最小数为x-16。

∴x(x-16)=192,解得x=24或x=-8(负数舍去)。

∴最大数为24,最小数为8。

∴圈出的9个数为8,9,10,15,16,17,22,23,24。

和为144。

故选D。

2.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有【】A.7队B.6队C.5队D.4队【答案】C。

【考点】分类归纳(数字的变化类),一元二次方程的应用。

【分析】设邀请x个球队参加比赛,那么第一个球队和其他球队打(x-1)场球,第二个球队和其他球队打(x-2)场,以此类推可以知道共打(1+2+3+…+x-1)= x(x1)2-场球,根据计划安排10场比赛即可列出方程:x(x1)102-=,∴x2-x-20=0,解得x=5或x=-4(不合题意,舍去)。

故选C。

3.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ . 【答案】2k2k+1。

【考点】分类归纳(数字的变化类)。

【分析】根据已知得出数字分母与分子的变化规律:分子是连续的偶数,分母是连续的奇数,∴第k 个数分子是2k ,分母是2k +1。

∴这一组数的第k 个数是2k2k+1。

4. 填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是 ▲ .【答案】900。

【考点】分类归纳(数字变化类)。

【分析】寻找规律:上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,; 右下是:从第二个图形开始,左下数字减上面数字差的平方:(4-2)2,(9-3)2,(16-4)2,… ∴a =(36-6)2=900。

5.北京成功举办了一届举世瞩目的奥运会,今年的奥运会将在英国伦敦 举行,奥运会的年份与届数如下表所示:年份 1896 1900 1904 (2012)届数123…n表中n 的值等于 ▲ . 【答案】30。

【考点】分类归纳(数字的变化类)。

【分析】寻找规律:第1届相应的举办年份=1896+4×(1-1)=1892+4×1=1896年; 第2届相应的举办年份=1896+4×(2-1)=1892+4×2=1900年; 第3届相应的举办年份=1896+4×(3-1)=1892+4×3=1904年;…第n届相应的举办年份=1896+4×(n-1)=1892+4n年。

∴由1892+4n=2012解得n=30。

6. 已知2+23=22×23,3+38=32×38,4+415=42×415…,若8+ab=82×ab(a,b为正整数),则a+b= ▲ .【答案】71。

【考点】分类归纳(数字的变化类)。

【分析】根据规律:可知a=8,b=82﹣1=63,∴a+b=71。

7.猜数字游戏中,小明写出如下一组数:2481632,57111935,,,,,小亮猜想出第六个数字是6467,根据此规律,第n个数是▲ .【答案】nn22+3。

【考点】分类归纳(数字的变化类)。

【分析】∵分数的分子分别是:2 2=4,23=8,24=16,…2n。

分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…2n+3。

∴第n个数是nn22+3。

8. 将一些形状相同的小五角星如下图所示的规律摆放,据此规律,第10个图形有▲ 个五角星.【答案】120。

【考点】分类归纳(图形的变化类)。

【分析】寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星。

∴第10个图形有112-1=120个小五角星。

9.将分数67化为小数是0.857142&&,则小数点后第2012位上的数是▲ .【答案】5。

【考点】分类归纳(数字的变化类)。

【分析】观察0.857142&&,得出规律:6个数为一循环,若余数为1,则末位数字为8;若余数为2,则末位数字为5;若余数为3,则末位数安为7;若余数为4,则末位数字为1;若余数为5,则末位数字为4;若余数为0,则末位数字为2。

∵67化为小数是0.857142&&,∴2012÷6=335…2。

∴小数点后面第2012位上的数字是:5。

10.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为【】A.50 B.64 C.68 D.72【答案】D。

【考点】分类归纳(图形的变化类)。

【分析】寻找规律:每一个图形左右是对称的,第①个图形一共有2=2×1个五角星,第②个图形一共有8=2×(1+3)=2×22个五角星,第③个图形一共有18=2×(1+3+5)=2×32个五角星,…,则第⑥个图形中五角星的个数为2×62=72。

故选D。

11.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A—B—C-D—A一…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是【】A.(1,-1) B.(-1,1) C.(-1,-2) D.(1,-2)12.如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是【】A.54 B.110 C.19 D.109【答案】D。

【考点】分类归纳(图形的变化类)。

【分析】寻找规律:第①个图形中有1个平行四边形;第②个图形中有1+4=5个平行四边形;第③个图形中有1+4+6=11个平行四边形;第④个图形中有1+4+6+8=19个平行四边形;13.一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是【】A.3 B.4 C.5 D.6【答案】C。

【考点】分类归纳(图形的变化类)。

【分析】如图所示,断去部分的小菱形的个数为5:14.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是【】A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)【答案】D。

【考点】分类归纳(图形的变化类),点的坐标,相遇问题及按比例分配的运用。

【分析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律作答:∵ 矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同, ∴物体甲与物体乙的路程比为1:2。

由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×13=4,物体乙行的路程为12×23=8,在BC 边相遇; ②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE 边相遇; ③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×13=12,物体乙行的路程为12×3×23=24,在A 点相遇; …此时甲乙回到原出发点,则每相遇三次,两点回到出发点, ∵2012÷3=670…2,故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE 边相遇。

此时相遇点的坐标为:(-1,-1)。

故选D 。

15. 图中各圆的三个数之间都有相同的规律,据此规律,第n 个圆中,m = ▲ (用含n 的代数式表示).【答案】29n 1 。

【考点】分类归纳(图形和数字的变化类)。

【分析】寻找圆中下方数的规律:第一个圆中,8=2×4=(3×1-1)(3×1+1); 第二个圆中,35=5×7=(3×2-1)(3×2+1);第三个圆中,80=8×10=(3×3-1)(3×3+1); ······第n 个圆中,()()22m 3n 13n 13n 19n 1=⨯-⨯+=-=-()。

16. 如图,如图所示的图案是按一定规律排列的,照此规律,在第1至第2012个图案中“”,共 ▲ 个.【答案】503。

【考点】分类归纳(图形的变化类)。

【分析】由图知4个图形一循环,因为2012被4整除,从而确定是共有第503♣。

17.在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 ▲ 个小正方形。

【答案】100。

【考点】分类归纳(图形的变化类)。

【分析】寻找规律:第1个图案中共有1=12个小正方形;第2个图案中共有4=22个小正方形;第3个图案中共有9=32个小正方形;第4个图案中共有16=42个小正方形; ……∴第10个图案中共有102=100个小正方形。

18. 如图,在一单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,﹣1),A 3(0,0),则依图中所示规律,A 2012的坐标为 ▲ .【答案】(2,1006)。

【考点】分类归纳(图形的变化类),点的坐标,等腰直角三角形的性质。

相关文档
最新文档