江苏省镇江市2018年中考数学试题(含答案)
2018年江苏省镇江市中考数学试卷

32 C.
25
( ) 9 D. 8
数学试卷 第 2 页(共 8 页)
三、解答题(本大题共 11 小题,共计 81 分.解答应写出必要的文字说明、证明过程或演 算步骤)
18.(本小题满分 8 分) (1)计算: 21 (2 018 π)0 sin30 .
(2)化简: (a 1)2 a(a 1) 1.
(第 17 题)
16.甲、乙两地相距 80 km ,一辆汽车上午 9:00 从甲地出发驶往乙地,匀速行驶了一半的
路程后将速度提高了 20 km/h ,并继续匀速行驶至乙地,汽车行驶的路程 y (km) 与时
间 x (h) 之间的函数关系如图所示,该车到达乙地的时间是当天上午
( )
A. 10:35
B. 10:40
C. 10:45
D. 10:50
17.如图,一次函数 y 2x 与反比例函数 y k (k>0) 的图像交于 A 、 B 两点,点 P 在以 x
C(2,0) 为圆心,1 为半径的 C 上, Q 是 AP 的中点,已知 O 长的最大值为 3 ,则 k 2
的值为 49
A. 32
25 B.
18
绝密★启用前
在
江苏省镇江市 2018 年初中学业水平考试
数学
(满分:120 分,考试时间:120 分钟)
此 一、填空题(本大题共有 12 小题,每小题 2 分,共计 24 分)
1. 8 的绝对值是 .
2.一组数据 2,3,3,1,5 的众数是 . 3.计算: (a2 )3 . 卷 4.分解因式: x2 1 .
而 .(填“增大”或“减小”)
9.如图, AD 为 △ABC 的外接圆 O 的直径,若 BAD 50 ,则 ACB .
2018年江苏省镇江市中考数学试卷及答案解析

2018年江苏省镇江市中考数学试卷及答案解析(满分120分,考试时间120分钟)一、填空题(本大题共有12小题,每小题2分,共计24分.) 1.(2018江苏镇江,1,2分)-4的绝对值是________.【答案】4.【解析】根据“负数的绝对值等于它的相反数”知,-4的绝对值是4. 2.(2018江苏镇江,2,2分)一组数据2,3,3,1,5的众数是________.【答案】3.【解析】众数是指出现次数最多的数.在数据2,3,3,1,5中,3出现了两次,次数最多,所以众数是3. 3.(2018江苏镇江,3,2分)计算:23()a =________.【答案】6a .【解析】根据幂的乘方法则知23()a =23a ⨯=6a . 4.(2018江苏镇江,4,2分)分解因式:21a -=________.【答案】(1)(1)a a +-.【解析】多项式21a -可用平方差公式分解为(1)(1)a a +-. 5.(2018江苏镇江,5,2分)若分式53x -有意义,则实数x 的取值范围是________. 【答案】x ≠3. 【解析】分式53x -有意义的条件是分母3x -≠0,解得实数x 的取值范围是x ≠3.6.(2018江苏镇江,6,2分________. 【答案】2.【解析】=2. 7.(2018江苏镇江,7,2分)圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为________.【答案】3.【解析】根据圆锥的侧面积公式S 侧=πrl ,得3π=3π1l ⨯⨯,解得l =3. 8.(2018江苏镇江,8,2分)反比例函数y =kx(k ≠0)的图像经过点A (-2,4),则在每一个象限内,y 随x 的增大而________.(填“增大”或“减小”) 【答案】增大.【解析】∵反比例函数y =kx(k ≠0)的图像经过点A (-2,4), ∴k =(2)-×4=-8<0. ∴反比例函数y =kx(k ≠0)在每一个象限内,y 随x 的增大而增大. 9.(2018江苏镇江,9,2分)如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACD =________°.【答案】40°.【解析】如答图所示,连接B C . ∵AB 是⊙O 的直径, ∴∠ACB =90°.∵∠BCD =∠BAD =50°,∴∠ACD =∠ACB -∠BCD =90°-50°=40°.10.(2018江苏镇江,10,2分)已知二次函数y =24x x k -+的图像的顶点在x 轴下方,则实数k 的取值范围是________.【答案】k <4.【解析】∵二次函数y =24x x k -+的图像的顶点在x 轴下方, ∴二次函数y =24x x k -+的图像与x 轴有两个公共点. ∴24b ac ->0,即2(4)41k --⨯⨯>0.解得k <4. 11.(2018江苏镇江,11,2分)如图,△ABC 中,∠BAC >90°,BC =5,将△ABC 绕点C 按顺时针方向旋转90°,点B 对应点B ′落在BA 的延长线上,若sin ∠B ′AC =910,则AC =________.(第11题图)CA BB 'A '(第9题答图)(第9题图)【解析】如答图所示.因为将△ABC 绕点C 按顺时针方向旋转90°得到△A ′B ′C ,所以∠BCB ′=90°,B ′C =BC =5,所以∠BB ′C =45°.过点C 作CD ⊥BB ′于点D ,则△CDB ′是等腰直角三角形,所以CD'Rt △△ACD 中,因为sin ∠B ′AC =CDAC =910,即2AC =910,解得AC12.(2018江苏镇江,12,2分)如图,点E ,F ,G 分别在菱形ABCD 的边AB ,BC ,AD 上,AE =13AB ,CF =13CB ,AG =13A D .已知△EFG 的面积等于6,则菱形ABCD 的面积等于________.【答案】27.【解析】如答图所示.在边CD 上取点H ,使CH =13CD ,连接FH ,GH ,AC ,BD ,AC与BD 相交于点O ,EG 交AC 于点P ,FH 交BD 于点Q ,则由对称性可知,四边形EFGH 是平行四边形,且EG ∥BD ∥FH ,EF ∥AC ∥GH ,点O 在FG 上,S 四边形OPEQ =2S △OPG =2S △OFQ .因为△EFG的面积为6,所以S △OPG =S △OFG =32,S 四边形OPEQ =3.因为EP ∥OB ,设S △AEP=x .所以AEP AOBS S ∆∆=2()AE AB =21()3=19,即S △AOB =9x .同理S △BQE =49S △AOB =4x ,所以S 四边形OPEQ =94x x x --=4x =3,解得x =34,所以S △AOB =9×34=274,所以S 菱形ABCD=4 S △AOB =4×274=27. (第12题图)CDF GA B E(第11题答图)CA BB 'A 'D二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,只有一项符合题目要求.) 13.(2018江苏镇江,13,3分)0.000 182用科学记数法表示应为 ··················································· ( ) A .0.182× B .1.82×410-C .1.82×510-D .18.2×410-【答案】B .【解析】用科学记数法表示0.000 182,就是将0.000 182写成a ×10n (1≤a <10,n 为整数).因为1≤a <10,所以a =1.82.因为0.000 182第一个不是0的数1前面一共有4个0,所以n =-4.故0.000 182=1.82×410-. 14.(2018江苏镇江,14,3分)如图是由3个大小相同的小正方体组成的几何体,它的左视图是 ·················································································································································· ( )【答案】D .【解析】从左侧向右看几何体,只有一列,一共有两个正方形. 15.(2018江苏镇江,15,3分)小明将如图所示的转盘分成n (n 是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连接偶数数字2,4,6,…,2n (每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是56,则n 的取值为 ·························································································································································· ( ) A .36 B .30 C .24 D .18【答案】C .【解析】∵事件“指针所落区域标注的数字大于8”的概率是56, ∴4n n -=56. 解得n =24.(第15题图)从正面看(第14题图)A .B .C .D .(第12题答图)CDEFG HA BOPQ16.(2018江苏镇江,16,3分)甲、乙两地相距80 km ,一辆汽车上午9∶00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x (h )之间的函数关系如图所示,该车到达乙地的时间是当天上午 ······································································································································ ( ) A .10∶35 B .10∶40 C .10∶45 D .10∶50【答案】B .【解析】由图像知,汽车行驶前一半路程(40 km )所用的时间是1 h ,所以速度为40÷1=40(km/h ),于是行驶后一半路程的速度是40+20=60(km/h ),所以行驶后一半路程所用的时间为40÷60=23(h ),因为23h =23×60 m i n =40 m i n ,所以该车一共行驶了1小时40分钟到达乙地,所以到达乙地的时间是当天上午10∶40.17.(2018江苏镇江,17,3分)如图,一次函数y =2x 与反比例函数y =kx(k >0)的图像交于A ,B 两点,点P 在以C (-2,0)为圆心,1为半径的⊙C 上,Q 是AP 的中点,已知OQ 长的最大值为32,则k 的值为 ··················································································· ( ) A .4932B .2518C .3225 D .98【答案】C .【解析】由对称性知OA =OB ,又因为Q 为AP 的中点,所以OQ =12BP .因为OQ 的最大值为32,所以BP 的最大值为2×32=3.如答图所示,连接BC 并延长交⊙C 于点P 1,则BP 1=3.因为⊙C 的半径为1,所以CP 1=1,所以BC =2.因为点B 在直线y =2x 上,所以可设B (t ,2t ).过点B 作BD ⊥x 轴于点D ,则CD =(2)t --=2t +,BD =02t-=2t -.在Rt △BCD 中,由勾股定理得CD 2+BD 2=BC 2,即22(2)(2)t t ++-=22,解得t 1t =0(不符合题意,舍去),2t =45-,所以B (45-,85-).因为点B (45-,85-)(第17题图)(第16题图)在反比例函数y =k x的图像上,所以k =48()()55-⨯-=3225.三、解答题(本大题共有11小题,共计81分,解答应写出必要的文字说明、证明过程或演算步骤.) 18.(2018江苏镇江,18(1),4分)(1)计算:202(2018π)sin 30-+--︒.【思路分析】先将每一项化简,再利用有理数混合运算计算出结果. 【解答过程】原式=11142+-=34. 18.(2018江苏镇江,18(2),4分)(2)化简:2(1)(1)1a a a +-+-.【思路分析】先利用乘法公式、单项式乘多项式去年括号,再合并同类项计算出结果. 【解答过程】原式=22211a a a a ++---=a . 19.(2018江苏镇江,19(1),5分)(1)解方程:2x x +=211x +-. 【思路分析】去分母化为整式方程,检验后确定方程的解. 【解答过程】(1)x x -=2(2)(2)(1)x x x +++-. 解得x =12-.检验:当x =12-时,(2)(1)x x +-≠0.∴x =12-是原分式方程的解.19.(2018江苏镇江,19(2),5分)解不等式组:24014(2)x x x ->⎧⎨+-⎩,.?【思路分析】分别求出不等式组中每一个不等式的解集,再确定出不等式组的解集. 【解答过程】24014(2)x x x ->⎧⎨+-⎩,①.② ?由①,得x >2.由②,得x ≥3.∴不等式组的解集为x ≥3. 20.(2018江苏镇江,20,6分)如图,数轴上的点A ,B ,C ,D 表示的数分别为-3,-1,1,2,从A ,B ,C ,D 四点中任意取两点,求所取两点之间的距离为2的概率.(第17题答图)-1-2--412(第20题图)【思路分析】用树状图或表格列出所有可能出现的结果,从中确定出两点之间的距离为2的结果数,利用等可能条件下的概率公式求解. 【解答过程】用表格列出所有可能出现的结果如下:由表格可知,一共有12种可能出现的结果,它们是等可能的,其中“所取两点之间的距离为2”有4种.∴P (所取两点之间的距离为2)=412=13. 21.(2018江苏镇江,21,6分)小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页? 【思路分析】根据相等关系“这两天共读了整本书的38”列一元一次方程求解.【解答过程】设这本名著共有x 页.根据题意,得136(36)4x +-=38x .解得x =216.答:这本名著共有216页. 22.(2018江苏镇江,22,6分)如图,△ABC 中,AB =AC ,点E ,F 在边BC 上,BE =CF ,点D 在AF 的延长线上,AD =A C . (1)求证:△ABE ≌△ACF ;(2)若∠BAE =30°,则∠ADC =________°.【思路分析】(1)利用SAS 证明;(2)由(1)知△ABE ≌△ACF ,所以∠CAF =∠BAE =30°,又因为AD =AC ,所以∠ADC =∠ACD =1802DAC︒-∠=75°.【解答过程】(1)证明:∵AB =AC , ∴∠B =∠ACF .在△ABE 和△ACF 中,(第22题图)CDE F ABAB AC B ACB BE CF ⎧⎪∠∠⎨⎪⎩=,=,=, ∴△ABE ≌△ACF . (2)75. 23.(2018江苏镇江,23,6分)某班50名学生的身高如下(单位:cm ):(1)小 用简单随机抽样的方法从这50个数据中抽取一个容量为5的样本: 163,152 ,请你计算小 所抽取的这个样本的平均数;(2)小 将这50个数据按身高相差4 cm 分 ,并制作了如下的表格:①m =________,n =________;②这50名学生身高的中位数落在哪个身高段内?身高在哪一段的学生数最多? 【思路分析】 【解答过程】 24.(2018江苏镇江,24,6分)如图,校园内有两幢高度相同的教学楼AB ,CD ,大楼的底部B ,D 在同一平面上,两幢楼之间的距离BD 长为24米,小明在点E (B ,E ,D 在一条直线上)处测得教学楼AB 顶部的仰角为45°,然后沿EH 方向前进8米到达点G 处,测得教学楼CD 顶部的仰角为30°,已知小明的两个观测点F ,H 距离地面的高度均为1.6米,求教学楼AB 的高度AB 长.(精确到0.1米,参考值 1.41 1.73.) 【思路分析】 【解答过程】25.(2018江苏镇江,25,6分)如图,一次函数y =kx b +(k ≠0)的图像与x 轴,y 轴分别交于A (-9,0),B (0,6)两点,过点C (2,0)作直线l 与BC 垂直,点E 在直线l 位于x 轴上方的部分.(1)求一次函数y =kx b +(k ≠0)的表达式; (2)若△ACE 的面积为1,求点E 的坐标;(3)当∠CBE =∠ABO 时,点E 的坐标为________.【思路分析】(1)利用待定系数法求解;(2)先求出直线l 的函数表达式,然后根据△ACE 的面积求出边AC 上的高,即为点E 的纵坐标,再代入直线l 的函数表达式求得点E 的横坐标;(3)过点作EF ⊥x 轴于点F ,利用相似三角形的对应边成比例求解. 【解答过程】(1)将A (-9,0),B (0,6)代入y =kx b +(k ≠0),得 096k b b -+⎧⎨⎩=,=. 解得k =23,b =6. ∴一次函数y =kx b +(k ≠0)的表达式为y =263x +.(2)如答图所示,设直线l 与y 轴相交于点D .∵BC ⊥l ,∴∠BCD =90°=∠BO C .∴∠OBC +∠OCB =∠OCD +∠OC B . ∴∠OBC =∠OC D . 又∵∠BOC =∠COD , ∴△OBC ∽△为OC D . ∴OB OC =OCOD . ∵B (0,6),C (2,0), ∴OB =6,OC =2.∴62=2OD. 解得OD =23. ∴D (0,23-).设直线l 的函数表达式为y =11k x b +(1k ≠0). 把C (2,0),D (0,23-)代入,得(第25题图)1110223k b b +⎧⎪⎨-⎪⎩=,=. 解得1k =13,1b =23-.∴直线l 的函数表达式为y =1233x -.设E (t ,1233t -).∵A (-9,0),C (2,0), ∴AC =11. ∵S △ACE =1,·∴12×11×12()33t -=1. 解得t =2811. ∴E (2811,211).(3)(11,3).提示:如答图所示,过点E 作EF ⊥x 轴,垂足为点F . ∵∠ABO =∠CBF ,∠AOB =∠BCE =90°, ∴△ABO ∽△EB C .∴BC CE =BO AO=69=23.∵∠BCE =90°=∠BOC ,∴∠BCO +∠CBO =∠BCO +∠ECF . ∴∠CBO =∠ECF .又∵∠BOC =∠EFC =90°, ∴△BOC ∽△CEF .∴BO CF =OC EF =BC CE=23.∴6CF =2EF=23.解得CF =9,EF =3. ∴OF =11. ∴E (11,3). 26.(2018江苏镇江,26,8分)如图1,平行四边形ABCD 中,AB ⊥AC ,AB =6,AD =10,(第25题答图2)(第25题答图1)点P 在边AD 上运动,以P 为圆心,PA 为半径的⊙P 与对角线AC 交于A ,E 两点. (1)如图2,当⊙P 与边CD 相切于点F 时,求AP 的长;(2)不难发现,当⊙P 与边CD 相切时,⊙P 与平行四边形ABCD 的边有三个公共点,随着AP 的变化,⊙P 与平行四边形ABCD 的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP【思路分析】(1)连接PF ,则FP ⊥CD ,由AB ⊥AC ,四边形ABCD 是平行四边形得AC ⊥CD ,所以PF ∥AC ,所以△DPF ∽△DAC ,利用对称边成比例求AP 长;(2)有两种情形:①与边AB 、CD 分别有两个公共点;②⊙P 过点A 、C 、D 三点. 【解答过程】(1)如答图所示,连接PF .在Rt △ABC 中,由勾股定理得AC 8. ∴AD =8.设AP =x ,则DP =10x -,PF =x . ∵⊙P 与边CD 相切于点F , ∴PF ⊥CD .∵四边形ABCD 是平行四边形, ∴AB ∥CD . 又∵AB ⊥AC , ∴AC ⊥CD . ∴PF ∥AC .∴△DPF ∽△DAC .答图1B图1图2B∴PF AC =PD AD,即8x =1010x-.解得x =409,即AP =409. (2)409<AP <245或AP =5. 27.(2018江苏镇江,27,9分)(1)如图1,将矩形ABCD 折叠,使BC 落在对角线BD 上,折痕为BE ,点C 落在点C ′处,若∠ADB =46°,则∠DBE 的度数为________°. (2)小明手中有一张矩形纸片ABCD ,AB =4,AD =9. 【画一画】如图2,点E 在这张矩形纸片的边AD 上,将纸片折叠,使AB 落在CD 所在直线上,折痕设为MN (点M ,N 分别在边AD ,BC 上),利用直尺和圆规画出折痕MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚); 【算一算】如图3,点F 在这张矩形纸片的边BC 上,将纸片折叠,使FB 落在射线FD 上,折痕为GF ,点A ,B 分别落在点A ′,B ′处,若AG =73,求B ′D 的长; 【验一验】如图4,点K 在这张矩形纸片的边AD 上,DK =3,将纸片折叠,使AB 落在CK 所在直线上,折痕为HI ,点A ,B 分别落在点A ′,B ′处,小明认为B ′I 所在直线恰好经过点D ,他的判断是否正确,请说明理由.路分析:(1)利用矩形的对边AD ∥BC 知∠DBC =∠ADB =46°,由折叠知∠DBC =12DBC =12×46°=23°.(2)由题意知MN 是AB ,CE 相交所成锐角的平分线,据此可尺规作图画出MN ;(3)因为DB′=DF -B′F ,将问题转化为求DF 与B′F 的长.先证△DGF 是等图1 CDEABC '图2C图3CDFG A BB 'A '图4CK DHAB I B 'A '腰三角形得DF =DG =9-73=203,再在Rt △CDF 中求得CF =163,于是B′F =BF =BC -CF =9-163=113,问题获解.(4)在Rt △IB′C 中求tan ∠B′IC 的值;连接ID ,在Rt △ICD 中求tan ∠DIC 的值,根据tan ∠B′IC 与tan ∠DIC 是否相等判断. 【解答过程】(1)23. (2)如答图所示.(3)∵AG =73,AD =9, ∴GD =9-73=203. ∵四边形ABCD 是矩形, ∴AD ∥BC .∴∠DGF =∠BFG .由折叠得∠BFG =∠DFG . ∴∠DGF =∠DFG .∴DF =GD =203. 又∵CD =AB =4,∠C =90°∴在Rt △CDF 中,CF163. ∴BF =BC -CF =9-163=113. 由折叠得B′F =BF =113. ∴B′D =DF -B′F =201133-=3. (4)小明的判断不正确,理由如下:在Rt △CDK 中,∵KD =3,CD =4, ∴CK =5. ∵AD ∥BC ,∴∠DKC =∠ICK .由折叠知∠A′B′I =∠B =90°. ∴∠IB′C =90°=∠D . ∴△CDK ∽△IB′C .答图1CEAB N M∴CD IB '=DK B C '=CK IC ,即4IB '=3B C '=5IC,设CB′=3k ,则IB′=4k ,IC =5k . 由折叠得IB =IB′=4k .∴BC =BI +IC =45k k +=9k =9. ∴k =1.∴IC =5,IB′=4,B′C =3.在Rt △ICB′中,tan ∠B′IC =CB IB''=34.连接ID .在Rt △ICD 中,tan ∠DIC =CD IC=45. ∴tan ∠B′IC ≠tan ∠DIC .∴B ′I 所在直线不经过点D .28.(2018江苏镇江,28,10分)如图,二次函数y =23x x -的图像经过O (0,0),A (4,4),B (3,0)三点,以点O 为位似中心,在y 轴的右侧将△OMB 按相似比2∶1放大,得到△OA ′B ′,二次函数y =2ax bx c ++(a ≠0)的图像经过O ,A ′,B ′三点. (1)画出△OA ′B ′,试二次函数y =2ax bx c ++(a ≠0)的表达式;(2)点P (m ,n )在二次函数y =23x x -的图像上,m ≠0,直线OP 与二次函数y =2ax bx c ++(a ≠0)的图像交于点Q (异于点O ). ①连接AP ,若2AP >OQ ,求m 的取值范围;②当点Q 在第一象限内,过点Q 作QQ ′平行于x 轴,与二次函数y =2ax bx c ++(a ≠0)的图像交于另一点Q ′,与二次函数y =23x x -的图像交于点M ,N (M 在N 的左侧),直线OQ ′与二次函数y =23x x -的图像交于点P ′.△Q ′P ′M ∽△QB ′N ,则线段 Q 的长度等于________. 【思路分析】 【解答过程】答图2CKDHAB I B 'A '。
镇江市2018年初中毕业升学考试数学试卷参考答案及评分标准

镇江市2018年初中毕业升学考试数学试卷参考答案及评分标准一、填空题:1. 3, 3 2.1, 6 3. 2a 2 3, a4.2x x-2 , (x 1)(x-1)5. x=1 , x > 26.3, 3 7.65, 35 8. 4, 129. 1, 1 10.45, 211 .4 二12.A_ 、填空题:13B 14. A15. D16.C17.C三、解答题:18. (1)原式=1—2+2 ............................................... (3分,每对1个得1分)(5分)2 1(2) “点Q 落在直线y=x-3上”记为事件 A ,所以P(A^-=-,63- 一 1即点Q 落在直线y = x -3上的概率为一 ................................................. (6分)321.(1)画角平分线,线段的垂直平分线.(3分,仅画出1条得2分)(2) △ BOE BOF DOF .................................. (4分,只要1对即可),证明全等.(6 分)222. ..................................................................................................................................................... (1 )设y =ax bx-3, ......................................................................... (1 分)「4a+2b —3=—3,把点(2,— 3) , (—1,0)代入得................................... (2分)J a - b - 3 二 0.fa —1,2解方程组得.y =x _2x_3 . ........................................................ (3分)]b 二 -2.2(也可设 y = a (x 「1) - k )(2) y =x 2-2x-3 =(x-1)2-4 . .............................................................. (4 分).函数的顶点坐标为(1,-4) ..................................................... (5分)(3) 5 ........................................................................... (6 分) 23 .设该厂原来每天生产 x 顶帐篷,根据题意得: ........................................ (1分)12000 12000 4. ...................................................................................... (3 分)x 3xT解方程得:x=1000 .............................................................. (4分)经检验:x =1000是原方程的根,且符合题意. ........................................... (5分) 答:该厂原来每天生产 1000顶帐篷. ..................................................... (6分)(2)原式(x 2)(x -2) x 2(1 分)4*x-2(x 2)(x-2) (X 2)(x-2)(2 分)x 2 (x 2)(x-2)(4分)1 x -2(5分)19. (1) x(x -2) = 0 .(3 分)% = 0, x 2 =2 ..........................................................................................(5 分)(2)由①,得 x :: 4 ; ........................................................... (2 分) 由②,得x > 1 ............................................................. (4分)-原不等式组的解集为 K x :: 4 . ............................................... (5分)20. (1 )用列表或画树状图的方法求点Q 的坐标有(1,-1) , (1,-2) , (1,-3), (2,-1),(2,-2), (2,-3).(4分,列表或树状图正确得 2分,点坐标2 分)24.(1)A(-4,0), B(0,2),.在Rt△ AOB 中,AB 二,OA2 OB2 =、42 22二2 5 . .......................................... (2 分)(2)由.ADH . DAH =90 , . BAO . DAH =90 ,■BAO 二/ADH,又AOB =/DHA =90 ,.△ ADH BAO . ......................................................................................... (4 分)(3)△ ADH BAO ,DH AH AD 刖DH AH 5即AO BO BA 4 2 2 “ 5• DH =2 , AH =1 .■D(-5,2) . .......................................................................................................... (6 分)k25.(1 )设反比例函数为y (k 0) . .............................................................. (1分)x贝V k = xy 二mn 二S矩形OAT B二10000, ..................................................... (2 分). 10000 、-y . .................................................................... (3 分)x(2)设鲜花方阵的长为m米,则宽为(250 -m)米,由题意得:3(2[① M 「2,x 1,2x ,2X1 2xm (250 -m ) =10000 .2即:m -250m 10000 = 0,解得:m = 50或m = 200,满足题意..此时火炬的坐标为(50,200)或(200,50) ......................................................... (5分)(3)mn =10000,在 Rt △ TAO 中,TO 二.OA 2 AT 2 =、m 2 n 2= (m -n )2 2mn = .t 220000 . ....................................................................... (6 分).当t =0时,TO 最小,此时 m = n ,又 mn =10000, m . 0, n . 0, .m = n =100,且 10 :: 100 ::: 1000 ..T (100,100) . ..................................................................................................... (7 分)26. (1) OC =OE ,. ■ E =/OCE ............................................................................ (1 分) 又 OCE = . DCE , E = . DCE ..OE // CD . ..................................................................................................... (2 分)又 CD _ AB ,. . AOE "BOE =90 .-E 为ADB 的中点. .................................................................. (3分)(2)①;CD _ AB ,AB 为• O 的直径,CD 二凉3,1 运CH CD . ............................................................................................................... (4 分)2 2逅厂又 OC =1, . sin _ COB 二 = —3.OC 1 2.COB =60, ............................................................................................................ (5 分)BAC =30 .1 1作 OP _ AC 于 P ,则 OP OA . ................................................................................. (6 分)2 2②3................................................................................. ( 7分) (1分,填sin 30也得分); .................. (2 分)(4分)1 27. (1)-20 < x < 1.OH 二CH ,即H 为AQ 的中点.(2 分)4AOH =/QCH -90 , AHO =/QHC ,法一: 2x _(x 1) = x 「1. 当 x > 1 时,则 min 12, x -1,2x1 = 2,则 x ・1=2 , x=1.当 x :::1 时,则 min :2, x 1,2x1 =2x ,则 x 仁 2x , x =1 (舍去). 综上所述:x =1 .(4分), . 2 ::;,x ::;'1 :「2x ・ ,2 > x 1, 2x > x 1.(3 分)卩 w 1 二 x"x > 1.(4分)(5分)证明:;M :a, 如果 min :a, b, c : = c ,贝U a > c , b > c .则有a b c3二c ,即 a b _2c =0 ..(a -c ) ■ (b -c ) = 0.又 a -c > 0 , b -c > 0. . a -c = 0 且 b -c = 0 . a =b = c . 其他情况同理可证,故a =b =c. ........................③-4 ........................................................................(6分) (7 分)(8 分) (9分)28. (1 )法一:由题可知 AO =CQ =1 .△ AOH QCH(1 分).OH 二CH ,即H 为AQ 的中点.(2 分)4法二: A (0,,), B (0,_ 1), . OA =OB . .......................................................... (1 分)又 BQ // x 轴,.HA = HQ ..................................................... (2 分)(2)①由(1)可知 AH =QH , . AHR 二.QHP ,AR // PQ , . RAH "PQH ,.△ RAH PQH .......................................................................................... (3 分)AR 二 PQ ,又AR // PQ ,.四边形APQR 为平行四边形.②设P 中,PQ / y 轴,则Q(m,1),则P —1討2 -过P 作PG _ y 轴,垂足为G ,在Rt △ APG 中,AP 二.AG 2 PG 2 J 卩m2+l [=韦+1十0 .'■ 4 4■平行四边形APQR 为菱形. (6分)⑶设直线PR 为—,由OHQ ,得H ,,P 會代入得mk b =0, 2 1 2km b = — m 2. L 4. mk =2 “ m 122二直线 PR 为 y = x — m . 1 2 2 4b m . 〔 4(7 分)设直线PR 与抛物线的公共点为 x ,1x 2,代入直线PR 关系式得: I 4丿 1 2 m 1 2 1 2I12 I4x 一工+厂=0,1(x — m )",解得x=m .得公共点为l m ;m 丿1 2所以直线PH 与抛物线y = x 只有一个公共点 P .............................................. (8分)(4分)。
专题3.13 江苏省镇江市(母题解读)-2018中考数学真题之名师立体解读高端精品(解析版)

【母题来源】江苏省镇江市2018年中考数学试卷第题【母题原题】如图1,平行四边形ABCD中,AB⊥AC,AB=6,AD=10,点P在边AD上运动,以P为圆心,PA 为半径的⊙P与对角线AC交于A,E两点.(1)如图2,当⊙P与边CD相切于点F时,求AP的长;(2)不难发现,当⊙P与边CD相切时,⊙P与平行四边形ABCD的边有三个公共点,随着AP的变化,⊙P 与平行四边形ABCD的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值范围.∴AC∥PF,∴△DPF∽△DAC,∴,∴,∴x=,AP=;【命题意图】本题是圆与平行四边形的综合题,考查了圆的切线的性质、勾股定理、平行四边形性质和面积公式,第2问注意利用分类讨论的思想,并利用数形结合解决问题.【方法、技巧、规律】圆这部分内容主要有垂径定理、弧、弦、圆心角关系定理、圆周角和圆心角关系定理.这些定理都是圆中极其基础的知识,自身并不具有很强的纵深能力,成为主导圆与其它知识综合的核心载体,典型手法是以常见的中等试题设计展现.【母题1】如图,点O在线段AB上,(不与端点A、B重合),以点O为圆心,OA的长为半径画弧,线段BP与这条弧相切与点P,直线CD垂直平分PB,交PB于点C,交AB于点D,在射线DC上截取DE,使DE=DB。
已知AB=6,设OA=r。
(1)求证:OP∥ED;(2)当∠ABP=30°时,求扇形AOP的面积,并证明四边形PDBE是菱形;(3)过点O作OF⊥DE于点F,如图所示,线段EF的长度是否随r的变化而变化?若不变,直接写出EF的值;若变化,直接写出EF与r的关系。
【答案】(1)见解析;(2),见解析;(3)EF=3试题解析:(1)∵BP为的切线,∵,∴,∴OP∥ED;(2)在Rt△OBP中,∴在Rt△OBP中,即解得:S扇形AOP=,证明:∵∴∵∴是等边三角形又∵∴∴DE与PB互相垂直平分,∴四边形PDBE是菱形.【母题2】如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(3,﹣1),点A的坐标为(﹣2,),点B的坐标为(﹣3,0),点C在x轴上,且点D在点A的左侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,同时菱形ABCD沿x轴向右以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与BC相切,且切点为BC的中点时,连接BD,求:①t的值;②∠MBD的度数;(3)在(2)的条件下,当点M与BD所在的直线的距离为1时,求t的值.【答案】(1)8;(2)①7;②105°;(3)t=6﹣或6+.(2)①如图2,⊙M与x轴的切点为F,BC的中点为E.∵M(3,﹣1),∴F(3,0).∵BC=2,且E为BC的中点,∴E(﹣4,0),∴EF=7,即EE'﹣FE'=EF,∴3t﹣2t=7,t=7;②由(1)可知:BE=1,AE=,∴tan∠EBA===,∴∠EBA=60°,如图4,∴∠FBA=120°.∵四边形ABCD是菱形,∴∠FBD=∠FBA==60°.∵BC是⊙M的切线,∴MF⊥BC.∵F是BC的中点,∴BF=MF=1,∴△BFM是等腰直角三角形,∴∠MBF=45°,∴∠MBD=∠MBF+∠FBD=45°+60°=105°;点睛:本题是四边形和圆的综合题,考查了菱形的性质、圆的切线的性质和判定、特殊的三角函数值、等腰直角三角形的性质、动点运动问题,此类问题比较复杂,弄清动点运动方向、速度、时间和路程的关系,并与方程相结合,找等量关系,求出时间t的值.【母题3】在等边△AOB中,将扇形COD按图1摆放,使扇形的半径OC、OD分别与OA、OB重合,OA=OB=2,OC=OD=1,固定等边△AOB不动,让扇形COD绕点O逆时针旋转,线段AC、BD也随之变化,设旋转角为α.(0<α≤360°)(1)当OC∥AB时,旋转角α= 度;发现:(2)线段AC与BD有何数量关系,请仅就图2给出证明.应用:(3)当A、C、D三点共线时,求BD的长.拓展:(4)P是线段AB上任意一点,在扇形COD的旋转过程中,请直接写出线段PC的最大值与最小值.【答案】(1)60或240;(2) AC=BD,理由见解析;(3)或;(4)PC的最大值=3,PC的最小值=﹣1.PC的最小值=﹣1.详解:(1)如图1中,∵△ABC是等边三角形,∴∠AOB=∠COD=60°,∴当点D在线段AD和线段AD的延长线上时,OC∥AB,此时旋转角α=60°或240°.故答案为:60或240;(3)①如图3中,当A、C、D共线时,作OH⊥AC于H.在Rt△COH中,∵OC=1,∠COH=30°,∴CH=HD=,OH=.在Rt△AOH中,AH==,∴BD=AC=CH+AH=.如图4中,当A、C、D共线时,作OH⊥AC于H.易知AC=BD=AH﹣CH=.综上所述:当A、C、D三点共线时,BD的长为或;(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH 交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=﹣1.母题二几何翻折综合问题【母题来源】江苏省镇江市2018年中考数学试卷第27题【母题原题】(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为23 °.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N 分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG=,求B′D的长;【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.(2)【画一画】,如图2中,【算一算】如图3中,【验一验】如图4中,小明的判断不正确.由折叠可知,IB=IB′=4k,∴BC=BI+IC=4k+5k=9,∴k=1,∴IC=5,IB′=4,B′C=3,在Rt△ICB′中,tan∠B′IC==,连接ID,在Rt△ICD中,tan∠DIC==,∴tan∠B′IC≠tan∠DIC,∴B′I所在的直线不经过点D.【命题意图】本题考查四边形综合题、矩形的性质、翻折变换、勾股定理、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题,属于中考压轴题.【方法、技巧、规律】图形翻折问题是指将某一图形没着某条直线翻折后得到新的几何图形,然后求解新图形中一些几何元素之间存在的数量关系的问题.这类问题的实质就是图形的轴对称问题,处理这类问题关键是要掌握翻折前后哪些量变了,哪些量没变,有哪些条件能利用,也就是要找好前后全等的图形,相等的线段、相等的角等;有时通过翻折会出现角平分线、线段的中垂线等条件.因此只要抓住了关键点,还是比较好解决的.【母题1】【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tan B=tan C=43,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.【答案】【探索发现】12;【拓展应用】4ab;【灵活应用】720;【实际应用】1944.【分析】【探索发现】:由中位线知EF=12BC、ED=12AB、由ABCSS∆矩形FEDB =12EF DEAB BC⋅⋅可得;【拓展应用】:由△APN ∽△ABC 知PN AE BC AD =,可得PN =a ﹣ahPQ ,设PQ =x ,由S 矩形PQMN=PQ •PN ═2()24a h ahx h --+,据此可得; 【灵活应用】:添加如图1辅助线,取BF 中点I ,FG 的中点K ,由矩形性质知AE =EH 20、CD =DH =16,分别证△AEF ≌△HED 、△CDG ≌△HDE 得AF =DH =16、CG =HE =20,从而判断出中位线IK 的两端点在线段AB 和DE 上,利用【探索发现】结论解答即可;【实际应用】:延长BA 、CD 交于点E ,过点E 作EH ⊥BC 于点H ,由tan B =tan C 知EB =EC 、BH =CH =54,EH =43BH =72,继而求得BE =CE =90,可判断中位线PQ 的两端点在线段AB 、CD 上,利用【拓展应用】结论解答可得.【拓展应用】∵PN ∥BC ,∴△APN ∽△ABC ,∴PN AE BC AD =,即=PN h PQ a h -,∴PN =a ﹣ahPQ ,设PQ =x ,则S 矩形PQMN =PQ •PN =x (a ﹣a h x )=2a x ax h -+ =2()24a h ah x h --+,∴当PQ =2h 时,S 矩形PQMN 最大值为4ab ,故答案为:4ab ;【灵活应用】如图1,延长BA 、DE 交于点F ,延长BC 、ED 交于点G ,延长AE 、CD 交于点H ,取BF 中点I ,FG 的中点K ,由题意知四边形ABCH 是矩形,∵AB =32,BC =40,AE =20,CD =16,∴EH =20、DH =16,∴AE =EH 、CD =DH ,在△AEF 和△HED 中,∵∠FAE =∠DHE ,AE =AH ,∠AEF =∠HED ,∴△AEF ≌△HED (ASA ),∴AF =DH =16,同理△CDG≌△HDE ,∴CG =HE =20,∴BI =12(AB +AF )=24,∵BI =24<32,∴中位线IK 的两端点在线段AB 和DE 上,过点K 作KL ⊥BC 于点L ,由【探索发现】知矩形的最大面积为12×BG •BF =12×(40+20)×(32+16)=720,答:该矩形的面积为720; 【实际应用】考点:四边形综合题;阅读型;探究型;最值问题;压轴题. 【母题2】问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE =DG ,求证:2ABCD EFGH S S =矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A 1、B 1、C 1、D 1,得到矩形A 1B 1C 1D 1.如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2S 四边形EFGH =S 矩形ABCD +S . 如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S 四边形EFGH 、S 矩形ABCD 与S之间的数量关系,并说明理由. 迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE >DG ,S 四边形EFGH =11,HF ,求EG 的长.(2)如图5,在矩形ABCD 中,AB =3,AD =5,点E 、H 分别在边AB 、AD 上,BE =1,DH =2,点F 、G 分别是边BC 、CD 上的动点,且FG EF 、HG ,请直接写出四边形EFGH 面积的最大值.【答案】问题呈现:2ABCD EFGH S S =矩形四边形;实验探究:11112ABCD A B C D EFGH S S S =-矩形矩形四边形;迁移应用:(1)EG 2)172.【分析】问题呈现:只要证明S △HGE =12S 矩形AEGD ,同理S △EGF =12S 矩形BEGC ,由此可得S 四边形EFGH =S △HGE +S △EFG =12S 矩形BEGC;实验探究:结论:2S四边形EFGH=S矩形ABCD﹣.根据=12,=12, =12,=12,即可证明;迁移应用:(1)利用探究的结论即可解决问题. (2)分两种情形探究即可解决问题.理由:∵ =12, =12,=12,=12,∴S四边形EFGH=+++﹣,∴2S四边形EFGH=2+2+2+2﹣2,∴2S 四边形EFGH =S 矩形ABCD ﹣.迁移应用:解:(1)如图4中,∵2S四边形EFGH=S 矩形ABCD﹣,∴=25﹣2×11=3=A 1B 1A 1D 1,∵正方形的面积为25,∴边长为5,∵A 1D 12=HF 2﹣52=29﹣25=4,∴A 1D 1=2,A 1B 1=32,∴EG 2=A 1B 12+52=1094,∴EG(2)∵2S 四边形EFGH =S 矩形ABCD +,∴四边形A 1B 1C 1D 1面积最大时,矩形EFGH 的面积最大.①如图5﹣1中,当G 与C 重合时,四边形A 1B 1C 1D 1面积最大时,矩形EFGH 的面积最大.此时矩形A 1B 1C 1D 1面积=12)2②如图5﹣2中,当G与D重合时,四边形A1B1C1D1面积最大时,矩形EFGH的面积最大.此时矩形A1B1C1D1面积=21=2,∵22,∴矩形EFGH的面积最大值=172.【母题3】再读教材:宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示;)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线,并把折到图③中所示的处,第四步,展平纸片,按照所得的点折出,使,则图④中就会出现黄金矩形,问题解决:(1)图③中=__________(保留根号);(2)如图③,判断四边形的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.实际操作:(4)结合图④.请在矩形中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【答案】(1);(2)四边形是菱形.理由见解析;(3)见解析.(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.∵AD=.AN=AC=1,CD=AD﹣AC=﹣1.∵BC=2,∴=,∴矩形BCDE是黄金矩形.∵==,∴矩形MNDE是黄金矩形.母题三二次函数综合问题【母题来源】江苏省镇江市2018年中考数学试卷第题【母题原题】如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).①连接AP,若2AP>OQ,求m的取值范围;②当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于 6 .(2)①∵P(m,n)在二次函数y=x2﹣3x的图象上∴n=m2﹣3m∴P(m,m2﹣3m)设直线OP的解析式为y=kx,将点P(m,m2﹣3m)代入函数解析式,得mk=m2﹣3m∴k=m﹣3∴OP的解析是为y=(m﹣3)x∵OP与y═x2﹣3x交于Q点∴解得(不符合题意舍去)∴Q(2m,2m2﹣6m)过点P作PC⊥x轴于点C,过点Q作QD⊥x轴于点D 则OC=|m|,PC=|m2﹣3m|,OD=|2m|,QD=|22﹣6m|∵==2∴△OCP∽△ODQ∴OQ=2OP∵2AP>OQ∴2AP>2OP,即AP>OP∴>化简,得m2﹣2m﹣4<0,解得1﹣<m<1+,且m≠0;∴P′(3﹣m,m2﹣3m)∵QQ′与y=x2﹣3x交于点P′∴﹣mx=x2﹣3x解得x1=0(舍去),x2=3﹣m∴P′(3﹣m,m2﹣3m)∵QQ′与y=x2﹣3x交于点M、N∴x2﹣3x=2m2﹣6m解得x1=,x2=∵M在N左侧∴M(,2m2﹣6m)N(,2m2﹣6m)∵△Q′P′M∽△QB′N∴【命题意图】本题二次函数背景的代数几何综合题,综合考查二次函数、一次函数、三角形相似的性质,应用数形结合的数学思想.【方法、技巧、规律】弄清题目中所涉及的概念,熟悉与之相关的定理、公式、技巧和方法;从不同的角度来探索解题的途径,注意运用“从已知看可知”,“从结论看需知”等综合法与分析法来沟通已知条件与结论.综合使用分析法和综合法,运用方程的思想,,使用分类讨论的思想,运用数形结合的思想,运用转化的思想.【母题1】在平面直角坐标系xOy中,若点P和点P1关于y轴对称,点P1和点P2关于直线l对称,则称点P2是点P关于y轴,直线l的二次对称点.(1)如图1,点A(﹣1,0).①若点B是点A关于y轴,直线l1:x=2的二次对称点,则点B的坐标为(3.0);②若点C(﹣5,0)是点A关于y轴,直线l2:x=a的二次对称点,则a的值为﹣2 ;③若点D(2,1)是点A关于y轴,直线l3的二次对称点,则直线l3的表达式为y=﹣x+2 ;(2)如图2,⊙O的半径为1.若⊙O上存在点M,使得点M'是点M关于y轴,直线l4:x=b的二次对称点,且点M'在射线y=x(x≥0)上,b的取值范围是﹣≤b≤1 ;(3)E(t,0)是x轴上的动点,⊙E的半径为2,若⊙E上存在点N,使得点N'是点N关于y轴,直线l5:y=x+1的二次对称点,且点N'在y轴上,求t的取值范围.【分析】(1)①②③根据二次对称点的定义,分别画出图形,即可解决问题.(2)根据二次对称点的定义,画出图形,求出b的最大值以及最小值即可解决问题.(3)如图6中,设点E关于y轴的对称点为E1,E1关于直线y=x+1的对称点为E′,易知当点N在⊙E上运动时,点N′在⊙E′上运动,由此可见当⊙E′与y轴相切或相交时满足条件.想办法求出点E′的坐标即可解决问题.③如图3中,∵A1(1,0),D(2,1),∴直线A1D的解析式为y=x﹣1,线段A1D的中垂线的解析式为y=﹣x+2,∴直线l3的解析式为y=﹣x+2.故答案分别为(3,0),a=﹣2.y=﹣x+2.∵OM=1,易知,OM⊥OM′时,MM′的值最大,最大值为2,∴b的最大值为1,如图5中,易知当点M在x轴的正半轴上时,可得b的最小值,最小值为﹣,综上所述,满足条件的b取值范围为﹣≤b≤1.故答案为﹣≤b≤1.∴E′(,),当⊙E′与y 轴相切时,||=2,解得t=﹣4或+4,综上所述,满足条件的t 的取值范围为﹣4≤t ≤+4. 【点评】本题考查圆综合题、一次函数的应用、二元一次方程组的应用、轴对称变换等知识,解题的关键是灵活运用所学知识解决问题,学会利用图形,寻找特殊位置解决问题,学会用转化的思想思考问题,属于中考压轴题.【母题2】如图,抛物线y=233384x x --+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 的解析式.【答案】(1)A (﹣4,0)、B (2,0).(2)D 1(﹣1,94-),D 2(﹣1,274).(3)y=-34x+3或y=34x ﹣3.(3)本问关键是理解“以A 、B 、M 为顶点所作的直角三角形有且只有三个”的含义.因为过A 、B 点作x 轴的垂线,其与直线l 的两个交点均可以与A 、B 点构成直角三角形,这样已经有符合题意的两个直角三角形;第三个直角三角形从直线与圆的位置关系方面考虑,以AB 为直径作圆,当直线与圆相切时,根据圆周角定理,切点与A 、B 点构成直角三角形.从而问题得解.注意:这样的切线有两条,如答图2所示. 试题解析:(1)令y=0,即233384x x --+=0, 解得x 1=﹣4,x 2=2,∴A 、B 点的坐标为A (﹣4,0)、B (2,0). (2)抛物线y=233384x x --+的对称轴是直线x=﹣34132()8-=-⨯-, 即D 点的横坐标是﹣1,S △ACB =12AB•OC=9, 在Rt △AOC 中,5==, 设△ACD 中AC 边上的高为h ,则有12AC•h=9,解得h=185. 如答图1,在坐标平面内作直线平行于AC ,且到AC 的距离=h=185,这样的直线有2条,分别是l 1和l 2,则直线与对称轴x=﹣1的两个交点即为所求的点D .综上所述,D点坐标为:D1(﹣1,94),D2(﹣1,274).设直线l 的解析式为y=kx+b ,则有4125540k b k b ⎧+=⎪⎨⎪+=⎩,解得343k b ⎧=-⎪⎨⎪=⎩, 所以直线l 的解析式为y=-34x+3. 同理,可以求得另一条切线的解析式为y=34x ﹣3. 综上所述,直线l 的解析式为y=-34x+3或y=34x ﹣3. 考点:二次函数综合题.【母题3】在平面直角坐标系xOy 中,对“隔离直线”给出如下定义: 点P (x ,m )是图形G 1上的任意一点,点Q (x ,n )是图形G 2上的任意一点,若存在直线l :kx+b (k ≠0)满足m ≤kx+b 且n ≥kx+b ,则称直线l :y=kx+b (k ≠0)是图形G 1与G 2的“隔离直线”.如图1,直线l:y=﹣x﹣4是函数y=(x<0)的图象与正方形OABC的一条“隔离直线”.(1)在直线y1=﹣2x,y2=3x+1,y3=﹣x+3中,是图1函数y=(x<0)的图象与正方形OABC的“隔离直线”的为;请你再写出一条符合题意的不同的“隔离直线”的表达式:;(2)如图2,第一象限的等腰直角三角形EDF的两腰分别与坐标轴平行,直角顶点D的坐标是(,1),⊙O的半径为2.是否存在△EDF与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;(3)正方形A1B1C1D1的一边在y轴上,其它三边都在y轴的右侧,点M(1,t)是此正方形的中心.若存在直线y=2x+b是函数y=x2﹣2x﹣3(0≤x≤4)的图象与正方形A1B1C1D1的“隔离直线”,请直接写出t的取值范围.【分析】(1)根据的“隔离直线”的定义即可解决问题;(2)连接OD,过点D作DG⊥x轴于点G,如图.过点D作DH⊥OD交y轴于点H,易知直线DH是⊙O的切线,也是△EDF与⊙O的“隔离直线”,求出直线DH即可解决问题;(3)分两种情形正方形在x轴上方以及在x轴下方时,分别求出正方形的一个顶点在直线y=2x+b上时的t 的值即可解决问题.(2)连接OD,过点D作DG⊥x轴于点G,如图.在Rt△DGO中,OD==2,sin∠1==,∴∠1=30°,∠2=60°,∵⊙O的半径为2,∴点D在⊙O上.过点D作DH⊥OD交y轴于点H,∴直线DH是⊙O的切线,也是△EDF与⊙O的“隔离直线”.在Rt△ODH中,OH==4,∴点H的坐标是(0,4),∴直线DH的表达式为y=﹣x+4,即所求“隔离直线”的表达式为y=﹣x+4.当x=2时,y=1,∴C1(2,1),直线EF是函数y=x2﹣2x﹣3(0≤x≤4)的图象与正方形A1B1C1D1的“隔离直线”,此时t=2,当直线y=2x+b与y=x2﹣2x﹣3只有一个交点时,由△=0,可得16﹣4(﹣3﹣b)=0,解得b=﹣7,此时易知M(1,﹣8),t=﹣8,根据图象可知,当t≥2或t≤﹣8时,直线y=2x+b是函数y=x2﹣2x﹣3(0≤x≤4)的图象与正方形A1B1C1D1的“隔离直线”.【点评】本题考查一次函数正方形的性质、一次函数的应用、二元二次方程组.一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
江苏镇江-A4答题版

江苏省镇江市2018年中考数学试卷 一、选择题(共8小题,每小题2分,满分16分) 1、在下列实数中,无理数是( )A 、2B 、0C 、D 、2、下列计算正确的是( ) A 、a 2•a 3=a 6 B 、y 3÷y 3=y C 、3m+3n=6mn D 、(x 3)2=x 63、已知某几何体的一个视图(如图),则此几何体是( )A 、正三棱柱B 、三棱锥C 、圆锥D 、圆柱4、某地区有8所高中和22所初中.要了解该地区中学生的视力情况,下列抽样方式获得的数据最能反映该地区中学生视力情况的是( )A 、从该地区随机选取一所中学里的学生B 、从该地区30所中学里随机选取800名学生C 、从该地区一所高中和一所初中各选取一个年级的学生D 、从该地区22所初中里随机选取400名学生5、若2 x 在实数范围内有意义,则x 的取值范围( )A 、x≥2B 、x≤2C 、x >2D 、x <26、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D .若AC=5,BC=2,则sin ∠ACD 的值为( )A .35B .552C .25 D .327、在平面直角坐标系中,正方形ABCD 的顶点分别为A (1,1)、B (1,﹣1)、C (﹣1,﹣1)、D (﹣1,1),y 轴上有一点P (0,2).作点P 关于点A 的对称点P 1,作P 1关于点B 的对称点P 2,作点P 2关于点C 的对称点P 3,作P 3关于点D 的对称点P 4,作点P 4关于点A 的对称点P 5,作P 5关于点B 的对称点P 6┅,按如此操作下去,则点P 2018的坐标为( )A 、(0,2)B 、(2,0)C 、(0,﹣2)D 、(﹣2,0)8、已知二次函数,当自变量x 取m 时对应的值大于0,当自变量x 分别取m ﹣1、m+1时对应的函数值为y 1、y 2,则y 1、y 2必须满足( )A 、y 1>0、y 2>0B 、y 1<0、y 2<0C 、y 1<0、y 2>0D 、y 1>0、y 2<0二、填空题(共9小题,每小题3分,满分27分)9、计算:= ;= ;= ;= . 10、(1)计算:(x+1)2= ; (2)分解因式:x 2﹣9= .11、若∠α的补角为120°,则∠α= ,sinα= . 12、已知关于x 的方程x 2+mx ﹣6=0的一个根为2,则m= ,另一个根是 . 13、已知扇形的圆心角为150°,它所对应的弧长20πcm ,则此扇形的半径是 cm ,面积是 cm 2.14、某市2018年5月份某一周的日最高气温(单位:℃)分别为:25、28、30、29、31、32、28,这周的日最高气温的平均值是 ℃,中位数是 ℃.15、如图,DE是⊙O的直径,弦AB⊥CD于C,若AB=6,CE=1,则OC=,CD=.16、已知关于x的一次函数y=kx+4k﹣2(k≠0).若其图象经过原点,则k=,若y随着x的增大而减小,则k的取值范围是.17、把棱长为4的正方体分割成29个棱长为整数的正方体(且没有剩余),其中棱长为1的正方体的个数为.三、解答题(共18分)18、①计算:;②化简:.19、①解分式方程;②解不等式组.四、解答题(共15分)20、某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从足球、篮球、排球、其它等四个方面调查了若干名学生,并绘制成“折线统计图”与“扇形统计图”.请你根据图中提供的部分信息解答下列问题:(1)在这次调查活动中,一共调查了名学生;(2)“足球”所在扇形的圆心角是度;(3)补全折线统计图.21、甲、乙、两三个布袋都不透明,甲袋中装有1个红球和1个白球;乙袋中装有一个红球和2个白球;丙袋中装有2个白球.这些球除颜色外都相同.从这3个袋中各随机地取出1个球.①取出的3个球恰好是2个红球和1个白球的概率是多少?②取出的3个球全是白球的概率是多少?五、解答题(共12分)22、已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.23、已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.六.探究与画图(共13分)24、如图,在△ABO中,已知点、B(﹣1,﹣1)、O(0,0),正比例函数y=﹣x图象是直线l,直线AC∥x轴交直线l与点C.(1)C点的坐标为;(2)以点O为旋转中心,将△ABO顺时针旋转角α(90°≤α<180°),使得点B落在直线l上的对应点为B′,点A的对应点为A′,得到△A′OB′.①∠α=;②画出△A′OB′.(3)写出所有满足△DOC∽△AOB的点D的坐标.25、已知:如图1,图形①满足AD=AB,MD=MB,∠A=72°,∠M=144°.图形②与图形①恰好拼成一个菱形(如图2).记AB的长度为a,BM的长度为b.(1)图形①中∠B=°,图形②中∠E=°;(2)小明有两种纸片各若干张,其中一种纸片的形状及大小与图形①相同,这种纸片称为“风筝一号”;另一种纸片的形状及大小与图形②相同,这种纸片称为“飞镖一号”.①小明仅用“风筝一号”纸片拼成一个边长为b的正十边形,需要这种纸片张;②小明若用若干张“风筝一号”纸片和“飞镖一号”纸片拼成一个“大风筝”(如图3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.请你在图3中画出拼接线并保留画图痕迹.(本题中均为无重叠、无缝隙拼接)七、解答题(共3小题,共26分)26、某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发出:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x天的总销量y1(千克)与x的关系为y1=﹣x2+40x;乙级干果从开始销售至销售的第t天的总销量y2(千克)与t的关系为y2=at2+bt,且乙级干果的前三天的t 1 2 3y221 44 69(2)若甲级干果与乙级干果分别以8元/千克的6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?(说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)27、在平面直角坐标系XOY中,一次函数的图象是直线l1,l1与x轴、y轴分别相交于A、B两点.直线l2过点C(a,0)且与直线l1垂直,其中a>0.点P、Q同时从A点出发,其中点P沿射线AB运动,速度为每秒4个单位;点Q沿射线AO运动,速度为每秒5个单位.(1)写出A点的坐标和AB的长;(2)当点P、Q运动了多少秒时,以点Q为圆心,PQ为半径的⊙Q与直线l2、y轴都相切,求此时a的值.28、在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积的2倍,求E点的坐标;(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?若存在,求E点坐标;若不存在,请说明理由.。
2018年江苏省镇江市中考数学试卷

.
11. (3分)
如图,
中,
长线上.若
,
,将
绕点 按顺时针方向旋转 ,点 对应点 落在 的延
,则
.
12. (3分)
如图,点 、 、 分别在菱形
的边 , , 上,
,
,
.已知
的面积等于 ,则菱形
的面积等于
.
二 、 选择题 (共 5 题,共 15 分) 1. (3分)
用科学记数法表示应为( )
A. B. C. D.
②连接 ,若
,求 的取值范围;
③当点 在第一象限内,过点 作 平行于 轴,与二次函数
的图象
交于另一点 ,与二次函数
的图象交于点 , ( 在 的左侧),直线 与二次
函数
的图象交于点 .
,则线段 的长度等于.
.
子题:
1. 求证: 2. 若
;
,则
.
6. (3分)
某班 名学生的身高如下(单位: ):
子题:
1.
小丽用简单随机抽样的方法从这 个数据中抽取一个容量为 的样本: , , , , ,
请你计算小丽所抽取的这个样本的平均数;
2.
小丽将这 个数据按身高相差
身高
频数
分组,并制作了如下的表格: 频率
合计 ① ,; ②这 名学生身高的中位数落在哪个身高段内?身高在哪一段的学生数最多?
2. (3分)
如图是由 个大小相同的小正方体组成的几何体,它的左视图是( )
A.
B. C.
D.
3. (3分)
小明将如图所示的转盘分成 ( 是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标 连接偶数数字 , , , , (每个区域内标注 个数字,且各区域内标注的数字互不相同),转动转盘 次,当转盘停止 转动时,若事件“指针所落区域标注的数字大于 ”的概率是 ,则 的取值为( )
江市中考数学真题试题(含解析)(2021年整理)

江苏省镇江市2018年中考数学真题试题(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省镇江市2018年中考数学真题试题(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省镇江市2018年中考数学真题试题(含解析)的全部内容。
江苏省镇江市2018年中考数学真题试题一、填空题(本大题共有12小题,每小题2分,共计24分.)1.(2分)﹣8的绝对值是.2.(2分)一组数据2,3,3,1,5的众数是.3.(2分)计算:(a2)3= .4.(2分)分解因式:x2﹣1= .5.(2分)若分式有意义,则实数x的取值范围是.6.(2分)计算:= .7.(2分)圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为.8.(2分)反比例函数y=(k≠0)的图象经过点A(﹣2,4),则在每一个象限内,y随x的增大而.(填“增大”或“减小")9.(2分)如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB= °.10.(2分)已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是.11.(2分)如图,△ABC中,∠BAC>90°,BC=5,将△ABC绕点C按顺时针方向旋转90°,点B 对应点B′落在BA的延长线上.若sin∠B′AC=,则AC= .12.(2分)如图,点E、F、G分别在菱形ABCD的边AB,BC,AD上,AE=AB,CF=CB,AG=AD.已知△EFG的面积等于6,则菱形ABCD的面积等于.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,只有一项符合题目要求.)13.(3分)0。
(精校版)江苏省镇江市2018年中考数学试卷(Word试卷,学生用)

(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;
25.如图,一次函数y=kx+b(k≠0) 图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分.
(1)求一次函数y=kx+b(k≠0)的表达式;
(2)若△ACE的面积为11,求点E的坐标;
(3)当∠CBE=∠ABO时,点E的坐标为.
7.圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为_____.
8.反比例函数y= (k≠0) 图象经过点A(﹣2,4),则在每一个象限内,y随x的增大而_____.(填“增大”或“减小”)
9.如图,AB为△ADC的外接圆⊙O的直径,若∠BAD=50°,则∠ACD=_____°.
10.已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是_____.
【算一算】
如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG= ,求B′D的长;
【验一验】
如图4,点K在这张矩形纸片 边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.
9.分解因式:1﹣x2=____.
10.现有一组数据2,7,6,9,8,则这组数据的中位数是________.
江苏省镇江市2018年中考数学试卷(原卷版)

2018年江苏省镇江市中考数学试卷一、填空题(本大题共有12小题,每小题2分,共计24分.)1. ﹣8的绝对值是_____.2. 一组数据2,3,3,1,5的众数是_____.3. 计算:(a2)3=_____.4. 分解因式:x2﹣1=_____.5. 若分式有意义,则实数x的取值范围是_____.6. 计算:=_____.7. 圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为_____.8. 反比例函数y=(k≠0)的图象经过点A(﹣2,4),则在每一个象限内,y随x的增大而_____.(填“增大”或“减小”)9. 如图,AB为△ADC的外接圆⊙O的直径,若∠BAD=50°,则∠ACD=_____°.学.科.网...学.科.网...学.科.网...10. 已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是_____.11. 如图,△ABC中,∠BAC>90°,BC=5,将△ABC绕点C按顺时针方向旋转90°,点B对应点B′落在BA的延长线上.若sin∠B′AC=,则AC=_____.12. 如图,点E、F、G分别在菱形ABCD的边AB,BC,AD上,AE=AB,CF=CB,AG=AD.已知△EFG的面积等于6,则菱形ABCD的面积等于_____.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,只有一项符合题目要求.)13. 0.000182用科学记数法表示应为()A. 0182×10﹣3B. 1.82×10﹣4C. 1.82×10﹣5D. 18.2×10﹣414. 如图是由3个大小相同的小正方体组成的几何体,它的左视图是()A. B. C. D.15. 小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标注连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为()A. 36B. 30C. 24D. 1816. 甲、乙两地相距80km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午()A. 10:35B. 10:40C. 10:45D. 10:5017. 如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为()A. B. C. D.三、解答题(本大题共有11小题,共计81分,解答应写出必要的文字说明、证明过程或演算步骤.)18. (1)计算:2﹣1+(2018﹣π)0﹣sin30°;(2)化简:(a+1)2﹣a(a+1)﹣1.19. (1)解方程:=+1;(2)解不等式组:20. 如图,数轴上的点A,B,C,D表示的数分别为﹣3,﹣1,1,2,从A,B,C,D四点中任意取两点,求所取两点之间的距离为2的概率.21. 小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?22. 如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.23. 某班50名学生的身高如下(单位:cm):160 163 152 161 167 154 158 171 156 168178 151 156 154 165 160 168 155 162 173158 167 157 153 164 172 153 159 154 155169 163 158 150 177 155 166 161 159 164171 154 157 165 152 167 157 162 155 160(1)小丽用简单随机抽样的方法从这50个数据中抽取一个容量为5的样本:161,155,174,163,152,请你计算小丽所抽取的这个样本的平均数;(2)小丽将这50个数据按身高相差4cm分组,并制作了如下的表格:①m= ,n= ;②这50名学生身高的中位数落在哪个身高段内?身高在哪一段的学生数最多?24. 如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.25. 如图,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分.(1)求一次函数y=kx+b(k≠0)的表达式;(2)若△ACE的面积为11,求点E的坐标;(3)当∠CBE=∠ABO时,点E的坐标为.26. 如图1,平行四边形ABCD中,AB⊥AC,AB=6,AD=10,点P在边AD上运动,以P为圆心,PA为半径的⊙P与对角线AC交于A,E两点.(1)如图2,当⊙P与边CD相切于点F时,求AP的长;(2)不难发现,当⊙P与边CD相切时,⊙P与平行四边形ABCD的边有三个公共点,随着AP的变化,⊙P与平行四边形ABCD的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值范围.27. (1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为°.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN (点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG=,求B′D的长;【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.28. 如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).①连接AP,若2AP>OQ,求m的取值范围;②当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x 的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于.。
2018年江苏省镇江市中考数学试卷(试卷+答案+解析)

2018年江苏省镇江市中考数学试卷一、填空题(本大题共有12小题,每小题2分,共计24分.)1.(2分)﹣8的绝对值是 .2.(2分)一组数据2,3,3,1,5的众数是 .3.(2分)计算:(a 2)3= .4.(2分)分解因式:x 2﹣1= .5.(2分)若分式5x−3有意义,则实数x 的取值范围是 . 6.(2分)计算:√12×√8= . 7.(2分)圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为 . 8.(2分)反比例函数y =k x (k ≠0)的图象经过点A (﹣2,4),则在每一个象限内,y 随x 的增大而 .(填“增大”或“减小”)9.(2分)如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACB = °.10.(2分)已知二次函数y =x 2﹣4x +k 的图象的顶点在x 轴下方,则实数k 的取值范围是 .11.(2分)如图,△ABC 中,∠BAC >90°,BC =5,将△ABC 绕点C 按顺时针方向旋转90°,点B 对应点B ′落在BA 的延长线上.若sin ∠B ′AC =910,则AC = .12.(2分)如图,点E 、F 、G 分别在菱形ABCD 的边AB ,BC ,AD 上,AE =13AB ,CF =13CB ,AG =13AD .已知△EFG 的面积等于6,则菱形ABCD 的面积等于 .二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,只有一项符合题目要求.)13.(3分)0.000182用科学记数法表示应为( )A .0182×10﹣3B .1.82×10﹣4C .1.82×10﹣5D .18.2×10﹣414.(3分)如图是由3个大小相同的小正方体组成的几何体,它的左视图是( )A .B .C .D .15.(3分)小明将如图所示的转盘分成n (n 是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连接偶数数字2,4,6,…,2n (每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是56,则n 的取值为( )A .36B .30C .24D .1816.(3分)甲、乙两地相距80km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km /h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x (h )之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A .10:35B .10:40C .10:45D .10:5017.(3分)如图,一次函数y =2x 与反比例函数y =k x (k >0)的图象交于A ,B 两点,点P 在以C (﹣2,0)为圆心,1为半径的⊙C 上,Q 是AP 的中点,已知OQ 长的最大值为32,则k 的值为( )A .4932B .2518C .3225D .98三、解答题(本大题共有11小题,共计81分,解答应写出必要的文字说明、证明过程或演算步骤.)18.(8分)(1)计算:2﹣1+(2018﹣π)0﹣sin 30°(2)化简:(a +1)2﹣a (a +1)﹣1.19.(10分)(1)解方程:x x+2=2x−1+1.(2)解不等式组:{2x −4>0x +1≤4(x −2)20.(6分)如图,数轴上的点A ,B ,C ,D 表示的数分别为﹣3,﹣1,1,2,从A ,B ,C ,D 四点中任意取两点,求所取两点之间的距离为2的概率.21.(6分)小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页? 22.(6分)如图,△ABC 中,AB =AC ,点E ,F 在边BC 上,BE =CF ,点D 在AF 的延长线上,AD =AC .(1)求证:△ABE ≌△ACF ;(2)若∠BAE =30°,则∠ADC = °.23.(6分)某班50名学生的身高如下(单位:cm):160 163 152 161 167 154 158 171 156 168178 151 156 158 165 160 148 155 162 175158 167 157 153 164 172 153 159 154 155169 163 158 150 177 155 166 161 159 164171 154 157 165 152 167 157 162 155 160(1)小丽用简单随机抽样的方法从这50个数据中抽取一个容量为5的样本:161,155,174,163,152,请你计算小丽所抽取的这个样本的平均数;(2)小丽将这50个数据按身高相差4cm分组,并制作了如下的表格:身高频数频率147.5~151.50.06151.5~155.5155.5~159.511m159.5~163.50.18163.5~167.580.16167.5~171.54171.5~175.5n0.06175.5~179.52合计501①m=,n=;②这50名学生身高的中位数落在哪个身高段内?身高在哪一段的学生数最多?24.(6分)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB的高度AB长.(精确到0.1米)参考值:√2≈1.41,√3≈1.73.25.(6分)如图,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分.(1)求一次函数y=kx+b(k≠0)的表达式;(2)若△ACE的面积为11,求点E的坐标;(3)当∠CBE=∠ABO时,点E的坐标为.26.(8分)如图1,平行四边形ABCD中,AB⊥AC,AB=6,AD=10,点P在边AD上运动,以P为圆心,P A为半径的⊙P与对角线AC交于A,E两点.(1)如图2,当⊙P与边CD相切于点F时,求AP的长;(2)不难发现,当⊙P与边CD相切时,⊙P与平行四边形ABCD的边有三个公共点,随着AP的变化,⊙P与平行四边形ABCD 的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值范围.27.(9分)(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE 的度数为°.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,,求B′D的长;若AG=73【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.28.(10分)如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB 按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).①求点Q的坐标(横、纵坐标均用含m的代数式表示)②连接AP,若2AP>OQ,求m的取值范围;③当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于.2018年江苏省镇江市中考数学试卷参考答案与试题解析一、填空题(本大题共有12小题,每小题2分,共计24分.)1.(2分)﹣8的绝对值是8.【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣8的绝对值是8.2.(2分)一组数据2,3,3,1,5的众数是3.【考点】W5:众数.【分析】根据众数的定义求解.【解答】解:数据2,3,3,1,5的众数为3.故答案为3.3.(2分)计算:(a2)3=a6.【考点】47:幂的乘方与积的乘方.【分析】直接利用幂的乘方运算法则计算得出答案.【解答】解:(a2)3=a6.故答案为:a6.4.(2分)分解因式:x2﹣1=(x+1)(x﹣1).【考点】54:因式分解﹣运用公式法.【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).5.(2分)若分式5x−3有意义,则实数x的取值范围是x≠3.【考点】62:分式有意义的条件.【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x﹣3≠0,解得x≠3,故答案为:x≠3.6.(2分)计算:√12×√8=2.【考点】75:二次根式的乘除法.【分析】先进行二次根式的乘法计算,然后化简就可以得出.【解答】解:原式=√12×8=√4=2.故答案为:27.(2分)圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为3.【考点】MP:圆锥的计算.【分析】设它的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12×2π×1×l=3π,然后解关于l的方程即可.【解答】解:设它的母线长为l,根据题意得12×2π×1×l =3π, 解得l =3,即它的母线长为3.故答案为3.8.(2分)反比例函数y =k x (k ≠0)的图象经过点A (﹣2,4),则在每一个象限内,y 随x 的增大而 增大 .(填“增大”或“减小”) 【考点】G 4:反比例函数的性质;G 6:反比例函数图象上点的坐标特征.【分析】直接把点(﹣2,4)代入反比例函数y =k x (k ≠0)求出k 的值,再根据反比例函数的性质即可得出结论.【解答】解:∵反比例函数y =k x(k ≠0)的图象经过点(﹣2,4),∴4=k −2,解得k =﹣8<0,∴函数图象在每个象限内y 随x 的增大而增大.故答案为:增大.9.(2分)如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACB = 40 °.【考点】MA :三角形的外接圆与外心.【分析】连接BD ,如图,根据圆周角定理得到∠ABD =90°,则利用互余计算出∠D =40°,然后再利用圆周角定理得到∠ACB 的度数.【解答】解:连接BD ,如图,∵AD 为△ABC 的外接圆⊙O 的直径,∴∠ABD =90°,∴∠D =90°﹣∠BAD =90°﹣50°=40°,∴∠ACB =∠D =40°.故答案为40.10.(2分)已知二次函数y =x 2﹣4x +k 的图象的顶点在x 轴下方,则实数k 的取值范围是 k <4 .【考点】H 4:二次函数图象与系数的关系;HA :抛物线与x 轴的交点. 【分析】先根据函数解析式得出抛物线的开口向上,根据顶点在x 轴的下方得出△>0,求出即可.【解答】解:∵二次函数y =x 2﹣4x +k 中a =1>0,图象的开口向上,又∵二次函数y =x 2﹣4x +k 的图象的顶点在x 轴下方,∴△=(﹣4)2﹣4×1×k >0,解得:k <4,故答案为:k <4.11.(2分)如图,△ABC 中,∠BAC >90°,BC =5,将△ABC 绕点C 按顺时针方向旋转90°,点B 对应点B ′落在BA 的延长线上.若sin ∠B ′AC =910,则AC = 259√2 .【考点】R 2:旋转的性质;T 7:解直角三角形.【分析】作CD ⊥BB ′于D ,如图,先利用旋转的性质得CB =CB ′=5,∠BCB ′=90°,则可判定△BCB ′为等腰直角三角形,根据等腰直角三角形求出CD =5√22,然后在Rt △ACD 中利用正弦的定义求AC 即可. 【解答】解:作CD ⊥BB ′于D ,如图, ∵△ABC 绕点C 按顺时针方向旋转90°,点B 对应点B ′落在BA 的延长线上,∴CB =CB ′=5,∠BCB ′=90°,∴△BCB ′为等腰直角三角形,∴BB ′=√2BC =5√2,∴CD =12BB ′=5√22, 在Rt △ACD 中,∵sin ∠DAC =CD AC =910, ∴AC =5√22×109=25√29. 故答案为25√29.12.(2分)如图,点E 、F 、G 分别在菱形ABCD 的边AB ,BC ,AD 上,AE =13AB ,CF =13CB ,AG =13AD .已知△EFG 的面积等于6,则菱形ABCD 的面积等于 27 .【考点】L 8:菱形的性质.【分析】在CD 上截取一点H ,使得CH =13CD .连接AC 交BD 于O ,BD 交EF 于Q ,EG 交AC 于P .想办法证明四边形EFGH 是矩形,四边形EPOQ 是矩形,根据矩形EPOQ 的面积是3,推出菱形ABCD 的面积即可;【解答】解:在CD 上截取一点H ,使得CH =13CD .连接AC 交BD 于O ,BD 交EF 于Q ,EG 交AC 于P .∵AE AB =AG AD ,∴EG ∥BD ,同法可证:FH ∥BD ,∴EG ∥FH ,同法可证EF ∥GF ,∴四边形EFGH 是平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,∴EF ⊥EG ,∴四边形EFGH 是矩形,易证点O 在线段FG 上,四边形EQOP 是矩形,∵S △EFG =6,∴S 矩形EQOP =3,即OP •OQ =3,∵OP :OA =BE :AB =2:3,∴OA =32OP ,同法可证OB =3OQ , ∴S 菱形ABCD =12•AC •BD =12×3OP ×6OQ =9OP ×OQ =27.故答案为27.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,只有一项符合题目要求.)13.(3分)0.000182用科学记数法表示应为( )A .0182×10﹣3B .1.82×10﹣4C .1.82×10﹣5D .18.2×10﹣4【考点】1J :科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000182=2×10﹣4.故选:B .14.(3分)如图是由3个大小相同的小正方体组成的几何体,它的左视图是( )A .B .C .D .【考点】U 2:简单组合体的三视图.【分析】根据左视图就是从物体的左边进行观察,得出左视图有1列,小正方形数目为2.【解答】解:如图所示:它的左视图是:.故选:D .15.(3分)小明将如图所示的转盘分成n (n 是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连接偶数数字2,4,6,…,2n (每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是56,则n 的取值为( )A .36B .30C .24D .18【考点】X 5:几何概率.【分析】用大于8的数字的个数n ﹣4除以总个数=对应概率列出关于n 的方程,解之可得.【解答】解:∵“指针所落区域标注的数字大于8”的概率是56,∴n−4n =56,解得:n =24,故选:C .16.(3分)甲、乙两地相距80km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km /h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x (h )之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A .10:35B .10:40C .10:45D .10:50【考点】E 6:函数的图象. 【分析】根据速度之间的关系和函数图象解答即可.【解答】解:因为匀速行驶了一半的路程后将速度提高了20km /h ,所以1小时后的路程为40km ,速度为40km /h ,所以以后的速度为20+40=60km /h ,时间为4060×60=40分钟, 故该车到达乙地的时间是当天上午10:40; 故选:B .17.(3分)如图,一次函数y =2x 与反比例函数y =k x (k >0)的图象交于A ,B 两点,点P 在以C (﹣2,0)为圆心,1为半径的⊙C 上,Q 是AP 的中点,已知OQ 长的最大值为32,则k 的值为( )A .4932B .2518C .3225D .98 【考点】G 8:反比例函数与一次函数的交点问题.【分析】作辅助线,先确定OQ 长的最大时,点P 的位置,当BP 过圆心C 时,BP 最长,设B (t ,2t ),则CD =t ﹣(﹣2)=t +2,BD =﹣2t ,根据勾股定理计算t 的值,可得k 的值.【解答】解:连接BP ,由对称性得:OA =OB ,∵Q 是AP 的中点,∴OQ =12BP , ∵OQ 长的最大值为32,∴BP 长的最大值为32×2=3, 如图,当BP 过圆心C 时,BP 最长,过B 作BD ⊥x 轴于D ,∵CP =1,∴BC =2,∵B 在直线y =2x 上,设B (t ,2t ),则CD =t ﹣(﹣2)=t +2,BD =﹣2t ,在Rt △BCD 中,由勾股定理得:;BC 2=CD 2+BD 2,∴22=(t +2)2+(﹣2t )2,t =0(舍)或﹣45,∴B (﹣45,﹣85), ∵点B 在反比例函数y =k x (k >0)的图象上,∴k =﹣45×(−85)=3225; 故选:C .三、解答题(本大题共有11小题,共计81分,解答应写出必要的文字说明、证明过程或演算步骤.)18.(8分)(1)计算:2﹣1+(2018﹣π)0﹣sin 30°(2)化简:(a +1)2﹣a (a +1)﹣1.【考点】2C :实数的运算;4A :单项式乘多项式;4C :完全平方公式;6E :零指数幂;6F :负整数指数幂;T 5:特殊角的三角函数值. 【分析】(1)先计算负整数指数幂、零指数幂、代入三角函数值,再计算加减可得;(2)先计算乘方和乘法,再合并同类项即可得.【解答】解:(1)原式=12+1﹣12=1;(2)原式=a 2+2a +1﹣a 2﹣a ﹣1=a .19.(10分)(1)解方程:x x+2=2x−1+1.(2)解不等式组:{2x −4>0x +1≤4(x −2)【考点】B 3:解分式方程;CB :解一元一次不等式组.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)分别求出每一个不等式的解集,再根据“同大取大”的原则即可得不等式组的解集.【解答】解:(1)两边都乘以(x ﹣1)(x +2),得:x (x ﹣1)=2(x +2)+(x ﹣1)(x +2),解得:x =﹣12,当x =﹣12时,(x ﹣1)(x +2)≠0, ∴分式方程的解为x =﹣12;(2)解不等式2x ﹣4>0,得:x >2,解不等式x +1≤4(x ﹣2),得:x ≥3,则不等式组的解集为x ≥3.20.(6分)如图,数轴上的点A ,B ,C ,D 表示的数分别为﹣3,﹣1,1,2,从A ,B ,C ,D 四点中任意取两点,求所取两点之间的距离为2的概率.【考点】X 6:列表法与树状图法.【分析】画树状图展示所有12种等可能的结果数,再找出所取两点之间的距离为2的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中所取两点之间的距离为2的结果数为4,所以所取两点之间的距离为2的概率=412=13.21.(6分)小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页? 【考点】8A :一元一次方程的应用. 【分析】设这本名著共有x 页,根据头两天读的页数是整本书的38,即可得出关于x 的一元一次方程,解之即可得出结论. 【解答】解:设这本名著共有x 页,根据题意得:36+14(x ﹣36)=38x , 解得:x =216.答:这本名著共有216页.22.(6分)如图,△ABC 中,AB =AC ,点E ,F 在边BC 上,BE =CF ,点D 在AF 的延长线上,AD =AC .(1)求证:△ABE ≌△ACF ;(2)若∠BAE =30°,则∠ADC = 75 °.【考点】KD :全等三角形的判定与性质.【分析】(1)要证明△ABE ≌△ACF ,由题意可得AB =AC ,∠B =∠ACF ,BE =CF ,从而可以证明结论成立;(2)根据(1)中的结论和等腰三角形的性质可以求得∠ADC 的度数.【解答】(1)证明:∵AB =AC ,∴∠B =∠ACF ,在△ABE 和△ACF 中,{AB =AC ∠B =∠ACF BE =CF, ∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE =30°,∴∠BAE =∠CAF =30°,∵AD =AC ,∴∠ADC =∠ACD ,∴∠ADC =180°−30°2=75°,故答案为:75.23.(6分)某班50名学生的身高如下(单位:cm ):160 163 152 161 167 154 158 171 156 168178 151 156 158 165 160 148 155 162 175158 167 157 153 164 172 153 159 154 155169 163 158 150 177 155 166 161 159 164171 154 157 165 152 167 157 162 155 160(1)小丽用简单随机抽样的方法从这50个数据中抽取一个容量为5的样本:161,155,174,163,152,请你计算小丽所抽取的这个样本的平均数;(2)小丽将这50个数据按身高相差4cm 分组,并制作了如下的表格:身高频数 频率 147.5~151.53 0.06 151.5~155.510 0.20 155.5~159.511 m 159.5~163.59 0.18 163.5~167.58 0.16 167.5~171.54 0.08 171.5~175.5n 0.06 175.5~179.52 0.04 合计50 1①m = 0.22 ,n = 3 ;②这50名学生身高的中位数落在哪个身高段内?身高在哪一段的学生数最多?【考点】V 3:总体、个体、样本、样本容量;V 7:频数(率)分布表;W 2:加权平均数;W 4:中位数. 【分析】(1)利用平均数的计算公式计算即可;(2)①完成表中信息,根据中位数的概念解答;②根据众数的概念解答.【解答】解:(1)x =15(161+155+174+163+152)=161; (2)①如表可知,m =0,22,n =3,故答案为:0.22;3;②这50名学生身高的中位数落在159.5~163.5,身高在151.5~155.5的学生数最多.24.(6分)如图,校园内有两幢高度相同的教学楼AB ,CD ,大楼的底部B ,D 在同一平面上,两幢楼之间的距离BD 长为24米,小明在点E (B ,E ,D 在一条直线上)处测得教学楼AB 顶部的仰角为45°,然后沿EB 方向前进8米到达点G 处,测得教学楼CD 顶部的仰角为30°.已知小明的两个观测点F ,H 距离地面的高度均为1.6米,求教学楼AB 的高度AB 长.(精确到0.1米)参考值:√2≈1.41,√3≈1.73.【考点】TA :解直角三角形的应用﹣仰角俯角问题.【分析】根据题意和图形,利用特殊角的三角函数可以求得AM 的长,从而可以求得AB 的长,本题得以解决.【解答】解:延长HF 交CD 于点N ,延长FH 交AB 于点M ,如右图所示,由题意可得,MB =HG =FE =ND =1.6m ,HF =GE =8m ,MF =BE ,HN =GD ,MN =BD =24m ,设AM =xm ,则CN =xm ,在Rt △AFM 中,MF =AM tan45°=x 1=x , 在Rt △CNH 中,HN =CN tan30°=√33=√3x , ∴HF =MF +HN ﹣MN =x +√3x ﹣24, 即8=x +√3x ﹣24,解得,x ≈11.7,∴AB =11.7+1.6=13.3m ,答:教学楼AB 的高度AB 长13.3m .25.(6分)如图,一次函数y =kx +b (k ≠0)的图象与x 轴,y 轴分别交于A (﹣9,0),B (0,6)两点,过点C (2,0)作直线l 与BC 垂直,点E 在直线l 位于x 轴上方的部分.(1)求一次函数y =kx +b (k ≠0)的表达式;(2)若△ACE 的面积为11,求点E 的坐标;(3)当∠CBE =∠ABO 时,点E 的坐标为 (11,3) .【考点】FI :一次函数综合题.【分析】(1)利用待定系数法求出直线表达式;(2)先确定出直线l 的解析式,最后用三角形的面积公式建立方程求解即可得出结论;(3)先判断出△ABO ∽△EBC ,得出BCCE =BOAO =23,再判断出△BOC ∽△CFE ,即可求出CF ,EF 即可得出结论. 【解答】解:(1)∵一次函数y =kx +b (k ≠0)的图象与x 轴,y 轴分别交于A (﹣9,0),B (0,6)两点,∴{−9k +b =0b =6, ∴{k =23b =6, ∴一次函数y =kx +b 的表达式为y =23x +6;(2)如图,记直线l 与y 轴的交点为D ,∵BC ⊥l ,∴∠BCD =90°=∠BOC ,∴∠OBC +∠OCB =∠OCD +∠OCB ,∴∠OBC =∠OCD ,∵∠BOC =∠COD ,∴△OBC ∽△OCD ,∴OB OC =OC OD ,∵B (0,6),C (2,0),∴OB =6,OC =2,∴62=2OD , ∴OD =23, ∴D (0,﹣23),∵C (2,0),∴直线l 的解析式为y =13x ﹣23,设E (t ,13t ﹣23), ∵A (﹣9,0),C (2,0),∴S △ACE =12AC ×y E =12×11×(13t ﹣23)=11, ∴t =8,∴E (8,2);(3)如图,过点E 作EF ⊥x 轴于F ,∵∠ABO =∠CBE ,∠AOB =∠BCE =90°∴△ABO ∽△EBC ,∴BC CE =BO AO =23, ∵∠BCE =90°=∠BOC ,∴∠BCO +∠CBO =∠BCO +∠ECF ,∴∠CBO =∠ECF ,∵∠BOC =∠EFC =90°,∴△BOC ∽△CFE ,∴BO CF =OC EF =BC CE =23, ∴6CF =2EF =23,∴CF =9,EF =3,∴OF =11,∴E (11,3).故答案为(11,3).26.(8分)如图1,平行四边形ABCD 中,AB ⊥AC ,AB =6,AD =10,点P 在边AD 上运动,以P 为圆心,P A 为半径的⊙P 与对角线AC 交于A ,E 两点.(1)如图2,当⊙P 与边CD 相切于点F 时,求AP 的长;(2)不难发现,当⊙P 与边CD 相切时,⊙P 与平行四边形ABCD 的边有三个公共点,随着AP 的变化,⊙P 与平行四边形ABCD 的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP 的值的取值范围 409<AP <245或AP =5 .【考点】L 5:平行四边形的性质;MB :直线与圆的位置关系;ME :切线的判定与性质;S 9:相似三角形的判定与性质.【分析】(1)连接PF ,则PF ⊥CD ,由AB ⊥AC 和四边形ABCD 是平行四边形,得PF ∥AC ,可证明△DPF ∽△DAC ,列比例式可得AP 的长;(2)有两种情况:①与边AD 、CD 分别有两个公共点;②⊙P 过点A 、C 、D 三点.【解答】解:(1)如图2所示,连接PF ,在Rt △ABC 中,由勾股定理得:AC =√102−62=8,设AP =x ,则DP =10﹣x ,PF =x ,∵⊙P 与边CD 相切于点F ,∴PF ⊥CD ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∵AB ⊥AC ,∴AC ⊥CD ,∴AC ∥PF ,∴△DPF ∽△DAC ,∴PF AC =PD AD , ∴x 8=10−x 10, ∴x =409,AP =409;(2)当⊙P 与BC 相切时,设切点为G ,如图3,S ▱ABCD =12×6×8×2=10PG ,PG =245, ①当⊙P 与边AD 、CD 分别有两个公共点时,409<AP <245,即此时⊙P 与平行四边形ABCD 的边的公共点的个数为4,②⊙P 过点A 、C 、D 三点.,如图4,⊙P 与平行四边形ABCD 的边的公共点的个数为4,此时AP =5,综上所述,AP 的值的取值范围是:409<AP <245或AP =5.故答案为:409<AP <245或AP =5.27.(9分)(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE 的度数为23°.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,,求B′D的长;若AG=73【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.【考点】LO :四边形综合题.【分析】(1)利用平行线的性质以及翻折不变性即可解决问题;(2)【画一画】,如图2中,延长BA 交CE 的延长线由G ,作∠BGC 的角平分线交AD 于M ,交BC 于N ,直线MN 即为所求;【算一算】首先证明DG =DF ,理由勾股定理求出CF ,可得BF ,再利用翻折不变性,可知FB ′=FB ,由此即可解决问题;【验一验】由△CDK ∽△IB ′C ,推出CD IB′=DK B′C =CK IC ,即4IB′=3B′C =5IC ,设CB ′=3k ,IB ′=4k ,IC =5k ,由折叠可知,IB =IB ′=4k ,可知BC =BI +IC =4k +5k =9,推出k =1,推出IC =5,IB ′=4,B ′C =3,在Rt △ICB ′中,tan ∠B ′IC =CB′IB′=34,连接ID ,在Rt △ICD 中,tan∠DIC =DC IC =45,由此即可判断tan ∠B ′IC ≠tan ∠DIC ,推出B ′I 所在的直线不经过点D ; 【解答】解:(1)如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠ADB =∠DBC =46°,由翻折不变性可知,∠DBE =∠EBC =12∠DBC =23°, 故答案为23.(2)【画一画】,如图2中,【算一算】如图3中,∵AG =73,AD =9,∴GD =9﹣73=203,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DGF =∠BFG ,由翻折不变性可知,∠BFG =∠DFG ,∴∠DFG =∠DGF ,∴DF =DG =203,∵CD =AB =4,∠C =90°,∴在Rt △CDF 中,CF =√DF 2−CD 2=163,∴BF =BC ﹣CF =113,由翻折不变性可知,FB =FB ′=113,∴DB ′=DF ﹣FB ′=203﹣113=3.【验一验】如图4中,小明的判断不正确.理由:连接ID ,在Rt △CDK 中,∵DK =3,CD =4,∴CK =√32+42=5,∵AD ∥BC ,∴∠DKC =∠ICK ,由折叠可知,∠A ′B ′I =∠B =90°,∴∠IB ′C =90°=∠D ,∴△CDK ∽△IB ′C ,∴CD IB′=DK B′C =CK IC ,即4IB′=3B′C =5IC , 设CB ′=3k ,IB ′=4k ,IC =5k ,由折叠可知,IB =IB ′=4k ,∴BC =BI +IC =4k +5k =9,∴k =1,∴IC =5,IB ′=4,B ′C =3,在Rt △ICB ′中,tan ∠B ′IC =CB′IB′=34,连接ID ,在Rt △ICD 中,tan ∠DIC =DC IC =45,∴tan ∠B ′IC ≠tan ∠DIC , ∴B ′I 所在的直线不经过点D .28.(10分)如图,二次函数y =x 2﹣3x 的图象经过O (0,0),A (4,4),B (3,0)三点,以点O 为位似中心,在y 轴的右侧将△OAB 按相似比2:1放大,得到△OA ′B ′,二次函数y =ax 2+bx +c (a ≠0)的图象经过O ,A ′,B ′三点.(1)画出△OA ′B ′,试求二次函数y =ax 2+bx +c (a ≠0)的表达式;(2)点P (m ,n )在二次函数y =x 2﹣3x 的图象上,m ≠0,直线OP 与二次函数y =ax 2+bx +c (a ≠0)的图象交于点Q (异于点O ). ①求点Q 的坐标(横、纵坐标均用含m 的代数式表示)②连接AP ,若2AP >OQ ,求m 的取值范围;③当点Q 在第一象限内,过点Q 作QQ ′平行于x 轴,与二次函数y =ax 2+bx +c (a ≠0)的图象交于另一点Q ′,与二次函数y =x 2﹣3x 的图象交于点M ,N (M 在N 的左侧),直线OQ ′与二次函数y =x 2﹣3x 的图象交于点P ′.△Q ′P ′M ∽△QB ′N ,则线段NQ 的长度等于 6 .【考点】HF :二次函数综合题.【分析】(1)由位似求出A ′、B ′坐标,代入解析式即可;(2)①用m 表示P 的坐标及OP 解析式,用m 表示OP 与抛物线交点Q 的坐标,表示用m 表示AP 、OQ ,代入2AP >OQ ,求出m 范围;②用m 表示QQ ′解析式,得到P ′坐标,求出M 、N 坐标,应用△Q ′P ′M ∽△QB ′N 构造方程求m .【解答】解:(1)由以点O 为位似中心,在y 轴的右侧将△OAB 按相似比2:1放大,得OA′OA =OB′OB =12 ∵A (4,4),B (3,0)∴A ′(8,8),B ′(6,0)将O (0,0),A ′(8,8),B ′(6,0)代入y =ax 2+bx +c第21页(共22页)得{c =036a +6b =064a +8b =0解得{a =12b =−3c =0∴二次函数的解析式为y =12x 2﹣3x ; (2)①∵点P 在y =x 2﹣3x 的图象上, ∴n =m 2﹣3m ,∴P (m ,m 2﹣3m ),设直线OP 的解析式为y =kx将点P 代入,得mk =m 2﹣3m ,解得k =m ﹣3, ∴OP :y =(m ﹣3)x∵直线OP 与y =12x 2﹣3x 交于点Q∴12x 2﹣3x =(m ﹣3)x ,解得x 1=0(舍),x 2=2m , ∴Q (2m ,2m 2﹣6)②∵P (m ,n )在二次函数y =x 2﹣3x 的图象上 ∴n =m 2﹣3m∴P (m ,m 2﹣3m )设直线OP 的解析式为y =kx ,将点P (m ,m 2﹣3m )代入函数解析式, 得mk =m 2﹣3m∴k =m ﹣3∴OP 的解析是为y =(m ﹣3)x∵OP 与y ═12x 2﹣3x 交于Q 点 ∴{y =(m −3)x y =12x 2−3x 解得{x =0y =0(不符合题意舍去){x =2m y =2m 2−6m ∴Q (2m ,2m 2﹣6m )过点P 作PC ⊥x 轴于点C ,过点Q 作QD ⊥x 轴于点D 则OC =|m |,PC =|m 2﹣3m |,OD =|2m |,QD =|22﹣6m | ∵OD OC =OQ OP =2∴△OCP ∽△ODQ∴OQ =2OP∵2AP >OQ∴2AP >2OP ,即AP >OP∴√(m −4)2+(m 2−3m −4)2>√m 2+(m −3m)2 化简,得m 2﹣2m ﹣4<0,解得1﹣√5<m <1+√5,且m ≠0; ③P (m ,m 2﹣3m ),Q (2m ,2m 2﹣6m ) ∵点Q 在第一象限,∴{2m >02m 2−6m >0,解得>3 由Q (2m ,2m 2﹣6m ),得QQ ′的表达式是y =2m 2﹣6m ∵QQ ′交y =12x 2﹣3x 交于点Q ′ {y =12x 2−3x y =2m 2−6m解得{x =2m y =2m 2−6m (不符合题意,舍){x =6−2m y =2m 2−6m ∴Q ′(6﹣2m ,2m 2﹣6m )第22页(共22页) 设OQ ′的解析是为y =kx ,(6﹣2m )k =2m 2﹣6m 解得k =﹣m ,OQ ′的解析式为y =﹣m ∵OQ ′与y =x 2﹣3x 交于点P ′ ∴﹣mx =x 2﹣3x解得x 1=0(舍),x 2=3﹣m∴P ′(3﹣m ,m 2﹣3m )∵QQ ′与y =x 2﹣3x 交于点P ′ ∴﹣mx =x 2﹣3x解得x 1=0(舍去),x 2=3﹣m∴P ′(3﹣m ,m 2﹣3m )∵QQ ′与y =x 2﹣3x 交于点M 、N ∴x 2﹣3x =2m 2﹣6m解得x 1=3+√8m 2−24m+92,x 2=3−√8m 2−24m+92∵M 在N 左侧∴M (3+√8m 2−24m+92,2m 2﹣6m ) N (3−√8m 2−24m+92,2m 2﹣6m )∵△Q ′P ′M ∽△QB ′N∴P′Q′QB′=QM QN∵(P′Q QB )2=(3−m)2+(m 2−3m)2(2m−6)2+(2m 2−6m)2=14 即3−√8m 2−24m+9−(6−2m)2m−√22=12化简得m 2﹣12m +27=0解得:m 1=3(舍),m 2=9∴N (12,108),Q (18,108) ∴QN =6故答案为:6。
2018年江苏省镇江市中考数学试卷

2018年江苏省镇江市中考数学试卷一、填空题(本大题共12小题,每小题2分,共计24分)1.的倒数是.2.计算:m2•m3=.3.(2分)(2018•镇江)已知一个数的绝对值是4,则这个数是.4.(2分)(2018•镇江)化简:(1﹣x)2+2x=.5.(2分)(2018•镇江)当x=时,分式的值为0.6.(2分)(2018•镇江)如图,将等边△OAB绕O点按逆时针方向旋转150°,得到△OA′B′(点A′,B′分别是点A,B的对应点),则∠1=°.7.(2分)(2018•镇江)数轴上实数b的对应点的位置如图所示,比较大小:b+10.8.(2分)(2018•镇江)如图,▱ABCD中,E为AD的中点,BE,CD的延长线相交于点F,若△DEF的面积为1,则▱ABCD的面积等于.9.(2分)(2018•镇江)关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是.10.(2分)(2018•镇江)如图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若BD=﹣1,则∠ACD=°.11.(2分)(2018•镇江)写一个你喜欢的实数m的值,使得事件“对于二次函数y=x2﹣(m﹣1)x+3,当x<﹣3时,y随x的增大而减小”成为随机事件.12.(2分)(2018•镇江)如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=3cm.BC=2cm,将△DBC沿射线BC平移一定的距离得到△D1B1C1,连接AC1,BD1.如果四边形ABD1C1是矩形,那么平移的距离为cm.二、选择题(本大题共5小题,每小题3分,共计15分)13.(3分)(2018•镇江)230 000用科学记数法表示应为()A.0。
23×105B.23×104C.2.3×105D.2。
3×10414.(3分)(2018•镇江)由五个小正方体搭成的一个几何体如图所示,它的俯视图是()A.B.C.D.15.(3分)(2018•镇江)计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y16.(3分)(2018•镇江)有4万个不小于70的两位数,从中随机抽取了3600个数据,统计如下:数据x 70<x<78 80<x<85 90<x<95个数800 1300 900平均数78.1 85 91.9请根据表格中的信息,估计这4万个数据的平均数约为()A.92。
2018年江苏省镇江市中考数学试卷(带解析)

0.20
155.5~159.5
11
m
159.5~163.5
9
0.18
163.5~167.5
8
0.16
167.5~171.5
4
0.08
171.5~175.5
n
0.06
第 10页(共 23页)
175.5~179.5
2
0.04
合计
50
1
①m= 0.22 ,n= 3 ;
②这 50 名学生身高的中位数落在哪个身高段内?身高在哪一段的学生数最多?
A.10:35 B.10:40 C.10:45 D.10:50 【解答】解:因为匀速行驶了一半的路程后将速度提高了 20km/h, 所以 1 小时后的路程为 40km,速度为 40km/h,
所以以后的速度为 20+40=60km/h,时间为 故该车到达乙地的时间是当天上午 10:40; 故选:B.
分钟,
【解答】解:(1) = (161+155+174+163+152)=161; (2)①如表可知,m=0,22,n=3, 故答案为:0.22;3; ②这 50 名学生身高的中位数落在 159.5~163.5, 身高在 151.5~155.5 的学生数最多.
24.(6 分)如图,校园内有两幢高度相同的教学楼 AB,CD,大楼的底部 B,D 在同一平面上,两幢楼之间的距离 BD 长为 24 米,小明在点 E(B,E,D 在一条 直线上)处测得教学楼 AB 顶部的仰角为 45°,然后沿 EB 方向前进 8 米到达点 G 处,测得教学楼 CD 顶部的仰角为 30°.已知小明的两个观测点 F,H 距离地面的 高度均为 1.6 米,求教学楼 AB 的高度 AB 长.(精确到 0.1 米)参考值: ≈1.41,
江苏省镇江市2018年中考数学试卷(原卷版)

2018年江苏省镇江市中考数学试卷一、填空题(本大题共有12小题,每小题2分,共计24分.)1. ﹣8的绝对值是_____.2. 一组数据2,3,3,1,5的众数是_____.3. 计算:(a2)3=_____.4. 分解因式:x2﹣1=_____.5. 若分式有意义,则实数x的取值范围是_____.6. 计算:=_____.7. 圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为_____.8. 反比例函数y=(k≠0)的图象经过点A(﹣2,4),则在每一个象限内,y随x的增大而_____.(填“增大”或“减小”)9. 如图,AB为△ADC的外接圆⊙O的直径,若∠BAD=50°,则∠ACD=_____°.学.科.网...学.科.网...学.科.网...10. 已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是_____.11. 如图,△ABC中,∠BAC>90°,BC=5,将△ABC绕点C按顺时针方向旋转90°,点B对应点B′落在BA的延长线上.若sin∠B′AC=,则AC=_____.12. 如图,点E、F、G分别在菱形ABCD的边AB,BC,AD上,AE=AB,CF=CB,AG=AD.已知△EFG的面积等于6,则菱形ABCD的面积等于_____.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,只有一项符合题目要求.)13. 0.000182用科学记数法表示应为()A. 0182×10﹣3B. 1.82×10﹣4C. 1.82×10﹣5D. 18.2×10﹣414. 如图是由3个大小相同的小正方体组成的几何体,它的左视图是()A. B. C. D.15. 小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标注连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为()A. 36B. 30C. 24D. 1816. 甲、乙两地相距80km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午()A. 10:35B. 10:40C. 10:45D. 10:5017. 如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为()A. B. C. D.三、解答题(本大题共有11小题,共计81分,解答应写出必要的文字说明、证明过程或演算步骤.)18. (1)计算:2﹣1+(2018﹣π)0﹣sin30°;(2)化简:(a+1)2﹣a(a+1)﹣1.19. (1)解方程:=+1;(2)解不等式组:20. 如图,数轴上的点A,B,C,D表示的数分别为﹣3,﹣1,1,2,从A,B,C,D四点中任意取两点,求所取两点之间的距离为2的概率.21. 小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?22. 如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.23. 某班50名学生的身高如下(单位:cm):160 163 152 161 167 154 158 171 156 168178 151 156 154 165 160 168 155 162 173158 167 157 153 164 172 153 159 154 155169 163 158 150 177 155 166 161 159 164171 154 157 165 152 167 157 162 155 160(1)小丽用简单随机抽样的方法从这50个数据中抽取一个容量为5的样本:161,155,174,163,152,请你计算小丽所抽取的这个样本的平均数;(2)小丽将这50个数据按身高相差4cm分组,并制作了如下的表格:①m= ,n= ;②这50名学生身高的中位数落在哪个身高段内?身高在哪一段的学生数最多?24. 如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.25. 如图,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分.(1)求一次函数y=kx+b(k≠0)的表达式;(2)若△ACE的面积为11,求点E的坐标;(3)当∠CBE=∠ABO时,点E的坐标为.26. 如图1,平行四边形ABCD中,AB⊥AC,AB=6,AD=10,点P在边AD上运动,以P为圆心,PA为半径的⊙P与对角线AC交于A,E两点.(1)如图2,当⊙P与边CD相切于点F时,求AP的长;(2)不难发现,当⊙P与边CD相切时,⊙P与平行四边形ABCD的边有三个公共点,随着AP的变化,⊙P与平行四边形ABCD的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值范围.27. (1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为°.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN (点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG=,求B′D的长;【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.28. 如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).①连接AP,若2AP>OQ,求m的取值范围;②当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x 的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于.。
2018年江苏省镇江市中考数学试卷-答案

江苏省镇江市 2018 年初中学业水平考试数学答案分析1.【答案】 8【分析】解:8 的绝对值是8.【考点】绝对值.2.【答案】 3【分析】解:数据2, 3, 3, 1, 5 的众数为 3.故答案为 3.【考点】众数 .3.【答案】 a6【分析】解:( a2 )3a6.故答案为: a6.【考点】幂的乘方与积的乘方.4. 【答案】 ( x 1)( x1)【分析】解:x2 1 ( x 1)( x1) .故答案为:( x 1)( x1) .【考点】因式分解—运用公式法.5.【答案】 x 3【分析】解:由题意, 得x 3 0 ,解得 x 3,故答案为:x 3.【考点】分式存心义的条件.6.【答案】 21【分析】解:原式8242.故答案为: 2【考点】二次根式的乘除法.7.【答案】 3【分析】解:设它的母线长为l,依据题意得12π 1 l 3π, 2解得 l 3 ,即它的母线长为 3. 故答案为 3.【考点】圆锥的计算.8.【答案】增大【分析】解:∵反比率函数y k(k 0 )的图象经过点( 2,4) ,k, 解得k x4 8<0 ,2函数图象在每个象限内y 随x的增大而增大.故答案为:增大 .【考点】反比率函数的性质, 反比率函数图象上点的坐标特点 .9.【答案】 40【分析】解:连结BD,如图,AD 为△ABC的外接圆O 的直径,ABD 90 ,D 90BAD 90 50 40 ,ACB D 40.故答案为40.【考点】三角形的外接圆与外心.10. 【答案】k<4【分析】解:二次函数 y x2 4x k 中 a 1>0 ,图象的张口向上,又二次函数y x2 4x k 的图象的极点在x 轴下方,( 4)2 4 1 k>0 ,解得: k<4 ,故答案为: k<4.【考点】二次函数图象与系数的关系, 抛物线与 x 轴的交点 .11.【答案】 1:9【分析】解:作CD BB 于D,如图,△ABC 绕点 C 按顺时针方向旋转 90 ,点B对应点B落在BA的延伸线上, CB CB 5,BCB 90 ,△ BCB 为等腰直角三角形 ,BB2BC 5 2,1 BB 5 2CD ,22在 Rt △ACD 中 ,sinDAC CD9 ,AC 105 2 10 25 2 AC2 9 9 .故答案为252 .9【考点】旋转的性质 , 解直角三角形 . 12. 【答案】 27【分析】解:在 CD 上截取一点 H , 使得 CH1 CD .连结 AC 交BD 于O , BD 交EF 于Q , EG 交 AC 于P .3AE AG ,ABADEG ∥BD , 同法可证: FH ∥BD ,EG ∥ FH , 同法可证 EF ∥GF ,四边形 EFGH 是平行四边形 , 四边形 ABCD 是菱形 ,AC BD , EF EG ,四边形 EFGH 是矩形 , 易证点 O 在线段 FG 上 , 四边形 EQOP 是矩形 ,S △ EFG6 ,S 矩形EQOP3,即OPOQ 3 ,OP :OA BE:AB 2:3 ,OA 3 同法可证 OB 3OQ ,OP ,2 1 1S 菱形 ABCD AC BD OQ 27.2 3OP 6OQ 9OP 2故答案为 27.【考点】菱形的性质 .13. 【答案】 B【分析】解:2 10 4 . 应选: B.【考点】科学记数法 —表示较小的数 .14. 【答案】 D【分析】解:如下图:它的左视图是:, 应选: D.【考点】简单组合体的三视图.15. 【答案】 C【分析】解:∵“指针所落地区标明的数字大于8”的概率是5,6n 4 5,n6解得: n24 , 应选: C.【考点】几何概率 .16. 【答案】 B【分析】解:由于匀速行驶了一半的行程后将速度提升了20km/h ,因此 1 小时后的行程为 40 km , 速度为 40 km/h ,因此此后的速度为 2040 60 km/h , 时间为4060 40分钟 ,60故该车抵达乙地的时间是当日上午 1040:;应选: B .【考点】函数的图象 . 17. 【答案】 C【分析】解:连结BP , 由对称性得: OA OB ,Q 是 AP 的中点 ,∴ OQ1BP , OQ 1BP ,22 OQ 长的最大值为3 , 2 3BP 长的最大值为2 3 , 2如图 , 当 BP 过圆心 C 时 , BP 最长 , 过 B 作 BDx 轴于 D ,CP 1,BC 2,B 在直线 y2x 上 ,设 B(t, 2t ) , 则 CD t ( 2) t 2, BD 2t ,在 Rt △BCD 中 , 由勾股定理得: BC 2CD 2 BD 2 ,22(t 2) 2( 2t )2 ,t 0 ( 舍 ) 或 4,5B4 9,,55点 B 在反比率函数 yk(k >0) 的图象上 ,49 32 ; xk55 25应选: C.【考点】反比率函数与一次函数的交点问题.18. 【答案】解: ( 1) 原式1 1 11 .22( 2)原式 a 2 2a 1 a 2a 1 a .【考点】实数的运算 , 单项式乘多项式 , 完整平方公式 , 零指数幂 , 负整数指数幂 , 特别角的三角函数值 . 19. 【答案】 ( 1) 解:两边都乘以 ( x 1)( x 2) , 得: x(x 1) 2( x 2 ) ( x 1)( x 2) ,解得: x1,2当 x1时 , ( x 1)( x 2)0 ,21 ;分式方程的解为 x2( 2) 解不等式 2 x 4>0 , 得: x >2 , 解不等式 x 1≤4(x 2) , 得: x ≥3 , 则不等式组的解集为x ≥ 3 .【考点】解分式方程 , 解一元一次不等式组 . 20. 【答案】解:画树状图为:共有 12 种等可能的结果数 , 此中所取两点之间的距离为 2 的结果数为 4,因此所取两点之间的距离为2 的概率4 112 .3【考点】列表法与树状图法.21. 【答案】解:设这本名著共有x 页 ,依据题意得: 36 1( x 36)3x , 4 8解得: x 216 .答:这本名著共有216 页.【考点】一元一次方程的应用.22. 【答案】 ( 1) 证明:AB AC ,B ACF ,在△ABE和△ACF中,AB ACB ACF ,BE CF△ABE≌△ ACF ( SAS) ;( 2)△ABE≌△ ACF,BAE 30 , BAE CAF 30 ,AD AC,ADC ACD ,ADC 180 3075 ,2故答案为: 75.【考点】全等三角形的判断与性质.23. 【答案】解: ( 1) x (161 155 174 163 152 ) 161 ;( 2) ①如表可知 , m0 , 22, n 3故答案为:; 3;②这 50 名学生身高的中位数落在~163.5,身高在 151. 5~ 155. 5 的学生数最多.【考点】整体、个体、样本、样本容量;频数( 率 ) 散布表;加权均匀数;中位数.24. 【答案】解:延伸HF 交CD于点N,延伸 FH 交 AB于点 M ,如右图所示,由题意可得 , MB HG FE ND 1.6 m , HF GE 8 m , MF BE , HN GD , MN BD 24 m , 设 AM x m , 则 CN x m ,在 Rt△AFM 中, MFAM xtan45 x ,1在 Rt △CNH 中, HNCN x 3x ,tan3033HFMF HN MN x 3x 24 ,即 8 x 3x 24 ,解得 , x,AB13.3 m ,答:教课楼 AB 的高度长 13.3 m .【考点】解直角三角形的应用﹣仰角俯角问题.25. 【答案】 ( 1) 解: 一次函数 ykx b( k 0) 的图象与 x 轴 , y 轴分别交于 A( 9, 0) , B(0,6) 两点 ,9k b 0k23 ,b 6,b 6一次函数 ykx b 的表达式为 y2 x 6 ;3( 2) 如图 , 记直线 l 与 y 轴的交点为 D ,BC l , BCD 90 BOC ,OBC OCB OCDOCB , OBCOCD ,BOCCOD ,△ OBC ∽△ OCD ,OB OC ,OCODB(0,6) , C(2, 0) ,OB 6 , OC 2 ,6 2 , OD 22 OD ,3 D (0,2) ,C(2, 0) ,3直线 l 的分析式为 y1 x2 ,3 3设 E t, 1t 2,33A( 9,0) , C(2, 0) ,S △ ACE 1 AC y E1( 1 2 , 2 11 t ) 112 3 3 t 8, E(8,2) ;( 3) 如图 , 过点 E 作 EFx 轴于 F ,ABO CBE , AOBBCE 90△ ABO ∽△ EBC ,BC BO 2CE AO , 3BCE 90 BOC ,BCO CBOBCOECF ,CBO ECF , BOCEFC 90 , △ BOC ∽△ CFE ,BO OC BC 2 CF EF CE 36 2 2CFEF,3CF 9, EF3 ,OF 11 , E (11,3) .故答案为 (11,3) .【考点】一次函数综合题 .26. 【答案】 ( 1) 解:如图 2 所示, 连结 PF ,在 Rt △ ABC 中 , 由勾股定理得: AC(102 62) 8,设 AP x , 则 DP 10 x ,PFx ,P 与边 CD 相切于点 F , PF CD ,四边形 ABCD 是平行四边形 ,AB ∥CD , AB AC , AC CD ,AC ∥PF ,△ DPF ∽△ DAC ,PF PDAC,AD x 10 x 8 10 ,x4040 ,AP ;99( 2)当 P 与 BC 相切时 ,设切点为 G ,如图 3,S ABCD1 6 8210PG , PG242 ,5①当 P 与边 AD 、分别有两个公共点时 ,40< AP <24 P 与平行四边形 ABCD 的边的公共点CD9 , 即此时5 的个数为 4,② P 过点 A 、C 、D 三点., 如图 4, P 与平行四边形 ABCD 的边的公共点的个数为4,此时 AP5 ,综上所述 , AP 的值的取值范围是: 40< AP < 24 或 AP5 .40< AP < 249 5故答案为: 或 AP5 .95图2图3 图4【考点】平行四边形的性质, 直线与圆的地点关系 , 切线的判断与性质 , 相像三角形的判断与性质.27. 【答案】解: ( 1) 如图 1 中 ,图 1∵四边形 ABCD 是矩形 ,∴ AD ∥ BC ,∴ ADB DBC 46 , 1由翻折不变性可知 ,DBE EBC DBC 23故答案为 23.( 2)【画一画】 , 如图 2 中,图 2【算一算】如图 3 中 ,图 37AG,AD 9,37 20 GD 9,33四边形 ABCD 是矩形 ,AD ∥BC ,DGF BFG ,由翻折不变性可知 ,BFGDFG ,DFGDGF ,DFDG20,3CD AB 4 , C90 ,在 Rt △CDF 中 , CF(DF 2CD 2 ) 16 ,113BFBC CF,311由翻折不变性可知 , FBFB,3DBDFFB 20 11 .3 33【验一验】如图 4 中 , 小明的判断不正确 .图 4原因:连结 ID , 在 Rt △CDK 中 ,DK 3 , CD4 ,CK(32 42)5 ,AD ∥BC ,DKC ICK ,由折叠可知 ,ABIB 90 ,IBC90D ,△ CDK ∽△ IB C ,CD DK CK ,即 4 35 ,IB'BC' IC IB' BC' IC设 CB3k , IB 4k , IC5k ,由折叠可知 , IB IB4k ,BC BI IC 4k 5k 9 ,k 1 ,IC 5, IB 4, BC 3,在 Rt △ ICB 中 , tan B IC CB' 3IB ' ,4 DC 4 连结 ID , 在 Rt △ICD 中 , tan DICIC,5tan B IC tan DIC ,B I 所在的直线不经过点 D .【考点】四边形综合题 .28. 【答案】解: ( 1) 由以点 O 为位似中心 , 在 y 轴的右边将 △ OAB 按相像比 2:1 放大 , 得OA' OB' 1OAOB2A(4, 4) , B(3, 0)A (8,8) ,B (6,0)将 O(0,0 ) , A (8,8) , B (6, 0) 代入 y ax 2bx cc 0a12得 36a 6b 0 ;解得: b 364a 8b 0c 0二次函数的分析式为 y 1 x 23x ;2( 2) ① 点 P 在 yx 2 3x 的图象上 ,n m 2 3m , P( m, m 2 3m) ,设直线 OP 的分析式为 y kx将点 P 代入 , 得 mk m 23m , 解得 k m 3 ,OP :y (m 3)x直线 OP 与 y1 x2 3x 交于点 Q21 x2 3x ( m 3) x , 解得 x 10 ( 舍 ), x 22m ,2 Q( 2m, 2m 2 6)②P(m, n) 在二次函数 y x 2 3x 的图象上n m 2 3m , P(m, m 2 3m)11/13设直线 OP 的分析式为 y kx , 将点 P(m, m 2 3m) 代入函数分析式 ,得 mk m 23m ,k m 3 , OP 的分析是为 y (m 3) x ,OP 与 y1 x 23x 交于 Q 点 ,2 y m3 xy1 x2 , 3x2解得x 0 x 2m,y ( 不切合题意舍去 )2m 26myQ( 2m, 2m 26m) 过点 P 作 PCx 轴于点 C , 过点 Q 作 QDx 轴于点 D ,则 OC | m |, PC | m 23m | , OD | 2m |, QD | 226m | ,OD OQ 2 ,OCOP△ OCP ∽△ ODQ , OQ 2OP ,2AP >OQ , 2AP >2OP , 即 AP >OP ,( m 4)2 ( m 23m 4) 2< m 2 (m 3m)2 ,化简 , 得 m 2 2m 4<0 , 解得 15< m <1 5 , 且 m 0 ;③ P(m,m 2 3m) , Q(2m,2m 2 6m) ,点 Q 在第一象限 ,2m >02m26m >0 , 解得 m 3 ,由 Q(2m,2m 26m) , 得 QQ 的表达式是 y2m 2 6m ,QQ 交 y1x22 3x 交于点 Q ,1y x 2 3x x 2m( 不切合题意 , 舍 ),2 ;解得2m 2 y 2m 26m y 6x 6 2m 6m , Q (6 2m, 2m 2 6m) , y 2m 2设 OQ 的分析是为 y kx , (6 2m)k 2m 26m ,解得 km , OQ 的分析式为 ym ,OQ 与 y x 2 3x 交于点 P ,mx x 2 3x ,解得 x 1 0 ( 舍 ), x 23 m ,P (3 m,m 23m) ,QQ 与 y x 2 3x 交于点 P ,12/13mx x 2 3x ,解得x 10(舍去 ), x 23 m ,P (3 m,m 2 3m) ,QQ 与 y x 2 3x 交于点 M 、 N ,x 23x 2m 2 6m ,解得 x 1 38m 224m 9 3 8m224m 92, x 22,M 在N 左边,M ((38m 2 24m 9 , 2m 2 6m) ,2 N38m 2 24m 9 , 2m 2 6m ,2△ QPM ∽△QBN , P Q QM ,QB QN(PQ )2(3 m)2 (m 2 3m) 2 QB(2 m 6)2 (2m 2 6m)2即38m 2 24m 9 (6 2m)1 , 2m 38m 2 24m 922化简得: m 2 12m27 0 , 解得: m 13(舍),m 29 ,N (12,108) , Q(18,108) ,1,4QN 6 ,故答案为: 6.【考点】二次函数综合题.13/13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省镇江市2018年中考数学试卷一、填空题(本大题共有12小题,每小题2分,共计24分.)1.-8的绝对值是________.2.一组数据2,3,3,1,5的众数是________.3.计算:23()a =________.4.分解因式:=________.5.若分式53x -有意义,则实数x 的取值范围是________. 6.计算:182⨯=________. 7.圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为________.8.反比例函数y =k x(k ≠0)的图像经过点A (-2,4),则在每一个象限内,y 随x 的增大而________.(填“增大”或“减小”)9.如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACB =________°.10.已知二次函数y =24x x k -+的图像的顶点在x 轴下方,则实数k 的取值范围是________.11.如图,△ABC 中,∠BAC >90°,BC =5,将△ABC 绕点C 按顺时针方向旋转90°,点B 对应点B ′落在BA 的延长线上,若sin ∠B ′AC =910,则AC =________.(第9题图)CD AB O(第11题图)CAB B 'A '12.如图,点E ,F ,G 分别在菱形ABCD 的边AB ,BC ,AD 上,AE =13AB ,CF =13CB ,AG =13A D .已知△EFG 的面积等于6,则菱形ABCD 的面积等于________.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,只有一项符合题目要求.)13. 0.000 182用科学记数法表示应为 ········································ ( )B .1.82×410-C .1.82×510-D .18.2×410-14.如图是由3个大小相同的小正方体组成的几何体,它的左视图是 · ( )15.小明将如图所示的转盘分成n (n 是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连接偶数数字2,4,6,…,2n (每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是56,则n 的取值为 ··························································· ( ) A .36 B .30 C .24 D .1816.甲、乙两地相距80 km ,一辆汽车上午9∶00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x (h )之间的函数关系如图所示,该车到达乙地的时间是当天上午 ····························································· ( )A .10∶35B .10∶40C .10∶45D .10∶50(第12题图)CDF G AB E 从正面看(第14题图) A .B .C .D .(第15题图) O yx801(第16题图)17.如图,一次函数y =2x 与反比例函数y =k x(k >0)的图像交于A ,B 两点,点P 在以C (-2,0)为圆心,1为半径的⊙C 上,Q 是AP 的中点,已知OQ 长的最大值为32,则k 的值为 ·········································· ( ) A .4932 B .2518C .3225D .98 三、解答题(本大题共有11小题,共计81分,解答应写出必要的文字说明、证明过程或演算步骤.) 18.(1)(4分)计算:(2)(4分)化简:2(1)(1)1a a a +-+-.19.(1)(5分)解方程:2x x +=211x +-.(2)(5分)解不等式组:20.如图,数轴上的点A ,B ,C ,D 表示的数分别为-3,-1,1,2,从A ,B ,C ,D 四点中任意取两点,求所取两点之间的距离为2的概率.(第17题图)Oy xCQA B P 0-1-2-3-4123(第20题图)21.小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?[来源:学+科+网]22.如图,△ABC 中,AB =AC ,点E ,F 在边BC 上,BE =CF ,点D 在AF 的延长线上,AD =A C .(1)求证:△ABE ≌△ACF ;(2)若∠BAE =30°,则∠ADC =________°.(第22题图)CDE F AB23.某班50名学生的身高如下(单位:cm):160 163 152 161 167 154 158 171 156 168178 151 156 154 165 160 168 155 162 173158 167 157 153 164 172 153 159 154 155169 163 158 150 177 155 166 161 159 164171 154 157 165 152 167 157 162 155 160(1)小用简单随机抽样的方法从这50个数据中抽取一个容量为5的样本:161,155,174,163,152,请你计算小丽所抽取的这个样本的平均数;(2)小丽将这50个数据按身高相差4 cm分组,并制作了如下的表格:身高频数频率147.5~0.06151.5[来源:]151.5~155.5155.5~11159.5159.5~163.5163.5~8 0.16167.5167.5~4171.5171.5~175.5 n175.5~2[来源学科网Z.X.X.K]179.5合计50 1①m=________,n=________;②这50名学生身高的中位数落在哪个身高段内?身高在哪一段的学生数最多?24.如图,校园内有两幢高度相同的教学楼AB ,CD ,大楼的底部B ,D 在同一平面上,两幢楼之间的距离BD 长为24米,小明在点E (B ,E ,D 在一条直线上)处测得教学楼AB 顶部的仰角为45°,然后沿EH 方向前进8米到达点G 处,测得教学楼CD 顶部的仰角为30°,已知小明的两个观测点F ,H 距离地面的高度均为1.6米,求教学楼AB 的高度AB 长.(精确到0.1米,参考值:2≈1.41,3≈1.73.)25.如图,一次函数y =kx b +(k ≠0)的图像与x 轴,y 轴分别交于A (-9,0),B (0,6)两点,过点C (2,0)作直线l 与BC 垂直,点E 在直线l 位于x 轴上方的部分.(1)求一次函数y =kx b +(k ≠0)的表达式;(2)若△ACE 的面积为11,求点E 的坐标;(3)当∠CBE =∠ABO 时,点E 的坐标为________.(第25题图)Oyx CE A Bl26.如图1,平行四边形ABCD中,AB⊥AC,AB=6,AD=10,点P在边AD 上运动,以P为圆心,P A为半径的⊙P与对角线AC交于A,E两点.(1)如图2,当⊙P与边CD相切于点F时,求AP的长;(2)不难发现,当⊙P与边CD相切时,⊙P与平行四边形ABCD的边有三个公共点,随着AP的变化,⊙P与平行四边形ABCD的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值范围________.图1 CDEABP图2CD EFABP27.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为________°.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CD所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD 上,折痕为GF,点A,B分别落在点A′,B′处,若AG=73,求B′D的长;【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.图1 C D EABC'图2CDEAB图3CDFG ABB'A'图4CK DHAB IB'A'28.如图,二次函数y=23-的图像经过O(0,0),A(4,4),B(3,0)三x x点,以点O为位似中心,在y轴的右侧将△OMB按相似比2∶1放大,得到△OA′B′,二次函数y=2ax bx c++(a≠0)的图像经过O,A′,B′三点.(1)画出△OA′B′,试二次函数y=2ax bx c++(a≠0)的表达式;(2)点P(m,n)在二次函数y=23x x-的图像上,m≠0,直线OP与二次函数y=2ax bx c++(a≠0)的图像交于点Q(异于点O).①连接AP,若2AP>OQ,求m的取值范围;②当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=2-的图像交x x++(a≠0)的图像交于另一点Q′,与二次函数y=23ax bx c于点M,N(M在N的左侧),直线OQ′与二次函数y=23-的图像交x x 于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于________.。