最新高考数学(理科)模拟试卷(三)

合集下载

2023年高考数学模拟考试卷及答案解析(理科)

2023年高考数学模拟考试卷及答案解析(理科)

2023年高考数学模拟考试卷及答案解析(理科)第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知复数z 满足()()()1i 12i 1z z +=+-,则复数z 的实部与虚部的和为()A .1B .1-C .15D .15-【答案】D【分析】根据复数的运算法则求出复数43i 55z -+=,则得到答案.【详解】(1i)(2i 1)(2i 1)z z +=-+-(2i)2i 1z -=-,2i 1(2i 1)(2i)43i 43i 2i 5555z --+-+====-+-,故实部与虚部的和为431555-+=-,故选:D.2.已知()f x =A ,集合{12}B x ax =∈<<R ∣,若B A ⊆,则实数a 的取值范围是()A .[2,1]-B .[1,1]-C .(,2][1,)-∞-+∞ D .(,1][1,)∞∞--⋃+【答案】B【分析】先根据二次不等式求出集合A ,再分类讨论集合B ,根据集合间包含关系即可求解.【详解】()f x =A ,所以210x -≥,所以1x ≥或1x ≤-,①当0a =时,{102}B x x =∈<<=∅R∣,满足B A ⊆,所以0a =符合题意;②当0a >时,12{}B x x a a=∈<<R∣,所以若B A ⊆,则有11a≥或21a≤-,所以01a <≤或2a ≤-(舍)③当0<a 时,21{}B x x aa=∈<<R ∣,所以若B A ⊆,则有11a≤-或21a≥(舍),10a -≤<,综上所述,[1,1]a ∈-,故选:B.3.在研究急刹车的停车距离问题时,通常假定停车距离等于反应距离(1d ,单位:m )与制动距离(2d ,单位:m )之和.如图为某实验所测得的数据,其中“KPH”表示刹车时汽车的初速度v (单位:km/h ).根据实验数据可以推测,下面四组函数中最适合描述1d ,2d 与v 的函数关系的是()A .1d v α=,2d =B .1d v α=,22d v β=C .1d =,2d v β=D .1d =,22d vβ=【答案】B【分析】设()()1d v f v =,()()2d v g v =,根据图象得到函数图象上的点,作出散点图,即可得到答案.【详解】设()()1d v f v =,()()2d v g v =.由图象知,()()1d v f v =过点()40,8.5,()50,10.3,()60,12.5,()70,14.6,()80,16.7,()90,18.7,()100,20.8,()110,22.9,()120,25,()130,27.1,()140,29.2,()150,31.3,()160,33.3,()170,35.4,()180,37.5.作出散点图,如图1.由图1可得,1d 与v 呈现线性关系,可选择用1d v α=.()()2d v g v =过点()40,8.5,()50,16.2,()60,23.2,()70,31.4,()80,36,()90,52,()100,64.6,()110,78.1,()120,93,()()140,123,()150,144.1,()160,164.3,()170,183.6,()180,208.作出散点图,如图2.由图2可得,2d 与v 呈现非线性关系,比较之下,可选择用22d v β=.故选:B.4.已知函数()ln ,0,e ,0,x xx f x x x x ⎧>⎪=⎨⎪≤⎩则函数()1y f x =-的图象大致是()A .B.C .D .【答案】B【分析】分段求出函数()1y f x =-的解析式,利用导数判断其单调性,根据单调性可得答案.【详解】当10x ->,即1x <时,ln(1)(1)1x y f x x-=-=-,221(1)ln(1)1ln(1)1(1)(1)x x x x y x x -⋅-+--+--'==--,令0'>y ,得1e x <-,令0'<y ,得1e 1x -<<,所以函数()1y f x =-在(,1e)-∞-上为增函数,在(1e,1)-上为减函数,由此得A 和C 和D 不正确;当10x -≤,即1x ≥时,1(1)(1)e x y f x x -=-=-,()11(1)e (1)e x x y x x --'''=-+-11e (1)e x x x --=---=1e (2)xx ---,令0'>y ,得2x >,令0'<y ,得12x ≤<,所以函数()1y f x =-在(2,)+∞上为增函数,在[1,2)上为减函数,由此得B 正确;故选:B5.若函数()f x 存在一个极大值()1f x 与一个极小值()2f x 满足()()21f x f x >,则()f x 至少有()个单调区间.A .3B .4C .5D .6【答案】B【分析】根据单调性与极值之间的关系分析判断.【详解】若函数()f x 存在一个极大值()1f x 与一个极小值()2f x ,则()f x 至少有3个单调区间,若()f x 有3个单调区间,不妨设()f x 的定义域为(),a b ,若12a x x b <<<,其中a 可以为-∞,b 可以为+∞,则()f x 在()()12,,,a x x b 上单调递增,在()12,x x 上单调递减,(若()f x 定义域为(),a b 内不连续不影响总体单调性),故()()21f x f x <,不合题意,若21a x x b <<<,则()f x 在()()21,,,a x x b 上单调递减,在()21,x x 上单调递增,有()()21f x f x <,不合题意;若()f x 有4个单调区间,例如()1f x x x =+的定义域为{}|0x x ≠,则()221x f x x-'=,令()0f x ¢>,解得1x >或1x <-,则()f x 在()(),1,1,-∞-+∞上单调递增,在()()1,0,0,1-上单调递减,故函数()f x 存在一个极大值()12f -=-与一个极小值()12f =,且()()11f f -<,满足题意,此时()f x 有4个单调区间,综上所述:()f x 至少有4个单调区间.故选:B.6.已知实数x 、y 满足10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,则918222y x z x y --=+--的最小值为()A .132B .372C .12D .2【答案】A【分析】由约束条件作出可行域,求出22y t x -=-的范围,再由91821922y x z t x y t --=+=+--结合函数的单调性求得答案.【详解】解:令22y t x -=-,则91821922y x z t x y t --=+=+--,由10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩作出可行域如图,则()()()2,12,1,0,1A B C ---,设点()(),2,2P x y D ,,其中P 在可行域内,2=2PD y t k x -∴-=,由图可知当P 在C 点时,直线PD 斜率最小,min 121=022CD t k -==-∴当P 在B 点时,直线PD 斜率不存在,∴1,2t ⎡⎫∈+∞⎪⎢⎣⎭∵19z t t =+在1,2t ⎡⎫∈+∞⎪⎢⎣⎭上为增函数,∴当12t =时min 132z =.故选:A .7.在正方体1111ABCD A B C D -中,点P 在正方形11BCC B 内,且不在棱上,则()A .在正方形11DCC D 内一定存在一点Q ,使得PQ AC ∥B .在正方形11DCCD 内一定存在一点Q ,使得PQ AC⊥C .在正方形11DCC D 内一定存在一点Q ,使得平面1PQC ∥平面ABC D .在正方形11DCC D 内一定存在一点Q ,使得AC ⊥平面1PQC 【答案】B【分析】对于A ,通过作辅助线,利用平行的性质,推出矛盾,可判断A;对于B ,找到特殊点,说明在正方形11DCC D 内一定存在一点Q ,使得PQ AC ⊥,判断B;利用面面平行的性质推出矛盾,判断C;利用线面垂直的性质定理推出矛盾,判断D.【详解】A 、假设在正方形11DCC D 内一定存在一点Q ,使得PQ AC ∥,作,PE BC QF CD ⊥⊥,垂足分别为,E F ,连接,E F ,则PEFQ 为矩形,且EF 与AC 相交,故PQ EF ∥,由于PQ AC ∥,则AC EF ∥,这与,AC EF 相交矛盾,故A 错误;B 、假设P 为正方形11BCC B 的中心,Q 为正方形11DCC D 的中心,作,PH BC QG CD ⊥⊥,垂足分别为,H G ,连接,H G ,则PHGQ 为矩形,则PQ HG ∥,且,H G 为,BC CD 的中点,连接,GH BD ,则GH BD ∥,因为AC BD ⊥,所以GH AC ⊥,即PQ AC ⊥,故B 正确;C 、在正方形11DCC D 内一定存在一点Q ,使得平面1PQC ∥平面ABC ,由于平面ABC ⋂平面11DCC D CD =,平面1PQC 平面111DCC D C Q =,故1CD C Q ∥,而11C D CD ∥,则Q 在11C D 上,这与题意矛盾,C 错误;D 、假设在正方形11DCC D 内一定存在一点Q ,使得AC ⊥平面1PQC ,1C Q ⊂平面1PQC ,则1AC C Q ⊥,又1CC ⊥平面,ABCD AC Ì平面ABCD ,故1C C AC ⊥,而11111,C C C Q C C C C Q =⊂ ,平面11DCC D ,故AC ⊥平面11DCC D ,由于AD ⊥平面11DCC D ,故,C D 重合,与题意不符,故D 错误,故选∶B8.对于平面上点P 和曲线C ,任取C 上一点Q ,若线段PQ 的长度存在最小值,则称该值为点P 到曲线C 的距离,记作(,)d P C .若曲线C 是边长为6的等边三角形,则点集{(,)1}D Pd P C =≤∣所表示的图形的面积为()A .36B .36-C .362π-D .36π-【答案】D【分析】根据题意画出到曲线C 的距离为1的边界,即可得到点集的区域,即可求解.【详解】根据题意作出点集(){}|1D P d P C =≤,的区域如图阴影所示,其中四边形ADEC ,ABKM ,BCFG 为矩形且边长分别为1,6,圆都是以1为半径的,过点I 作IN AC ⊥于N ,连接A I ,则1NI =,30NAI ∠= ,所以AN =则HIJ 是以6-为边长的等边三角形,矩形ABKM 的面积1166S =⨯=,2π3DAM ∠=,扇形ADM 的面积为212ππ1233S =⨯⨯=,21sin 602ABC S AB =⨯⋅ 21622=⨯⨯,21sin 602HIJ S HI =⨯⋅ (21622=⨯-18=-,所以()1233ABC HIJ S S S S S =++- ()π363183=⨯+⨯+--36π=-.故选:D.9.一个宿舍的6名同学被邀请参加一个节目,要求必须有人去,但去几个人自行决定.其中甲和乙两名同学要么都去,要么都不去,则该宿舍同学的去法共有()A .15种B .28种C .31种D .63种【答案】C【分析】满足条件的去法可分为两类,第一类甲乙都去,第二类甲乙都不去,再进一步通过分类加法原理求出各类的方法数,将两类方法数相加即可.【详解】若甲和乙两名同学都去,则去的人数可能是2人,3人,4人,5人,6人,所以满足条件的去法数为0123444444C +C C +C C 16++=种;若甲和乙两名同学都不去,则去的人数可能是1人,2人,3人,4人,则满足条件去法有12344444C C +C C 15++=种;故该宿舍同学的去法共有16+15=31种.故选:C.10.已知椭圆C 的焦点为12(0,1),(0,1)F F -,过2F 的直线与C 交于P ,Q 两点,若22143,||5PF F Q PQ QF ==,则椭圆C 的标准方程为()A .2255123x y +=B .2212y x +=C .22123x y +=D .22145x y +=【答案】B【分析】由已知可设22,3F Q m PF m ==可求出所有线段用m 表示,在12PF F △中由余弦定理得1290F PF ︒∠=从而可求.【详解】如图,由已知可设22,3F Q m PF m ==,又因为114||55PQ QF QF m =∴=根据椭圆的定义212,62,3QF QF a m a a m +=∴=∴=,12223PF a PF a a a m=-=-==在12PF F △中由余弦定理得222222111116925cos 02243PQ PF QF m m m F PQ PQ PF m m+-+-∠===⋅⋅⋅⋅,所以190F PQ ︒∠=22222211229943213PF PF F F m m m a m b ∴+=⇒+=∴===⇒=故椭圆方程为:2212y x +=故选:B11.已知函数()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,对于任意的)3,1a ⎡∈-⎣,方程()()0f x a x m =<≤恰有一个实数根,则m 的取值范围为()A .7π3π,124⎛⎤⎥⎝⎦B .π5π,26⎡⎫⎪⎢⎣⎭C .π5π,26⎛⎤⎥⎝⎦D .7π3π,124⎡⎫⎪⎢⎣⎭【答案】D【分析】将方程的根的问题转化为函数()y f x =的图象与直线y a =有且仅有1个交点,画出图象,数形结合得到不等式组,求出m 的取值范围.【详解】方程()()0f x a x m =<≤恰有一个实数根,等价于函数()y f x =的图象与直线y a =有且仅有1个交点.当0x m <≤得:πππ22666x m ⎛⎤+∈+ ⎥⎝⎦,结合函数()y f x =的图象可知,π4π5π2633m ⎡⎫+∈⎪⎢⎣⎭,解得:7π3π,124m ⎡⎫∈⎪⎢⎣⎭.故选:D12.已知0.40.7e ,eln1.4,0.98a b c ===,则,,a b c 的大小关系是()A .a c b >>B .b a c >>C .b c a >>D .c a b>>【答案】A【分析】构造函数()1=ln ef x x x -,0x >,利用导函数得到其单调性,从而得到ln 1ex x ≤,当且仅当e x =时等号成立,变形后得到22ln2ex x ≤,当x =0.7x =后得到b c <;再构造()1=e x g x x --,利用导函数得到其单调性,得到1e x x -≥,当且仅当1x =时,等号成立,变形后得到21e 2x x ->,当0.5x =时,等号成立,令0.7x =得到a c >,从而得到a cb >>.【详解】构造()1=ln ef x x x -,0x >,则()11=ef x x '-,当0e x <<时,()0f x ¢>,当e x >时,()0f x '<,所以()1=ln ef x x x -在0e x <<上单调递增,在e x >上单调递减,所以()()e =lne 10f x f ≤-=,故ln 1ex x ≤,当且仅当e x =时等号成立,因为20x >,所以222222(2)2ln 2ln ln ln2e e 2e 2e ex x x x x x x x x ≤⇒≤⇒≤⇒≤=,当x =当0.7x =时,220.98ln1.4(0.7)eln1.40.98ee<⨯=⇒<,所以b c <构造()1=e x g x x --,则()1e 1=x g x -'-,当1x >时,()0g x '>,当1x <时,()0g x '<,所以()1=ex g x x --在1x >单调递增,在1x <上单调递减,故()()10g x g ≥=,所以1e x x -≥,当且仅当1x =时,等号成立,故121e e 2x x x x --≥⇒≥,当且仅当0.5x =时,等号成立,令0.7x =,则0.40.4e 1.40.7e 0.98>⇒>,所以a c >,综上:a c b >>,故选:A【点睛】构造函数比较函数值的大小,关键在于观察所给的式子特点,选择合适的函数进行求解.第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.13.设i ,j 是x ,y 轴正方向上的单位向量,23a b i j -=- ,3119a b i j +=+,则向量a,b的夹角为______.【答案】π4【分析】分别求出a ,b 的表达式,利用定义求出a ,b 的夹角即可.【详解】23a b i j -=-①,3119a b i j +=+②,3⨯+①②得714,2a i a i =∴=,2-⨯+②①得72121,33b i j b i j -=--∴=+ ,()22·33666a b i i j i i j ⋅=+=+⋅=2,a b ==cos ,2a b a b a b ⋅∴==⋅π,4a b ∴=14.已知双曲线2222:1(0,0)x y C a b a b -=>>的焦距为2c ,过C 的右焦点F 的直线l 与C 的两条渐近线分别交于,A B 两点,O 为坐标原点,若cos b c AFO =∠且3FB FA =,则C 的渐近线方程为__________.【答案】y =【分析】根据题设条件确定AB OA ⊥,进而可确定OA a FA b ==,,从而在直角△AOB 中,()2tan tan π2bAOB aα∠=-=,结合正切的二倍角公式求解.【详解】因为3FB FA =,画出示意图如图,设AOF α∠=,因为cos b c AFO =∠,则cos b AFO c∠=,所以222sin a AFO c∠=,则sin a AFO c ∠=,所以tan aAFO b ∠=.又tan b a α=,所以π2AFO α∠+=,所以AB OA ⊥,根据sin ,cos OA FA a bAFO AFO c c c c ∠==∠==,所以OA a FA b ==,.又因为3FB FA,所以2AB b =.在直角△AOB 中,()2tan tan π2bAOB aα∠=-=,所以222222tan tan21tan 1bb a b a aααα=-==--,化简得:222b a =,所以b a =则渐近线方程为:y =,故答案为:y =.15.已知数列{}n a 满足首项11a =,123n n na n a a n ++⎧=⎨⎩,为奇数,为偶数,则数列{}n a 的前2n 项的和为_____________.【答案】4344n n ⨯--【分析】当n 为奇数时,由递推关系得()21332n n n a a a ++==+,构造{}3n a +为等比数列,可求出通项,结合12n n a a +=+即可分组求和.【详解】当n 为奇数时,()21332n n n a a a ++==+,即()2333n n a a ++=+,此时{}3n a +为以134a +=为首项,公比为3的等比数列,故()123212413333343333n nn n n n a a a a a a a a ----++++=创创+=+++,即12433n n a -=´-.()()()2123421211332121222n n n n n S a a a a a a a a a a a a ---=++++++=+++++++++ ()()01113212224334334332n n a a a n n--=++++=´-+´-++´-+ ()03132432434413nnn n n 骣-琪=´-+=´--琪琪-桫.故答案为:4344n n ⨯--【点睛】本题解题关键是根据题意找到相邻奇数项或偶数项之间的递推关系,从而求出当n 为奇数或n 为偶数时的通项公式,再通过相邻两项的关系求出前2n 项的和.16.在三角形ABC 中,2BC =,2AB AC =,D 为BC 的中点,则tan ADC ∠的最大值为___________.【答案】43##113【分析】设出AC x =,则2AB x =,由πADB ADC ∠+∠=得到cos cos 0ADB ADC ∠+∠=,结合余弦定理得到22512AD x =-,从而得到cos ADC ∠关系得到223x <<,换元后得到cos ADC ∠,由基本不等式求出最小值,结合()cos f x x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,()tan g x x =在π0,2⎛⎫ ⎪⎝⎭单调递增,可求出tan ADC ∠的最大值.【详解】设AC x =,则2AB x =,因为D 为BC 的中点,2BC =,所以1BD DC ==,由三角形三边关系可知:22x x +>且22x x -<,解得:223x <<,在三角形ABD 中,由余弦定理得:()2212cos 2AD x ADB AD+-∠=,在三角形ACD 中,由余弦定理得:221cos 2AD x ADC AD+-∠=,因为πADB ADC ∠+∠=,所以()2222121cos cos 022AD x AD x ADB ADC ADAD+-+-∠+∠=+=,解得:22512AD x =-,由余弦定理得:225112cos x x ADC -+-∠=223x <<,令2511,929x t ⎛⎫-=∈ ⎪⎝⎭,则3cos 5ADC ∠=,当且仅当1t t=,即1t =时,等号成立,此时25112x -=,解得:x =因为3cos 05ADC ∠≥>,故π0,2ADC ⎛⎫∠∈ ⎪⎝⎭,由于()cos f x x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,()tan g x x =在π0,2⎛⎫ ⎪⎝⎭单调递增,故当cos ADC ∠取得最小值时,tan ADC ∠取得最大值,此时4sin 5ADC ∠=,4tan 3ADC ∠=.故答案为:43.【点睛】三角形中常用结论,()sin sin A B C +=,()cos cos A B C +=-,()tan tan A B C +=-,本题中突破口为由πADB ADC ∠+∠=得到cos cos 0ADB ADC ∠+∠=,结合余弦定理得到22512AD x =-,进而利用基本不等式求最值.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)数列{}n a 满足35a =,点()1,n n P a a +在直线20x y -+=上,设数列{}n b 的前n 项和为n S ,且满足233n n S b =-,*n ∈N .(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在*k ∈N ,使得对任意的*n ∈N ,都有n kn ka ab b ≤.【答案】(1)21n a n =-;3nn b =(2)存在1k =,2,使得对任意的*n ∈N ,都有n k n ka ab b ≤【分析】(1)根据等差数列的定义可得{}n a 为等差数列,由,n n S b 的关系可得{}n b 为等比数列,进而可求其通项,(2)根据数列的单调性求解最值即可求解.【详解】(1)点()1,n n P a a +在直线20x y -+=上,所以12n n a a +-=又35a =,∴11a =,则数列{}n a 是首项为1,公差为2的等差数列.∴21n a n =-又当1n =时,11233S b =-得13b =,当2n ≥,由233n n S b =-①,得11233n n S b --=-②由①-②整理得:13n n b b -=,∵130b =≠,∴10n b -≠∴13nn b b -=,∴数列{}n b 是首项为3,公比为3的等比数列,故3nn b =(2)设213nn n na n cb -==,由111121212163443333+++++-+-+--=-==n n n n n n n n n n nc c当1n =时,12c c =,当2n ≥时,1n n c c +<,所以当1n =或2时,n c 取得最大值,即nna b 取得最大所以存在1k =,2,使得对任意的*n ∈N ,都有n kn ka ab b≤18.(12分)如图,将等边ABC 绕BC 边旋转90︒到等边DBC △的位置,连接AD.(1)求证:AD BC ⊥;(2)若M 是棱DA 上一点,且两三角形的面积满足2BMD BMA S S = ,求直线BM 与平面ACD 所成角的正弦值.【答案】(1)证明见解析(2)10【分析】(1)取BC 中点为O ,证明BC ⊥平面AOD 即可;(2)建立空间直角坐标系,利用向量法求得直线BM 与平面ACD 所成角的正弦值.【详解】(1)设O 是BC 的中点,连接AO ,DO ,由题知:AB AC =,DB DC =,则BC AO ⊥,BC DO ⊥,又AO DO O ⋂=,,AO DO ⊂平面AOD ,所以BC ⊥平面AOD ,又AD ⊂平面AOD ,所以AD BC ⊥.(2)由题知,OA 、BC 、OD 两两垂直,以O 为原点,,,OA OB OD方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,如图所示,因为2BMD BMA S S = ,所以13AM AD =,设2AB a =,则OA OD ==,则),0,0A,()0,,0B a ,()0,,0C a -,()D,33M ⎛⎫⎪ ⎪⎝⎭.所以),,0CA a =,),0,DA =,,BM a ⎫=-⎪⎪⎝⎭,设平面ACD 的法向量为(),,n x y z =r,则00n CA ay n DA ⎧⋅=+=⎪⎨⋅=-=⎪⎩ ,取1x =,可得()1,n = ,设直线BM 与平面ACD 所成的角为θ,则sin cos ,BM n θ=BM n BM n⋅==⋅所以直线BM 与平面ACD.19.(12分)甲、乙两位选手参加一项射击比赛,每位选手各有n 个射击目标,他们击中每一个目标的概率均为12,且相互独立.甲选手依次对所有n 个目标进行射击,且每击中一个目标可获得1颗星;乙选手按规定的顺序依次对目标进行射击,击中一个目标后可继续对下一个目标进行射击直至有目标未被击中时为止,且每击中一个目标可获得2颗星.(1)当5n =时,分别求甲、乙两位选手各击中3个目标的概率;(2)若累计获得星数多的选手获胜,讨论甲、乙两位选手谁更可能获胜.【答案】(1)516,116;(2)当1,2,3n =时,乙更可能获胜;当4n ≥时,甲更可能获胜.【分析】(1)根据独立重复试验可计算甲击中3个目标的概率,由相互独立事件的概率计算公式可得乙击中3个目标的概率;(2)设X 为甲累计获得的星数,Y 为乙累计获得的星数,分别计算期望,分别讨论1,2,3n =及4n ≥的(),()E X E Y ,得出结论.【详解】(1)当5n =时,甲击中3个目标的概率为33215115C ()()2216P =⨯⨯=,乙击中3个目标,则前3个目标被击中,第4个目标未被击中,其概率为32111()2216P =⨯=.(2)设X 为甲累计获得的星数,则0,1,2,,X n = ,设Y 为乙累计获得的星数,则0,2,4,,2Y n = ,设击中了m 个目标,其中0m n ≤≤,则甲获得星数为m 的概率为C 11()C ()()222m m m n m nnn P X m -===,所以甲累计获得星数为0120C 1C 2C C ()2nn n n nnn E X ⋅+⋅+⋅++⋅= ;记01010C 1C C C (1)C 0C n n n n n n n n n S n n n =⋅+⋅++⋅=⋅+-⋅++⋅ ,所以0112(C C C )2,2n n n n n n n n S n n S n -=+++=⋅=⋅ ,所以12()22n n n nE X -⋅==,乙获得星数为2(01)m m n ≤≤-的概率为1111(2)()222m m P Y m +==⋅=,当m n =时,1(2)2nP Y m ==,所以乙累计获得星数为230242(1)2()22222n n n n E Y -=+++++ ,记230242(1)2222n n n T -=++++ ,则121242(1)20222n n n T --=++++ ,所以12111112(1)122()222222n n n n n n n n T T T ---+=-=+++-=- ,11()22n E Y -=-,当1n =时,1()()12E X E Y =<=,当2n =时,3()1()2E X E Y =<=,当3n =时,37()()24E X E Y =<=,当4n ≥时,()2()E X E Y ≥>所以当1,2,3n =时,乙更可能获胜;当4n ≥时,甲更可能获胜.20.(12分)已知抛物线2y =的焦点与椭圆()2222:10x y a b a bΩ+=>>的右焦点重合,直线1:1x y l a b+=与圆222x y +=相切.(1)求椭圆Ω的方程;(2)设不过原点的直线2l 与椭圆Ω相交于不同的两点A ,B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆Ω相交于点P ,且O 点在以AB 为直径的圆上,记AOM ,BOP △的面积分别为1S ,2S ,求12S S 的取值范围.【答案】(1)22163x y +=(2)⎣⎦【分析】(1)根据条件建立关于,a b 的方程组,即可求解椭圆方程;(2)根据数形结合可知12AOM BOP OMS S S S OP==△△,分直线斜率不存在,或斜率为0,以及斜率不为0,三种情况讨论12S S 的值或范围.【详解】(1)∵抛物线2y =的焦点为),∴c =从而223a b =+①,∵直线1:1x yl a b+=与圆222x y +==②,由①②得:ab ,∴椭圆Ω的方程为:22163x y +=(2)∵M 为线段AB 的中点,∴12AOM BOP OMS S S S OP==△△,(1)当直线2l 的斜率不存在时,2l x ⊥轴,由题意知OA OB ⊥,结合椭圆的对称性,不妨设OA 所在直线的方程为y x =,得22Ax =,从而22Mx =,26P x =,123M P OM x S S OP x ∴===(2)当直线2l 的斜率存在时,设直线()2:0l y kx m m =+≠,()11,A x y ,()22,B x y 由22163y kx mx y =+⎧⎪⎨+=⎪⎩可得:()222214260k x kmx m +++-=,由()()222216421260k m k m ∆=-+->可得:22630k m -+>(*)∴122421km x x k +=-+,21222621m x x k -=+,∵O 点在以AB 为直径的圆上,∴0OA OB ⋅=,即12120x x y y +=,∴()()221212121210x x y y k x x km x x m +=++++=,即()22222264102121m km k km m k k -⎛⎫+⨯+-+= ⎪++⎝⎭,2222,m k ⇒=+(**)满足(*)式.∴线段AB 的中点222,2121kmm M k k ⎛⎫- ⎪++⎝⎭,若0k =时,由(**)可得:22m =,此时123OM S S OP ∴===,若0k ≠时,射线OM 所在的直线方程为12y x k=-,由2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩可得:2221221P k x k =+,12M POM x S S OP x ∴===随着2k 的增大而减小,∵0k ≠,∴20k >,∴1233S S ⎛∈ ⎝⎭综上,1233S S ∈⎣⎦【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21.(12分)已知函数()e xf x ax a=--(1)当1a =时,证明:()0f x ≥.(2)若()f x 有两个零点()1212,x x x x <且22112,e 1x x +⎡⎤∈⎣⎦+,求12x x +的取值范围.【答案】(1)见解析;(2)243ln 22,e 1⎡⎤-⎢⎥-⎣⎦【分析】(1)()e 1x f x x =--,求导得min ()(0)0f x f ==,则()0f x ;(2)由题得11e x ax a =+,22e xax a =+,则21211e1x x x x -+=+,()1212e e 2x x a x x +=++,()2121e e x x a x x -=-,则()()212121121e 2e1x x x x x x x x ---+++=-,从而设21[ln 2,2]t x x =-∈,得到()121e 2e 1t tt x x +++=-,利用导数研究函数()1e ()e 1ttt g t +=-的值域,则得到12x x+的范围.【详解】(1)证明:当1a =时,()e 1x f x x =--,则()e 1x f x '=-.当(,0)x ∈-∞时,()0f x '<,当,()0x ∈+∞时,()0f x '>,所以()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增,则min ()(0)0f x f ==,故()0f x .(2)由题意得1212e e 0x xax a ax a --=--=,则11e x ax a =+,22e xax a =+,从而21211e 1x xx x -+=+,()1212e e 2x x a x x +=++,()2121e e x x a x x -=-,故()()()()12212121212112e e 1e 2e ee1xx x x x x x x x x x x x x ---+-+++==--,因为22112,e 1x x +⎡⎤∈⎣⎦+,所以212e 2,e x x -⎡⎤∈⎣⎦,即[]21ln 2,2x x -∈,设21[ln 2,2]t x x =-∈,则()121e 2e 1t t t x x +++=-.设()1e ()e 1t tt g t +=-,则()22e 2e 1()e1t t tt g t --'=-.设2()e 2e 1t t h t t =--,则()()2e e 1t th t t '=--,由(1)可知()()2e e 10t th t t '=--在R 上恒成立,从而2()e 2e 1t t h t t =--在[ln 2,2]上单调递增,故min ()(ln 2)44ln 210h t h ==-->,即()0g t '>在[]ln 2,2上恒成立,所以()g t 在[ln 2,2]上单调递增,所以()212221e 23ln 2,e 1x x ⎡⎤+⎢⎥++∈-⎢⎥⎣⎦,即12243ln 22e 1,x x ⎡⎤+∈-⎢⎣-⎥⎦,即12x x +的取值范围为243ln 22,e 1⎡⎤-⎢⎥-⎣⎦.【点睛】关键点睛:本题的关键是通过变形用含21x x -的式子表示出122x x ++,即()()212121121e 2e1x x x x x x x x ---+++=-,然后整体换元设21[ln 2,2]t x x =-∈,则得到()121e 2e 1t t t x x +++=-,最后只需求出函数()1e ()e 1tt t g t +=-在[ln 2,2]t ∈上值域即可.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l的参数方程为cos sin x t y t αα⎧=+⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为2853cos 2ρθ=-,直线l 与曲线C 相交于A ,B两点,)M.(1)求曲线C 的直角坐标方程;(2)若2AM MB =,求直线l 的斜率.【答案】(1)2214x y +=(2)2±【分析】(1)根据极坐标与直角坐标直角的转化222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,运算求解;(2)联立直线l 的参数方程和曲线C 的直角坐标方程,根据参数的几何意义结合韦达定理运算求解.【详解】(1)∵()()222222288453cos 2cos 4sin 5cos sin 3cos sin ρθθθθθθθ===-++--,则2222cos 4sin 4ρθρθ+=,∴2244x y +=,即2214x y +=,故曲线C 的直角坐标方程为2214x y +=.(2)将直线l的参数方程为cos sin x t y t αα⎧=+⎪⎨=⎪⎩(t 为参数)代入曲线C 的直角坐标方程为2214x y +=,得)()22cos sin 14t t αα+=,整理得()()222cos 4sin 10t t ααα++-=,设A ,B 两点所对应的参数为12,t t ,则1212221cos 4sin t t t t αα+==-+,∵2AM MB =,则122t t =-,联立1212222cos 4sin t t t t ααα=-⎧⎪⎨+=-⎪+⎩,解得122222cos 4sin cos 4sin t t αααααα⎧=-⎪⎪+⎨⎪=⎪+⎩,将12,t t 代入12221cos 4sin t t αα=-+得2222221cos 4sin cos 4sin cos 4sin αααααααα⎛⎫⎛⎫-=- ⎪⎪ ⎪⎪+++⎝⎭⎝⎭,解得2223tan 4k α==,故直线l的斜率为2±.23.[选修4-5:不等式选讲](10分)设a 、b 、c 为正数,且b c c a a ba b c+++≤≤.证明:(1)a b c ≥≥;(2)()()()2324a b b c c a abc +++≥.【答案】(1)证明见解析(2)证明见解析【分析】(1)由不等式的基本性质可得出111abc≤≤,利用反比例函数在()0,∞+上的单调性可证得结论成立;(2)利用基本不等式可得出a b +≥,2b c +≥3c a +≥等式的基本性质可证得结论成立.【详解】(1)证明:因为a 、b 、c 为正数,由b c c a a ba b c +++≤≤可得a b c a b c a b ca b c++++++≤≤,所以,111a b c≤≤,因为函数1y x =在()0,∞+上为增函数,故a b c ≥≥.(2)证明:由基本不等式可得a b +≥,2b c b b c +=++≥()322c a c a a a +=++≥+≥=由不等式的基本性质可得()()()2171131573362244412232424a b b c c a a b b c a c a b c+++≥=11764122424ab a b c abc ⎛⎫=≥ ⎪⎝⎭,当且仅当a b c ==时,等号成立,故()()()2324a b b c c a abc +++≥.。

2023年河南省TOP二十名校高考数学模拟试卷(理科)(3月份)+答案解析(附后)

2023年河南省TOP二十名校高考数学模拟试卷(理科)(3月份)+答案解析(附后)

2023年河南省TOP 二十名校高考数学模拟试卷(理科)(3月份)1.已知集合,集合,则( )A.B.C.D.2.关于复数的下列命题中:,:,:,:,其中真命题为( )A.,B. ,C. ,D. ,3.某海湾拥有世界上最大的海潮,其高低水位之差可达到15米.假设在该海湾某一固定点,大海水深单位:与午夜后的时间单位:之间的关系为,则下午5:00时刻该固定点的水位变化的速度为( )A.B. C.D.4.已知一组样本数据,,…,,根据这组数据的散点图分析x 与y 之间的线性相关关系,若求得其线性回归方程为,则在样本点处的残差为( )A.B.C.D.5.已知m ,n 为异面直线,平面,平面直线l 满足,,,,则( )A. 且B. 且C.与相交,且交线垂直于lD.与相交,且交线平行于l 6.已知数列满足,是数列的前n 项和,若已知,的值为( )A. 322 B. 295C. 293D. 2707.在中,D 是AB 边上的点,满足,E 在线段CD 上不含端点,且,则的最小值为( )A.B.C.D. 88.已知圆O 的直径,若平面内一个动点M 与点A 的距离是它与点B 距离的倍,则的面积的最大值为( )A. 64B. 12C.D.9.已知,,,则a ,b ,c 的大小关系是( ) A.B.C.D.10.F是双曲线C:的左焦点,O是坐标原点,直线与双曲线的左、右两支分别交于P,Q两点,且,则双曲线的离心率为( )A. B. C. D.11.已知函数,当,时,,则的值为( )A. B. C. D.12.已知平面四边形ABCD中,,,将沿对角线AC折起,使得二面角的大小为,则三棱锥的外接球的表面积为( )A. B. C. D.13.在的展开式中,按x的升幂排列的第三项为______ .14.单位圆O与x轴正半轴交于点M,A,B为单位圆上两点,,,,B位于第二象限,则______ .15.已知抛物线的焦点为F,准线为l,过焦点F的直线交抛物线于A,B两点,过A,B分别向l引垂线,垂足分别为,,若,那么内切圆的半径为______ .16.已知函数,若存在唯一的整数,使得,则实数a的取值范围是______ .17.的内角A,B,C的对边分别为a,b,c,已知,D是AC边上一点,,求;求的最大值.18.已知三棱柱中,,,,E是BC的中点,F是线段上一点.求证:;设P是棱上的动点不包括边界,当的面积最小时,求直线与平面所成角的正弦值.19.某水果店的草莓每盒进价20元,售价30元,草莓保鲜度为两天,若两天之内未售出,以每盒10元的价格全部处理完.店长为了决策每两天的进货量,统计了本店过去40天草莓的日销售量单位:十盒,获得如下数据:日销售量/十盒78910天数812164假设草莓每日销量相互独立,且销售量的分布规律保持不变,将频率视为概率.记每两天中销售草莓的总盒数为单位:十盒,求X的分布列和数学期望;以两天内销售草莓获得利润较大为决策依据,在每两天进16十盒,17十盒两种方案中应选择哪种?20.圆,圆心为A,点,作圆上任意一点M与B点连线的中垂线,交AM于求N的轨迹C的方程;设P为曲线C上任意一点,直线PA,PB分别交曲线C于Q,R两点,,,求的值.21.已知函数,若为R上的增函数,求a的取值范围;若在内恒成立,,求的最大值.22.在平面直角坐标系xOy中,曲线的参数方程为为上的动点,点Q满足,设点Q的轨迹为曲线,以O为极点,x轴正半轴为极轴建立极坐标系.写出曲线的极坐标方程;直线,与曲线交于点不同于原点,与曲线C:交于点不同于原点,求的最大值.23.已知a,b,c均为正数,若,求证:;答案和解析1.【答案】C【解析】解:集合,集合,则故选:先求出集合M,集合N,利用并集定义能求出本题考查集合的运算,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.【答案】B【解析】解:复数,,故错误;,故正确;,故正确;,故错误.故选:根据已知条件,结合复数的运算,先对z化简,即可求解.本题主要考查复数的四则运算,以及共轭复数的定义,复数模公式,属于基础题.3.【答案】A【解析】解:由,知,所以下午5:00时刻该固定点的水位变化的速度为故选:根据导数的定义,结合导数的运算法则,即可得解.本题考查瞬时变化率的求法,理解导数的含义,熟练掌握导数的运算法则是解题的关键,考查逻辑推理能力和运算能力,属于基础题.4.【答案】B【解析】解:把代入,得,则在样本点处的残差为故选:在已知线性回归方程中,取代入求得预测值,减去实际值即可得残差.本题考查线性回归方程的应用,考查残差的求法,属于基础题.5.【答案】D【解析】解:由平面,直线l满足,且,所以,又平面,,,所以由直线m,n为异面直线,且平面,平面,则与相交,否则,若则推出,与m,n异面矛盾.故与相交,且交线平行于故选:由题目给出的已知条件,结合线面平行,线面垂直的判定与性质,可以直接得到正确的结论.本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.6.【答案】A【解析】解:数列满足,,,时,数列为等比数列,首项为64,公比;时,数列为等差数列,,公差故选:由数列满足,,,可得时,数列为等比数列,公比;时,数列为等差数列,,公差利用求和公式即可得出结论.本题考查了数列递推关系、等差数列与等比数列的通项公式及求和公式,考查了推理能力与计算能力,属于中档题.7.【答案】B【解析】解:,又,,又E在线段CD上不含端点,,且,,,当且仅当时,等号成立,的最小值为故选:根据向量共线定理的推论,可得,且,,再利用基本不等式,即可求解.本题考查向量共线定理的推论,利用基本不等式的应用,属中档题.8.【答案】D【解析】解:以O为坐标原点,以AB所在直线为x轴建立平面直角坐标系,则,,设,由题意可得:,整理得:则M到AB所在直线的距离的最大值为,的面积的最大值为故选:以O为坐标原点,以AB所在直线为x轴建立平面直角坐标系,求出M的轨迹方程,可得M到AB所在直线距离的最大值,代入三角形面积公式得答案.本题考查圆的方程的求法,考查运算求解能力,是基础题.9.【答案】A【解析】解:,,,,,又,,,故选:利用对数函数和指数函数的性质求解.本题考查了指数函数与对数函数的单调性,属于基础题.10.【答案】C【解析】解:直线方程为,可得,又,可得为底角为的等腰三角形,易得点P为,将P代入双曲线方程中可得:,又,,,,又,,,故选:根据题意易得为底角为的等腰三角形,从而可得点P为,将P代入双曲线方程中建立方程,再化归转化,即可求解.本题考查双曲线的几何性质,方程思想,化归转化思想,属中档题.11.【答案】D【解析】解:,,,即,①,,,②又,,③由①②③得:,整理得:故选:依题意,得,即,再结合,,分析得到,,从而可得答案.本题考查两角和与差的三角函数,考查正弦函数的性质的应用,考查转化思想与运算能力,属于中档题.12.【答案】C【解析】解:如图所示,取AC的中点M,AD的中点G,连接BM,MG,过点G作平面ACD,设点O为三棱锥的外接球的球心,连接OA,OB,设,球的半径为R,由已知可得:,,,,,,,,,,解得,,三棱锥的外接球的表面积为故选:如图所示,取AC的中点M,AD的中点G,连接BM,MG,过点G作平面ACD,设点O为三棱锥的外接球的球心,连接OA,OB,设,球的半径为R,由已知可得:,,,由,可得,根据,解得x,可得,即可得出三棱锥的外接球的表面积.本题考查了数量积运算性质、等边三角形与直角三角形的性质、球的表面积计算公式、方程思想方法,考查了空间想象能力、推理能力与计算能力,属于中档题.13.【答案】【解析】解:由题意多项式的展开式中按x的升幂排列第三项为含的项,即为故答案为:利用二项式定理的展开式,即可解出.本题考查了二项式定理的应用,考查了学生的运算求解能力,属于基础题.14.【答案】【解析】解:由题意可知,,则为等边三角形,,则,,,故答案为:根据已知条件,结合三角函数的定义,推得,再结合三角函数的恒等变换,即可求解.本题主要考查任意角的三角函数的定义,属于中档题.15.【答案】【解析】解:抛物线的焦点为,准线为l:,,设,则根据抛物线的几何性质易知,,易知,,,,又根据抛物线的几何性质易得,可解得,,可得,,根据对称性,不妨设A在第一象限,,,,,又,,,又,设内切圆的半径为r,则根据等面积算法可得:,,解得故答案为:设,则根据抛物线的几何性质易知,从而可得,又易知,,从而得,再结合抛物线的几何性质,可求出,,从而可求出A,B的坐标,进而得,的坐标,从而可得的各边边长,最后再利用等面积法思想,即可求解.本题考查抛物线的几何性质,等面积算法思想,方程思想,化归转化思想,属中档题.16.【答案】【解析】解:由,,化为,分别令,,则,,可得函数在上单调递增,在上单调递减.由存在唯一的整数,使得,,即,解得,实数a的取值范围是故答案为:由,,化为,分别令,,,利用导数研究函数的单调性,结合存在唯一的整数,使得,即可得出关于a的不等式组,进而得出实数a的取值范围.本题考查了利用导数研究函数的单调性与极值、转化方法、不等式的解法,考查了推理能力与计算能力,属于中档题.17.【答案】解:由正弦定理及知,,因为,所以,所以因为,所以,又,所以,整理得,所以,所以,当且仅当,即时,等号成立,所以,故的最大值为【解析】利用正弦定理化边为角,再由同角三角函数的商数关系,得解;由,知,将其两边平方后,结合基本不等式,计算可得,再由平面向量数量积的运算法则,得解.本题考查解三角形,熟练掌握正弦定理,平面向量的线性运算与数量积的运算法则是解题的关键,考查逻辑推理能力和运算能力,属于中档题.18.【答案】证明:,在底面ABC的射影是底面的中心,,,E是BC的中点平面ABC,则,在三棱柱中,,,,,平面,平面,解:连接AE,是等腰直角三角形,,建立以E为坐标原点,EA,EB,分别为x,y,z轴的空间直角坐标系如图:,,,,,即是等腰直角三角形,设底面BC上的高为h,则,要使的面积最小,则h最小,即PE是异面直线与BC的公垂线即可,即,是等腰直角三角形,是的中点,则,,,,设,则,即,得,,,即,,则,,,设平面的法向量为,由,,得,即,令,则,,即,设直线与平面所成角为,则,,即直线与平面所成角的正弦值为【解析】根据得到在底面ABC的射影是底面的中心,即平面ABC,利用线面垂直的性质进行证明即可.根据三角形的面积最小,得到P是的中点,建立坐标系求出平面的法向量,利用向量法进行求解即可.本题考查立体几何的综合应用,熟练掌握线面垂直的判定定理与性质定理,利用空间向量求线面角的方法是解题的关键,考查空间立体感、推理论证能力和运算能力,属于中档题.19.【答案】解:日销售量为7盒、8盒、9盒、10盒的概率依次为:,,,,根据题意可得:X的所有可能取值为14,15,16,17,18,19,20,,,,,,,,所以X的分布列为:X 14 15 16 17 18 19 20P所以期望;当每两天进16十盒时,利润为,当每两天进17十盒时,利润为,,所以每两天进17十盒利润较大,故应该选择每两天进17十盒.【解析】首先计算日销售量为7盒、8盒、9盒、10盒的概率,根据题意写出随机变量X的所有取值并计算概率可得分布列,进一步计算可得期望值;分别计算每两天进16十盒,17十盒两种方案下利润的期望值,比较即可作出决策.本题考查了离散型随机变量的分布列与期望以及期望在概率决策问题中的应用,属于中档题.20.【答案】解:由题,线段BM的垂直平分线交AM于点N,则所以,即点N在以A、B为焦点,长轴长为4的椭圆上,所以,,,故点Q的轨迹方程为:设,,,,,直线PA的方程为,,与椭圆方程联立可得,,,,同理可得,由,,,同理可得,【解析】判断点N在以A、B为焦点,长轴长为4的椭圆上,求出a、b,得到椭圆方程.设,,,求得直线PA的方程与椭圆方程联立可得,同理可求,又,同理可得,可求的值.本题主要考查直线与椭圆的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系解题,属中档题.21.【答案】解:,,为R上的增函数,在R上恒成立,令,,,令,解得,可得函数在上单调递减,在上单调递增,时,函数取得极小值即最小值,,,的取值范围是在内恒成立,在内恒成立,化为,,令,,,,,当时,,函数在R上单调递增,时,时,不符合题意,舍去;当时,令,解得,函数在上单调递减,在上单调递增,时,函数取得极小值即最小值,,令,则,,令,解得可得时,函数取得极大值即最大值,,的最大值为【解析】,,利用导数的运算法则可得,根据为R上的增函数,可得在R上恒成立,通过分离参数,利用导数研究函数的单调性与极值,进而得出a的取值范围.在内恒成立,在内恒成立,化为,,令,,,利用导数研究函数的单调性与极值,进而得出结论.本题考查了利用导数研究函数的单调性与极值及最值、方程与不等式的解法、转化方法、分类讨论方法,考查了推理能力与计算能力,属于难题.22.【答案】解:曲线的参数方程为,消去参数可得曲线的普通方程为,设,,,又P为上的动点,,,点Q的轨迹曲线的普通方程为,曲线的极坐标方程为,即为;设,,则,,,,当,即时,【解析】根据题意先消去参数,可得曲线的普通方程为,再利用“相关点法“求出Q的轨迹曲线的普通方程,从而再将其化为极坐标方程,即可得解;利用极径的几何意义,三角函数的性质,函数思想,即可求解.本题考查参数方程、普通方程、极坐标方程之间的相互转化,极径的几何意义,三角函数的性质,函数思想,属中档题.23.【答案】证明:,由柯西不等式得,,当且仅当等号成立,即,;,当且仅当时等号成立,当且仅当时等号成立,当且仅当时等号成立,,,当且仅当时等号成立,故【解析】利用柯西不等式,即可证明结论;利用基本不等式,即可证明结论.本题考查不等式的证明,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.。

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)高考理科数学模拟试卷(含答案)本试卷共分为选择题和非选择题两部分,第Ⅰ卷(选择题)在1至2页,第Ⅱ卷(非选择题)在3至4页,共4页,满分150分,考试时间为120分钟。

注意事项:1.答题前,请务必填写自己的姓名和考籍号。

2.答选择题时,请使用2B铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,请使用橡皮擦擦干净后再选涂其他答案标号。

3.答非选择题时,请使用0.5毫米黑色签字笔,在答题卡规定位置上书写答案。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,请只将答题卡交回。

第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={-1.0.1.2.3.4},B={y|y=x,x∈A},则A2B=A){0.1.2}B){0.1.4}C){-1.0.1.2}D){-1.0.1.4}2.已知复数z=1/(1+i),则|z|=A)2B)1C)2D)23.设函数f(x)为奇函数,当x>0时,f(x)=x-2,则f(f(1))=A)-1B)-2C)1D)24.已知单位向量e1,e2的夹角为π/2,则e1-2e2=A)3B)7C)3D)75.已知双曲线2x^2-y^2=1(a>0,b>0)的渐近线方程为y=±3x,则双曲线的离心率是A)10B)10/10C)10D)3/96.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是A)i≤6?B)i≤5?C)i≤4?D)i≤3?8.已知a、b为两条不同直线,α、β、γ为三个不同平面,则下列命题中正确的是①若α//β,α//γ,则β//γ;②若a//α,a//β,则α//β;③若α⊥γ,β⊥γ,则α⊥β;④若a⊥α,XXXα,则a//b。

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。

【高考冲刺】普通高等学校招生全国统一考试高考模拟卷(三)-理科数学(附答案及答题卡)

【高考冲刺】普通高等学校招生全国统一考试高考模拟卷(三)-理科数学(附答案及答题卡)

上有
且仅有"个零点$则符合条件的正整数 的值为!!!!!! 三解答题共7$分解答应写出文字说明证明过程或演算步骤
一必考题共6$分
!7!本小题满分!#分
如图所示$在平面四边形 "$)+ 中$+"*"$$)+)"5)
#5+)#$+"+))#'$+$5))'$+)5+)!
!!"求:4;的值-
.!"
/!#
0!"#
3!"(
!!!在长方体 "$)+*"!$!)!+! 中"$)#$))""!)槡#点 , 为"$! 的 中 点点 ( 为 对 角 线 ")! 上 的 动 点点 0 为 底 面 "$)+ 上的动点点(0 可以重合则 ,(1(0 的最小值为
.!!
/!槡#6
0!'(槡#
'&回答第卷时$将答案写在答题卡上$写在本试卷上无效# (&考试结束后$将本试卷和答题卡一并交回#
第卷
一选择题本题共小题每小题分共分在每小题给出的四个选项中只有一
项是符合题目要求的
!!已知全集为实数集 $集合")&# ##*###$'$$)&# +,-##$$'$则!%""&$)
! " 因为函数1!%"在 #&" 上有且仅有'个零点&
! " 所以%/()
/
( &"/

全国卷Ⅰ新高考理科数学仿真模拟试卷含答案解析 (3)

全国卷Ⅰ新高考理科数学仿真模拟试卷含答案解析 (3)

全国卷Ⅰ新高考理科数学仿真模拟试卷一、选择题(共12题,每题5分,共60分)1.如图,已知R是实数集,集合A={x|lo g12(x-1)>0},B={x|2x-3x<0},则阴影部分表示的集合是A.[0,1]B.[0,1)C.(0,1)D.(0,1] 2.已知复数z满足1+iz=(1-i)2,则复数z的虚部是A.-12B.12C.12i D.-12i3.设a=log32,b=log52,c=log23,则A.a>c>bB.b>c>aC.c>b>aD.c>a>b4.已知向量a和向量b的夹角为30°,|a|=2,|b|=√3,则向量a和向量b的数量积a·b= A.1 B.2 C.3 D.45.函数f(x)=x 2|x|e x的大致图象是A. B.C.D.6.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为A.35B.710C.45D.9107.若l 1,l 2,l 3表示三条不同的直线,则下列命题正确的是A.l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3B.l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3C.l 1∥l 2∥l 3⇒l 1,l 2,l 3共面D.l 1,l 2,l 3共点⇒l 1,l 2,l 3共面8.若执行如图的程序框图,则输出i 的值等于A.2B.3C.4D.59.已知各项均为正数的数列{a n }的前n 项和为S n ,且a n 2-9=4(S n -n ),数列{1a n ·a n+1}的前n 项和为T n ,则T 10=A.13B.17C.235D.22510.已知椭圆C :x 2m+y 2m -4=1(m >4)的右焦点为F ,点A (-2,2)为椭圆C 内一点.若椭圆C 上存在一点P ,使得|PA |+|PF |=8,则m 的取值范围是A.(6+2√5,25]B.[9,25]C.(6+2√5,20]D.[3,5]11.已知定义在[0,π4]上的函数f (x )=sin(ωx -π6)(ω>0)的最大值为ω3,则正实数ω的取值个数最多为A.4B.3C.2D.112.已知三棱锥S-ABC 中,AB ⊥BC ,AB =BC =2,SA =SC =2√2,二面角B-AC-S 的大小为2π3,则三棱锥S-ABC 的外接球的表面积为A.124π9B.105π4C.105π9D.104π9第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(共4题,每题5分,共20分)13.过点M(2,0)作函数f(x)=e x(x-6)的图象的切线,则切线的方程为. 14.已知在等比数列{a n}中,a n>0且a3+a4=a1+a2+3,记数列{a n}的前n项和为S n,则S6-S4的最小值为.15.某统计调查组从A,B两市各随机抽取了6个大型商品房小区调查空置房情况,并记录他们的调查结果,得到如图所示的茎叶图.已知A市被调查的商品房小区中空置房套数的平均数为82,B市被调查的商品房小区中空置房套数的中位数为77,则x-y=.16.已知抛物线y2=2px(p>0)的焦点为F,准线与x轴的交点为Q,双曲线x 2a2−y2b2=1(a>0,b>0)的一条渐近线被抛物线截得的弦为OP,O为坐标原点.若△PQF为直角三角形,则该双曲线的离心率等于.三、解答题(共7题,共70分)17.(本题12分)在△ABC中,a=7,b=8,cos B=-17.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.18.(本题12分)如图,在直三棱柱ABC-A1B1C1中,D为BC的中点,AB=AC,BC1⊥B1D.求证:(1)A1C∥平面ADB1;(2)平面A1BC1⊥平面ADB1.19.(本题12分)2018年11月27日~28日,2018“未来信息通信技术国际研讨会”在北京召开,本届大会以“5G应用生态与技术演进”为主题,全球5G大咖齐聚一堂,进行了深入探讨.为了给5G手机的用户提供更好的服务,我国的移动、联通、电信三大运营商想通过调查了解现有4G手机用户对传输速度的满意度,随机抽取了100名手机用户进行调查评分(满分100分,单位:分),其频数分布表如下所示.(1)作出频率分布直方图,并求这100名4G 手机用户评分的平均数(同一组中的评分用该组区间的中点值作代表);(2)以样本的频率作为概率,认为评分“不低于80分”为“满意度高”,现从所有4G 手机用户中随机抽取5名用户进行进一步访谈,用X 表示抽出的5名用户中“满意度高”的人数,求X 的分布列和数学期望.20.(本题12分)已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的离心率为√32, 且过点A (2,1).(1)求椭圆C 的方程;(2) 若P ,Q 是椭圆C 上的两个动点,且使∠PAQ 的角平分线总垂直于x 轴, 试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,请说明理由.21.(本题12分)已知函数f (x )=e x -a ln(x -1).(其中常数e=2.718 28…是自然对数的底数) (1)若a ∈R ,求函数f (x )的极值点个数;(2)若函数f (x )在区间(1,1+e -a )上不单调,证明:1a +1a+1>a .请考生在第 22、23 三题中任选二道做答,注意:只能做所选定的题目。

2021年普通高等学校招生全国统一考试理科数学模拟卷三(附带答案及详细解析)

2021年普通高等学校招生全国统一考试理科数学模拟卷三(附带答案及详细解析)

绝密★启用前2021年普通高等学校招生全国统一考试理科数学(模拟卷三)本试卷共5页,23题(含选考题)。

全卷满分150分。

考试用时120 分钟。

★祝考试顺利★注意事项:1.答题前, 先将白己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在 答题卡上的指定位置。

2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写 在试卷、草稿纸和答题卡上的非答题区域均无效。

3. 非选择题的作答:用黑色签字笔直接答在答题卡.上对应的答题区域内。

写在试卷、草稿纸 和答题卡,上的非答题区域均无效。

4.选考题的作答: 先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答 题卡.上对应的答题区域内,写在试卷、草稿纸和答题卡.上的非答题区域均无效。

.5.考试结束后, 请将本试卷和答题卡-并上交。

一、选择题1.集合 M ={x|x 2−2x −3≤0} , N ={x|x ≥0} ,则 M ∩N = ( )A. {x|−1≤x ≤0}B. {x|0≤x ≤3}C. {x|−1≤x ≤3}D. {x|0≤x ≤1}2.i 是虚数单位, 1(1+i)2= ( )A. −i 2B. i 2C. 12D. 2i 3.若集合 A ={x|x 2−7x <0,x ∈N ∗},B ={y|4y ∈N ∗} ,则A∩B 中元素的个数为( )A. 3个B. 2个C. 1个D. 0个 4.已知 (x 2+1x )n (n ∈N ∗) 的展开式中有常数项,则 n 的值可能是( )A. 5B. 6C. 7D. 85.在等比数列 {a n } 中, a 3=7 ,前3项和 S 3=21 ,则公比数列 {a n } 的公比 q 的值是( )A. 1B. −12C. 1或 −12D. -1或 −12 6.设 f(x) 为可导函数,且满足 limx→0f(1)−f(1−x)2x =−1 ,则曲线 y =f(x) 在点 (1,f(1)) 处的切线的斜率是( )A. 2B. -1C. 12D. -2 7.已知函数 f (x )=x 2x 2+4 ,则 f(x) 的大致图象为( )A.B.C.D.8.如图是正方体或四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点不共面的一个图是( )A. B. C. D.9.如图是将二进制数11111(2)化为十进制数的一个程序框图,判断框内应填入的条件是()A. i≤5B. i≤4C. i>5D. i>410.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的一条渐近线方程为y=−13x,则双曲线C的离心率等于()A. B. C. D.11.三个数a=0.73,b=log30.7,c=30.7之间的大小关系是()A. B. C. D.12.已知函数y=Asin(ωx+φ)+m(A>0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x=π3是其图象的一条对称轴,则符合条件的函数解析式是()A. y=4sin(4x+π6) B. y=2sin(2x+π3)+2C. y=2sin(4x+π3)+2 D. y=2sin(4x+π6)+2二、填空题:13.非零向量m⃗⃗ ,n⃗的夹角为π3,且满足| n⃗|=λ| m⃗⃗ |(λ>0),向量组x1⃗⃗⃗ ,x2⃗⃗⃗⃗ ,x3⃗⃗⃗⃗ 由一个m⃗⃗ 和两个n⃗排列而成,向量组y1⃗⃗⃗⃗ ,y2⃗⃗⃗⃗ ,y3⃗⃗⃗⃗ 由两个m⃗⃗ 和一个n⃗排列而成,若x1⃗⃗⃗ • y1⃗⃗⃗⃗ + x2⃗⃗⃗⃗ • y2⃗⃗⃗⃗ + x3⃗⃗⃗⃗ • y3⃗⃗⃗⃗ 所有可能值中的最小值为4 m⃗⃗ 2,则λ=________.14.在等差数列{a n}中,a4+a6+2a15=20,则S19=________.15.已知O为坐标原点, F是椭圆C:x2a +y2b=1(a>b>0)的左焦点, A, B, D分别为椭圆C的左,右顶点和上顶点, P为C上一点,且PF⊥x轴,过点A, D的直线l与直线PF交于点M,若直线BM与线段OD交于点N,且ON=ND,则椭圆C的离心率为________.16.某几何体的三视图如下图所示,则该几何体的体积为________.三、解答题17.今年年初,习近平在《告台湾同胞书》发表40周年纪念会上的讲话中说道:“我们要积极推进两岸经济合作制度化打造两岸共同市场,为发展增动力,为合作添活力,壮大中华民族经济两岸要应通尽通,提升经贸合作畅通、基础设施联通、能源资源互通、行业标准共通,可以率先实现金门、马祖同福建沿海地区通水、通电、通气、通桥.要推动两岸文化教育、医疗卫生合作,社会保障和公共资源共享,支持两岸邻近或条件相当地区基本公共服务均等化、普惠化、便捷化”某外贸企业积极响应习主席的号召,在春节前夕特地从台湾进口优质大米向国内100家大型农贸市场提供货源,据统计,每家大型农贸市场的年平均销售量(单位:吨),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值和年平均销售量的众数和中位数;(2)在年平均销售量为[220,240),[240,260),[260,280),[280,300)的四组大型农贸市场中,用分层抽样的方法抽取11家大型农贸市场,求年平均销售量在[240,260),[260,280)[280,300)的农贸市场中应各抽取多少家?(3)在(2)的条件下,再从[240,260),[260,280),[280,300)这三组中抽取的农贸市场中随机抽取3家参加国台办的宣传交流活动,记恰有ξ家在[240,260)组,求随机变量ξ的分布列与期望和方差.18.已知向量m⇀=(sin x−√3cos x,1),n⇀=(2sin x,4cos2x).函数f(x)=m⇀⋅n⇀(I)求f(x)的最小正周期及最值;(II)在ΔABC中,a,b,c分别为∠A,∠B,∠C的对边,若f(B)=1,b=√3,求ΔABC 周长l的最大值.19.如图,在直三棱柱ABC−A1B1C1中,已知AB⊥AC,AB=2,AC=4,AA1= 3.D是线段BC的中点.(1)求直线DB1与平面A1C1D所成角的正弦值;(2)求二面角B1−A1D−C1的大小的余弦值.20.已知函数f(x)=lnx+ax(a∈R),g(x)=e x+x2−x.(1)求函数f(x)的单调区间;(2)定义:对于函数f(x),若存在x0,使f(x0)=x0成立,则称x0为函数f(x)的不动点. 如果函数F(x)=f(x)−g(x)存在两个不同的不动点,求实数a的取值范围.21.已知圆C:x2+y2+2x−2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为√17.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l方程.四、选考题22.在平面直角坐标系中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(√2,π4),直线l的极坐标方程为ρcos(θ﹣π4)=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)已知曲线C的参数方程为{x=4+5costy=3+5sint,(t为参数),直线l与C交于M,N两点,求弦长|MN|.23.在直角坐标系xOy中,直线l的参数方程为{x=1+tcosαy=tsinα(t为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cosθ1−cos2θ.点E 的直角坐标为(2,2√3),直线l与曲线C交于A、B两点.(Ⅰ)写出点E的极坐标和曲线C的普通方程;(Ⅱ)当tanα=√3时,求点E到两点A、B的距离之积.答案解析部分一、选择题:本题共12小题,每小题5分,共60分。

2022年普通高等学校招生全国统一考试新高考卷数学模拟测试(三)+答案解析(附后)

2022年普通高等学校招生全国统一考试新高考卷数学模拟测试(三)+答案解析(附后)

2022年普通高等学校招生全国统一考试新高考卷数学模拟测试(三)1. 集合Z 中元素的个数为A. 5 B. 4 C. 3D. 22. 若复数,则A. iB.C.D.3. 北京时间2021年6月17日9时22分,搭载神舟十二号载人飞船的长征二号F 遥十二运载火箭在酒泉卫星发射中心点火发射.此后,神舟十二号载人飞船与火箭成功分离,进入预定轨道,顺利将聂海胜、刘伯明、汤洪波3名航天员送入太空,飞行乘组状态良好,发射取得圆满成功.某校欲组建航空航天课外兴趣小组,现从甲、乙、丙、丁4位学生中任选2人去航空航天博物馆进行参观学习,则甲、乙两位学生至少有一位被选中的概率为( )A. B.C.D.4.A. 2B.C. 1D.5. 已知函数,若,则( )A.B.C. 2D.6. 如图,在四棱锥中,四边形ABCD 为正方形,,,E 、F分别是线段BC 、CD 的中点,若,,则直线PE 与AF 所成角的余弦值为A.B. C. D.7. 已知动点到直线的距离的平方比到坐标原点O 的距离的平方大4,若动点Q 满足,且存在定点P ,使得为定值s ,则 A. 1B. 2C. 3D. 48. 若关于x 的方程在内有两个不同的实数根,则实数a 的取值范围为( )A.B.C. D.9. 有一组样本数据,,,的平均数、众数和中位数均为3,方差为2,由这组数据得到新样本数据,,,的平均数、众数、中位数及方差分别为a、b、c及d,则( )A. B. C. D.10. 已知双曲线的离心率为e,则( )A. 双曲线C的焦点不可能在y轴上B. 是该双曲线的一个焦点C. 该双曲线的渐近线方程可能为D. e的最大值为11. 已知函数,直线为图象的一条对称轴,则下列说法错误的是A.B. 在区间上单调递增C. 在区间上的最大值为2D. 若为偶函数,则Z12. 若,则下列说法一定正确的是A. B.C. 若,则D. 若,则13. 已知向量,,,若,则实数________.14. 的展开式中,除常数项外,各项系数和为________.15. 已知的内角A,B,C所对的边分别为a,b,c,若,,则外接圆的半径为________.16. 如图所示,四边形ABCD为菱形,,,平面ABCD,M,P,Q分别为BG,BA,EF的中点,N为平面EFG内一点,且直线平面当的面积最小时,三棱锥的外接球的体积为________.17. 2021年8月5日,在东京奥运会乒乓球女团决赛中,中国队战胜日本队,获得金牌.2021年8月6日,在东京奥运会乒乓球男团决赛中,中国队战胜德国队,获得冠军.某乒乓球业余爱好者协会为了解某社区青少年喜欢打乒乓球是否与性别有关,做了相关调查,制成如下列联表.喜欢不喜欢总计男8020100女7030100总计15050200男、女青少年喜欢乒乓球的频率分别为多少?能否有的把握认为喜欢乒乓球与性别有关?附:,k18. 在中,内角A,B,C的对边分别为a,b,c,且求;若的面积,求a的最小值.19. 已知正项数列的前n项和为,且满足求数列的通项公式;若,求20. 如图,在圆锥PO中,A,B,C,D四点在底面积圆O上,且,证明:若平面PAB与平面PCD的交线为l,且二面角的余弦值为,求圆锥PO的体积.21. 已知直线是曲线在处的切线.求a,b的值;证明:22.已知椭圆C:的左、右焦点分别为、,点E为椭圆C上一动点,O 为坐标原点.若,求的面积;若过点E的斜率为k的直线l与椭圆C相交于另一点F,,M为线段EF的中点,射线OM与椭圆C相交于点N,与的面积分别为、,求的取值范围.答案和解析1.【答案】C【解析】【分析】本题考查集合中元素个数问题,属于基础题.利用列举法化简集合A,即可得到集合A中的元素个数.【解答】解:,所以集合A中的元素个数为故答案选:2.【答案】B【解析】【分析】本题考查了复数代数形式的乘除运算,共轭复数,属于基础题.直接利用复数代数形式的乘除运算化简复数z,则可求.【解答】解:,则故答案选:3.【答案】A【解析】【分析】本题考查古典概型的计算与应用,属于基础题.利用列举法列举基本事件,再求事件的概率.【解答】解:从甲、乙、丙、丁四人中任取两人,共有甲,乙,甲,丙,甲,丁,乙,丙,乙,丁,丙,丁种方法,其中甲、乙两位学生至少有一位被选中的有甲,乙,甲,丙,甲,丁,乙,丙,乙,丁种方法,故所求事件的概率为故选:4.【答案】C【解析】【分析】本题考查诱导公式、二倍角公式的应用,属于基础题.由二倍角公式以及诱导公式化简可得.【解答】解:故答案选:5.【答案】B【解析】【分析】本题考查对数函数的运算,属于基础题.由,则,根据,即可求出【解答】解:因为,故函数的定义域为R,因为,所以函数为奇函数,所以,又因为,所以,所以故选:6.【答案】A【解析】【分析】本题考查异面直线所成角的应用,考查余弦定理,属于中档题.在线段AB上取一点G,且连接GE,PG,由图可知,为异面直线PE与AF所成角,利用余弦定理即可得放入三角形中进行求解.【解答】解:在线段AB上取一点G,且连接GE,PG,如图所示,在四边形ABCD中,易证,所以为异面直线PE与AF所成角,因为,,所以,,所以,则异面直线PE与AF所成角的余弦值为故选:7.【答案】B【解析】【分析】本题考查抛物线的综合应用,要求考生掌握数形结合的思想,把动态问题借助于焦点或准线转移到静态问题上,属于中档题.根据已知条件,得到动点M的轨迹方程,即可求解.【解答】解:由题意可知,,解得,因此点M的轨迹是抛物线,该抛物线的焦点坐标为,准线方程为,过点M作准线的垂线,垂足为N,所以因为,即因为存在定点P,使得为定值,所以有,此时点P为抛物线的焦点,所以故选:8.【答案】D【解析】【分析】本题考查函数与方程的关系,考查利用导数研究函数的单调性,考查转化,构造函数,属于中档题.方程等价于,令,利用导数研究函数的单调性,可得,即可求解.【解答】解:方程等价于,令,则,令,则在内恒成立.所以在上单调递增,因为,所以当时,,时,所以函数在上单调递减,在上单调递增,因为,所以,故实数a的取值范围为故选:9.【答案】BC【解析】【分析】本题考查数字特征,考查处理前后数据的平均数、众数、中位数及方差之间的关系,属于基础题.根据前后样本数据之间的平均数、众数、中位数及方差之间的关系可得.【解答】解:因为,,,的平均数,众数和中位数均为3,方差为2,所以数据,,,的平均数、众数、中位数及方差分别为7、7、7及8,所以及,所以A,D项错误,B、C项正确.故选:10.【答案】AD【解析】【分析】本题考查双曲线的标准方程和性质,属于基础题.利用双曲线的标准方程和性质逐个判断即可.【解答】解:对于A,由题意知,则,所以双曲线的焦点在x轴上,故A项正确;对于B,焦距为,焦点坐标为,故B项错误;对于C,因为该双曲线的渐近线方程为,,所以C项错误.对于D,因为,又,则,则,所以,所以e的最大值为,故D项正确;故选:11.【答案】AC【解析】【分析】本题考查三角函数的综合应用,理解三角函数的对称性、单调性、周期性,属于中档题.根据题意,结合三角函数图象与性质,进而对选项进行一一验证即可.【解答】解:因为直线为函数图象的一条对称轴,所以,因为,所以,故A错误;所以,令,解得,所以函数的单调递增区间为,故B正确;当时,,则,所以在区间上的最大值为1,故C错误;,若函数为偶函数,则,解得,故D正确.故选:12.【答案】ACD【解析】【分析】本题考查不等式性质,要求考生理解对数的运算性质及指数函数的性质,属于中档题.利用函数单调性以及不等式性质逐项分析求解.【解答】解:因为,所以,所以,故选项A正确;令,,所以,故选项B不正确;因为,所以函数在区间上单调递增,所以,即,故选项C正确;因为,所以,所以,所以,即,故选项D正确.故选:13.【答案】【解析】【分析】本题考查平面向量的坐标运算,向量共线的坐标表示,属于基础题.由向量的坐标运算得,根据两向量共线的充要条件解答即可.【解答】解:向量,,,,,,解得14.【答案】49【解析】【分析】本题考查二项式定理,要求考生会用二项式定理解决与二项展开式有关的问题,属于中档题.利用二项式展开项通项公式,以及二项式定理即可求解【解答】解:的展开式的通项公式为,,1,2,,6,令,解得,所以展开式中的常数项为,令,得到所有项的系数之和为,所以除常数项外,各项系数的和为故答案为:15.【答案】5【解析】【分析】本题考查解三角形,要求考生掌握正、余弦定理及三角恒等变换,属于基础题.利用余弦定理及同角三角关系求得,即可利用正弦定理求解.【解答】解:,所以,因为,所以,因为,所以外接圆的半径为故答案为:16.【答案】【解析】【分析】本题考查球的体积公式、线面平行的性质、面面平行的判定、面面平行的性质,属于中档题.证出平面平面AEG,求出的面积最小时,三棱锥的外接球半径,即可求出结果.【解答】解:因为,,且平面ABCD,所以四边形GBCF,EDCF均为矩形,所以,,所以四边形APQE为平行四边形,所以,因为平面AEG,平面AEG,所以平面AEG,因为,且平面AEG,平面AEG,所以平面AEG,又,所以平面平面AEG,因为直线平面MPQ,所以点N在直线EG上,由题意易知,,因为,所以当FN最小时,的面积最小,因为四边形ABCD为菱形,所以,所以当N为EG中点时,FN最小,所以平面EGB,所以,所以,均是以BF为斜边的直角三角形,所以BF是三棱锥外接球的直径,又因为,所以,所以三棱锥外接球的半径为,故三棱锥外接球的体积为故答案为:17.【答案】解:男生喜欢乒乓球的频率为,女性喜欢乒乓球的频率为由题知,,所以没有的把握认为喜欢乒乓球与性别有关.【解析】本题主要考查以奥运会中国丘乓球女团、男团夺冠为情景,要求考生运用独立性检验等相关知识解答相关问题.要求考生有运用所学知识解决实际问题的能力,体现数学运算及数据分析的学科素养,突出基础性、应用性的考查要求.属于基础题.根据列联表即可求解;由计算可得.18.【答案】解:设R为三角形的外接圆的半径,所以因为,所以,所以,所以,所以,因为,且,所以因为,所以,所以,由易知,,因为,所以,即,当且仅当时等号成立,所以a的最小值为【解析】【分析】本题主要考查三角形的面积公式,考查正弦定理,考查同角三角函数的基本关系,考查余弦定理及基本不等式,属于中档题.设R为三角形的外接圆的半径,由正弦定理可得,利用同角三角函数的基本关系,求出即可;由易知,,利用余弦定理及基本不等式即可求出a的最小值.19.【答案】解:当时,,,,当时,,,两式作差得:,,即是以1为首项,1为公差的等差数列,由得,,,两式相减得:【解析】本题主要考查了数列的递推关系,等差数列的判定及通项公式,以及错位相减法求和,考查了推理能力与计算能力,属于中档题.利用数列的递推关系,根据与的关系,可推出是以1为首项,1为公差的等差数列,由此可得的通项公式;利用错位相减法求和可得.20.【答案】证明:因为,,所以,故线段AD为圆O的直径.连接OC,因为,所以,所以,又因为,且,PO、平面POC,所以平面POC,因为平面POC,所以;解:由题意,四边形ABCD是等腰梯形,以O为坐标原点,建立如图所示的空间直角坐标系,设,因为,,所以,,,,,所以,,,设平面PAB的法向量,所以,即,取,解得,,所以平面PAB的一个法向量设平面PCD的法向量,所以,即,取,解得,,所以平面PCD的一个法向量,因为二面角的余弦值为,所以,解得或经检验,不合题意,所以圆锥PO的体积为【解析】本题考查线面垂直的判定,线面垂直的性质,二面角,利用空间向量求面面的夹角,圆锥体积的计算,属于中档题.根据题意利用线面垂直的判定定理证明平面POC,再由平面POC,线面垂直的性质可得;以O为坐标原点,建立如图所示的空间直角坐标系,设,利用空间向量法求出,再由圆锥的体积公式可得.21.【答案】解:因为,所以,又因为,所以,综上知,证明:先证:,即,令,,由,解得,由,解得,所以函数在区间上单调递减,在区间上单调递增,所以,即,当且仅当时等号成立.再证:,即,令,,由,解得,由,解得,所以函数在区间上单调递增,在区间上单调递减,所以,即,当且仅当时等号成立.所以【解析】本题考查导数的几何意义,构造函数,考查利用导数研究函数的单调性,考查导数中的函数不等式,属于较难题.由题知,,将代入,可求出a,b;将问题转化为先证:,利用导数研究函数得单调性即可;再证,构造函数,利用导数研究函数得单调性即可得证.22.【答案】解:设,,所以,由于,,,所以所以的面积为因为M为线段EF的中点,所以与的面积之比;设直线,,,由,得,所以,,所以,因为,所以,;所以,,即;整理得:,满足;当时,,此时;当时,射线OM所在直线方程为,由,得;所以,;综上,的取值范围【解析】本题考查椭圆的性质,直线与椭圆的位置关系,属于难题;设,,运用余弦定理即可解决问题;直线与椭圆联立,韦达定理,求出斜率与截距的关系;根据点M为中点,表示出面积比值,结合前面所求解决问题.。

高三数学三模(理科)试题及答案.docx

高三数学三模(理科)试题及答案.docx

温馨提示:本试卷包括第I 卷(选择题)和第II 卷(非选择题)两部分,共150分。

考试时间120分钟。

祝同学们考试顺利!第I 卷选择题(共40分)注意事项:1. 答第1卷前,考生务必将自己的姓名、准考号、科口涂写在答题卡上。

2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用 橡皮擦干净后,再选涂其他答案标号。

答在试卷上的无效。

3. 本卷共8小题,每小题5分, 参考公式:•如果事件A ,B 互斥,那么P(AU8) = P(A) + P(B)•柱体的体积公式V = Sh. 其中S 表示柱体的底面积, 刃表示柱体的高.一、选择题:在每小题给出的四个选项中(1) 已知集合 A = {^(x+2)(x-3)^0, xeZ), B =—2尸=1},则 A^B =(A) {—h 1} (D) {-3, -1, 1}x —120,⑵ 设变量兀y 满足约束条件[t+.y-3W0,则目标函数z = 2x+v 的最小值为 兀一 2y-3W0,(A) 6 (B) 4 (C) 2 (D) 1(3)若(x+—r 展开式中前三项的系数成等差数列,则展开式中屮项的系数为2.r共40分。

•如果事件A ,〃相互独立,那么 P(AB) = P(A)P(B). •锥体的体积公式3其中S 表示锥体的底面积,表示锥体的高. 只有一项是符合题目要求的.(B) {1, 3}(C) {—1, L 3}(A) 6 (B) 7 (C) 8 (D) 9(4)阅读右边的程序框图,运行相应的程序,则输出的S 值为(A) 2 (B) 4 (C) 6 (D) 8开始S 二 I 1k^k + 21 ”是“对任意的正数x, X4-—>丄”的2x 3(B)必要不充分条件 (D)既不充分也不必要条件设双曲线W ■-与=1的两条渐近线与直线x =—分别交于A, B 两点,F 为该双曲线 的右焦点•若90°<ZAFB<12(r,则该双曲线离心率的取值范围是(A) (1, V2)定义在实数域上的偶函数/(X )对于% w R,均满足条件/(x + 2) = /(x) + /(T),且当XG [2, 3]时,fix) = -2x 2+12,v-18,若函数 y = f(x)-lo^(|A ] +1)在(0, +oo)上至少有5个零点,则a 的取值范围是注意事项:1. 用钢笔或圆珠笔直接答在答题卷上,答在本试卷上的无效。

高三下学期第三次模拟考试数学(理科)试题Word版含答案

高三下学期第三次模拟考试数学(理科)试题Word版含答案

高中届毕业班第三次诊断性考试数 学(理工类)注意事项:1.本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、座位号和准考证号填写在答题卡上。

2.答第Ⅰ卷时,选出每个题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将答题卡交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项目符合题目要求的.1.已知全集{}1,2,3,4,5U =,{}3,4,5M =,{}2,3N =,则集合U (C )N M =A .{}2B .{}2,5C .{}4,5D .{}1,3 2.已知是虚数单位,复数21+(1)i i -的虚部为A.12 B. 12- C. 12i D. 12i - 3. 已知两条直线,m n 和两个不同平面,αβ,满足αβ⊥,=l αβ,m α,n β⊥,则A .m n ⊥B .n l ⊥ C.mn D .ml4.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠 穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大 鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图 描述,如图所示,则输出的结果是A. 5B. 4C. 3D. 25.函数33()xx f x e-=的大致图象是6.等比数列的前项和为,若,,则等于A .33B . -31C .5D .-37.2位男生和3位女生共5位同学站成一排,则3位女生中有且只有两位女生相邻的概率是A .B .C .D .8.已知圆22:(3)(1)1C x y +-=和两点(,0),B(,0),(0)A t t t ->,若圆上存在点P ,使得90APB ∠=︒,则当OP 取得最大值时,点P 的坐标是 A .333(,2 B .333)2C .332(,22 D .323()229.已知函数()3)(0,)22f x x ππωϕωϕ=+>-<<,1(,0)3A 为图象()f x 的对称中心,,B C 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是A .24(2,2),33k k k Z ππππ-+∈ B .24(2,2),33k k k Z -+∈C .24(4,4),33k k k Z ππππ-+∈D .24(4,4),33k k k Z -+∈10.某几何体的三视图如图所示,则该几何体的体积为A .883π+B .1683π+ C .8163π+ D .16163π+ 11.已知双曲线2222:1x y E a b-=(0,0a b >>)的左、右焦点分别为12,F F ,126F F =,P 是E右支上的一点,1PF 与轴交于点A ,2PAF △的内切圆在边2AF 上的切点为Q .若3AQ =,则E 的离心率是 235 D.312.定义在R 上的函数()f x 的导函数为()f x ',()00f =. 若对任意x R ∈,都有()()1f x f x '>+,则使得()1x f x e +<成立的的取值范围为A .(,0)-∞B .(,1)-∞C .(1,)-+∞D .(0,)+∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.若不等式组满足21022040x y x y x y -+⎧⎪-+⎨⎪+-⎩≥≤≤,则2z x y =+的最大值为 .14.在42⎪⎭⎫ ⎝⎛+x x 的展开式中,x 的系数为 .(用数字作答) 15.ABC ∆的外接圆的圆心为O ,半径为,0OA AB AC ++=且OA AB =,则向量CA在CB 方向上的投影为 .16.n S 为数列{}n a 的前项和,已知()()()*0,431,n n n n a S a a n N >=+-∈.则{}n a 的通项公式n a =______.三、解答题:本大题共7小题,共70分,解答应写出文字说明,证明过程或演算步骤.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 作答时用2B 铅笔在答题卡上把所选题目题号涂黑。

高考专题 高三数学模拟三(理科).docx

高考专题  高三数学模拟三(理科).docx

高三数学模拟三(理科)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有..一项..是符合题目要求的,请将正确选项填涂在答题卡上). 1.已知i 为虚数单位,R a ∈,若)1)(1(i a a ++-是纯虚数,则a 的值为 A .-1或1 B .1C .-1D .32.若)0)(sin()(:,,2:≠+=∈+=ωϕωππϕx x f q Z k k p 是偶函数,则p 是q 的A .充要条件B .充分不必要条件C .必要不充分条件D . 既不充分也不必要条件3.下列函数中,在(0,)+∞上单调递减,并且是偶函数的是 A .2y x =B .3y x =-C .lg ||y x =-D .2x y =4.观察下面频率等高条形图,其中两个分类变量x y ,之间关系最强的是A .B .C .D . 5.如图所示的程序框图,该算法的功能是A .计算012(12)(22)(32)++++++…(12)nn +++的值 B .计算123(12)(22)(32)++++++…(2)nn ++的值 C .计算(123+++...)n +012(222++++ (1)2)n -+的值D .计算[123+++…(1)]n +-012(222++++…2)n+的值6.双曲线C :22221x y a b-=(0,0)a b >>的左、右焦点分别为21,F F ,渐近线分别为21,l l ,点P 在第一象限内且在1l 上,若2212//,PF l PF l ⊥,则该双曲线的离心率为 A .5B .2C .3D .27.△ABC 各角的对应边分别为c b a ,,,满足1≥+++ba cc a b ,则角A 的范围是 A .(0,]3πB .(0,]6πC .[,)3ππD .[,)6ππ8.函数)2|)(|2sin()(πϕϕ<+=x x f 的图象向左平移6π个单位后关于原点对称,则函数()f x 在[0,]2π上的最小值为A .32-B .12-C .12D .329.已知实数,x y 满足:210210x y x x y -+ ⎧⎪<⎨⎪+- ⎩,221z x y =--,则z 的取值范围是A .5[,5]3B .[]0,5C .[)0,5D .5[,5)310.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与全面积之比为 A .1ππ+B .221ππ+C .221π+ D .11π+11.已知函数2()f x x =的图象在点11(,())A x f x 与点22(,())B x f x 处的切线互相垂直,并交于点P ,则点P 的坐标可能是A .3(,3)2-B . (0,4)-C .(2,3)D .1(1,)4- 12.P 为圆1C :229x y +=上任意一点,Q 为圆2C :2225x y +=上任意一点,PQ 中点组成的区域为M ,在2C 内部任取一点,则该点落在区域M 上的概率为 A .1325B .35C .1325πD .35π二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 13.⎰=+-12)211(dx x x .第5题图≥ ≥14.已知函数2()sin 21x f x x =++,则(2)(1)(0)(1)(2)f f f f f -+-+++= . 15.若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为 .16.在平面直角坐标系xOy 中,已知点A 在椭圆221259x y +=上,点P 满足(1)()AP OA λλ=-∈R ,且72OA OP ⋅=,则线段OP 在x 轴上的投影长度的最大值为 .三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.(本小题满分12分)设数列{}n a 的前n 项和12n n S +=,数列{}n b 满足21(1)log n nb n n a =++.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和n T .18.(本小题满分12分)低碳生活,从“衣食住行”开始.在国内一些网站中出现了“碳足迹”的应用,人们可以由此计算出自己每天的碳排放量,如家居用电的二氧化碳排放量(千克)=耗电度数0.785⨯,家用天然气的二氧化碳排放量(千克)=天然气使用立方数0.19⨯等.某校开展“节能减排,保护环境,从我做起!”的活动,该校高一、六班同学利用假期在东城、西城两个小区进行了逐户的关于“生活习惯是否符合低碳排放标准”的调查.生活习惯符合低碳观念的称为“低碳家庭”,否则称为“非低碳家庭”.经统计,这两类家庭占各自小区总户数的比例P 数据如下: 东城小区 低碳家庭 非低碳家庭 西城小区 低碳家庭 非低碳家庭比例P12 12比例P45 15(1)如果在东城、西城两个小区内各随机选择2个家庭,求这4个家庭中恰好有两个家庭是“低碳家庭”的概率;(2)该班同学在东城小区经过大力宣传节能减排的重要意义,每周“非低碳家庭”中有20%的家庭能加入到“低碳家庭”的行列中.宣传两周后随机地从东城小区中任选5个家庭,记ξ表示5个家庭中“低碳家庭”的个数,求E ξ和D ξ.19.(本小题满分12分) 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,1AB PA ==,3AD =,F 是PB 中点,E 为BC 上一点.(1)求证:AF ⊥平面PBC ;(2)当BE 为何值时,二面角C PE D --为45︒.20.(本小题满分12分)已知抛物线1C :24y x =和2C :22x py =(0)p >的焦点分别为12,F F ,12,C C 交于,O A 两点(O 为坐标原点),且12F F OA ⊥. PFEDCBA(1)求抛物线2C 的方程;(2)过点O 的直线交1C 的下半部分于点M ,交2C 的左半部分于点N ,点P 坐标为(1,1)--,求△PMN 面积的最小值.21.(本小题满分12分)已知函数2()2()3xf x e x a =--+,a ∈R .(1)若函数()y f x =的图象在0x =处的切线与x 轴平行,求a 的值; (2)若x 0,()f x 0恒成立,求a 的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 23.(本小题满分10分)选修4─4:坐标系与参数方程选讲.已知曲线C 的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数),在同一平面直角坐标系中,将曲线C 上的点按坐标变换1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩得到曲线C '.(1)求曲线C '的普通方程;(2)若点A 在曲线C '上,点B (3,0),当点A 在曲线C '上运动时,求AB 中点P 的轨迹方程.24.(本小题满分10分)选修4─5:不等式证明选讲. 已知函数22()69816f x x x x x =-++++. (1)求()f x (4)f 的解集;(2)设函数()(3),g x k x =-k ∈R ,若()()f x g x >对任意的x ∈R 都成立,求k 的取值范围.数学理参考答案及评分参考1.【答案】C2.【答案】A3.【答案】C【解析】四个函数中,是偶函数的有A C ,,又2y x =在(0,)+∞内单调递增,故选C . 4.【答案】D≥ ≥ ≥【解析】在频率等高条形图中,a ab +与c c d+相差很大时,我们认为两个分类变量 有关系,四个选项中,即等高的条形图中12,x x 所占比例相差越大,则分类变量,x y 关系越强,故选D .5.【答案】C【解析】初始值1,0k S ==,第1次进入循环体:012S =+,2k =;当第2次进入循环体时:011222S =+++,3k =,…,给定正整数n ,当k n =时, 最后一次进入循环体,则有:011222S =++++…12n n -++,1k n =+, 退出循环体,输出S =(123+++…)n +012(222++++…12)n -+,故选C .6.【答案】B7.【答案】A 【解析】由1b ca c a b+≥++得:()()()()b a b c a c a c a b +++≥++,化简得: 222b c a bc +-≥,同除以2bc 得,222122b c a bc +-≥,即 1cos 2A ≥(0)A π<<,所以03A π<≤,故选A . 8.【答案】A【解析】函数()sin(2)f x x ϕ=+向左平移6π个单位得sin[2()]sin(2)63y x x ππϕϕ=++=++,又其为奇函数,故则3k πϕπ+=,Z k ∈,解得=3k πϕπ-,又||2πϕ<,令0k =,得3πϕ=-,∴()sin(2)3f x x π=-,又∵[0,]2x π∈,∴ 3sin(2)[,1]32x π-∈-,即 当0x =时,min 3()2f x =-,故选A . 9.【答案】C【解析】画出,x y 约束条件限定的可行域为如图阴影区域,令221u x y =--,则12u y x +=-, 先画出直线y x =,再平移直线y x =,当经 过点(2,1)A -,12(,)33B 时,代入u ,可知553u -≤<,∴||[0,5)z u =∈,故选C . 10.【答案】B【解析】设圆柱的底面半径为r ,高为h ,则22r h h rπ=,则2h r π=,则 S 侧=2r h π⋅24r ππ=,S 全2242r r πππ=+,故圆柱的侧面积与 全面积之比为222424221r r r πππππππ=++,故选B . 11.【答案】D【解析】由题,221122(,),(,)A x x B x x ,()2f x x '=,则过,A B 两点的切线斜率112k x =,222k x =,又切线互相垂直,所以121k k =-,即1214x x =-.两条切线方程分别为22111222:2,:2l y x x x l y x x x =-=-,联立得1212()[2()]0x x x x x --+=,∵12x x ≠,∴122x x x +=,代入1l ,解得 1214y x x ==-,故选D .12.【答案】B【解析1】设00(,)Q x y ,中点(,)M x y ,则00(2,2)P x x y y --代入229x y +=,得20(2)x x -+20(2)9y y -=,化简得:22009()()224x y x y -+-=,又220025x y += 表示以原点为圆心半径为5的圆,故易知M轨迹是在以0022x y (,)为圆心以32为半径的圆 绕原点一周所形成的图形,即在以原点为圆心,宽度为3的圆环带上, 即应有222(14)x y r r +=≤≤,那么在2C 内部任取一点落在M 内的概率 为163255πππ-=,故选B .【解析2】设(3cos ,3sin )P θθ,(5cos ,5sin )Q ϕϕ,(,)M x y ,则23cos 5cos x θϕ=+,①23sin 5sin y θϕ=+,②,①2+②2得:221715cos()22x y θϕ+=+-2r =,所以M 的轨迹是以原点为圆心, 以(14)r r ≤≤为半径的圆环,那么在2C 内部任取一点落在M 内的概率为163255πππ-=,故选B .13.【答案】41+π14.【答案】5【解析】∵()()f x f x +-=12222sin sin 221212112x x x x xx x +-++-=+=++++,且 (0)1f =,∴(2)(1)(0)(1)(2)5f f f f f -+-+++=.15.【答案】3π【解析】过圆锥的旋转轴作轴截面,得△ABC 及其内切圆1O 和外切圆2O ,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题 意1O 的半径为1r =,∴△ABC 的边长为23,∴圆锥的底面半径为3,高为3,∴13333V ππ=⨯⨯⨯=. 16.【答案】15【解析】(1)AP OP OA OA λ=-=-,即OP OA λ=,则,,O P A 三点共线,72OA OP ⋅=,所以OA 与OP 同向,∴||||72OA OP =,设OP 与x 轴夹角为θ,设A 点坐标为(,)x y ,B 为点A 在x 轴的投影, 则OP 在x 轴上的投影长度为||cos OP θ⋅=2||72||||||||OB OB OP OA OA ⋅= 222||||1727272161699||2525||x x x y x x x =⋅=⋅=⋅+++17215169225≤⋅=⨯.当且仅当15||4x =时等号成立.则线段OP 在x 轴上的投影长度的最大值为15.17.【解析】(1)当1n =时,114a S == ………………………2分由12n n S +=,得12n n S -=(2)n ³,∴11222n n n n n n a S S +-=-=-=(2)n ³∴4,12,2n nn a n ì=ïï=íï³ïî ………………………6分 (2)当1n =时,121512log 44b =+=,∴154T = …………………7分当2n ³时,21111(1)log 2(1)1n n b n n n n n n n n =+=+=-++++ ……9分5111111(4233445n T =+-+-+-+…+11)(2341n n -+++++…)n + 1111111(4233445=+-+-+-+…+11)(12341n n -++++++…)n + 31(1)412n n n +=-++ ………11分上式对于1n =也成立,所以31(1)412n n n T n +=-++. ………12分18.【解析】(1)设事件“4个家庭中恰好有两个家庭是‘低碳家庭’”为A , ………1分则有以下三种情况:“低碳家庭”均来自东城小区,“低碳家庭”分别来自 东城、西城两个小区,“低碳家庭”均来自西城小区.∴100335454212151542121451512121)(=⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=A P .…6分 (2)因为东城小区每周有20%的人加入“低碳家庭”行列,经过两周后,两类家庭占东城小区总家庭数的比例如下:………8分 由题意,两周后东城小区5个家庭中的“低碳家庭”的个数ξ服从二项分布,即17(5,)25B ξ………10分 ∴17175255E ξ=⨯= , ………11分17813652525125D ξ=⨯⨯=. ………12分 A 小区 低碳家庭 非低碳家庭P1725 82519.【解析】『法一』(1)取BC 中点为N ,连结1,MN C N ,………1分∵,M N 分别为,AB CB 中点 ∴MN ∥AC ∥11A C ,∴11,,,A M N C 四点共面, ………3分 且平面11BCC B I 平面11A MNC 1C N = 又DE Ì平面11BCC B , 且DE ∥平面11A MC ∴DE ∥1C N∵D 为1CC 的中点,∴E 是CN 的中点, ………5分 ∴13CE EB =. ………6分 (2)连结1B M , ………7分 因为三棱柱111ABC A B C -为直三棱柱,∴1AA ^平面ABC ∴1AA AB ^,即四边形11ABB A 为矩形,且12AB AA = ∵M 是AB 的中点,∴11B M A M ^, 又11A C ^平面11ABB A ,∴111AC B M ^,从而1B M ^平面11A MC ………9分 ∴1MC 是11B C 在平面11A MC 内的射影 ∴11B C 与平面11A MC 所成的角为∠11B C M 又11B C ∥BC ,∴直线BC 和平面11A MC 所成的角即11B C 与平面11A MC 所成的角…10分 设122AB AA ==,且三角形11A MC 是等腰三角形 ∴1112A M AC ==,则12MC =,116B C =∴111116cos 3MC B C MB C ?=∴直线BC 和平面11A MC 所成的角的余弦值为63. ………12分 『法二』(1)因为三棱柱111ABC A B C -为直三棱柱,∴1AA ^平面ABC ,又AC AB ⊥ ∴以A 为坐标原点,分别以1,,AB AA AC 所在直线为,,x y z 轴,建立如图空间直角坐标系. ………1分 设122AB AA ==,又三角形11A MC 是 等腰三角形,所以1112A M AC ==易得1(0,1,0)A ,(1,0,0)M ,1(0,1,2)C ,所以有1(1,1,0)A M =-uuuu r ,11(0,0,2)AC =uuu u r设平面11A MC 的一个法向量为(,,)n x y z =r ,则有11100n A Mn ACìï?ïíï?ïïîr uuuu rr uuu u r,即020x y z ì-=ïïíï=ïî,令1x =,有(1,1,0)n =r ………4分 (也可直接证明1B M 为平面11A MC 法向量) 设CE EB λ=,22(,0,)11E λλλ++,又1(0,,2)2D , ∴212(,,2)121DE λλλ=--++ 若DE ∥平面11A MC ,则n r ^DE uuu r ,所以有21012λλ-=+,解得13λ=,∴13CE EB = ………6分 (2)由(1)可知平面11A MC 的一个法向量是(1,1,0)n =r,(2,0,0)B ,(0,0,2)C ,求得(2,0,2)BC =-设直线BC 和平面11A MC 所成的角为θ,[0,]2πθ∈, 则||23sin 3||||26n BC n BC θ⋅===⋅⨯, ………11分 所以6cos 3q = ∴直线BC 和平面11A MC 所成的角的余弦值为63. ………12分 20.【解析】(1)由已知得:1(1,0)F ,2(0,)2p F ,∴12(1,)2p F F =- ………1分 联立2242y x x py ⎧=⎨=⎩解得00x y =⎧⎨=⎩或2331632x p y p⎧=⎪⎨=⎪⎩,即(0,0)O ,233(16,32)A p p , ∴233(16,32)OA p p = ………3分∵12F F OA ⊥,∴12F F 0OA ⋅= ,即233163202p p p -+=,解得2p =,∴2C 的方程为24x y =. ………5分『法二』设111(,)(0)A x y x >,有21121142y x x py ⎧=⎨=⎩①,由题意知,1(1,0)F ,2(0,)2p F ,∴12(1,)2p F F =- ………1分 ∵12F F OA ⊥,∴12F F 0OA ⋅= ,有1102p x y -+=, 解得112py x =, ………3分将其代入①式解得114,4x y ==,从而求得2p =,所以2C 的方程为24x y =. ………5分(2)设过O 的直线方程为y kx =(0)k < 联立24y kx y x =⎧⎨=⎩得244(,)M k k ,联立24y kx y x=⎧⎨=⎩得2(4,4)N k k ………7分 (1,1)P --在直线y x =上,设点M 到直线y x =的距离为1d ,点N 到直线y x =的距离为2d则121()2PMN S OP d d =⋅⋅+ ………8分2244||1|44|2()222k k k k --=⨯⨯+ 22112(||||)k k k k=-+- 22112()k k k k=--++………10分 22112(2()()2)8k k k k≥-⋅-+⋅= 当且仅当1k =-时,“=”成立,即当过原点直线为y x =-时,…11分△PMN 面积取得最小值8. ………12分『法二』联立24y kx y x =⎧⎨=⎩得244(,)M k k , 联立24y kx y x=⎧⎨=⎩得2(4,4)(0)N k k k <, ………7分 从而222244||1|4|1(4)MN k k k k k k=+-=+-, 点(1,1)P --到直线MN 的距离2|1|1k d k -=+,进而2221|1|41(4)21PMN k S k k kk ∆-=⋅⋅+-+ ………9分 32222(1)(1)2(1)(1)1122(2)(1)k k k k k k k k k k k---++===+-++令1(2)t k t k=+≤-,有2(2)(1)PMN S t t ∆=-+, ………11分 当2t =-,即1k =-时,即当过原点直线为y x =-时,△PMN 面积取得最小值8. ………12分21.【解析】(1)()2()xf x e x a '=-+ ………2分因为()y f x =在0x =处切线与x 轴平行,即在0x =切线斜率为0即(0)2(1)0f a '=+=,∴1a =-. ………5分(2)()2()x f x e x a '=-+, 令()2()x g x e x a =-+,则()2(1)0xg x e '=-≥,所以()2()x g x e x a =-+在[)0,+∞内单调递增,(0)2(1)g a =+ (i )当2(1)0a +≥即1a ≥-时,()2()(0)0xf x e x a f ''=-+≥≥,()f x 在 [)0,+∞内单调递增,要想()0f x ≥只需要2(0)50f a =-≥,解得55a -≤≤,从而15a -≤≤ ………8分(ii )当2(1)0a +<即1a <-时,由()2()xg x e x a =-+在[)0,+∞内单调递增知, 存在唯一0x 使得000()2()0x g x e x a =-+=,有00x e x a =-,令()0f x '>解得0x x >,令()0f x '<解得00x x ≤<,从而对于()f x 在0x x =处取最小值,0200()2()3x f x e x a =--+,又00x x e a =+0()f x 000022()3(1)(3)x x x x e e e e =-+=-+-,从而应有0()0f x ≥,即030x e -≤,解得00ln 3x <≤,由00x e x a =-可得00x a x e =-,有ln 331a -≤<-,综上所述,ln 335a -≤≤. ………12分22.【解析】(1)根据弦切角定理,知BAC BDA ∠=∠,ACB DAB ∠=∠,∴△ABC ∽△DBA ,则AB BC DB BA=, 故250,52AB BC BD AB =⋅==.…5分(2)根据切割线定理,知2CA CB CF =⋅,2DA DB DE =⋅,两式相除,得22CA CB CF DA DB DE=⋅(*). 由△ABC ∽△DBA , 得522102AC AB DA DB ===,2212CA DA =,又51102CB DB ==,由(*) 得1CF DE =. ………10分 23. 【解析】(1)将3cos 2sin x y θθ=⎧⎨=⎩ 代入1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩ ,得C '的参数方程为cos sin xy θθ=⎧⎨=⎩∴曲线C '的普通方程为221x y +=. ………5分(2)设(,)P x y ,00(,)A x y ,又(3,0)B ,且AB 中点为P 所以有:00232x x y y =-⎧⎨=⎩ 又点A 在曲线C '上,∴代入C '的普通方程22001x y +=得22(23)(2)1x y -+= ∴动点P 的轨迹方程为2231()24x y -+=. ………10分 24.【解析】(1)22()69816f x x x x x =-++++22(3)(4)|3||4|x x x x =-++=-++∴()(4)f x f ≥即|3||4|x x -++9≥∴4349x x x ≤-⎧⎨---≥⎩① 或43349x x x -<<⎧⎨-++≥⎩② 或3349x x x ≥⎧⎨-++≥⎩③ 解得不等式①:5x ≤-;②:无解 ③:4x ≥所以()(4)f x f ≥的解集为{|5x x ≤-或4}x ≥. ………5分(2)()()f x g x >即()|3||4|f x x x =-++的图象恒在()(3)g x k x =-图象的上方21,4()|3||4|7,4321,3x x f x x x x x x --≤-⎧⎪=-++=-<<⎨⎪+≥⎩()(3)g x k x =-图象为恒过定点P (3,0),且斜率k 变化的一条直线作函数(),()y f x y g x ==图象如图,其中2PB k =,(4,7)A -,∴1PA k =-由图可知,要使得()f x 的图象恒在()g x 图象的上方∴实数k 的取值范围为12k -<≤. ……。

高考数学模拟题复习试卷普通高等学校招生全国统一考试(III卷)理科数学

高考数学模拟题复习试卷普通高等学校招生全国统一考试(III卷)理科数学

高考数学模拟题复习试卷普通高等学校招生全国统一考试(III 卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合}0|{}0)3)(2(|{>=≥--=x x T x x x S ,,则S ∩T =A. [2,3]B. ),3[]2,(+∞-∞C. ),3[+∞D. ),3[]2,0(+∞2. =-+=1i 4i 21z z z ,则若 A. 1 B. 1 C. i D. i3. 已知向量)21,23()23,21(==,,则∠ABC = A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约15℃,B 点表示四月的平均最低气温约为5℃。

下面叙述不正确的是A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. =+=ααα2sin 2cos 43tan 2,则若 A. 2564 B. 2548 C. 1 D. 2516 6. 已知3152342542===c b a ,,,则A. b < a < cB. a < b < cC. b < c < aD. c < a < b7. 执行右面的程序框图,如果输入的a = 4,b = 6,那么输出的n =A. 3B. 4C. 5D. 68. 在△ABC 中,4π=B ,BC 边上的高等于31BC ,则sinA = A. 103B. 1010 C.55D. 101039. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. 53618+B. 51854+C. 90D. 8110. 在封闭的直三棱柱ABCA1B1C1内有一个体积为V 的球,若AB ⊥BC ,AB = 6,BC = 8,AA1 = 3,则V 的最大值是A. π4B. 29π C. π6 D. 332π 11. 已知O 为坐标原点,F 是椭圆C :)1(12222>>=+b a by a x 的左焦点,A 、B 分别为C 的左、右顶点。

2022年全国高考数学模拟试卷(学生版+解析版)(理科)(三)(全国ⅲ卷)

2022年全国高考数学模拟试卷(学生版+解析版)(理科)(三)(全国ⅲ卷)

2022年全国高考数学模拟试卷(理科)(三)(全国Ⅲ卷)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知{3U =-,2-,1-,0,1,2,3,4},集合{1A =-,0,1,2,3},集合{|32}B x Z x =∈-<,则()(U A B = )A .∅B .{2}-C .{2-,0}D .{2-,0,4}2.(5分)若复数z 满足(1)32i z i -=-,则z 的虚部为( ) A .52-B .52i -C .12D .523.(5分)若双曲线22:1(0)x C y m m-=>的焦距为25,则C 的渐近线方程为( )A .0x y ±=B .20x y ±=C .20x y ±=.D .190x y ±=4.(5分)如图是我国2016年第一季度至2020年第二季度部分城市各季度建筑面积规化供应统计图,针对这些季度的数据,下列说法错误的是( )A .各季度供应规划建筑面积的最大值超过25000万平方米B .各季度供应规划建筑面积的极差超过15000万平方米C .2019年各季度供应同比有增有减D .2020年第一季度与2019年第一季度相比,供应同比下降幅度超过10%5.(5分)已知函数()42sin f x x x =+,则使不等式(1)(12)0f m f m ++-<成立的实数m 的取值范围为( ) A .(,2)-∞B .(2,)+∞C .(,0)-∞D .(0,)+∞6.(5分)我国明代数学家程大位的《算法统宗》中有这样一个问题:今有钞二百三十八贯,令五等人从上作互和减半分之,只云戊不及甲三十三贯六百文,问:各该钞若干?其意思是:现有钱238贯,采用等差数列的方法依次分给甲、乙、丙、丁、戊五个人,现在只知道戊所得钱比甲少33贯600文(1贯1000=文),问各人各得钱多少?在这个问题中,戊所得钱数为( ) A .30.8贯B .39.2贯C .47.6贯D .64.4贯7.(5分)执行如图所示的程序框图,如果输入11x =时,输出的值为1y ,输入22x =-时,输出的值为2y ,则21y y 为( )A .19B .13C .3D .98.(5分)对于问题“已知关于x 的不等式0ax b +>的解集为(1,)-+∞,解关于x 的不等式0ax b -<”,给出一种解法:由0ax b +>的解集为(1,)-+∞,得()0a x b -+>的解集为(,1)-∞,即关于x 的不等式0ax b -<的解集为(,1)-∞.思考上述解法,若关于x 的不等式0(x b m a x a cx d +-<++,b ,c ,d ,)m R ∈的解集为1(2,)4--,则关于x 的不等式101bx mxax dx c +-<++的解集为( ) A .1(2,)4--B .1(4,2)C .1(4,)2--D .1(2,4)9.(5分)在正方体1111ABCD A B C D -中,记直线1BC 与过1A ,B ,C 三点的截面所成的角为θ,则cos (θ= ) A .12B 2C 3D .110.(5分)已知抛物线2:4C y x =的焦点为F ,准线为l ,过F 的直线交C 于A ,B 两点,点A ,B 在C 的准线l 上的投影分别为点E ,G ,若3AB FB =,则四边形ABGE 的面积为( )A 43B 272C 163D .311.(5分)已知0m >,0n >,248log log log (43)m n m n ==+,下列结论正确的是( ) A .2n m = B .22lnmln lnn=- C .12lnn me=D .393log 2log 2log 2m n -=12.(5分)已知函数2246,2()1,2x x x x f x e x x -⎧-+>=⎨+-⎩,若()||f x x t -恒成立,则实数t 的取值范围为()A .1[4,)+∞B.[522ln-,)+∞C.1[4,422]ln-D.1[4,522]ln-二、填空题:本题共4小题,每小题5分。

高考数学全真模拟试卷理科三

高考数学全真模拟试卷理科三

高考数学全真模拟试卷(理科)(三)一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|y=lnx},B={x|x2﹣2x﹣3<0},则A∩B=()A.(0,3)B.(﹣∞,﹣1)∪(0,+∞)C.(﹣∞,﹣1)∪(3,+∞)D.(﹣1,3)2.已知复数z=,则下列判断正确的是()A.z的实部为﹣1 B.|z|=C.z的虚部为﹣i D.z的共轭复数为1﹣i3.双曲线C:x2﹣y2=1的焦点到渐近线的距离等于()A.1 B. C.2 D.24.等比数列{an}中,已知a2=2,a4=8,则a3=()A.±4 B.16 C.﹣4 D.45.实数x,y满足,则z=的最小值为()A.﹣B.1 C.﹣1 D.06.某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有()A.3种B.6种C.9种D.18种7.函数y=的图象可能是()A.B.C.D.8.某四棱锥的三视图如图所示,则该四棱锥的体积是()A.36 B.30 C.27 D.129.执行如图所示的程序框图,如果输入n=4,则输出的S=()A. B.C.D.10.已知抛物线C:y2=8x的焦点为F,P为抛物线的准线上的一点,且P的纵坐标为正数,Q是直线PF与抛物线C的一个交点,若,则直线PF的方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x±y﹣2=0 D.不确定11.以下四个命题中,其中真命题的个数为()①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②若命题p:所有幂函数的图象不过第四象限,命题q:存在x∈R,使得x﹣10>lgx,则命题p且q为真.③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1.④若a,b∈[0,1],则不等式a2+b2≤1成立的概率为.A.1 B.2 C.3 D.412.函数f(x)=,则函数y=f(x)﹣x+的零点个数为()A.1 B.2 C.3 D.4二、填空题(共4小题,每小题5分,满分20分)13.已知向量=(2,1),=(x,﹣1),且与共线,则|x|的值为_______.14.已知随机变量X服从正态分布N(4,σ2),且P(2<X≤6)=0.98,则P(X<2)=_______.15.(1﹣x)(1+x)4的展开式中x3系数为_______.16.已知A,B,C是球O是球面上三点,AB=2,BC=4,∠ABC=,且棱锥O﹣ABC 的体积为,则球O的表面积为_______.三、解答题(共5小题,满分60分)17.设f(x)=sin(2x+)+sin(2x﹣)﹣.(1)求f(x)的单调递增区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=,a=1,b+c=2,求△ABC的面积.18.如图,高为3的直三棱柱ABC﹣A1B1C1中,底面是直角三角形,AC=2,D为A1C1的中点,F在线段AA1上, =0,且A1F=1.(1)求证:CF⊥平面B1DF;(2)求平面B1FC与平面ABC所成的锐二面角的余弦值.19.如图,将一个半径适当的小球放入容器上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物3次,最后落入A区域或B区域中,已知小球每次遇到障碍物时,向左、右两边下落的概率都是.(1)分别求出小球落入A区域和B区域中的概率;(2)若在容器入口处依次放入3个小球,记X为落入B区域中的小球个数,求X的分布列和数学期望.20.设点P(﹣2,0),Q(2,0),直线PM,QM相交于点M,且它们的斜率之积为﹣.(1)求动点M的轨迹C的方程;(2)直线l的斜率为1,直线l与椭圆C交于A,B两点,设O为坐标原点,求△OAB面积的最大值.21.已知函数f(x)=ex﹣mx(e是自然对数的底数,m∈R).(1)求函数f(x)的单调递增区间;(2)若m=1,且当x>0时,(t﹣x)f′(x)<x+1恒成立,其中f′(x)为f(x)的导函数,求整数t的最大值.[选修41:几何证明选讲]22.如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA 交△ABC的外接圆于点F,连接FB,FC.(1)求证:FB=FC;(2)若AB是△ABC外接圆的直径,∠EAC=120°,BC=9,求AD的长.[选修44:坐标系与参数方程]23.在直角坐标系xOy中,直线l过点M(3,4),其倾斜角为45°,曲线C的参数方程为(θ为参数),再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xoy有相同的长度单位.(1)求曲线C的极坐标方程;(2)设曲线C与直线l交于点A,B,求|MA|+|MB|的值.[选修45:不等式选讲]24.已知函数f(x)=|2x+1|+|2x﹣3|(1)求不等式f(x)≤6的解集;(2)若关于x的不等式f(x)≤|a﹣2|的解集非空,求实数a的取值范围.高考数学全真模拟试卷(理科)(三)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|y=lnx},B={x|x2﹣2x﹣3<0},则A∩B=()A.(0,3)B.(﹣∞,﹣1)∪(0,+∞)C.(﹣∞,﹣1)∪(3,+∞)D.(﹣1,3)【考点】交集及其运算.【分析】求出A中x的范围确定出A,求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由A中y=lnx,得到x>0,即A=(0,+∞),由B中不等式变形得:(x﹣3)(x+1)<0,解得:﹣1<x<3,即B=(﹣1,3),则A∩B=(0,3),故选:A.2.已知复数z=,则下列判断正确的是()A.z的实部为﹣1 B.|z|=C.z的虚部为﹣i D.z的共轭复数为1﹣i【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z===1﹣i,∴|z|=,故选:B.3.双曲线C:x2﹣y2=1的焦点到渐近线的距离等于()A.1 B. C.2 D.2【考点】双曲线的简单性质.【分析】求得双曲线的a,b,c,可得焦点坐标和渐近线方程,运用点到直线的距离公式,计算即可得到所求值.【解答】解:双曲线C:x2﹣y2=1的a=b=1,c==,可得焦点为(±,0),渐近线方程为y=±x,即有焦点到渐近线的距离等于=1.故选:A.4.等比数列{an}中,已知a2=2,a4=8,则a3=()A.±4 B.16 C.﹣4 D.4【考点】等比数列的通项公式.【分析】由等比数列{an}的性质可得:a3=.【解答】解:由等比数列{an}中,∵a2=2,a4=8,则a3==±4.故选:A.5.实数x,y满足,则z=的最小值为()A.﹣B.1 C.﹣1 D.0【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用直线斜率的几何意义进行求解即可.【解答】解:作出不等式组对应的平面区域如图:z=的几何意义是区域内的点到定点C(2,0)的斜率由图象知CA的斜率最小,此时最小值为﹣1,故选:C.6.某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有()A.3种B.6种C.9种D.18种【考点】计数原理的应用.【分析】两类课程中各至少选一门,包含两种情况:A类选修课选1门,B类选修课选2门;A类选修课选2门,B类选修课选1门,写出组合数,根据分类计数原理得到结果【解答】解:可分以下2种情况:①A类选修课选1门,B类选修课选2门,有C21C32种不同的选法;②A类选修课选2门,B类选修课选1门,有C22C31种不同的选法.∴根据分类计数原理知不同的选法共有C21C32+C22C31=6+3=9种.故要求两类课程中各至少选一门,则不同的选法共有9种.故选:C7.函数y=的图象可能是()A.B.C.D.【考点】函数的图象.【分析】当x>0时,,当x<0时,,作出函数图象为B.【解答】解:函数y=的定义域为(﹣∞,0)∪(0,+∞)关于原点对称.当x>0时,,当x<0时,,此时函数图象与当x>0时函数的图象关于原点对称.故选B8.某四棱锥的三视图如图所示,则该四棱锥的体积是()A.36 B.30 C.27 D.12【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个四棱锥,由三视图求出几何元素的长度,由锥体的体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是一个四棱锥,且底面向左,底面是一个边长为3正方形,且四棱锥的高为4,∴几何体的体积V==12,故选:D.9.执行如图所示的程序框图,如果输入n=4,则输出的S=()A. B.C.D.【考点】程序框图.【分析】由已知中的程序框图可知,该程序的功能是计算出输出S=+++的值,利用裂项相消法,可得答案.【解答】解:由已知中的程序框图可知,该程序的功能是计算并输出S=+++的值,由于:S=+++=×(1﹣﹣+…+﹣)=(1﹣)=.故选:D.10.已知抛物线C:y2=8x的焦点为F,P为抛物线的准线上的一点,且P的纵坐标为正数,Q是直线PF与抛物线C的一个交点,若,则直线PF的方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x±y﹣2=0 D.不确定【考点】抛物线的简单性质.【分析】利用抛物线的定义,结合,P的纵坐标为正数求出直线的斜率,即可求出直线PF的方程.【解答】解:抛物线y2=8x的焦点F(2,0),设Q到准线l的距离为d,则|QF|=d∵,∴||=d,∵P的纵坐标为正数,∴直线的倾斜角为135°,∴直线的斜率为﹣1,∴直线的方程为x+y﹣2=0.故选:B.11.以下四个命题中,其中真命题的个数为()①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②若命题p:所有幂函数的图象不过第四象限,命题q:存在x∈R,使得x﹣10>lgx,则命题p且q为真.③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1.④若a,b∈[0,1],则不等式a2+b2≤1成立的概率为.A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【分析】①根据系统抽样的应用进行判断.②根据复合命题的真假关系进行判断.③根据线性相关系数r意义判断.④利用几何概型进行判断.【解答】解:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样.故①错误,②若命题p:所有幂函数的图象不过第四象限,为真命题.命题q:存在x∈R,使得x﹣10>lgx,为真命题,比如当x=100时,不等式x﹣10>lgx成立,则命题p且q为真.故②正确,③根据线性相关系数r的意义可知,当两个随机变量线性相关性越强,r的绝对值越接近于1,故③正确;④若a,b∈[0,1],则a,b对应的平面区域为正方形,面积为1,不等式a2+b2≤1成立,对应的区域为半径为1的圆在第一象限的部分,所以面积为,所以由几何概型可知不等式a2+b2≤1成立的概率是.故④正确,故选:C12.函数f(x)=,则函数y=f(x)﹣x+的零点个数为()A.1 B.2 C.3 D.4【考点】函数零点的判定定理.【分析】令y=0,可得f(x)=x﹣,作出函数y=f(x)的图象和直线y=x﹣,通过图象观察交点的个数,即可得到所求零点的个数.【解答】解:由y=f(x)﹣x+=0,可得:f(x)=x﹣,作出函数y=f(x)的图象和直线y=x﹣,可得当x=1时,ln1=0;﹣>0,ln2>×2﹣,由图象可得y=f(x)的图象与直线有4个交点.即函数y=f(x)﹣x+的零点个数为4.故选:D.二、填空题(共4小题,每小题5分,满分20分)13.已知向量=(2,1),=(x,﹣1),且与共线,则|x|的值为2.【考点】平行向量与共线向量.【分析】由向量的坐标运算和平行关系可得x的方程,解方程可得.【解答】解:∵向量=(2,1),=(x,﹣1),∴=(2﹣x,2),∵与共线,∴﹣(2﹣x)=2x,解得x=﹣2,故|x|=2故答案为:214.已知随机变量X服从正态分布N(4,σ2),且P(2<X≤6)=0.98,则P(X<2)=0.01.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】随机变量X服从正态分布N(4,σ2),根据对称性,由P(2<X≤4)的概率可求出P(X<2).【解答】解:∵随机变量X服从正态分布N(4,σ2),且P(2<X≤6)=0.98,∴P(2<X≤4)=P(2<X≤6)=0.49,∴P(X<2)=0.5﹣P(2<X≤4)=0.5﹣0.49=0.01.故答案为:0.01.15.(1﹣x)(1+x)4的展开式中x3系数为﹣2.【考点】二项式系数的性质.【分析】由于(1+x)4的展开式中x2、x3系数分别为,,可得(1﹣x)(1+x)4的展开式中x3系数为﹣+.【解答】解:∵(1+x)4的展开式中x2、x3系数分别为,,∴(1﹣x)(1+x)4的展开式中x3系数为﹣+=﹣6+4=﹣2.故答案为:﹣2.16.已知A,B,C是球O是球面上三点,AB=2,BC=4,∠ABC=,且棱锥O﹣ABC 的体积为,则球O的表面积为2π.【考点】球的体积和表面积.【分析】求出底面三角形的面积,利用三棱锥的体积求出O到底面的距离,求出底面三角形的所在平面圆的半径,通过勾股定理求出球的半径,即可求解球的表面积.【解答】解:三棱锥O﹣ABC,A、B、C三点均在球心O的表面上,且AB=2,BC=4,∠ABC=60°,AC=2,外接圆的半径为:GA=2,△ABC的外接圆的圆心为G,则OG⊥⊙G,∵S△ABC==2,三棱锥O﹣ABC的体积为,∴S△ABC•OG=,即=,∴OG=2,球的半径为:2.球的表面积:4π×8=32π.故答案为:32π.三、解答题(共5小题,满分60分)17.设f(x)=sin(2x+)+sin(2x﹣)﹣.(1)求f(x)的单调递增区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=,a=1,b+c=2,求△ABC的面积.【考点】余弦定理;正弦函数的图象.【分析】(1)利用两角和与差的正弦函数公式化简已知可得f(x)=sin2x﹣,由2kπ﹣≤2x≤2kπ+,k∈Z,即可解得f(x)的单调递增区间.(2)在锐角△ABC中,由f()=sinA﹣=,可得sinA=,A=,又a=1,b+c=2,利用余弦定理可得bc=1,利用三角形面积公式即可得解.【解答】(本题满分为12分)解:(1)∵f(x)=sin(2x+)+sin(2x﹣)﹣=sin2x﹣…3分∴由2kπ﹣≤2x≤2kπ+,k∈Z,解得:kπ﹣≤x≤kπ+,k∈Z,∴f(x)的单调递增区间为:[kπ﹣,kπ+],k∈Z.(2)在锐角△ABC中,f()=sinA﹣=,sinA=,A=,…8分∵a=1,b+c=2,∴由余弦定理可得:1=b2+c2﹣2bccos=(b+c)2﹣2bc﹣bc=4﹣3bc,∴bc=1,∴S△ABC=bcsinA==…12分18.如图,高为3的直三棱柱ABC﹣A1B1C1中,底面是直角三角形,AC=2,D为A1C1的中点,F在线段AA1上, =0,且A1F=1.(1)求证:CF⊥平面B1DF;(2)求平面B1FC与平面ABC所成的锐二面角的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)根据线面垂直的判定定理先证明CF⊥B1F即即可证明CF⊥平面B1DF;(2)建立空间坐标系,求出平面的法向量,即可求平面B1FC与平面AFC所成的锐二面角的余弦值.【解答】(1)证明:∵直三棱柱ABC﹣A1B1C1中,底面是直角三角形,D为A1C1的中点,∴DB1⊥AA1,∵CF⊥DB1,CF∩⊥AA1=F.∴DB1⊥平面AA1CC1.∴DB1⊥A1B1,则△A1B1C1为等腰直角三角形,∵直三棱柱ABC﹣A1B1C1中高为3,AC=2,A1F=1∴AB=BC=,AF=2,FB1=,B1C=,CF=2,满足B1F2+CF2=B1C2,即CF⊥B1F,∵CF⊥DB1,DB1∩B1F=B1,∴CF⊥平面B1DF;(2)建立以B为坐标原点,BA,BC,BB1分别为x,y,z轴的空间直角坐标系如图:A(,0,0),C(0,,0),B1(0,0,3),A1(,0,3),C1(0,,3),F(,0,2),则平面ABC的法向量为=(0,0,1),即平面B1FC与平面AFC所成的锐二面角的余弦值为.设平面B1FC的法向量为=(x,y,z),由得,令x=1.则为=(1,3,),则|cos<,>|=||==19.如图,将一个半径适当的小球放入容器上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物3次,最后落入A区域或B区域中,已知小球每次遇到障碍物时,向左、右两边下落的概率都是.(1)分别求出小球落入A区域和B区域中的概率;(2)若在容器入口处依次放入3个小球,记X为落入B区域中的小球个数,求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(1)记“小球落入A区域”为事件M,“小球落入B区域”为事件N,事件M的对立事件为事件N,小球落入A区域中当且仅当小球一直向左落下或一直向右落下,由此能分别求出小球落入A区域和B区域中的概率.(2)由题意随机变量X的所有可能的取值为0,1,2,3,且X~B(3,﹣),由此能求出X的分布列和数学期望.【解答】解:(1)记“小球落入A区域”为事件M,“小球落入B区域”为事件N,则事件M的对立事件为事件N,而小球落入A区域中当且仅当小球一直向左落下或一直向右落下,故P(M)==.∴P(N)=1﹣P(M)=1﹣.(2)由题意随机变量X的所有可能的取值为0,1,2,3,且X~B(3,﹣),P(X=0)=,P(X=1)==,P(X=2)==,P(X=3)==,∵X的分布列为:X 0 1 2 3PEX==.20.设点P(﹣2,0),Q(2,0),直线PM,QM相交于点M,且它们的斜率之积为﹣.(1)求动点M的轨迹C的方程;(2)直线l的斜率为1,直线l与椭圆C交于A,B两点,设O为坐标原点,求△OAB面积的最大值.【考点】椭圆的简单性质.【分析】(1)设出点M的坐标,表示出直线MP、MQ的斜率,求出它们的斜率之积,利用斜率之积是﹣,建立方程,去掉不满足条件的点,即可得到点M的轨迹方程;(2)设l:y=x+b,代入x2+4y2=4,结合题设条件利用椭圆的弦长公式能求出弦AB长,求出点O到直线l的距离,利用均值定理推导出S△ABO=|AB|•d≤1,并能求出此时直线l的方程.【解答】解:(1)设M(x,y),由P(﹣2,0),Q(2,0),所以kMP=(x≠﹣2),kQM=(x≠2),由已知,•=﹣(x≠±2),化简,得+y2=1(x≠±2),点P的轨迹方程为+y2=1(x≠±2);(2)设l:y=x+b,代入x2+4y2=4,整理得5x2+8bx+4b2﹣4=0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,|AB|=•|x1﹣x2|=•==•=•.由△>0,得64b2﹣20(4b2﹣4)>0,解得b2<5,点O到直线l的距离d=,即有S△ABO=|AB|•d=≤•=1,当且仅当5﹣b2=b2,即b=±时取等号,故(S△ABO)max=1,此时l:2x﹣2y±=0.21.已知函数f(x)=ex﹣mx(e是自然对数的底数,m∈R).(1)求函数f(x)的单调递增区间;(2)若m=1,且当x>0时,(t﹣x)f′(x)<x+1恒成立,其中f′(x)为f(x)的导函数,求整数t的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)由已知中函数的解析式,求出导函数的解析式,对m进行分类讨论,确定x 在不同情况下导函数的符号,进而可得函数的单调递增区间;(2)问题转化为t<+x,①,令g(x)=+x,(x>0),根据函数的单调性求出t的最大整数值即可.【解答】解:(1)由f(x)=ex﹣mx,x∈R,得f'(x)=ex﹣m,①当m≤0时,则f'(x)=ex﹣m>0对x∈R恒成立,此时f(x)的单调递增,递增区间为(﹣∞,+∞);②当m>0时,由f'(x)=ex﹣m>0,得到x>lnm,所以,m>0时,f(x)的单调递增区间是(lnm,+∞);综上,当m≤0时,f(x)的单调递增区间为(﹣∞,+∞).当m>0时,f(x)的单调递增区间是(lnm,+∞);(2)m=1时,(t﹣x)(ex﹣1)<x+1,x>0时,ex﹣1>0,故t<+x,①,令g(x)=+x,(x>0),则g′(x)=,令h(x)=ex﹣x﹣2,则h′(x)=ex﹣1>0,(x>0),函数h(x)在(0,+∞)递增,而h(1)<0,h(2)>0,∴h(x)在(0,+∞)上存在唯一零点,即g′(x)在(0,+∞)上存在唯一零点,设此零点是x0,则x0∈(1,2),x∈(0,x0)时,g′(x)<0,x∈(x0,+∞)时,g′(x)>0,∴g(x)在(0,+∞)上的最小值是g(x0),由g′(x0)=0得: =x0+2,∴g(x0)=x0+1∈(2,3),由于①式等价于t<g(x0),故整数t的最大值是2.[选修41:几何证明选讲]22.如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA 交△ABC的外接圆于点F,连接FB,FC.(1)求证:FB=FC;(2)若AB是△ABC外接圆的直径,∠EAC=120°,BC=9,求AD的长.【考点】与圆有关的比例线段.【分析】(1)由已知得∠EAD=∠DAC,∠DAC=∠FBC,从而∠FBC=∠FCB,由此能证明FB=FC.(2)由已知得∠ACB=90°从而∠ABC=30°,∠DAC=∠EAC=60°,由此能求出AD.【解答】(1)证明:因为AD平分∠EAC,所以∠EAD=∠DAC.…因为四边形AFBC内接于圆,所以∠DAC=∠FBC.…因为∠EAD=∠FAB=∠FCB,…所以∠FBC=∠FCB,…,所以FB=FC.…(2)解:因为AB是圆的直径,所以∠ACB=90°,…又∠EAC=120°,所以∠ABC=30°,…∠DAC=∠EAC=60°,…因为BC=9,所以AC=BCtan∠ABC=3,…所以AD==6…[选修44:坐标系与参数方程]24.已知函数f(x)=|2x+1|+|2x﹣3|(1)求不等式f(x)≤6的解集;(2)若关于x的不等式f(x)≤|a﹣2|的解集非空,求实数a的取值范围.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)利用绝对值三角不等式求得f(x)的最小值为4,再根据|a﹣2|≥4,求得a的范围.【解答】解:(1)∵函数f(x)=|2x+1|+|2x﹣3|,∴不等式f(x)≤6 等价于①,或②,或③.解①求得﹣1≤x<﹣;解②求得﹣≤x≤;解③求得<x≤2.综合可得,原不等式的解集为[﹣1,2].(2)∵f(x)=|2x+1|+|2x﹣3|≥|2x+1﹣(2x﹣3)|=4,则f(x)的最小值为4.若关于x的不等式f(x)≤|a﹣2|的解集非空,则|a﹣2|≥4,a﹣2≥4,或 a﹣2≤﹣4,求得a≥6,或a≤﹣2,故a的范围为{a|a≥6,或a≤﹣2}.23.在直角坐标系xOy中,直线l过点M(3,4),其倾斜角为45°,曲线C的参数方程为(θ为参数),再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xoy有相同的长度单位.(1)求曲线C的极坐标方程;(2)设曲线C与直线l交于点A,B,求|MA|+|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)曲线C的参数方程为(θ为参数),利用cos2θ+sin2θ=1,可得直角坐标方程,把ρ2=x2+y2,y=ρsinθ代入可得极坐标方程.(2)直线l的参数方程为:,代入圆的方程可得:t2+5t+9=0,设A,B对应的参数分别为t1,t2.利用|MA|+|MB|=|t1|+|t2|=|t1+t2|即可得出.【解答】解:(1)曲线C的参数方程为(θ为参数),利用cos2θ+sin2θ=1,可得直角坐标方程:x2+(y﹣2)2=4.展开为x2+y2﹣4y=0,把ρ2=x2+y2,y=ρsinθ代入可得极坐标方程:ρ2﹣4ρsinθ=0,即ρ=4sinθ.(2)直线l的参数方程为:,代入圆的方程可得:t2+5t+9=0,设A,B对应的参数分别为t1,t2.∴t1+t2=﹣5,t1•t2=9.∴|MA|+|MB|=|t1|+|t2|=|t1+t2|=5.[选修45:不等式选讲]高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (AB )32(CD )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考数学(理科)模拟试卷(三)(本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题 满分60分)一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意) 1.[2016·全国卷Ⅲ]设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( ) A .[2,3] B .(-∞,2]∪[3,+∞) C .[3,+∞)D .(0,2]∪[3,+∞)2.[2016·西安市八校联考]设z =1+i(i 是虚数单位),则2z -z =( )A .iB .2-iC .1-iD .03.[2017·福建质检]已知sin ⎝⎛⎭⎫x +π3=13,则cos x +cos ( π3-x )的值为( ) A .-33 B.33 C .-13 D.134.[2016·天津高考]设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件5.[2016·全国卷Ⅲ] 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A .各月的平均最低气温都在0 ℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20 ℃的月份有5个6.[2017·江西南昌统考]已知a =2-13 ,b =()2log 23-12 ,c =14⎠⎛0πsin x d x ,则实数a ,b ,c 的大小关系是( )A .a >c >bB .b >a >cC .a >b >cD .c >b >a7.[2016·江苏重点高中模拟]若正整数N 除以正整数m 后的余数为n ,则记为N =n (mod m ),例如10=4(mod 6).下面程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的n 等于( )A .17B .16C .15D .138.[2017·湖北武汉调研]已知x ,y 满足⎩⎪⎨⎪⎧x +y -1≥0,x -2y -4≤0,2x -y -2≥0,如果目标函数z =y +1x -m的取值范围为[0,2),则实数m 的取值范围为( )A.⎣⎡⎦⎤0,12 B.⎝⎛⎦⎤-∞,12 C.⎝⎛⎭⎫-∞,12 D .(-∞,0]9.[2017·衡水四调] 中国古代数学名著《九章算术》中记载:“今有羡除”.刘徽注:“羡除,隧道也.其所穿地,上平下邪.”现有一个羡除如图所示,四边形ABCD 、ABFE 、CDEF 均为等腰梯形,AB ∥CD ∥EF ,AB =6,CD =8,EF =10, EF 到平面ABCD 的距离为3,CD 与AB 间的距离为10,则这个羡除的体积是( )A .110B .116C .118D .12010.[2017·山西太原质检]设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →11.[2017·河南郑州检测]已知点F 2、P 分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点与右支上的一点,O 为坐标原点,若OM →=12(OP →+OF 2→),OF 2→2=F 2M →2,且2OF 2→·F 2M →=a 2+b 2,则该双曲线的离心率为( )A.3+12 B.32C. 3 D .2 3 12.[2017·山西联考]已知函数f (x )=(3x +1)e x +1+mx (m ≥-4e),若有且仅有两个整数使得f (x )≤0,则实数m 的取值范围是( )A.⎝⎛⎦⎤5e ,2B.⎣⎡⎭⎫-52e ,-83e 2 C.⎣⎡⎭⎫-12,-83e 2 D.⎣⎡⎭⎫-4e ,-52e第Ⅱ卷(非选择题 满分90分)二、填空题(本大题共4小题,每小题5分,共20分)13.[2017·济宁检测]已知(x 2+1)(x -2)9=a 0+a 1(x -1)+a 2(x -1)2+…+a 11(x -1)11,则a 1+a 2+…+a 11的值为________.14.[2017·惠州一调]已知数列{a n },{b n }满足a 1=12,a n +b n =1,b n +1=b n 1-a 2n,n ∈N *,则b 2017=________.15.[2017·河北正定统考]已知点A (0,1),抛物线C :y 2=ax (a >0)的焦点为F ,连接F A ,与抛物线C 相交于点M ,延长F A ,与抛物线C 的准线相交于点N ,若|FM |∶|MN |=1∶3,则实数a 的值为________.16.[2016·成都第二次诊断]已知函数f (x )=x +sin2x .给出以下四个命题: ①∀x >0,不等式f (x )<2x 恒成立;②∃k ∈R ,使方程f (x )=k 有四个不相等的实数根; ③函数f (x )的图象存在无数个对称中心;④若数列{a n }为等差数列,f (a 1)+f (a 2)+f (a 3)=3π,则a 2=π. 其中正确的命题有________.(写出所有正确命题的序号)三、解答题(共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.[2016·武汉调研](本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,a +1a=4cos C ,b =1. (1)若A =90°,求△ABC 的面积; (2)若△ABC 的面积为32,求a ,c .18.[2016·广州四校联考](本小题满分12分)自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:产假安排(单位:周)1415161718有生育意愿家庭数48162026(1)愿的概率分别为多少?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用ξ表示两种方案休假周数和,求随机变量ξ的分布列及期望.19.[2017·吉林模拟](本小题满分12分) 如图所示,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点.(1)证明DF⊥AE;(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为1414?若存在,说明点D的位置;若不存在,说明理由.20.[2016·兰州质检](本小题满分12分)已知椭圆C 的焦点坐标是F 1(-1,0)、F 2(1,0),过点F 2垂直于长轴的直线l 交椭圆C 于B 、D 两点,且|BD |=3.(1)求椭圆C 的方程;(2)是否存在过点P (2,1)的直线l 1与椭圆C 相交于不同的两点M 、N ,且满足PM →·PN →=54?若存在,求出直线l 1的方程;若不存在,请说明理由.21.[2017·广东广州调研](本小题满分12分)已知函数f (x )=ln (x +1)-x +12x 2,g (x )=(x+1)ln (x +1)-x +(a -1)x 2+16x 3(a ∈R ).(1)求函数f (x )的单调区间;(2)若当x ≥0时,g (x )≥0恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.[2017·河北唐山模拟](本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,M (-2,0).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,A (ρ,θ)为曲线C 上一点,B ⎝⎛⎭⎫ρ,θ+π3,|BM |=1. (1)求曲线C 的直角坐标方程; (2)求|OA |2+|MA |2的取值范围.23.[2016·大连高三模拟](本小题满分10分)选修4-5:不等式选讲若∃x 0∈R ,使关于x 的不等式|x -1|-|x -2|≥t 成立,设满足条件的实数t 构成的集合为T .(1)求集合T ;(2)若m >1,n >1且对于∀t ∈T ,不等式log 3m ·log 3n ≥t 恒成立,求m +n 的最小值.参考答案(三)第Ⅰ卷(选择题 满分60分)一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意) 1.[2016·全国卷Ⅲ]设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( ) A .[2,3] B .(-∞,2]∪[3,+∞) C .[3,+∞) D .(0,2]∪[3,+∞) 答案 D解析 集合S =(-∞,2]∪[3,+∞),结合数轴,可得S ∩T =(0,2]∪[3,+∞).2.[2016·西安市八校联考]设z =1+i(i 是虚数单位),则2z-z =( )A .iB .2-iC .1-iD .0 答案 D解析 因为2z -z =21+i -1+i =2(1-i )(1+i )(1-i )-1+i =1-i -1+i =0,故选D.3.[2017·福建质检]已知sin ⎝⎛⎭⎫x +π3=13,则cos x +cos ( π3-x )的值为( ) A .-33 B.33 C .-13 D.13答案 B解析 因为sin ⎝⎛⎭⎫x +π3=12sin x +32cos x =13,所以cos x +cos ⎝⎛⎭⎫π3-x =cos x +12cos x +32sin x =32cos x +32sin x =3⎝⎛⎭⎫32cos x +12sin x =33,故选B. 4.[2016·天津高考]设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 答案 C解析 由题意得,a n =a 1q n -1(a 1>0),a 2n -1+a 2n =a 1q 2n -2+a 1q 2n -1=a 1q 2n -2(1+q ).若q <0,因为1+q 的符号不确定,所以无法判断a 2n -1+a 2n 的符号;反之,若a 2n -1+a 2n <0,即a 1q 2n -2(1+q )<0,可得q <-1<0.故“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要而不充分条件,选C.5.[2016·全国卷Ⅲ] 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A .各月的平均最低气温都在0 ℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20 ℃的月份有5个 答案 D解析 由图形可得各月的平均最低气温都在0 ℃以上,A 正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B 正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C 正确;平均最高气温高于20 ℃的月份只有3个,D 错误.6.[2017·江西南昌统考]已知a =2-13 ,b =()2log 23-12 ,c =14⎠⎛0πsin x d x ,则实数a ,b ,c 的大小关系是( )A .a >c >bB .b >a >cC .a >b >cD .c >b >a 答案 C解析 因为a =2-13 =⎝⎛⎭⎫12 13 =⎝⎛⎭⎫1416 ,b =()2log 23 -12 =3-12=⎝⎛⎭⎫13 12 =⎝⎛⎭⎫12716 ,所以a >b ,排除B 、D ;c =14⎠⎛0πsin xdx =-14cos x ⎪⎪⎪π=-14(cos π-cos0)=12=⎝⎛⎭⎫14 12 ,所以b >c ,所以a >b >c ,选C.7.[2016·江苏重点高中模拟]若正整数N 除以正整数m 后的余数为n ,则记为N =n (mod m ),例如10=4(mod 6).下面程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的n 等于( )A .17B .16C .15D .13 答案 A解析 当n >10时,被3除余2,被5除也余2的最小整数n =17,故选A. 8.[2017·湖北武汉调研]已知x ,y 满足⎩⎪⎨⎪⎧x +y -1≥0,x -2y -4≤0,2x -y -2≥0,如果目标函数z =y +1x -m的取值范围为[0,2),则实数m 的取值范围为( )A.⎣⎡⎦⎤0,12 B.⎝⎛⎦⎤-∞,12 C.⎝⎛⎭⎫-∞,12 D .(-∞,0]答案 C解析 由约束条件,作出可行域如图中阴影部分所示,而目标函数z =y +1x -m的几何意义为可行域内的点(x ,y )与A (m ,-1)连线的斜率,由⎩⎪⎨⎪⎧x +y -1=0,x -2y -4=0,得⎩⎪⎨⎪⎧x =2,y =-1,即B (2,-1).由题意知m =2不符合题意,故点A 与点B 不重合,因而当连接AB 时,斜率取到最小值0.由y =-1与2x -y -2=0,得交点C ⎝⎛⎭⎫12,-1,在点A 由点C 向左移动的过程中,可行域内的点与点A 连线的斜率小于2,因而目标函数的取值范围满足z ∈[0,2),则m <12,故选C.9.[2017·衡水四调] 中国古代数学名著《九章算术》中记载:“今有羡除”.刘徽注:“羡除,隧道也.其所穿地,上平下邪.”现有一个羡除如图所示,四边形ABCD 、ABFE 、CDEF 均为等腰梯形,AB ∥CD ∥EF ,AB =6,CD =8,EF =10, EF 到平面ABCD 的距离为3,CD 与AB 间的距离为10,则这个羡除的体积是( )A .110B .116C .118D .120 答案 D解析 如图,过点A 作AP ⊥CD ,AM ⊥EF ,过点B 作BQ ⊥CD ,BN ⊥EF ,垂足分别为P ,M ,Q ,N ,连接PM ,QN ,将一侧的几何体补到另一侧,组成一个直三棱柱,底面积为12×10×3=15.棱柱的高为8,体积V =15×8=120.故选D.10.[2017·山西太原质检]设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC → B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 利用平面向量的线性运算法则求解.AD →=AB →+BD →=AB →+43BC →=AB →+43(AC →-AB →)=-13AB →+43AC →,故选A.11.[2017·河南郑州检测]已知点F 2、P 分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点与右支上的一点,O 为坐标原点,若OM →=12(OP →+OF 2→),OF 2→2=F 2M →2,且2OF 2→·F 2M →=a 2+b 2,则该双曲线的离心率为( )A.3+12B.32C. 3 D .2 3答案 A解析 设双曲线的左焦点为F 1,依题意知,|PF 2|=2c ,因为OM →=12(OP →+OF 2→),所以点M 为线段PF 2的中点.因为2OF 2→·F 2M →=a 2+b 2,所以OF 2→·F 2M →=c 22,所以c ·c ·c o s ∠PF 2x =12c 2,所以c o s ∠PF 2x =12,所以∠PF 2x =60°,所以∠PF 2F 1=120°,从而|PF 1|=23c ,根据双曲线的定义,得|PF 1|-|PF 2|=2a ,所以23c -2c =2a ,所以e =c a =13-1=3+12,故选A.12.[2017·山西联考]已知函数f (x )=(3x +1)e x +1+mx (m ≥-4e),若有且仅有两个整数使得f (x )≤0,则实数m 的取值范围是( )A.⎝⎛⎦⎤5e ,2B.⎣⎡⎭⎫-52e ,-83e 2C.⎣⎡⎭⎫-12,-83e 2D.⎣⎡⎭⎫-4e ,-52e 答案 B解析 由f (x )≤0,得(3x +1)·e x +1+mx ≤0,即mx ≤-(3x +1)e x +1,设g(x )=mx ,h(x )=-(3x +1)e x +1,则h ′(x )=-[3e x +1+(3x +1)e x +1]=-(3x +4)e x +1,由h ′(x )>0,得-(3x +4)>0,即x <-43,由h ′(x )<0,得-(3x +4)<0,即x >-43,故当x =-43时,函数h(x )取得极大值.在同一平面直角坐标系中作出y =h(x ),y =g(x )的大致图象如图所示,当m ≥0时,满足g(x )≤h(x )的整数解超过两个,不满足条件;当m <0 时,要使g(x )≤h(x )的整数解只有两个,则需满足⎩⎪⎨⎪⎧ h (-2)≥g (-2),h (-3)<g (-3),即⎩⎪⎨⎪⎧5e -1≥-2m ,8e -2<-3m ,即⎩⎨⎧m ≥-52e,m <-83e 2,即-52e ≤m <-83e 2,即实数m 的取值范围是[ -52e ,-83e2 ),故选B.第Ⅱ卷(非选择题 满分90分)二、填空题(本大题共4小题,每小题5分,共20分)13.[2017·济宁检测]已知(x 2+1)(x -2)9=a 0+a 1(x -1)+a 2(x -1)2+…+a 11(x -1)11,则a 1+a 2+…+a 11的值为________.答案 2解析 令x =1,可得2×(-1)=a 0,即a 0=-2; 令x =2,可得(22+1)×0=a 0+a 1+a 2+a 3+…+a 11, 即a 0+a 1+a 2+a 3+…+a 11=0, 所以a 1+a 2+a 3+…+a 11=2.14.[2017·惠州一调]已知数列{a n },{b n }满足a 1=12,a n +b n =1,b n +1=b n1-a 2n,n ∈N *,则b 2017=________.答案 20172018解析 ∵a n +b n =1,a 1=12,∴b 1=12,∵b n +1=b n 1-a 2n,∴b n +1=b n 1-(1-b n )2=12-b n ,∴1b n +1-1-1b n -1=-1,又b 1=12,∴1b 1-1=-2,∴数列⎩⎨⎧⎭⎬⎫1b n -1是以-2为首项,-1为公差的等差数列,∴1b n -1=-n -1,∴b n =n n +1.故b 2017=20172018.15.[2017·河北正定统考]已知点A (0,1),抛物线C :y 2=ax (a >0)的焦点为F ,连接F A ,与抛物线C 相交于点M ,延长F A ,与抛物线C 的准线相交于点N ,若|FM |∶|MN |=1∶3,则实数a 的值为________.答案 2解析 依题意得焦点F 的坐标为⎝⎛⎭⎫a 4,0,设M 在抛物线的准线上的射影为K ,连接MK ,由抛物线的定义知|MF |=|MK |,因为|FM |∶|MN |=1∶3,所以|KN |∶|KM |=22∶1,又k FN =0-1a 4-0=-4a ,k FN =-|KN ||KM |=-22,所以4a =22,解得a = 2. 16.[2016·成都第二次诊断]已知函数f (x )=x +sin2x .给出以下四个命题: ①∀x >0,不等式f (x )<2x 恒成立;②∃k ∈R ,使方程f (x )=k 有四个不相等的实数根; ③函数f (x )的图象存在无数个对称中心;④若数列{a n }为等差数列,f (a 1)+f (a 2)+f (a 3)=3π,则a 2=π. 其中正确的命题有________.(写出所有正确命题的序号) 答案 ③④解析 f ′(x )=1+2cos2x ,则f ′(x )=0有无数个解,再结合f (x )是奇函数,且总体上呈上升趋势,可画出f (x )的大致图象为:(1)令g (x )=2x -f (x )=x -sin2x ,则g ′(x )=1-2cos2x ,令g ′(x )=0,则x =π6+k π(k ∈Z ),则g ⎝⎛⎭⎫π6=π6-32<0,即存在x =π6>0使得f (x )>2x ,故①错误; (2)由图象知不存在y =k 的直线和f (x )的图象有四个不同的交点,故②错误;(3)f (a +x )+f (a -x )=2a +2sin2a cos2x ,令sin2a =0,则a =k π2(k ∈Z ),即(a ,a ),其中a=k π2(k ∈Z )均是函数的对称中心,故③正确; (4)f (a 1)+f (a 2)+f (a 3)=3π,则a 1+a 2+a 3+sin2a 1+sin2a 2+sin2a 3=3π, 即3a 2+sin(2a 2-2d )+sin2a 2+sin(2a 2+2d )=3π, ∴3a 2+sin2a 2+2sin2a 2cos2d =3π, ∴3a 2+sin2a 2(1+2cos2d )=3π,∴sin2a 2=3π1+2cos2d -31+2cos2d a 2,则问题转化为f (x )=sin2x 与g (x )=3π1+2cos2d -31+2cos2dx 的交点个数.如果直线g (x )要与f (x )有除(π,0)之外的交点,则斜率的范围在⎝⎛⎭⎫-43π,-2,而直线的斜率-31+2cos2d的取值范围为(-∞,-1]∪[3,+∞),故不存在除(π,0)之外的交点,故a 2=π,④正确.三、解答题(共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.[2016·武汉调研](本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,a +1a=4cos C ,b =1. (1)若A =90°,求△ABC 的面积;(2)若△ABC 的面积为32,求a ,c .解 (1)a +1a =4cos C =4×a 2+b 2-c 22ab =2(a 2+1-c 2)a,∵b =1,∴2c 2=a 2+1.(2分) 又∵A =90°,∴a 2=b 2+c 2=c 2+1,∴2c 2=a 2+1=c 2+2,∴c =2,a =3,(4分)∴S △ABC =12bc sin A =12bc =12×1×2=22.(6分)(2)∵S △ABC =12ab sin C =12a sin C =32,则sin C =3a .∵a +1a =4cos C ,sin C =3a ,∴⎣⎡⎦⎤14⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫3a 2=1,化简得(a 2-7)2=0, ∴a =7,从而cos C =14⎝⎛⎭⎫a +1a =277, ∴c =a 2+b 2-2bc cos C =7+1-2×7×1×277=2.(12分)18.[2016·广州四校联考](本小题满分12分)自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,(1)愿的概率分别为多少?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用ξ表示两种方案休假周数和,求随机变量ξ的分布列及期望.解 (1)由表中信息可知,当产假为14周时某家庭有生育意愿的概率为P 1=4200=150;(2分)当产假为16周时某家庭有生育意愿的概率为P 2=16200=225.(4分)(2)①设“两种安排方案休假周数和不低于32周”为事件A ,由已知从5种不同安排方案中,随机地抽取2种方案选法共有C 25=10(种),(5分)其和不低于32周的选法有(14,18),(15,17),(15,18),(16,17),(16,18),(17,18),共6种,由古典概型概率计算公式得P (A )=610=35.(7分)②由题知随机变量ξ的可能取值为29,30,31,32,33,34,35.P (ξ=29)=110=0.1,P (ξ=30)=110=0.1,P (ξ=31)=210=0.2,P (ξ=32)=210=0.2,P (ξ=33)=210=0.2,P (ξ=34)=110=0.1,P (ξ=35)=110=0.1,因而ξ的分布列为(10分)所以E (ξ)=29×0.1+30×0.1+31×0.2+32×0.2+33×0.2+34×0.1+35×0.1=32.(12分)19.[2017·吉林模拟](本小题满分12分) 如图所示,直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,E ,F 分别是CC 1,BC 的中点,AE ⊥A 1B 1,D 为棱A 1B 1上的点.(1)证明DF ⊥AE ;(2)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为1414?若存在,说明点D 的位置;若不存在,说明理由.解 (1)证明:因为AE ⊥A 1B 1,A 1B 1∥AB ,所以AE ⊥AB . 因为AA 1⊥AB ,AA 1∩AE =A ,所以AB ⊥平面A 1ACC 1.因为AC ⊂平面A 1ACC 1,所以AB ⊥AC .以A 为坐标原点,AB ,AC ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.则有A (0,0,0),E ⎝⎛⎭⎫0,1,12,F ⎝⎛⎭⎫12,12,0,A 1(0,0,1),B 1(1,0,1).(4分) 设D (x 1,y 1,z 1),A 1D →=λA 1B 1→且λ∈[0,1],即(x 1,y 1,z 1-1)=λ(1,0,0),则D (λ,0,1),所以DF →=⎝⎛⎭⎫12-λ,12,-1. 因为AE →=⎝⎛⎭⎫0,1,12,所以DF →·AE →=12-12=0,所以DF ⊥AE .(6分) (2)假设存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为1414.由题意可知平面ABC 的一个法向量为AA 1→=(0,0,1).(8分)设平面DEF 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·FE →=0,n ·DF →=0,因为FE →=⎝⎛⎭⎫-12,12,12,DF →=⎝⎛⎭⎫12-λ,12,-1,所以⎩⎨⎧-12x +12y +12z =0,⎝⎛⎭⎫12-λx +12y -z =0,即⎩⎪⎨⎪⎧x =32(1-λ)z ,y =1+2λ2(1-λ)z .令z =2(1-λ),则n =(3,1+2λ,2(1-λ))是平面DEF 的一个法向量.(10分)因为平面DEF 与平面ABC 所成锐二面角的余弦值为1414,所以|cos 〈AA 1→,n 〉|=|AA 1→·n ||AA 1→||n |=1414, 即|2(1-λ)|9+(1+2λ)2+4(1-λ)2=1414,解得λ=12或λ=74(舍去),所以当D 为A 1B 1的中点时满足要求.故存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为1414,此时D 为A 1B 1的中点.(12分)20.[2016·兰州质检](本小题满分12分)已知椭圆C 的焦点坐标是F 1(-1,0)、F 2(1,0),过点F 2垂直于长轴的直线l 交椭圆C 于B 、D 两点,且|BD |=3.(1)求椭圆C 的方程;(2)是否存在过点P (2,1)的直线l 1与椭圆C 相交于不同的两点M 、N ,且满足PM →·PN →=54?若存在,求出直线l 1的方程;若不存在,请说明理由.解 (1)设椭圆的方程是x 2a 2+y 2b2=1(a >b >0),则c =1,∵|BD |=3,∴2b 2a=3,又a 2-b 2=1,∴a =2,b =3,∴椭圆C 的方程为x 24+y 23=1.(4分)(2)假设存在直线l 1且由题意得斜率存在,设满足条件的方程为y =k (x -2)+1,由⎩⎪⎨⎪⎧y =k (x -2)+1,x 24+y 23=1,得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0, 因为直线l 1与椭圆C 相交于不同的两点M 、N ,设M (x 1,y 1)、N (x 2,y 2),所以Δ=[-8k (2k -1)]2-4(3+4k 2)(16k 2-16k -8)>0,所以k >-12.又x 1+x 2=8k (2k -1)3+4k 2,x 1x 2=16k 2-16k -83+4k 2,(8分)因为PM →·PN →=(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=54,所以(x 1-2)(x 2-2)(1+k 2)=54,即[x 1x 2-2(x 1+x 2)+4](1+k 2)=54,所以⎣⎢⎡⎦⎥⎤16k 2-16k -83+4k 2-2·8k (2k -1)3+4k 2+4(1+k 2)=4+4k 23+4k 2=54.解得k =±12,因为k >-12,所以k =12.故存在直线l 1满足条件,其方程为y =12x .(12分)21.[2017·广东广州调研](本小题满分12分)已知函数f (x )=ln (x +1)-x +12x 2,g (x )=(x+1)ln (x +1)-x +(a -1)x 2+16x 3(a ∈R ).(1)求函数f (x )的单调区间;(2)若当x ≥0时,g (x )≥0恒成立,求实数a 的取值范围.解 (1)函数f (x )=ln (x +1)-x +12x 2,定义域为(-1,+∞),(2分)则f ′(x )=x 2x +1>0,所以f (x )的单调递增区间为(-1,+∞),无单调递减区间.(4分)(2)由(1)知,当x ≥0时,有f (x )≥f (0)=0,即ln (x +1)≥x -12x 2.g ′(x )=ln (x +1)+2(a -1)x +12x 2≥⎝⎛⎭⎫x -12x 2+2(a -1)x +12x 2=(2a -1)x .(6分) ①当2a -1≥0,即a ≥12时,且x ≥0时,g ′(x )≥0,所以g (x )在[0,+∞)上是增函数,且g (0)=0,所以当x ≥0时,g (x )≥0,所以a ≥12符合题意.(8分)②当a <12时,令g ′(x )=ln (x +1)+2(a -1)x +12x 2=φ(x ),φ′(x )=1x +1+2(a -1)+x =x 2+(2a -1)x +2a -1x +1,(9分)令x 2+(2a -1)x +2a -1=0,则其判别式 Δ=(2a -1)(2a -5)>0,两根x 1=1-2a -(2a -1)(2a -5)2<0,x 2=1-2a +(2a -1)(2a -5)2>0,当x ∈(0,x 2)时,φ′(x )<0,所以φ(x )在(0,x 2)上单调递减,且φ(0)=0,即x ∈(0,x 2)时,g ′(x )<g ′(0)=0,g (x )在(0,x 2)上单调递减,所以存在x 0∈(0,x 2),使得g (x 0)<g (0)=0,即当x ≥0时,g (x )≥0不恒成立,所以a <12不符合题意.综上所述,a 的取值范围为⎣⎡⎭⎫12,+∞.(12分)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.[2017·河北唐山模拟](本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,M (-2,0).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,A (ρ,θ)为曲线C 上一点,B ⎝⎛⎭⎫ρ,θ+π3,|BM |=1.(1)求曲线C 的直角坐标方程; (2)求|OA |2+|MA |2的取值范围.解 (1)设A (x ,y ),则x =ρcos θ,y =ρsin θ,所以x B =ρcos ⎝⎛⎭⎫θ+π3=12x -32y , y B =ρsin ⎝⎛⎭⎫θ+π3=32x +12y , 故B ⎝⎛⎭⎫12x -32y ,32x +12y .由|BM |2=1,得⎝⎛⎭⎫12x -32y +22+⎝⎛⎭⎫32x +12y 2=1,整理得曲线C 的方程为(x +1)2+(y -3)2=1.(5分)(2)圆C :⎩⎨⎧x =-1+cos α,y =3+sin α(α为参数),则|OA |2+|MA |2=43sin α+10,所以|OA |2+|MA |2∈[10-43,10+43].(10分) 23.[2016·大连高三模拟](本小题满分10分)选修4-5:不等式选讲 若∃x 0∈R ,使关于x 的不等式|x -1|-|x -2|≥t 成立,设满足条件的实数t 构成的集合为T .(1)求集合T ;(2)若m >1,n >1且对于∀t ∈T ,不等式log 3m ·log 3n ≥t 恒成立,求m +n 的最小值. 解 (1)||x -1|-|x -2||≤|x -1-(x -2)|=1,所以|x -1|-|x -2|≤1,所以t 的取值范围为(-∞,1], 即T ={t |t ≤1}(5分)(2)由(1)知,对于∀t ∈T ,不等式log 3m ·log 3n ≥t 恒成立,只需log 3m ·log 3n ≥t max ,所以log 3m ·log 3n ≥1,又因为m >1,n >1,所以log 3m >0,log 3n >0,又1≤log 3m ·log 3n ≤⎝⎛⎭⎫log 3m +log 3n 22=(log 3mn )24(log 3m =log 3n 时取等号,此时m =n ),(8分)所以(log 3mn )2≥4,所以log 3mn ≥2,mn ≥9,所以m +n ≥2mn ≥6,即m +n 的最小值为6(此时m =n =3).(10分)。

相关文档
最新文档