最新高考数学模拟卷汇编【天利38】 答案01
2023届高考理科数学模拟试卷一(含答案及解析)
2023届高考理科数学模拟试题一(含答案及解析)本卷分选择题和非选择题两部分,满分150分,考试时间120分钟。
注意事项:1. 考生务必将自己的姓名、准考证号用黑墨水钢笔、签字笔写在答题卷上;2. 选择题、填空题每小题得出答案后,请将答案填写在答题卷相应指定位置上,答在试题卷上不得分;3. 考试结束,考生只需将答题卷交回。
参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高 如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P A B P A P B *=*第一部分 选择题(共40分)一、选择题(本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 已知复数1z i =+,则2z= A . i 2-B .i 2C .i -1D .i +12. 设全集,U R =且{}|12A x x =->,{}2|680B x x x =-+<,则()U C A B =A .[1,4)-B .(2,3)C .(2,3]D .(1,4)-3. 椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A .14B .12C . 2D .4 4. ABC ∆中,3A π∠=,3BC =,AB =,则C ∠=A .6πB .4π C .34π D .4π或34π5. 已知等差数列{}n a 的前n 项和为n S ,且2510,55S S ,则过点(,)n P n a 和2(2,)n Q n a(n N +)的直线的斜率是A .4B .3C .2D .16.已知函数),2[)(+∞-的定义域为x f ,且1)2()4(=-=f f )()(x f x f 为'的导函数,函数)(x f y '=的图象如图所示, 则平面区域⎪⎩⎪⎨⎧<+≥≥1)2(00b a f b a 所围成的面积是A .2B .4C .5D .87. 一台机床有13的时间加工零件A ,其余时间加工零件B , 加工A 时,停机的概率是310,加工B 时,停机的概率是25,则这台机床停机的概率为( )A . 1130B .307 C .107 D .1018. 在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数()f x 的图象恰好通过()n n N +∈个整点,则称函数()f x 为n 阶整点函数。
天利38套高三高考能力提升卷(四)(基础必刷)
天利38套高三高考能力提升卷(四)(基础必刷)一、单项选择题(本题包含8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图所示,劲度系数为的轻弹簧下端固定在倾角为的光滑斜面底端,上端连接物块Q,Q同时与平行于斜面的轻绳相连,轻绳跨过定滑轮O与套在足够长的光滑竖直杆上的物块P连接,图中O、B两点等高,间距。
初始时在外力作用下,P在A点静止不动,A、B间距离,此时轻绳中张力大小为。
已知P的质量为,Q的质量为,P、Q均可视为质点。
现将P由静止释放(不计滑轮大小及摩擦,重力加速度取,,,弹簧始终处于弹性限度内),下列说法正确的是()A.物块P上升的最大高度为B.物块P上升至B点时,其速度大小为C.在物块P由A点运动到B点的过程中,弹簧对物块Q一直做正功D.在物块P由A点运动到B点的过程中,物块P机械能守恒第(2)题传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求,它是实现自动检测和自动控制的首要环节。
如图所示是测定液面高度h的电容式传感器示意图,E为电源,G为灵敏电流计,A为固定的导体芯,B为导体芯外面的一层绝缘物质,C为导电液体。
已知电流从灵敏电流计左边接线柱流进电流计,指针向左偏。
如果在导电液体的深度h发生变化时观察到指针正向左偏转,则( )A.导体芯A所带电荷量在增加,液体的深度h在增大B.导体芯A所带电荷量在减小,液体的深度h在增大C.导体芯A所带电荷量在增加,液体的深度h在减小D.导体芯A所带电荷量在减小,液体的深度h在减小第(3)题激光陀螺仪是很多现代导航仪器中的关键部件,广泛应用于民航飞机等交通工具。
激光陀螺仪的基本元件是环形激光器,其原理结构比较复杂,我们简化为如图所示模型:由激光器发出的A、B两束激光,经完全对称的两个通道(图中未画出)在光电探测器处相遇,产生干涉条纹。
《天利 套高考模拟试题汇编》数学 理
过椭圆左焦点 云员 的直线 酝云员 是圆 云圆 的切线,则椭圆的右准线与圆 云圆 ( )
粤援相交
月援相离
三、解答题(本大题共 远小题,共 愿园分 援解答应写出文字说明,证明过程或 演算步骤)
员缘援(本小题共 员圆分)
数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分 员缘园分,考试时间 员圆园分钟 援
} α∥β
①
β∥γ
α∥γ
} α⊥β
②
皂⊥β
皂∥α
} 皂⊥α
③ 皂∥β
α⊥β
} 皂∥ 灶
④
皂∥α
灶α
其中为真命题的是
()
粤援①④
月援②③
悦援①③
阅援②④
猿援“ω 越圆”是“函数 赠越泽蚤灶(ω曾垣φ)的最小正周期为π”的
粤援充分非必要条件
月援必要非充分条件
()
悦援充分必要条件
阅援既不充分也不必要条件
()
粤援赠越员 员垣原曾曾,曾∈(园,垣肄)
月援赠越员员垣原曾曾,曾∈(员垣肄)
悦援赠越员员垣原曾曾,曾∈(园,员)
阅援赠越曾曾垣原员员,曾∈(园,员)
源援设 皂、灶是两条不同的直线,α、β、γ 是三个不同的平面 援给出下列四个命题:
①若 皂⊥α,灶∥α,则 皂⊥ 灶;
②若α⊥γ,β⊥γ,则α∥β;
③若 皂∥α,灶∥α,则 皂∥ 灶;
④若α∥β,β∥γ,皂⊥α,则 皂⊥γ援
其中正确命题的序号是:
()
阅悦所成的角的大小为
援
员员援已知平面向量 葬越(糟燥泽α,泽蚤灶α),遭越(糟燥泽β,泽蚤灶β)(α、β∈砸)援当α 越π圆,β 越π远时,
葬·遭的值为
2023年高考数学全真模拟(全国甲卷乙卷通用)理数01试题(含答案解析)
2023年高考数学全真模拟卷一(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}ln 20A x x x =-=,()(){}130B x x x =+->,则A B = ()A .{}0,3B .{}0,1C .{}1,2D .{}0,1,22.若1i z =-,则2|32i |z +-=()AB .5C .3D .3.2022年卡塔尔世界杯(FIFA World Cup Oatar 2022)是第二十二届国际足联世界杯足球赛,在当地时间2022年11月20日到12月18日间在卡塔尔国内5个城市的8座球场举行,这是世界杯第一次在阿拉伯地区举办,由于夏季炎热,2022年卡塔尔世界杯放在冬季进行,如图是卡塔尔2022年天气情况,下列对1-11月份说法错误的是(A .有5个月平均气温在30℃以上B .有4个月平均降水量为0mm C .7月份平均气温最高D .3月份平均降水量最高4.某高中综合实践兴趣小组做一项关于某水果酿制成醋的课题研究.经大量实验和反复论证得出,某水果可以酿成醋的成功指数M 与该品种水果中氢离子的浓度N 有关,酿醋成功指数M 与浓度N 满足 2.8lg M N =-.已知该兴趣小组同学通过数据分析估计出某水果酿醋成功指数为2.9,则该水果中氢离子的浓度约为( 1.259≈)()A .0.2B .0.4C .0.6D .0.85.数列{}n a 是等比数列,首项为1a ,公比为q ,则()110a q -<是“数列{}n a 递减”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.若双曲线2221y x b-=则该双曲线的离心率为()A .12B .2C .2D 7.岳阳楼与湖北武汉黄鹤楼、江西南昌滕王阁并称为“江南三大名楼”,是“中国十大历史文化名楼”之一,世称“天下第一楼”.因范仲淹作《岳阳楼记》使得岳阳楼著称于世.小李为测量岳阳楼的高度选取了与底部水平的直线AC ,如图,测得30DAC ∠=︒,45DBC ∠=︒14AB =米,则岳阳楼的高度CD 约为()1.414≈ 1.732≈)A .18米B .19米C .20米D .21米8.如图为一个三棱锥的三视图,则该三棱锥的体积为()A .13B .23C .129.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,22cos 2Ba a c =+,则ABC 为()A .钝角三角形B .正三角形C .直角三角形10.高一(1)班有8名身高都不相同的同学去参加红歌合唱,他们站成前后对齐的2排,每排4人,则前排的同学都比后排对应的同学矮的概率为()A .1384B .34C .38D .11611.在三棱锥S ABC -中,2SAC SBC π∠=∠=,23ACB π∠=,1AC BC ==.若三棱锥S ABC -的体积为1,则该三棱锥外接球的表面积为()A .13πB .373πC .49πD .52π12.已知111a =,b =,11ln 10c =.则()A .a b c>>B .b c a >>C .c b a>>D .b a c>>第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.曲线()e e xxf x x =+在1x =处的切线方程为___________.14.已知向量1,,()()1,a m b m ==- ,若(2)a b b -⊥,则b = ________.15.已知直线l 与椭圆22221x y a b+=()0a b >>相切于第一象限的点()00,P x y ,且直线l 与x 轴、y 轴分别交于点,A B ,当AOB (O 为坐标原点)的面积最小时,1260F PF ∠=(12,F F 是椭圆的两个焦点),则该椭圆的离心率是_________.16.已知函数f (x )=cos (ωx +φ)(ω>0,|φ|≤2π),x =-4π为f (x )的零点,x =4π为y =f (x )图象的对称轴,且f (x )在(18π,6π)上单调,则ω的最大值为______.三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.2020年1月至2月由新型冠状病毒引起的肺炎病例陡然增多,为了严控疫情扩散,做好重点人群的预防工作,某地区共统计返乡人员100人,其中50岁及以上的共有40人.这100人中确诊的有10人,其中50岁以下的人占310.(1)试估计50岁及以上的返乡人员因感染新型冠状病毒而引起肺炎的概率;(2)请将下面的列联表补充完整,并依据0.05α=的独立性检验,分析确诊为新冠肺炎与年龄是否有关.确诊为新冠肺炎(单位:人)未确诊为新冠肺炎(单位:人)合计50岁及以上4050岁以下合计10100附表及公式:α0.10.050.010.0050.001x α2.7063.8416.6357.87910.828()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.18.已知等差数列{}n a 的前n 项和为n S ,且59a =,864S =.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()11n n n b n a a *+=∈N ,求数列{}n b 的前n 项和n T .19.如图,在四棱锥P -ABCD 中,平面PCD ⊥平面ABCD PCD 为等边三角形,112AB AD CD ===,90BAD ADC ∠=∠=︒,M 是棱上一点,且2CM MP =.(1)求证:AP ∥平面MBD ;(2)求二面角M -BD -C 的余弦值.20.已知抛物线2:2C y px =(其中6p >-F ,点M 、N 分别为抛物线C 上两个动点,满足以MN 为直径的圆过点F ,设点E 为MN 的中点,当MN EF ⊥时,点E的坐标为()3-.(1)求抛物线C 的方程;(2)直线MF 、NF 与抛物线的另一个交点分别为A 、B ,点P 、Q 分别为AM 、BN 的中点,证明:直线PQ 过定点.21.已知函数()()212ln 11ax xf x x x +=+-+,R a ∈.(1)当2a =时,讨论函数()f x 的单调性;(2)若函数()()()1g x x f x =+在()0,∞+上不单调,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xoy 中,直线l 的参数方程为{15x ty t =+=+(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为23=2+cos2ρθ.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)求C 的上的动点到l 的距离的取值范围.[选修4-5:不等式选讲]23.已知:()1f x x x m =+--,0m >.(1)若2m =,求不等式()2f x >的解集;(2)()()g x f x x m =--,若()g x 的图象与x 轴围成的三角形面积不大于54,求m 的取值范围.2023年高考数学全真模拟卷一(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}ln 20A x x x =-=,()(){}130B x x x =+->,则A B = ()A .{}0,3B .{}0,1C .{}1,2D .{}0,1,2【答案】B【分析】直接解出{0,1,3}A =,{}13B x x =-<<,根据交集的概念即可得到答案.【详解】由题可得{0A xx ==∣或ln |2|0}{0,1,3}x -==,()(){}{}13013B x x x x x =+-<=-<<,所以{}0,1A B = ,故选:B.2.若1i z =-,则2|32i |z +-=()AB .5C .3D .【答案】B【分析】根据复数运算,复数的模计算即可解决.【详解】由题知,22|32i |12i+i 32i 34i 5z +-=-+-=-=,故选:B3.2022年卡塔尔世界杯(FIFA World Cup Oatar 2022)是第二十二届国际足联世界杯足球赛,在当地时间2022年11月20日到12月18日间在卡塔尔国内5个城市的8座球场举行,这是世界杯第一次在阿拉伯地区举办,由于夏季炎热,2022年卡塔尔世界杯放在冬季进行,如图是卡塔尔2022年天气情况,下列对1-11月份说法错误的是()A .有5个月平均气温在30℃以上B .有4个月平均降水量为0mmC .7月份平均气温最高D .3月份平均降水量最高【答案】D【分析】根据给定的图表,逐项分析判断作答.【详解】观察图表知,5月、6月、7月、8月、9月的5个月平均气温均在30℃以上,A 正确;6月、7月、8月、9月的4个月平均降水量为0mm ,B 正确;7月份平均气温最高,C 正确;2月份平均降水量比3月份平均降水量高,D 错误.故选:D4.某高中综合实践兴趣小组做一项关于某水果酿制成醋的课题研究.经大量实验和反复论证得出,某水果可以酿成醋的成功指数M 与该品种水果中氢离子的浓度N 有关,酿醋成功指数M 与浓度N 满足 2.8lg M N =-.已知该兴趣小组同学通过数据分析估计出某水果酿醋成功指数为2.9,则该水果中氢离子的浓度约为( 1.259≈)()A .0.2B .0.4C .0.6D .0.8【答案】D【分析】直接由题目中关系式解氢离子的浓度即可.【详解】由题意知:2.9 2.8lg N =-,整理得lg 0.1N =-,解得0.110N -=,又0.11100.81.259-=≈≈,故0.8N ≈.故选:D.5.数列{}n a 是等比数列,首项为1a ,公比为q ,则()110a q -<是“数列{}n a 递减”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【分析】由1(1)0a q -<,解得101(0)a q q >⎧⎨<≠⎩或101a q <⎧⎨>⎩,根据等比数列的单调性的判定方法,结合充分、必要条件的判定方法,即可求解得到答案.【详解】由已知1(1)0a q -<,解得101(0)a q q >⎧⎨<≠⎩或101a q <⎧⎨>⎩,11n n a a q -=,此时数列{}n a 不一定是递减数列,所以()110a q -<是“数列{}n a 递减”的非充分条件;若数列{}n a 为递减数列,可得1001a q >⎧⎨<<⎩或101a q <⎧⎨>⎩,所以()110a q -<,所以()110a q -<是“数列{}n a 递减”的必要条件.所以“()110a q -<”是“数列{}n a 为递减数列”的必要不充分条件.故选:B.6.若双曲线2221y x b-=则该双曲线的离心率为()A .12B C .2D 【答案】C【分析】写出双曲线的焦点,渐近线后,列方程求出b ,然后根据离心率定义计算.【详解】依题意得,双曲线的一条渐近线为0bx y -=,一个焦点为),根据点b =,于是2c ==,离心率2ce a==.故选:C 7.岳阳楼与湖北武汉黄鹤楼、江西南昌滕王阁并称为“江南三大名楼”,是“中国十大历史文化名楼”之一,世称“天下第一楼”.因范仲淹作《岳阳楼记》使得岳阳楼著称于世.小李为测量岳阳楼的高度选取了与底部水平的直线AC ,如图,测得30DAC ∠=︒,45DBC ∠=︒,14AB =米,则岳阳楼的高度CD 约为() 1.414≈、1.732≈)A .18米B .19米C .20米D .21米【答案】B【分析】在Rt ADC 中用CD 表示AC ,Rt BDC 中用CD 表示BC ,建立CD 的方程求解即得.【详解】Rt ADC 中,30DAC ︒∠=,则AC =,Rt BDC 中,45DBC ︒∠=,则BC CD =,由AC-BC=AB 147(1)19.124CD CD -=⇒=≈,CD 约为19米.故选:B8.如图为一个三棱锥的三视图,则该三棱锥的体积为()A .13B .23C .12D .43【答案】B【分析】由三视图画出三棱锥原图,利用13V Sh =锥可得结果.【详解】根据三视图可得几何体是有一条侧棱垂直底面的三棱锥,如图所示,DA ⊥平面ABC ,所以11121223323ABC V S DA ⎛⎫=⋅=⨯⨯⨯⨯= ⎪⎝⎭△故选:B.9.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,22cos 2Ba a c =+,则ABC 为()A .钝角三角形B .正三角形C .直角三角形D .等腰直角三角形【答案】C【分析】利用二倍角公式和正弦定理进行化简,结合三角形内角的范围即可得到答案【详解】由22cos2Ba a c =+结合正弦定理可得1cos 2sin sin sin 2B A A C +⋅=+,即sin sin cos sin sin A A B A C +=+,所以()sin cos sin sin sin cos cos sin A B C A B A B A B ==+=+,所以cos sin 0=A B ,因为sin 0B >,所以cos 0A =,因为0πA <<,所以π2A =,故ABC 为直角三角形,故选:C 10.高一(1)班有8名身高都不相同的同学去参加红歌合唱,他们站成前后对齐的2排,每排4人,则前排的同学都比后排对应的同学矮的概率为()A .1384B .34C .38D .116【答案】D【分析】因为8名同学,所以任选两人,身高都不同,只需将抽取的两人安排到一组,高的同学站后即可.【详解】8名身高都不相同的同学站在8个不同的位置有88A 种站法,将8名同学分为4组,每组2人,则有2222864244C C C C A 种分法,4组人有44A 种站法,故所求概率22228642884444C C C C A A 1A 16P ⋅==.故选:D.11.在三棱锥S ABC -中,2SAC SBC π∠=∠=,23ACB π∠=,1AC BC ==.若三棱锥S ABC -的体积为1,则该三棱锥外接球的表面积为()A .13πB .373πC .49πD .52π【答案】D【分析】由条件可知ASC 和BSC 为以SC 为斜边的直角三角形,则SC 的中点O 为外接球的球心.过S 做SH ⊥平面ABC ,垂足为H,由三棱锥的体积可求出高SH =,根据三角形全等可证明H 在ABC ∠的角平分线上,即60HCA ∠=o ,由线面垂直的定理可知AC HA ⊥,从而可计算2CH =,勾股可知SC 的长,从而计算外接球的半径和表面积.【详解】解:因为2SAC SBC π∠=∠=,所以ASC 和BSC 为以SC 为斜边的直角三角形,则SC 的中点O 到各个顶点的距离都相等,则O 为外接球的球心.即SC 为直径.过S 做SH ⊥平面ABC ,垂足为H ,连结HB ,HA ,则1111132S ABC V SH -=⨯⨯⨯⨯,解得:SH = 1AC BC ==,2SAC SBC π∠=∠=,SC SC =,SAC SBC ∴≅V V ,则SA SB=,AH BH 分别为,SA SB 在平面ABC 内的射影,所以有AH BH =,又AC BC =,HC 为公共边,所以AHC BHC ≅V V ,则HCA HCB ∠=∠,所以H 在ABC ∠的角平分线上,60HCA ∠=o ,AC SA ⊥,AC SH ⊥,SA SH S = ,所以有AC ⊥平面SHA ,AH ⊂平面SHA ,则有AC HA ⊥,因为1AC =,60HCA ∠=o,所以2CH =,则SC ==,则R =故外接球的表面积为2452S R ππ==.故选:D.12.已知111a =,b =,11ln 10c =.则()A .a b c >>B .b c a>>C .c b a>>D .b a c>>【答案】B【分析】令()()ln 1f x x x =-+,()()1ln 111g x x x =+-++,利用导数可求得()(),f x g x在()0,1上的单调性,从而确定()ln 1x x >+,()1ln 111x x +>-+,x >,令110x =即可得到大小关系.【详解】令()()ln 1f x x x =-+,01x <<,则()11011xf x x x '=-=>++,()f x \在()0,1上单调递增,()()00f x f ∴>=,即()ln 1x x >+;令()()1ln 111g x x x =+-++,01x <<,则()()()22110111x g x x x x '=-=>+++,()g x ∴在()0,1上单调递增,()()00g x g ∴>=,即()1ln 111x x +>-+;又当01x <<x >,∴当01x <<()1ln 111x x x >>+>-+;则当110x =1111ln 101011>>>,即b c a >>.故选:B.第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.曲线()e e xxf x x =+在1x =处的切线方程为___________.【答案】10x y -+=【分析】求出函数的导函数,即可求出切线的斜率,再用点斜式计算可得;【详解】解:因为()e e x x f x x =+,所以()1e 1112ef ⨯=+=,()()e 11exx f x -'=+,所以()()1e 11111ef -'=+=,所以切线方程为21y x -=-,即10x y -+=;故答案为:10x y -+=14.已知向量1,,()()1,a m b m ==- ,若(2)a b b -⊥,则b = ________.【答案】2【分析】首先求向量2a b -的坐标,再根据向量的数量积为0,求23m =,最后代入公式求模.【详解】2(23,,23)0)(a b m a b b m -=-⋅=-+= ,得23m =,所以2b == .故答案为:2.15.已知直线l 与椭圆22221x y a b+=()0a b >>相切于第一象限的点()00,P x y ,且直线l 与x 轴、y 轴分别交于点,A B ,当AOB (O 为坐标原点)的面积最小时,1260F PF ∠=(12,F F 是椭圆的两个焦点),则该椭圆的离心率是_________.【分析】先根据题意点()00,P x y 处的切线方程为:00221xx yy a b +=,进而得20,0a A x ⎛⎫ ⎪⎝⎭,200,b B y ⎛⎫⎪⎝⎭,故220012AOBa b Sx y =,再结合椭圆方程与基本不等式可得0021x yab≥,故AOBS ab ≥,当且仅当002x y a b ==时,AOB 的面积最小.再结合椭圆定义与余弦定理得22143b PF PF =,进而根据等面积法得12223F PF S bc ==,故2232b c =,进而得e =.【详解】解:根据题意结合椭圆性质得椭圆在点()00,P x y 处的切线方程为:00221xx yya b+=,由于直线与l 与x 轴、y 轴分别交于点,A B ,故20,0a A x ⎛⎫ ⎪⎝⎭,200,b B y ⎛⎫⎪⎝⎭,所以222200001212AOBa b a b x y Sx y =⋅⋅=,由于2200002221x y x y a b ab+=≥,所以0012x y ab ≥,所以222200001122AOBa b a b ab x y x y S⋅=⋅≥=,当且仅当002x y a b ==时,AOB 的面积最小.由于1260F PF ∠=,故在12F PF △中用余弦定理得:()2222212212121214343c PF PF PF PF PF PF PFPF a PF PF =+-=+-=-所以22143b PF PF =,所以12221114sin 60223F PF b SPF PF ==⋅⋅另一方面121201122222F PF S F F y c b bc ==⋅⋅所以232bc =,即:2232b c =,由于222b a c =-,所以2252a c=所以5e =.故答案为:516.已知函数f (x )=cos (ωx +φ)(ω>0,|φ|≤2π),x =-4π为f (x )的零点,x =4π为y =f (x )图象的对称轴,且f (x )在(18π,6π)上单调,则ω的最大值为______.【答案】5【分析】先根据4x π=-是()f x 的零点,4x π=是()y f x =图像的对称轴可转化为周期的关系,从而求得ω的取值范围,又根据所求值为最大值,所以从大到小对ω赋值验证找到适合的最大值即可.【详解】由题意可得4424k T T ππ⎛⎫--=+ ⎪⎝⎭,即21212=244k k T ππω++⋅=⋅,解得()=21,k k N ω++∈,又因为()f x 在186,ππ⎛⎫⎪⎝⎭上单调,所以12·618922T ππππω-=≤=,即9ω≤,因为要求ω的最大值,令=7ω,因为4x π=是()y f x =的对称轴,所以()74k k Z πϕπ+=∈,,又2πϕ≤,解得4πϕ=,所以此时()cos 74f x x π⎛⎫=+ ⎪⎝⎭,()f x 在3,2828ππ⎡⎤-⎢⎥⎣⎦上单调递减,即()f x 在3,1828ππ⎡⎤⎢⎥⎣⎦,上单调递减,在3286ππ⎡⎤⎢⎥⎣⎦,上单调递增,故()f x 在186,ππ⎛⎫⎪⎝⎭不单调,同理,令=5ω,()cos 54f x x π⎛⎫=- ⎪⎝⎭,()f x 在52020,ππ⎡⎤⎢⎥⎣⎦上单调递减,因为51862020ππππ⎛⎫⎡⎤⊆ ⎪⎢⎥⎝⎭⎣⎦,,,所以()f x 在186,ππ⎛⎫⎪⎝⎭单调递减,满足题意,所以ω的最大值为5.三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.2020年1月至2月由新型冠状病毒引起的肺炎病例陡然增多,为了严控疫情扩散,做好重点人群的预防工作,某地区共统计返乡人员100人,其中50岁及以上的共有40人.这100人中确诊的有10人,其中50岁以下的人占310.(1)试估计50岁及以上的返乡人员因感染新型冠状病毒而引起肺炎的概率;(2)请将下面的列联表补充完整,并依据0.05α=的独立性检验,分析确诊为新冠肺炎与年龄是否有关.确诊为新冠肺炎(单位:人)未确诊为新冠肺炎(单位:人)合计50岁及以上4050岁以下合计10100附表及公式:α0.10.050.010.0050.001x α2.7063.8416.6357.87910.828()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.【答案】(1)740(2)列联表见解析,认为确诊为新冠肺炎与年龄有关【分析】(1)根据题意,可知50岁及以上的确诊人数为7人,又50岁以上的人数为40,根据古典概型,即可求出结果;(2)由题中的数据,可以直接得出表中的数据,再利用独立性检验公式,计算出2χ,可参考表中的数据可以直接判断..(1)解:因为100人中确诊的有10人,其中50岁以下的人占310,所以50岁以下的确诊人数为3,所以50岁及以上的确诊人数为7,因为50岁及以上的共有40人,所以50岁及以上的返乡人员因感染新型冠状病毒而引起肺炎的概率估计为740.(2)解:补充列联表如下:确诊为新冠肺炎(单位:人)未确诊为新冠肺炎(单位:人)合计50岁及以上7334050岁以下35760合计1090100零假设为0H :确诊为新冠肺炎与年龄无关.计算可得()220.05100757333254.167 3.841406010906x χ⨯⨯-⨯==≈>=⨯⨯⨯.依据0.05α=的独立性检验,推断0H 不成立,即认为确诊为新冠肺炎与年龄有关.18.已知等差数列{}n a 的前n 项和为n S ,且59a =,864S =.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()11n n n b n a a *+=∈N ,求数列{}nb 的前n 项和nT .【答案】(1)21n a n =-(2)21n n T n =+【分析】(1)利用等差数列通项公式和求和公式可构造方程组求得1,a d ,进而得到n a ;(2)由(1)可得n b ,采用裂项相消法可求得n T .【详解】(1)设等差数列{}n a 的公差为d ,则518149878642a a d S a d =+=⎧⎪⎨⨯=+=⎪⎩,解得:112a d =⎧⎨=⎩,()12121n a n n ∴=+-=-.(2)由(1)得:()()1111212122121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,111111111111233557212122121n n T n n n n ⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-=⨯-= ⎪ ⎪-+++⎝⎭⎝⎭.19.如图,在四棱锥P -ABCD 中,平面PCD ⊥平面ABCD ,PCD 为等边三角形,112AB AD CD ===,90BAD ADC ∠=∠=︒,M 是棱上一点,且2CM MP = .(1)求证:AP ∥平面MBD ;(2)求二面角M -BD -C 的余弦值.【答案】(1)证明见解析【分析】(1)根据空间中的线面关系即可证得;(2)通过建立空间直角坐标,将空间的角度问题转化为空间的坐标运算问题即可得到答案.【详解】(1)连接AC ,记AC 与BD 的交点为H ,连接MH.由90BAD ADC ∠=∠=︒,得AB CD ∥,12AB AH CD HC ==,又12PM MC =,则AH PM HC MC =,∴AP MH ∥,又MH ⊂平面MBD ,PA ⊄平面MBD ,∴AP ∥平面MBD.(2)记O 为CD 的中点,连接PO ,BO.∵PCD 为等边三角形,∴PO CD ⊥,∵平面PCD ⊥平面ABCD ,平面PCD 平面ABCD =CD ,∴PO ⊥平面ABCD.以O 为原点,OB 为x 轴,OC 为y 轴,OP 为x 轴,建立空间直角坐标系,如下图,则()0,1,0D -,(P,10,3M ⎛ ⎝⎭,()1,0,0B ,()0,1,0C,11,3BM ⎛=- ⎝⎭,()1,1,0BD =-- .设平面BDM 的法向量(),,n x y z =,则1030n BM x y z n BD x y ⎧⋅=-+=⎪⎨⎪⋅=--=⎩,取x =1得1,n ⎛=- ⎝⎭,平面BCD 的一个法向量()0,0,1m =.设二面角M -BD -C 的平面角为θ,则cos m n m nθ⋅==⋅ .∴二面角M -BD -C20.已知抛物线2:2C y px =(其中6p >-F ,点M 、N 分别为抛物线C 上两个动点,满足以MN 为直径的圆过点F ,设点E 为MN 的中点,当MN EF ⊥时,点E的坐标为()3-.(1)求抛物线C 的方程;(2)直线MF 、NF 与抛物线的另一个交点分别为A 、B ,点P 、Q 分别为AM 、BN 的中点,证明:直线PQ 过定点.【答案】(1)24y x =(2)证明见解析【分析】(1)分析可知当点E 为MN 的中点时,FMN 为等腰直角三角形,求出点M 的横坐标,分析可得2M px MF +==,结合抛物线的定义可得出关于p 的等式,解出p 的值,即可得出抛物线C 的方程;(2)分析可知,直线MF 、NF 均不与x 轴重合,设直线MF 的方程为()10x my m =+≠,则直线NF 的方程为11x y m=-+,将直线MF 的方程与抛物线C 的方程联立,列出韦达定理,可求得点P 的坐标,同理可得出点Q 的坐标,分21m =、21m ≠两种情况讨论,求出直线PQ 的方程,并化简,即可求得直线PQ 所过定点的坐标.【详解】(1)解:因为以MN 为直径的圆过点F ,则MF NF ⊥,当点E 为MN 的中点时,MN EF ⊥,则MF NF =,此时FMN 为等腰直角三角形,又点E 、F 在x 轴上,则MN x ⊥轴,所以3M E x x ==-,6p >-,32p ∴>-F 在E的右侧,所以32pEF =-+由抛物线的定义知2M p x MF +==,所以,33222p p -=-+,解得2p =,故抛物线C 的方程为24y x =.(2)证明:若直线MF 与x 轴重合,则直线MF 与抛物线C 只有一个交点,不合乎题意,同理可知,直线NF 与x 轴也不重合,设直线MF 的方程为()10x my m =+≠,则直线NF 的方程为11x y m=-+,联立方程214x my y x=+⎧⎨=⎩得2440y my --=,216160m ∆=+>,设()11,M x y 、()22,A x y ,则124y y m +=,124y y =-,所以()221,2P m m +,同理可得2221,Q mm ⎛⎫+- ⎪⎝⎭,当21m ≠时,()2222221211PQm m m k m m m +==-⎛⎫+-+ ⎪⎝⎭,所以直线PQ 的方程为()222121m y x m m m =--+-,化简得()231m y x m =--,当3x =时,0y =,直线PQ 过定点()3,0.当21m =时,直线PQ 的方程为3x =,直线PQ 必过点()3,0,综上所述,所以直线PQ 过定点()3,0.21.已知函数()()212ln 11ax xf x x x +=+-+,R a ∈.(1)当2a =时,讨论函数()f x 的单调性;(2)若函数()()()1g x x f x =+在()0,∞+上不单调,求实数a 的取值范围.【答案】(1)函数()f x 在()10-,上单调递增,在()0,∞+上单调递减(2)()01,【分析】(1)当2a =时,确定函数解析式,求出定义域,利用导数求函数()f x 的单调性;(2)由()g x 的解析式求出导数,无法直接判断导函数的正负,构造新函数再求导,分类讨论()g x 的单调性,求出实数a 的取值范围.【详解】(1)当2a =时,函数()()()2ln 1ln 11x xf x x x x x +=+-=+-+,定义域为()+∞-1,,易知()1111x f x x x -'=-=++,令()0f x ¢>,得10x -<<,令()0f x '<,得0x >,所以函数()f x 在()10-,上单调递增,在()0,∞+上单调递减.(2)由题意知()()()211ln 12g x x x ax x =++--,则()()ln 1g x x ax '=+-,令()()ln 1x x h ax =+-,0x ≥,则()11h x a x '=-+.①当0a ≤时,()0h x '>,则()g x '在()0,∞+上单调递增,所以当0x >时,()()00g x g ''>=,所以()g x 在()0,∞+上单调递增,不符合题意.②当1a ≥时,()1101h x a a x '=-<-≤+,则()g x '在()0,∞+上单调递减,所以当0x >时,()()00g x g ''<=,所以()g x 在()0,∞+上单调递减,不符合题意.③当01a <<时,由()101h x a x '=-=+,得110x a=->,当10,1x a ⎛⎫∈- ⎪⎝⎭时,()0h x '>,()h x 在10,1a ⎛⎫- ⎪⎝⎭上单调递增,当11,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0h x '<,()h x 在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递减.易知ln 1≤-x x ,当且仅当x =1时取等号,则当0x >时,1≤,即)ln 21x ≤.所以当x >0时,()()212h x ax a x <--<-+-.取241t a =-,则11t a >-,且()20h t <-=.又()1100h h a ⎛⎫->= ⎪⎝⎭,所以存在011,x t a ⎛⎫∈- ⎪⎝⎭,使得()00h x =,所以当()00x x ∈,时,()0h x >,即()0g x '>,当()0,x x ∈+∞时,()0h x <,即()0g x '<,所以()g x 在()00x ,上单调递增,在()0,x +∞上单调递减,故函数()g x 在区间()0,∞+上不单调,符合题意.综上,实数a 的取值范围为()0,1.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xoy 中,直线l 的参数方程为{15x ty t =+=+(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为23=2+cos2ρθ.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)求C 的上的动点到l 的距离的取值范围.【答案】(1)40x y -+=,22+=13yx(2)【分析】(1)对于直线l ,消去参数t 即可求解,对于曲线C ,根据222,cos ,sin x y x y ρρθρθ=+==即可求解;(2)先将曲线C 化为参数方程,再根据点到直线的距离公式即可求解.【详解】(1) 直线l 的参数方程为{15x ty t =+=+(t 为参数),消去参数t 得直线l 的普通方程为40x y -+=,曲线C 的极坐标方程为23=2+cos2ρθ,即222+cos2=3ρρθ,即22222+(cos sin )=3ρρθθ-,222222+cos sin =3ρρθρθ-,又222,cos ,sin x y x y ρρθρθ=+== ,∴曲线C 的直角坐标方程22222(+)+=3x y x y -,即22+=13y x .(2) 曲线C 的直角坐标方程为:22+=13yx ∴曲线C的参数方程为{x y αα=(α为参数),设曲线C上的动点(cos )M αα,则曲线C 上的动点M 到直线l的距离d[]2sin )2,26πα-∈- (,∴曲线C 上的动点到直线l=,故曲线C 上的动点到直线l距离取值范围为:.[选修4-5:不等式选讲]23.已知:()1f x x x m =+--,0m >.(1)若2m =,求不等式()2f x >的解集;(2)()()g x f x x m =--,若()g x 的图象与x 轴围成的三角形面积不大于54,求m 的取值范围.【答案】(1)3,2∞⎛⎫+ ⎪⎝⎭;(2)(]0,8.【分析】(1)利用零点分段法求解出绝对值不等式;(2)先求出()21,312,121,1x m x mg x x m x m x m x -++>⎧⎪=+--≤≤⎨⎪--<-⎩,由()0g x =,解得:122121,3m x m x -=+=,则()21444133m x x m ---==+,由函数单调性得到()()max 1g x g m m ==+,根据函数图象与x 轴围成的三角形面积不大于54,列出方程,求出m 的取值范围.【详解】(1)当2m =时,()3,21221,123,1x f x x x x x x >⎧⎪=+--=--≤≤⎨⎪-<-⎩,当2x >时,()32f x =>成立;当12x -≤≤时,()212f x x =->,则322x <≤;试卷第17页,共17页当1x <-时,()32f x =-<不合题意,综上,()2f x >的解集为3,2∞⎛⎫+ ⎪⎝⎭;(2)因为0m >,所以()21,12312,121,1x m x m g x x x m x m x m x m x -++>⎧⎪=+--=+--≤≤⎨⎪--<-⎩,由()0g x =,解得:122121,3m x m x -=+=,则()21444133m x x m ---==+,当1x <-时,()g x 单调递增,当1x m -≤≤时,()g x 单调递增,当x >m 时,()g x 单调递减,所以当x m =时,()g x 取得最大值,()()max 1g x g m m ==+,∴图象与x 轴围成的三角形面积为()()221421154233S m m =⨯+=+≤,解得:108m -≤≤,又0m >,则08m <≤,∴m 的取值范围是(]0,8.。
【天利38套】2020原创 高三能力提升卷 数文(3套)
,!*'$
-!*%"
. . 要用于统 计 分 析!体 重 指 数 -<=' 体 重,身 高 的
.!*'"
/!*%$
.
!"!已
知
数
列
!() $的
前
)
项
和
为
,)%()
'
. .
平方"国际单位 B*,C%#!一般认为 -<=指 数 小 于 "4!#为偏瘦%-<=指数在"4!#%5 为正常%-<=
%%)+1!6%*)%)+"+6%)/'0 %则使不等式
. 如下&
第卷 非选择题!共("分
. .
. 二填空题本大题 共 ) 小 题每 小 题 % 分共 $" 分!.
把答案填在题中的横线上!
. .
!#!已知双曲 线(#%% !-$%% '""('$%-'$#%离 心 率.'
. .
.
槡%%且 双 曲 线 过 点 "槡1%"#%则 (' ! ! ! ! !
斜
角为
5
且;
与3
交
于 "%
两
点 则
以
"%
的
直 径 的 圆 经 过 原 点 则; 的 方 程 为
! !
-!若;4*4则 *3;
#!1 6 $!%!#
,!甲 的 平 均 成 绩 大 于 乙 的 平 均 成 绩
则 "$%' ,!#"$###" .!#"$%##"
2023年高考数学第三次模拟考试及答案解析(新高考Ⅰ卷A卷)
2023年高考数学第三次模拟考试及答案解析(新高考Ⅰ卷A 卷)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若集合3{|0}3x A x x +=≤-,{}3,1,0,3,4B =--,则A B ⋂的元素个数为()A .2B .3C .4D .5【答案】B 【解析】303x x +≤-,()()330x x ∴+-≤,且3x ≠,33x ∴-≤<,[)33A =-,,又{}3,1,0,3,4B =--,则{}3,1,0A B ⋂=--,A B ⋂的元素个数为3个.故选:B.2.设i(,)z a b a b =+∈R 在复平面内对应的点为M ,则“点M 在第四象限”是“0ab <”的()A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件【答案】A【解析】由题知,i(,)z a b a b =+∈R 在复平面内对应的点为(,)M a b ,因为点M 在第四象限,即0,0a b ><,ab <,即00a b >⎧⎨<⎩,或00a b <⎧⎨>⎩,所以“点M 在第四象限”是“0ab <”的充分不必要条件,故选:A3.已知{}n a 是各项不相等的等差数列,若14a =,且248,,a a a 成等比数列,则数列{}n a 的前6项和6S =()A .84B .144C .288D .110【答案】A【解析】设等差数列{}n a 的公差为d ,由248,,a a a 成等比数列,则2428a a a =,即()()()211137a d a d a d +=++,整理可得240d d -=,由数列{}n a 各项不相等,解得4d =,即4n a n =,()()44212n n n S n n+==+,故()6261684S =⨯⨯+=.故选:A.4.已知向量a ,b 满足2a = ,(1,1)= b ,a b += a 在向量b 上的投影向量的坐标为()A .22⎛ ⎝⎭,B .()11,C .()1,1--D .22⎛- ⎝⎭,【答案】B【解析】由(1,1)=b ,得b ==a b + 即42210a b ++= ,则2a b =,所以向量a 在向量b上的投影向量的坐标为()(1,1)a b b b b b==.故选:B .5.函数()1e πcos 1e 2x x f x x ⎛⎫-⎛⎫=- ⎪ ⎪+⎝⎭⎝⎭的部分图象大致形状是()A .B .C .D .【答案】C【解析】因为()1e π1e cos sin 1e 21e x x x x f x x x ⎛⎫⎛⎫--⎛⎫=-= ⎪ ⎪⎪++⎝⎭⎝⎭⎝⎭的定义域为R .定义域关于原点对称,()()()111e 1e e sin sin sin 11e 1e 1exx x x x xf x x x x f x --⎛⎫- ⎪⎛⎫⎛⎫---=-=-== ⎪ ⎪ ⎪++⎝⎭⎝⎭ ⎪+⎝⎭,所以()f x 是偶函数,图象关于y 轴对称,故排除选项B 、D ,当0x >时,令()0f x =可得0x =或()πx k k =∈Z ,所以0x >时,两个相邻的零点为0x =和πx =,当0πx <<时,1e 01e xx-<+,sin 0x >,()1e sin 01e x x f x x ⎛⎫-=< ⎪+⎝⎭,故排除选项A ,故选:C.6.立德学校于三月份开展学雷锋主题活动,某班级5名女生和2名男生,分成两个小组去两地参加志愿者活动,每小组均要求既要有女生又要有男生,则不同的分配方案有()种.A .20B .4C .60D .80【答案】C【解析】先安排2名男生,保证每个小组都有男生,共有2种分配方案;再安排5名女生,若将每个女生随机安排,共有5232=种分配方案,若女生都在同一小组,共有2种分配方案,故保证每个小组都有女生,共有52230-=种分配方案;所以共有23060⨯=种分配方案.故选:C.7.刍(chú)甍(méng )是中国古代算数中的一种几何体,其结构特征是:底面为长方形,上棱和底面平行,且长度不等于底面平行的棱长的五面体,是一个对称的楔形体.已知一个刍甍底边长为6,底边宽为4,上棱长为2,高为2,则它的表面积是()A .B .24+C .24+D .24++【答案】B【解析】设几何体为EFABCD-,如下图所示:矩形ABCD 的面积为2446=⨯,ABE 、CDF ,两个全等的等腰梯形ADFE 、BCFE,设点E 、F 在底面ABCD 内的射影点分别为G 、H ,过点G 在平面ABCD 内作GM BC ⊥,连接EM ,过点H 在平面ABCD 内作HNCD⊥,连接F N ,FH ⊥ 平面ABCD ,H N、CD ⊂平面ABCD ,FHCD ∴⊥,FH HN⊥,HN CD ⊥ ,FH HN H = ,CD \^平面FHN ,FN ⊂平面FHN ,FN CD ∴⊥,易知2FH =,2HN =,则在CDF 中,斜高为FN===所以,12ABE CDF S S CD FN ==⋅=△△同理可知,梯形BCFE 的高为EM ===,所以,()12ADFEBCFE S S EF BC EM ==+⋅=梯形梯形因此,该几何体的表面积为(24224+⨯=+故选:B.8.如图,椭圆()2222:10x y C a b a b+=>>的左焦点为1F ,右顶点为A ,点Q 在y 轴上,点P 在椭圆上,且满足PQ y ⊥轴,四边形1F APQ 是等腰梯形,直线1FP 与y 轴交于点N ⎛⎫⎪ ⎪⎝⎭,则椭圆的离心率为().A .14B C D .12【答案】D【解析】由题意,做PMx ⊥轴于点M,因为四边形1F APQ 是等腰梯形,则1FO AM c ==,OM a c=-则点P 的横坐标为P x a c =-,代入椭圆方程()2222:10x y C a b a b+=>>,可得py =,即PM=因为4N ⎛⎫ ⎪ ⎪⎝⎭,则4ON =,由11F NO F PM,则114b FO ONc b F M PM a =⇒=,化简可得,434332160a ac c -+=,同时除4a 可得,43163230e e -+=即()()3221812630e e e e ----=,对于()3281263f e e e e =---当1e =时,()1130f =-<,当2e =时,()210f =>,在()1,2e ∈时,方程()()3221812630e e e e ----=有根,且()0,1e ∈,故应舍,所以12e =.故选:D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图为国家统计局于2022年12月27日发布的有关数据,则()A .营业收入增速的中位数为9.1%B .营业收入增速极差为13.6%C .利润总额增速越来越小D .利润总额增速的平均数大于6%【答案】ABD【解析】由表中数据易知营业收入增速的中位数为9.1%,故选项A 正确;营业收入增速的极差为20.3% 6.7%13.6%-=,故选项B 正确;利润总额增速2022年1-3月累计比2022年1-2月累计上升,故选项C 错误;利润总额增速的平均数(38.0%34.3%5.0%8.5%3.5%1.0%1.0%1.1%++++++-2.1% 2.3% 3.0% 3.6%)12 6.6%----÷=,故选项D 正确;故选:ABD .10.甲袋中装有4个白球,2个红球和2个黑球,乙袋中装有3个白球,3个红球和2个黑球.先从甲袋中随机取出一球放入乙袋,再从乙袋中随机取出一球.用1A ,2A ,3A 分别表示甲袋取出的球是白球、红球和黑球,用B 表示乙袋取出的球是白球,则()A .1A ,2A ,3A 两两互斥B .()213P BA =C .3A 与B 是相互独立事件D .()13P B =【答案】AB【解析】对于A ,由题意可知1A ,2A ,3A 不可能同时发生,所以1A ,2A ,3A 两两互斥,所以A 正确,对于B ,由题意可得2221131(),()844912P A P A B ===⨯=,所以()2221()1121()34P A B P B A P A ===,所以B 正确,对于C ,因为321()84P A ==,3131()4912P A B =⨯=1234413137()()()()89494918P B P A B P A B P A B =++=⨯+⨯+⨯=,所以33()()()P A B P A P B ≠,所以3A 与B 不是相互独立事件,所以C 错误,对于D ,由C 选项可知D 是错误的,故选:AB11.已知12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点,12A ⎫⎪⎪⎝⎭是C 上一点,若C的离心率为3,连结2AF 交C 于点B ,则()A .C 的方程为2213x y -=B .1290F AF ︒∠=C .12F AF的周长为2+D .1ABF【答案】ABD【解析】对A ,将点A 的坐标代入双曲线方程,并由222,c e c a b a==+得下列方程组:22222151441a b c a c a b⎧⎪-=⎪⎪⎪⎨⎪=+⎪⎪⎪⎩,解得2a b c ⎧⎪⎨⎪=⎩,∴双曲线2213xy -=,A 正确;对B ,12(2,0),(2,0)F F -,112,22F A ⎫=+⎪⎪⎝⎭,212,22F A ⎛⎫=- ⎪ ⎪⎝⎭,121514044F A F A ⋅=-+= ,∴12F A F A ⊥,B正确;对C,1AF ===,2AF ==,1224F F c ==,周长4=,C 错误;对D ,令2BF m=,则1BF m =,225AB AF BF m =+,在1Rt ABF 中,22211BF AF AB=+,∴11m =,设1ABF 的周长为l ,内切圆半径为r ,11l AF AB BF =++,由三角形面积公式知:1111·22ABFS AF AB lr == ,∴1112ABF S r AF AB BF =++ ,D 正确;故选:ABD .12.已知函数()f x 及其导函数()f x '的定义域均为R ,若23f x ⎛⎫+ ⎪⎝⎭为奇函数,123f x ⎛⎫- ⎪⎝⎭的图象关于y 轴对称,则下列结论中一定正确的是()A .203f ⎛⎫= ⎪⎝⎭B .()203f f ⎛⎫=- ⎪⎝⎭C .()203f f ⎛⎫=- ⎪⎝'⎭'D .103f ⎛⎫-= ⎪⎝⎭'【答案】ABD 【解析】因为2()3+f x 为奇函数,定义域为R ,所以22((33f x f x -+=-+,故4()(3f x f x -=-+,等式两边同时取导数,得4()()3f x f x ''--=-+,即4()()3f x f x ''-=+①,因为1(23f x -的图象关于y 轴对称,则11(2(233f x f x -=--,故2()()3f x f x =--,等式两边同时取导数,得2()()3f x f x ''=---②.由4()(3f x f x -=-+,令23x =-,得22()(33f f =-,解得2()03f =,由2()()3f x f x =--,令0x =,得2(0)(3f f =-,由②,令0x =,得2(0)(3f f ''=--,令13x =-,得11(()33f f ''-=--,解得1()03f '-=,故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.若()()()()82801281111x a a x a x a x -=+++++++ ,则5a =_____.【答案】448-【解析】令1x t +=可得1x t =-,则()1112x t t -=--=-,所以,()82801282t a a t a t a t -=++++ ,所以,5a 为展开式中5t 的系数,()82t -的展开式通项为()()()88188C 2C 210,1,2,,8kkkk kk k k T t t k --+=⋅-=⋅⋅-= ,所以,()()55358C 215681448a =⋅⋅-=⨯⨯-=-.故答案为:448-.14y 轴交于点A ,与圆221x y +=相切于点B ,则AB =______.【解析】设直线AB 的方程为y b =+0y b -+=则点()0,A b ,由于直线AB 与圆221x y +=相切,且圆心为()0,0O ,半径为1,则12b =,解得2b =±,所以2AO =,因为1BO =,故AB ==15.某市统计高中生身体素质的状况,规定身体素质指标值不小于60就认为身体素质合格.现从全市随机抽取100名高中生的身体素质指标值(1,2,3,,100)i x i = ,经计算10017200i i x ==∑,()1002211007236i i x ==⨯+∑.若该市高中生的身体素质指标值服从正态分布()2,N μσ,则估计该市高中生身体素质的合格率为______.(用百分数作答,精确到0.1%)参考数据:若随机变量X 服从正态分布()2,N μσ,则0().6827P X μσμσ≤≤+≈-,(22)0.9545P X μσμσ-≤≤+≈,3309().973P X μσμσ-≤≤+≈.【答案】97.7%【解析】因为100个数据1x ,2x ,3x ,…,100x 的平均值1001172100i i x x ===∑,方差()()1122222210010011110010072361007236100100100i i i i s x x x x ==⎛⎫⎡⎤=-=-=⨯⨯+-⨯= ⎪⎦⎣⎝⎭∑∑,所以μ的估计值为72μ=,σ的估计值为6σ=.设该市高中生的身体素质指标值为X ,由(22)0.9545P X μσμσ-≤≤+≈,得(72127212)(6084)0.9545P X P X -≤≤+=≤≤≈,()()()()12210.9545842222P X P X P X P X μσμσμσμσ--<<+->=>+=<-=≈所以1(60)(6084)(84)0.9545(10.9545)0.9772597.7%2P X P X P X ≥=≤≤+>≈+⨯-=≈.故答案为:97.7%.16.已知函数()()2e 1,01ln 1,02x x f x x x -⎧-≤⎪=⎨+>⎪⎩.若()()0x f x a x -≤,则a 的取值范围是___________.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】当0x =时,()()00x f x a x -=≤恒成立;当0x <时,此时应有()()0f x a x f x ax -=+≥,即2e 10x ax --+≥.令()2e1xg x ax -=-+,0x <,则()22exg x a-'=-+.设()22e xh x a -=-+,则()24e 0x x -'=>恒成立,所以()h x ,即()g x '单调递增.又()00e10g =-=,则要使()0g x ≥在(),0∞-上恒成立,应有()22e 0xg x a -'=-+≤在(),0∞-上恒成立,即22e x a -≤在(),0∞-上恒成立.又0x <时,22e 2x ->,所以2a ≤;当0x >时,此时应有()()0f x a x f x ax -=-≤,即()1ln 102x ax +-≤.令()()1ln 12x ax k x +=-,则()()121a k x x =-+'.令()()121a x m x =-+,则()()21021m x x '-=<+恒成立,所以()m x ,即()k x '单调递减.又()00k =,则要使()0k x ≤在()0,∞+上恒成立,应有()()1021a x k x =-≤+'在()0,∞+上恒成立,即()121a x ≥+在()0,∞+上恒成立.因为,()121y x =+在()0,∞+上单调递减,所以()11212x <+,所以12a ≥.综上所述,a 的取值范围是1,22⎡⎤⎢⎥⎣⎦.故答案为:1,22⎡⎤⎢⎥⎣⎦四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.如图,在四边形ABCD 中,已知2π3ABC∠=,π3BDC ∠=,AB BC ==.(1)若BD =AD 的长;(2)求A B D △面积的最大值.【答案】(1)AD ;(2)【解析】(1)在B C D △中,由余弦定理,得2222cos BC BD DC BD DC BDC =+-⋅⋅∠,∴222π2cos3CD CD =+-⨯⋅,整理得2720CD --=,解得CD =CD =-.∴2222221c os 27BD BC CD DBC BD BC +-∠===⋅,而2π(0,)3DBC ∠∈,故sin 7DBC ∠=,∴2π111cos cos cos 3214ABD DBC DBC DBC ⎛⎫∠=-∠=-∠+∠=⎪⎝⎭,故在ABD △中,2222cos AD AB BD AB BD ABD=+-⋅⋅∠221125714=+-⨯=,∴AD ;(2)设,2π(0,)3CBD θθ∠=∈,则在BCD △中,sin sin BC BD BDC BCD=∠∠,则2π)π314sin()2π3sin 3BD θθ-=+,所以π2π11sin sin 2214sin(()33ABD S AB BD ABD θθ=+=⨯⨯∠-⋅△2π34(θ=+,当2πsin ()13θ+=,即π6θ=时,ABD △面积取到最大值18.记n S 为数列{}n a 的前n 项和,已知11a =,223a =,且数列(){}423n n nS n a ++是等差数列.(1)证明:n a n ⎧⎫⎨⎬⎩⎭是等比数列,并求{}n a 的通项公式;(2)设13,,n n n na nb n n a -⎧⋅⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .【答案】(1)证明见解析;13n n n a -=;(2)2122338n n T n +-=+.【解析】(1)∵11a =,223a =,∴11S =,253S =,设()423n n n c nS n a =++,则19c =,218c =,又∵数列{}n c 为等差数列,∴9n c n =,∴()4239n n nS n a n ++=,∴()2349nn n a S n++=,当2n ≥时,()1121491n n n a S n --++=-,∴()()12321401n n n n a n a a nn -+++-=-,∴()()1632101n n n a n a nn -++-=-,又∵210n +≠,∴1301n n a a n n --=-,即:1131n n a an n -=⋅-,又∵1101a =≠,∴n a n ⎧⎫⎨⎩⎭是以1为首项,13为公比的等比数列,∴113n n a n -⎛⎫ ⎪⎝⎭=,即13n n n a -=;(2)∵13,,n n n na nb n n a -⎧⋅⎪=⎨⎪⎩为奇数为偶数,且13n n na -=,∴1,3,n n n n b n -⎧=⎨⎩为奇数为偶数,∴()()132121321333n n T n -=++⋅⋅⋅+-+++⋅⋅⋅+⎡⎤⎣⎦()()()221223193311213321988n n n n n n n +--+-⎡⎤-⎣⎦=+=+=+-,∴2122338n n T n +-=+.19.如图,已知斜四棱柱1111ABCD A B C D -,底面ABCD 为等腰梯形,AB CD ∥,点1A 在底面ABCD 的射影为O ,且11AD BC CD AA ====,2AB =,112A O =,1AA BC ⊥.(1)求证:平面ABCD ⊥平面11ACC A ;(2)若M 为线段11B D 且平面MBC 与平面ABCD 夹角的余弦值为7,求直线1A M 与平面MBC 所成角的正弦值.【答案】(1)证明见解析;(2)7【解析】(1)证明:等腰梯形ABCD 中,2AB =,1BC CD AD ===,作//CE AD 交AB 于E ,如图,则ADCE 是菱形,AE CD EB CE BC ====,BCE 是等边三角形,则60ABC ∠=︒,60DCE ECB ∠=∠=︒,30ACD ACE ∠=∠=︒,所以90ACB ∠=︒,即AC BC ⊥,又1BC AA ⊥,1AA AB A = ,1,AA AB ⊂平面11AAC C ,所以BC ⊥平面11A ACC ,又BC ⊂平面ABCD ,所以平面ABCD ⊥平面11A ACC ;(2)点1A 在底面ABCD 的射影为O ,由(1),得O 在AC 上,且1A O AC ⊥,又111,12A O AA ==,所以AO ,而由(1)知AC =因此2CO =,建立如图所示空间直角坐标系C xyz -,则)A,()0,1,0B,O ⎫⎪⎪⎝⎭,112A ⎫⎪⎪⎝⎭,1,02D ⎫-⎪⎝⎭,则11,022CD BA ⎫==-⎪⎪⎝⎭,又113,022B D BD ⎛⎫==- ⎪ ⎪⎝⎭,111,0,22DD AA ⎛⎫==- ⎪ ⎪⎝⎭ ,所以1110,,22D ⎛⎫- ⎪⎝⎭,设1113,,022D M D B λ⎛⎫==- ⎪ ⎪⎝⎭ (01λ≤≤),131,,2222M λ⎛⎫--+ ⎝⎭,(0,1,0)CB =,131,,2222CM λλ⎛⎫=--+ ⎪ ⎪⎝⎭ ,设平面MBC 的法向量为(),,n x y z =,则131********n CM x y z n CB y λλ⎧⎛⎫⎧⋅=-+-++=⎪⎪ ⎪⇒⎨⎨⎝⎭⋅=⎪⎪⎩=⎩ ,取1x =,则()n = ,取平面ABCD 的法向量()0,0,1m = ,2cos ,417m n m n m n λ⋅===⇒=,则12λ=(负值舍去),即11,044A M ⎛⎫=- ⎪ ⎪⎝⎭,2n ⎛⎫= ⎪ ⎪⎝⎭,设直线1A M 与平面MBC 所成的角为θ,则111sin cos ,A M n A M n A M n θ⋅===⋅ ,所以,直线1A M 与平面MBC20.第22届亚运会将于2023年9月23日至10月8日在我国杭州举行,这是我国继北京后第二次举办亚运会.为迎接这场体育盛会,浙江某市决定举办一次亚运会知识竞赛,该市A 社区举办了一场选拔赛,选拔赛分为初赛和决赛,初赛通过后才能参加决赛,决赛通过后将代表A 社区参加市亚运知识竞赛.已知A 社区甲、乙、丙3位选手都参加了初赛且通过初赛的概率依次为12、12、13,通过初赛后再通过决赛的概率均为13,假设他们之间通过与否互不影响.(1)求这3人中至多有2人通过初赛的概率;(2)求这3人中至少有1人参加市知识竞赛的概率;(3)某品牌商赞助了A 社区的这次知识竞赛,给参加选拔赛的选手提供了两种奖励方案:方案一:参加了选拔赛的选手都可参与抽奖,每人抽奖1次,每次中奖的概率均为12,且每次抽奖互不影响,中奖一次奖励600元;方案二:只参加了初赛的选手奖励200元,参加了决赛的选手奖励500元.若品牌商希望给予选手更多的奖励,试从三人奖金总额的数学期望的角度分析,品牌商选择哪种方案更好.【答案】(1)1112;(2)3181;(3)方案二更好,理由见解析【解析】(1)3人全通过初赛的概率为21112312⎛⎫⨯= ⎪⎝⎭,所以,这3人中至多有2人通过初赛的概率为11111212-=.(2)甲参加市知识竞赛的概率为111236⨯=,乙参加市知识竞赛的概率为111236⨯=,丙参加市知识竞赛的概率为131139⨯=,所以,这3人中至少有1人参加市知识竞赛的概率为211311116981⎛⎫⎛⎫--⨯-= ⎪ ⎪⎝⎭⎝⎭.(3)方案一:设三人中奖人数为X ,所获奖金总额为Y 元,则600Y X =,且13,2X B ⎛⎫⎪⎝⎭,所以()()160060039002E Y E X ==⨯⨯=元,方案二:记甲、乙、丙三人获得奖金之和为Z 元,则Z 的所有可能取值为600、900、1200、1500,则()211160011236P Z ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭,()212111115900C 1112233212P Z ⎛⎫⎛⎫⎛⎫==⋅--+-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,()21211111112001C 1232233P Z ⎛⎫⎛⎫⎛⎫==⨯-+⋅-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()211115002312P Z ⎛⎫==⋅= ⎪⎝⎭,所以,()1511600900120015001000612312E Z =⨯+⨯+⨯+⨯=.所以,()()E Y E Z <,所以从三人奖金总额的数学期望的角度分析,品牌商选择方案二更好.21.已知抛物线()220C x py p =>:的焦点为F ,准线l 与抛物线C 的对称轴的交点为K ,点()2D t ,在抛物线C上,且DK =.(1)求抛物线C 的方程;(2)若直线()1200l kx y k k --=>:交抛物线C 于()()()112212A x y B x y x x >,,,两点,点A 在y 轴上的投影为E ,直线AE 分别与直线OB (O 为坐标原点)交于点Q ,与直线2l y x =:交于点P ,记OAP △的面积为1S ,OPQ △的面积为2S ,求证:12S S =.【答案】(1)24x y =;(2)证明见解析【解析】(1)作DH l ⊥,垂足为H ,则DFDH=.因为DK =,所以45DKH ∠= ,2DHHK ==.因为点()2D t ,在抛物线C 上,所以2422pt pt =⎧⎪⎨+=⎪⎩,消去t 得:2440p p -+=,解得21p t ==,.所以抛物线C 的方程为24x y =.(2)设()()1122A x y B x y ,,,,由2204kx y k x y--=⎧⎨=⎩,消去y 得2480x kx k -+=.则216320k k =->∆,因为0k >,所以2k >,则121248x x k x x k +==,.依题意知直线AE 的方程为1y y =,直线OB 的方程为22yy x x =.由1y y y x =⎧⎨=⎩,得P 点的坐标为()11y y ,.由122y y y y x x =⎧⎪⎨=⎪⎩得Q 的坐标为1212y x y y ⎛⎫ ⎪⎝⎭,.要证12S S =,即证111122AP y PQ y ⋅=⋅,即证AP PQ =.即证121112y x y x y y -=-,即证12211220y x y x y y +-=.因为()112y k x =-,()222y k x =-,所以1221122y x y x y y +-=()()()()212211222222k x x k x x k x x -+----()()()222121222428k k x x k k x x k =-+-+-()()222222284248880k k k k k k k k k =-⨯+-⨯-=-=.即12211220y x y x y y +-=,所以12S S =.22.已知函数()ln a f x ax x x=--.(1)若1x >,()0f x >,求实数a 的取值范围;(2)设12,x x 是函数()f x的两个极值点,证明:12()()f x f x a-<.【答案】(1)1,2∞⎡⎫+⎪⎢⎣⎭;(2)证明见解析【解析】(1)依题意,2221()(0)a ax x a f x a x x x x-+'=-+=>.①当0a ≤时,在(1,)x ∈+∞上()0f x '<,所以()f x 在()1,+∞上单调递减,所以()(1)0f x f <=,所以0a ≤不符合题设.②当102a <<时,令()0f x '=,得20ax x a -+=,解得()10,1x =()21,x ∞=∈+,所以当()21,x x ∈时()0f x '<,所以()f x 在()21,x 上单调递减,所以()(1)0f x f <=,所以102a <<不符合题设.③当12a ≥时,判别式2140a ∆=-≤,所以()0f x '≥,所以()f x 在()1,+∞上单调递增,所以()(1)0f x f >=.综上,实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.(2)由(1)知,当102a <<时,()f x 在()10,x 上单调递增,在()12,x x 上单调递减,在()2,x +∞上单调递增,所以1x 是()f x 的极大值点,2x 是()f x 的极小值点.由(1)知,121=x x ,121x x a +=,则21x x a-.综上,要证()()12f x f x -<,只需证()()1221f x f x x x -<-,因为()()()()2212112211121ln x x x x x f x f x a x x a x x x ---+=+--+⋅()()()21222121112122lnln x x x x a x x x x x x x x -=-+--=+()21221121ln 1x x xx x x -=+,设211xt x =>,()21()ln 1t g t t t -=+.所以()()2221414()011g t t t t '=+=+++,所以()g t 在()1,+∞上单调递增,所以()()10g t g >=.所以()()21120x x f x f x --+>,即得()()1221f x f x x x -<-成立.所以原不等式成立.。
《天利38套高考模拟试题汇编》数学-答桉
{
{
{
员 愿 圆 愿 孕 缘 源 缘 源 缘 解法一: 证明: (Ⅰ) , , 员 苑 援 疫孕 粤 月 悦 阅 月 悦 月 悦 阅 ⊥底面 粤 平面 粤 , 亦孕 粤 悦 援 疫∠ 粤 悦 月越 怨 园 毅 亦月 悦 悦 援 ⊥月 ⊥粤 又孕 , 分) 粤 悦越粤 亦月 悦 粤 悦 援( 源 ∩粤 ⊥平面 孕
(
)
・ 答员 ・
员 ・遭 ( ) , 员 员 援 ; 依 员 【解析】 疫葬 越糟 燥 泽 燥 泽 蚤 灶 蚤 灶 燥 泽 α糟 α泽 α原 β 垣泽 β 越糟 β 圆 ・遭越糟 ( 亦当 α 越 π , 越 π 时, 葬 燥 泽 燥 泽 π 原π 越 α原 β)越糟 圆β 远 圆 远 π 越 员; 糟 燥 泽 猿 圆 糟 燥 泽 燥 泽 α越 λ糟 圆 圆 圆 圆 圆 β, 若葬 , 则 越 燥 泽 蚤 灶 燥 泽 蚤 灶 λ遭 糟 α 垣泽 α越 λ (糟 β 垣泽 β) 泽 蚤 灶 蚤 灶 α越 λ泽 β, 圆 , 即得 越 员 越依 员 援 λ λ 员 灶 由二项式 圆 的展开式的二项式系数和为 员 圆 援 原 员 远 园 【解析】 曾 原 曾 员 远 灶 , 可得 圆 , 即得 灶越远 , 于是可得 圆 展开式的通项 远 源 越 远 源 曾 原 曾 则 远 原则 则 原则 则 远 原则 则 远 原 圆 则 公式为 悦 ・ ( ) ・ ( ) ・ ( ) ・ ・ , 曾 原 员 曾 越 原 员 圆 悦 远 圆 远 曾 令远 , 可得 则 , 于是得展开式中的常数项为 原 圆 则 越 园 越 猿 猿 猿 猿 (原 ) ・ 员 圆悦 员 远 园 援 远越原 圆 员 猿 员 原曾 【解 析】疫 造 (曾 )越造 垣 圆 员 猿 援 原 蚤 皂枣 蚤 皂 越造 蚤 皂 圆 越 原曾 曾 圆 原 员 曾 曾 曾 员 →员 →员 员 →员曾 原 原 员 员 且函数 枣 (曾 ) 为正实数集上的连续函数, ( )越 造 蚤 皂 越原 , 亦枣 员 圆 垣 员 曾 →员 曾 员 猿 解之得 葬 员 垣葬 越原 , 越原 援 圆 圆 圆 , ; 【 解析】 由编码表可得, 第 皂行是首项为 员 , 员 源 援 葬 越 灶 原 圆 灶 垣 圆 灶 晕 远 ∈ 灶 垣 公差为 皂原 的等差数列, 则第 皂行的 灶个数为 员 (灶 ) (皂原 ) , 员 垣 原 员 员 圆 , 则有 葬 (灶 ) (灶 )越灶 , 令 皂越灶 员 垣 原 员 原 员 原 圆 灶 垣 圆 灶 ∈晕垣; 灶越 令员 (灶 ) (皂原 )越 , 可得 (皂原员 ) (灶原 )越 , 其整数解为 垣 原 员 员 员 园 园 员 怨 怨
专题 天利38套汇总:数列
38套专题训练:数列大题1、(宁波期末)(本题满分15分)如果数列{}n a 同时满足以下两个条件:(1)各项均不为0;(2)存在常数k ,对任意*n N Î,212n n n a a a k ++=+都成立。
则称这样的数列{}n a 为“k 类等比数列”。
(I )若数列{}n a 满足31n a n =+,证明数列{}n a 为“k 类等比数列”,并求出相应的k ; (II )若数列{}n a 为“3类等比数列”,且满足121,2a a ==,问是否存在常数l ,使得21n n n a a a l +++=对于任意*n N ∈都成立?若存在,求出l ;若不存在,请举出反例。
2、(杭州检测)设数列{}n a 的前n 项和为n S ,若n S +n a =n (*N n ∈).(I )求数列{}n a 的通项公式; (II )求证:221...21212133221<nn a a a a ++++. 3、(绍兴期末)20、(本小题满分14分)数列{}n a 是公差不为零的等差数列,56a =.数列{}n b 满足:13b =,11231n n b bb b b +=⋅⋅⋅+.()I 当2n ≥时,求证:111n n n b b b +-=-; ()II 当31a >且3a *∈N 时,3a ,5a ,1k a ,2k a ,⋅⋅⋅,n k a ,⋅⋅⋅为等比数列.()i 求3a ;()ii 当3a 取最小值时,求证:1231231111111141111n n k k k k b b b b a a a a ⎛⎫+++⋅⋅⋅+>+++⋅⋅⋅+ ⎪ ⎪----⎝⎭.4、(温州一)19.(本题满分15分)对于任意的n ∈N *,数列{a n }满足1212121212121n na n a a n ---+++=++++ .(Ⅰ) 求数列{a n }的通项公式;(Ⅱ) 求证:对于n≥2,231222112nn ++++<- 5、(台州期末)18.(15分)已知数列{a n }的前n 项和S n ,a 1=t (t ≠﹣1),S n +2a n+1+n+1=0,且数列{a n +1}为等比数列. (1)求实数t 的值;(2)设T n 为数列{b n }的前n 项和,b 1=1,且.若对任意的n ∈N *,使得不等式+…≥恒成立,求实数m 的最大值.6、(湖州期末)20、(本小题满分14分)已知数列{}n a 的前n 项和记为n S ,且满足21n n a S -=.()I 求数列{}n a 的通项公式; ()II 设()1nn n b a =--,记12111n nb b b T =++⋅⋅⋅+,求证:2n T <. 7、(诸暨期末)8、(衢州期末)19. (本题满分14分)已知数列{n a }是公差不为0的等差数列,其前n 项和为n S ,124,,a a a成等比数列,5328a S =+ (Ⅰ)求数列{n a }的通项公式;(Ⅱ)若数列{n a }的前n 项和31n n n T a =+,对任意2n ≥且*n N ∈,不等式n b <n kT 恒成立,求实数k 的取值范围.9、(五校联考)21.(本题满分15分)已知数列{}n a 的前n 项和n S 满足2n n S a n =-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1n nn a b a +=,记数列{}n b 的前n 和为n T ,证明:1032n nT -<-<.10、(金华十校)11、(金丽衢1)设数列{}n a 的前n 项的和为n S ,且⎭⎬⎫⎩⎨⎧n S n 是等差数列,已知,11=a 12432432=++S S S . (Ⅰ)求{}n a 的通项公式n a ;(Ⅱ)当2≥n 时,1401-≥++λλnn a a 恒成立,求λ的取值范围.12、(杭州2)13、(嘉兴一模)在数列{}n a 中,13a =,n a =2n n b a =-,2n =,3,⋅⋅⋅.()I 求2a ,3a ,判断数列{}n a 的单调性并证明;()II 求证:11224n n a a --<-(2n =,3,⋅⋅⋅); ()III 是否存在常数M ,对任意2n ≥,有23n b b b ⋅⋅⋅≤M ?若存在,求出M 的值;若不存在,请说明理由. 14、(嘉兴检测2)19.(本题满分15分)如图,在平面直角坐标系xOy 中,设21=a ,有一组圆心在x 轴正半轴上的圆nA ( ,2,1=n )与x 轴的交点分别为)0,1(0A 和)0,(11++n n a A .过圆心n A 作垂直于x 轴的直线n l ,在第一象限与圆n A 交于点),(n n n b aB .(Ⅰ)试求数列}{n a 的通项公式;(Ⅱ)设曲边形11++n n n B B A (阴影所示)的m S S S n≤+++11121 恒成立,试求实数m 的取值范围.15、(宁波二模)19.(本题满分15分)已知m 为实数,且29-≠m ,数列{}n a 的前n 项和S n 满足m a S nn n +⨯+=32134 (Ⅰ)求证:数列{}13+-n n a 为等比数列,并求出公比q ;(Ⅱ)若15≤n a 对任意正整数n 成立,求证:当m 取到最小整数时,对于n ≥4,n ∈N ,都有 4811...n++>-16、(温州二模)20.(本小题14分)已知数列{}n a 满足:2,121==a a ,且1123(2,)n n n a a a n n *+-=+≥∈N .(I )设1()n n n b a a n *+=+∈N ,求证{}n b 是等比数列;(II )(i )求数列{}n a 的通项公式;(ii )求证:对于任意*∈N n 都有47111121221<++++-n n a a a a 成立. 17、(绍兴质检)18、(台州调研)19、(诸暨毕业班)20、(衢州二模)19.(本题满分15分)设各项均为正数的等比数列{}n a 的公比为q ,[]n a 表示不超过实数n a 的最大整数(如[]1.21=),设[]n n b a =,数列{}n b 的前n 项和为n T ,{}n a 的前n 项和为n S . (Ⅰ)若114,2a q ==,求n S 及n T ; (Ⅱ)若对于任意不超过2015的正整数n ,都有21n T n =+ ,证明:12013213q ⎛⎫<< ⎪⎝⎭.21、(杭二中)18.已知数列{a n }中,111,1,33,n n na n n a a a n n +⎧+⎪==⎨⎪-⎩为奇数为偶数, (Ⅰ)求证:数列23{}2n a -是等比数列;(Ⅱ)设n S 是数列{}n a 的前n 项和,求满足0n S >的所有正整数n .22、(学军中学)19.(15分)已知数列{a n },{b n }中,a 1=1,22111(1)n n n n a b a a ++=-⋅,n ∈N *,数列{b n }的前n 项和为S n .(1)若12n n a -=,求S n ;(2)是否存在等比数列{a n },使2n n b S +=对任意n ∈N *恒成立?若存在,求出所有满足条件的数列{a n }的通项公式;若不存在,说明理由;(3)若{a n }是单调递增数列,求证:S n <2.23、(镇海中学)19.(本题满分15分)P 在曲线C : ()11y x x=>上,曲线C 在点P 处的切线与直线y = 4x 交于点A , 与x 轴交于点B .设点A , B 的横坐标分别为,A B x x ,记()A B f t x x =.正数数列{n a }满足()1n n a f a -=*(,2)n N n ∈≥,1a a =. (Ⅰ)写出1,n n a a -之间的关系式;(Ⅱ)若数列{n a }为递减数列,求实数a 的取值范围; (Ⅲ)若2a =,34n n b a =-,设数列{n b }的前n 项和为n S ,求证:()*32n S n N <∈. 24、(绍兴一中)18. (本小题满分15分)已知正项数列{}n a 的前n 项和为11,,2n S a =且满足1241()n n S S n N *+=+∈.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)当1i n ≤≤,1j n ≤≤(,,i j n 均为正整数)时,求i a 和j a 的所有可能的乘积i j a a 之和.25、(五校2)20.(本小题满分14分)已知数列{}n a (*N n ∈,146n ≤≤)满足1a a =, 1,115,1,1630,1,3145,n n d n a a n n d+⎧⎪⎪-=⎨⎪⎪⎩≤≤≤≤≤≤其中0d ≠,*N n ∈.(1)当1a =时,求46a 关于d 的表达式,并求46a 的取值范围; (2)设集合{|,,,,116}i j k M b b a a a i j k i j k *==++∈<<N ≤≤.①若13a =,14d =,求证:2M ∈;②是否存在实数a ,d ,使18,1,5340都属于M ?若存在,请求出实数a ,d ;若不存在,请说明理由.26、19.(六校联考)已知数列{a n }的前n 项和为S n ,S n *3()2n a n n N =-∈.(I )求证{a n +1}是等比数列,并求数列{a n }的通项公式;(II )证明:27、(金华十校)18.(本题满分15分) 设S n 为等差数列{a n }的前n 项和,其中a 1=1,且1nn nS a a λ+=( n ∈N *).(Ⅰ)求常数λ的值,并写出{a n }的通项公式; (Ⅱ)记3nn na b =,数列{b n }的前n 项和为T n ,若对任意的n k ≥(k ∈N *),都有3144nT n -<,求常数k 的最小值.28、(宁波十校)已知数列{}n a 满足11a =,点()1,n n a a +在直线21y x =+上.数列{}n b 满足11b a =,121111()n n n b a a a a -=+++ (2n ≥且*n N ∈). (I)(i)求{}n a 的通项公式 ;(ii) 证明111n n n n b ab a +++=(2n ≥且*n N ∈); (II)求证:12111101113n b b b ⎛⎫⎛⎫⎛⎫+++< ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ . 29、(稽阳联谊)20.已知数列{a n }的前n 项和为S n ,满足a 1=2,S n +2=2a n ,n ∈N +, (Ⅰ)求a n ;(Ⅱ)求证+…+(Ⅲ)设b 1,b 2,…,b 2015是数列a 1,a 2,…,a 2015的任意一个排列,求()的最大值,并说明何时取到等号.30、(金丽衢2)20. (本题满分14分)在单调递增数列}{n a 中,12a =,24a =,且12212,,+-n n n a a a 成等差数列,22122,,++n n n a a a 成等比数列, ,3,2,1=n .(Ⅰ)(ⅰ)求证:数列}{2n a 为等差数列; (ⅱ)求数列}{n a 的通项公式.(Ⅱ)设数列}1{na 的前n 项和为n S ,证明:43(3)n n S n >+,*n ∈N .。
2023届高三新高考数学原创模拟试题(含答案解析)
2023届高三新高考数学原创模拟试题学校:___________姓名:___________班级:___________考号:___________A .||OQB .|5.若()20230112x a a x -=++A .2-B .-6.函数y=ax 2+bx 与y=log b aA ..C ..7.以()x φ表示标准正态总体在区间内取值的概率,若随机变量()2,N μσ,则概率(P ξμ-A .()()φμσφμσ+--()() 11φφ--C .1 μφσ-⎛⎫⎪⎝⎭.()2φμσ-8.若干个能确定一个立体图形的体积的量称为该立体图形的“基本量1111ABCD A B C D -,下列四组量中,一定能成为该长方体的“基本量”的是(A .1AB ,AC ,1AD 的长度B .AC ,1B D ,1AC 的长度D .1AC ,BD ,1CC 的长度二、多选题三、双空题13.设i 是虚数单位,已知2i 3-是关于x 的方程220(,)x px q p q ++=∈R 的一个根,则p =________,q =________.四、填空题五、双空题16.正方形ABCD 位于平面直角坐标系上,其中(1,1)A ,(1,1)B -,(1,1)C --,(1,1)D -.考虑对这个正方形执行下面三种变换:(1)L :逆时针旋转90︒.(2)R :顺时针旋转90︒.(3)S :关于原点对称.上述三种操作可以把正方形变换为自身,但是A ,B ,C ,D 四个点所在的位置会发生变化.例如,对原正方形作变换R 之后,顶点A 从(1,1)移动到(1,1)-,然后再作一次变换S 之后,A 移动到(1,1)-.对原来的正方形按1a ,2a ,L ,k a 的顺序作k 次变换记为12k a a a ,其中{,,}i a L R S ∈,1,2,,i k = .如果经过k 次变换之后,顶点的位置恢复为原来的样子,那么我们称这样的变换是k -恒等变换.例如,RRS 是一个3-恒等变换.则3-恒等变换共________种;对于正整数n ,n -恒等变换共________种.六、解答题17.如图,在四棱锥P ABCD -中,底面为直角梯形,AD BC ∥,90BAD ∠=︒,PA ⊥底面ABCD ,且2PA AD AB BC ===,M ,N 分别为PC ,PB 的中点.(1)证明:PB DM ⊥.(2)求BD 与平面ADMN 所成角的正弦值.18.十字测天仪广泛应用于欧洲中世纪晩期的航海领域,主要用于测量太阳等星体的方位,便于船员确定位置.如图1所示,十字测天仪由杆AB 和横档CD 构成,并且E 是CD 的中点,横档与杆垂直并且可在杆上滑动.十字测天仪的使用方法如下:如图2,手持(1)在某次测量中,40AE =,横档的长度为20,求太阳高度角的正弦值.(2)在杆AB 上有两点1A ,2A 满足1212AA AA =.当横档CD 的中点E 位于度角为(1,2)i i α=,其中1α,2α都是锐角.证明:122αα<.19.设正项数列{}n a 满足11a =,12121n n n a a a ++=-,*n ∈N .数列{}n x 满足π0,2n x ⎛⎫∈ ⎪⎝⎭,*n ∈N .已知如下结论:当π0,2x ⎛⎫∈ ⎪⎝⎭时,sin tan <<x x x (1)求{}n x 的通项公式.(2)证明:222212π11112111n n n a a a -<+++<+++ .20.椭圆C :22221(0)x y a b a b+=>>的右焦点为(1,0)F ,O 为坐标原点.椭圆C 于A ,B 两点.(1)若直线l 与x 轴垂直,并且OA OB ⊥,求a 的值.(2)若直线l 绕点F 任意转动,当A ,O ,B 不共线时,都满足AOB ∠取值范围.21.某校20名学生的数学成绩(1,2,,20)i x i = 和知识竞赛成绩(1,i y i =学生编号i 123456789数学成绩i x 1009996939088858380知识竞赛成绩iy 29016022020065709010060参考答案:【详解】,,或是,,根据集合元素的互异性,集合为,共含有9.AC【分析】对于A:根据线面平行分析判断;对于D:根据线面、面面垂直的判定定理分析判断【详解】对于选项A:因为D,DF⊂平面PDF,BC⊄平面PDF所以BC∥平面PDF,故A正确;对于选项B:因为D,E分别是且PA与AC夹角为60︒,所以异面直线对于选项C:因为E是BC的中点,且同理可得:AE BC ⊥,PE AE E = ,,PE AE ⊂平面PAE ,所以DF ⊥平面PAE ,且DF ⊂平面ABC ,所以平面PAE ⊥平面ABC ,故C 正确;对于选项D :取底面ABC 的中心O ,连接PO ,则PO ⊥平面ABC ,但PO 与平面PDF 相交,所以平面PDF 与平面ABC 不垂直,故D 错误;故选:AC.10.ABD【分析】由n S 与n a 的关系得出n a 与1n a -的关系式即可判断ABD ,通过举反例即可判断出C .【详解】对于A ,当2n ≥时,n n S a =且11n n S a --=,两式相减可得11n n n n n a S S a a --=-=-,即10n a -=.所以{}n a 是恒为0的数列,即{}n a 是公差为0的等差数列,故A 正确;对于B ,当2n ≥时,n n S na =且11(1)n n S n a --=-,两式相减可得11(1)n n n n n a S S na n a --=-=--,即1(1)(1)n n n a n a --=-,所以1n n a a -=,即{}n a 是常数列,是公差为0的等差数列,故B 正确;对于C ,如果10a ≠,令1n =可得21a =,当2n ≥时,1n n n S a a +=且11n n n S a a --=,两式相减可得()111n n n n n n a S S a a a -+-=-=-,如果0n a ≠,则111n n a a +--=,这并不能推出{}n a 是等差数列,例如:考虑如下定义的数列{}n a :1,1,2,2,3,3,L ,则其通项公式可写成2n a n =,21n a n -=.则()222122111(2)(1)nnn k k n n k k S a a k n n a a -+===+==+=∑∑,)DN.由(1)可知PB⊥平面BDN∠是BD与平面ADMN所成角.2AD AB BC a====,于是另一方面,22BD AB AD=+=因此,在直角三角形BDN中,sinBD与平面ADMN所成角的正弦值为(1)8 17证明见解析【分析】(1)方法一,根据三边长度,利用余弦定理,求方法二,先求sin CAE∠,再根据二倍角公式求)如图:轴垂直,则直线l :1x =,联立直线与椭圆方程可得2b a =±.所以不妨设1,A ⎛ ⎝,所以4210b OA OB a ⋅=-= ,则b a,所以210a a --=,解得)如图:(i )若直线AB 与x 轴垂直,由(1)可知钝角,只需4210b OA OB a ⋅=-< ,即21b a >.代入152-(舍去).)若直线AB 与x 轴不垂直,设()11,A x y ,221b a =-,椭圆方程变为222211x y a a +=-.联立直线与椭圆方程选做(ii )问:根据()g x 的单调性,可知:()g x 在区间π3π2π,2π()22m m m ⎛⎫++∈ ⎪⎝⎭Z 即()1,m m a b +()g x 在ππ2,2π()22m m m π⎛⎫-++∈ ⎪⎝⎭Z 即(),m m b a 中的值域为结合①②两式以及()1(0)g g b >,可知当N m ∈时,()g x 在πππ,π[0,22m m ⎛⎫-+++∞ ⎪⎝⎭I 当21m k =-时,()()()211,k k k A g a g b --=;当2m k =。
2023年陕西省西安三十八中高考数学模拟试卷(文科)(2月份)+答案解析(附后)
2023年陕西省西安三十八中高考数学模拟试卷(文科)(2月份)1. 在下列集合中,是其真子集的是( )A. B. C. D.2. 若,则z在复平面内所对应的点的坐标为( )A. B. C. D.3. 若向量,,则( )A. B. C. 40 D. 464. 函数的零点为( )A. B.2 C. D.5. 某算法的程序框图如图所示,则该算法的功能是( )A. 计算B. 计算C. 计算D. 计算6. 若抛物线上一点到焦点的距离是5p,则( )A. B. C. D.7. 某中学举行歌唱比赛,甲、乙两位参赛选手各自从《难却》、《兰亭序》、《许愿》、《最初的梦想》这四首歌曲中选两首作为参赛歌曲,已知甲选了《难却》,乙末选《许愿》,则甲、乙有相同的参赛歌曲的概率为( )A. B. C. D.8. 若x ,y 满足约束条件,则下列目标函数中最大值为0的是( )A.B. C.D.9. 已知函数的最小正周期为T ,设,,,则( )A.B. C.D.10. 在正四棱柱中,E 是的中点,,则BE与平面所成角的正弦值为( )A.B. C.D.11. 若锐角满足,则( )A.B. C.D.12. P 为椭圆上一点,曲线与坐标轴的交点为A ,B ,C ,D ,若,则P 到x 轴的距离为( )A. B. C.D.13. 函数的图象在点处的切线的斜率为______ .14. 若“”是“”的充分不必要条件,则a 的取值范围是______ .15. 在中,,,,则的取值范围是______ .16. 若某圆锥外接球的体积为,母线长为4,则该圆锥的底面面积为______ .17. 为了丰富大学生的课外生活,某高校团委组织了有奖猜谜知识竞赛,共有500名学生参加,随机抽取了100名学生,记录他们的分数,将其整理后分成4组,各组区间为并画出如图所示的频率分布直方图.估计所有参赛学生的平均成绩各组的数据以该组区间的中间值作代表;若团委决定对所有参赛学生中成绩排在前50名的学生进行表彰,估计获得表彰的学生的最低分数线.18. 设等比数列的前n项和为,已知,且求的通项公式;设,数列的前n项和为,证明:当时,19.如图,在三棱柱中,,,在平面ABC上的射影为AB的中点.证明:求多面体的体积.20. 已知函数求的单调区间;若,,证明:21. 在直角坐标系xOy中,曲线C的参数方程为为参数,以坐标原点O 为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程是求曲线C的普通方程和直线l的直角坐标方程;若直线l与曲线C交于A,B两点,点,求的值.22. 设a,b,c均为正数,且证明:;答案和解析1.【答案】C【解析】解:是的子集,故A错误;不包含元素1,故B错误;是其真子集的是,故C正确;不包含元素1,故D错误.故选:根据已知条件,结合真子集的定义,即可求解.本题主要考查真子集的定义,属于基础题.2.【答案】B【解析】解:,,在复平面内所对应的点的坐标为故选:利用复数的运算法则先化简,再得到其在复平面内对应点的坐标即可.本题考查了复数的运算法则及其几何意义,属于基础题.3.【答案】D【解析】解:已知向量,,则故选:结合平面向量数量积的坐标运算求解即可.本题考查了平面向量数量积的运算,属基础题.4.【答案】A【解析】解:函数的零点解得方程的根,可得,,解得故选:函数的零点转化为方程根,求解即可.本题考查函数的零点与方程根的关系,是基础题.5.【答案】A【解析】解:,,第一次循环:,;第二次循环:,;第三次循环:,;第四次循环:,;输出,故选:由题意,进行四次循环,可计算输出的本题考查程序框图,考查学生计算能力,属于基础题.6.【答案】D【解析】解:根据抛物线的几何性质可得:,,故选:根据抛物线的几何性质,方程思想,即可求解.本题考查抛物线的几何性质,方程思想,属基础题.7.【答案】C【解析】解:基本事件为:甲选《难却》+《兰亭序》,乙选《难却》+《兰亭序》,甲选《难却》+《兰亭序》,乙选《难却》+《最初的梦想》,甲选《难却》+《兰亭序》,乙选《兰亭序》+《最初的梦想》,甲选《难却》+《许愿》,乙选《难却》+《兰亭序》,甲选《难却》+《许愿》,乙选《难却》+《最初的梦想》,甲选《难却》+《许愿》,乙选《兰亭序》+《最初的梦想》,甲选《难却》+《最初的梦想》,乙选《难却》+《兰亭序》,甲选《难却》+《最初的梦想》,乙选《难却》+《最初的梦想》,甲选《难却》+《最初的梦想》,乙选《兰亭序》+《最初的梦想》,共9种情况,其中甲、乙没有相同的参赛歌曲的事件为:甲选《难却》+《许愿》,乙选《兰亭序》+《最初的梦想》,共1种情况,所以甲、乙有相同的参赛歌曲的事件有8种情况,故概率为故选:利用列举法,结合古典概型概率计算公式求得正确答案.本题主要考查古典概型概率公式,考查运算求解能力,属于中档题.8.【答案】B【解析】解:由解得,设,画出可行域如下图所示,由图可知,目标函数在点处取得最大值,所以的最大值为故选:画出可行域,求目标函数的最大值,从而求得正确答案.本题主要考查简单线性规划,考查数形结合思想与运算求解能力,属于基础题.9.【答案】B【解析】解:函数的最小正周期为,设,,,所以故选:确定后,先判断函数值的正负,再利用中间值比较大小即可.本题考查三角函数的性质,考查比较大小,属于中档题.10.【答案】A【解析】解:在正四棱柱中,E是的中点,,以D为坐标原点,建立空间直角坐标系,如图,则,,,,,,,设平面的法向量,则,取,得,设BE与平面所成角为,则BE与平面所成角的正弦值为:故选:以D为坐标原点,建立空间直角坐标系,利用向量法能求出BE与平面所成角的正弦值.本题考查直线与平面所成角的正弦值的求法等基础知识,考查运算求解能力,是中档题.11.【答案】D【解析】解:因为,所以,又因为,所以,,所以故选:结合同角三角函数的基本关系式、两角差的余弦公式来求得正确答案.本题主要考查了同角基本关系及和差角公式在三角化简求值中的应用,属于基础题.12.【答案】A【解析】解:椭圆方程为,,,,又曲线与坐标轴的交点为A,B,C,D,不妨设A,B为x轴上的左右交点,C,D为y轴上的上,下交点,则易得,,,,又P为椭圆上一点,且椭圆的两交点为,,,,点轨迹为以C,D为焦点,长轴长为的椭圆,,,,,,点轨迹方程为,又P为椭圆上一点,联立,解得,即,到x轴的距离为,故选:根据椭圆的几何性质,椭圆的概念,方程思想,即可求解.本题考查椭圆的几何性质,椭圆的概念,方程思想,属中档题.13.【答案】5【解析】解:由,得,即函数的图象在点处的切线的斜率为故答案为:求出原函数的导函数,得到函数在处的导数值即可得答案.本题考查导数的概念及其几何意义,熟记基本初等函数的导函数是关键,是基础题.14.【答案】【解析】解:由题意可知,当,即时,集合,满足题意,当,即时,集合或,,,解得,综上所述,a的取值范围是故答案为:由题意可知,再利用集合间的包含关系求解即可.本题主要考查了充分条件和必要条件的定义,属于基础题.15.【答案】【解析】解:在中,,,由余弦定理得,,,又,则,故答案为:利用余弦定理可得,结合且,即可得出答案.本题考查三角形中的几何计算,考查转化思想和函数思想,考查逻辑推理能力和运算能力,属于中档题.16.【答案】【解析】解:设圆锥外接球的半径为R,则,解得,由球的性质可得圆锥的外接球球心与圆锥底面圆的圆心连线与底面圆垂直,所以球心O在圆锥的高线SM或SM的延长线上,如图所示:设圆锥的底面圆半径为r,高为h,因为母线长为4,所以,解得,,所以圆锥的底面圆面积为故答案为:求出圆锥外接球的半径R,由球的性质可得圆锥的外接球球心与圆锥底面圆的圆心连线与底面圆垂直,利用勾股定理求出圆锥的高和底面圆半径,再计算底面圆面积.本题考查了圆锥与球的结构特征与应用问题,也考查了运算求解能力,是中档题.17.【答案】解:由,得,这100名参赛学生的平均成绩约为分,故估计所有参赛学生的平均成绩为82分;获得表彰的学生人数的频率为,设获得表彰的学生的最低分数线为x,由分数在区间的频率为,可知,由,得,故估计获得表彰的学生的最低分数线为95分.【解析】利用频率分布直方图频率和为1计算m的值,再计算平均数;获得表彰的学生人数的频率为,进而可得最低分数线在内,再进行求解.本题主要考查了频率分布直方图的应用,考查了平均数的估计,属于基础题.18.【答案】解:设等比数列的公比为q,,且,,,联立解得,,证明:,数列的前n项和为,数列为单调递增数列,当时,,因此结论成立.【解析】设等比数列的公比为q,由,且,可得,,联立解得,q,即可得出,利用求和公式即可得出数列的前n项和为,再利用数列的单调性即可证明结论.本题考查了等比数列的通项公式与求和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.19.【答案】解:证明:在三棱柱中,,,在平面ABC上的射影为AB的中点D,连接,如图,平面ABC,平面ABC,,,平面,平面,,,三棱柱的高,,多面体的体积为:【解析】连接,则平面ABC,,从而平面,进而,由此能证明三棱柱的高,,多面体的体积为,由此能求出结果.本题考查线面垂直的判定与性质、等体积法等基础知识,考查运算求解能力,是中档题.20.【答案】解:的定义域为,则,令得,当时,;当时,,故的单调递增区间为,单调递减区间为;证明:由,得,则,所以,令,则,若,则当时,,而,所以对不可能恒成立,所以,令函数,则,令得,当时,,当时,,所以,所以,所以,令函数,则,令得,当时,,当时,,所以,所以,即【解析】求导数,结合定义域确定,的解集即可得单调区间;将原不等式变形整理成,构造新函数,分析讨论,时不等式成立情况,再将问题转化为,设函数,求导数确定单调性与最值,即可证明结论.本题考查了函数单调性、含参不等式恒成立与导数的综合应用,属于中等难度题.解决本题中含双参不等式的关键是先化简指对混合结构的不等式,利用指对同构,涉及的母函数为,则不等式化为恒成立,构造新函数,确定其单调性与最值即可转换为恒成立,将双参数不等式转化为单变量不等式恒成立问题,即再构造函数,求导确定其最值即可证得21.【答案】解:解:曲线C的参数方程为为参数,消去参数可得,又,所以曲线C的普通方程为,由,由可得:,故直线l的直角坐标方程为;由知直线l为,故直线的其中一个参数方程为为参数,将直线l的参数方程代入曲线C的普通方程并整理得,设A,B对应的参数分别是,,则,,且,则,,由,故【解析】在曲线C的参数方程中消去参数,即可得其普通方程,将代入,即可得直线l的直角坐标方程;写出直线l过点的参数方程,设出A,B两点的参数,与曲线C联立,判别式大于零,韦达定理可得关于A,B参数的等式,根据参数的几何意义代入中计算即可.本题主要考查简单曲线的极坐标方程,考查转化能力,属于中档题.22.【答案】证明:因为,,,所以,当且仅当时,等号成立,又,所以由,且c为正数,得,则,则,由柯西不等式可得:,当且仅当时,等号成立,所以【解析】利用重要不等式,结合综合法即可得证;利用柯西不等式即可证明不等式.本题主要考查不等式的证明,柯西不等式以及基本不等式的应用,考查逻辑推理能力,属于中档题.。
【天利38套】2020能力提升卷文科数学试卷详细解析(3套)
( (
".%"-%*")* 在!'$&"上 单 调 递 增$1!'"( )*& (
(
的
三
棱
锥
$其
体
积+(
&.,,$-.
*3(
& .
4.43(3$
( (
故选 $!
(
(
(
(
(
(
(
(
(
(
(
( 方法技巧由 三 视 图 画 几 何 体 的 直 观 图 时可 以 在 (
长方体里构造利 用 三 视 图 的 定 义 验 证 直 观 图 的 正 (
确性!
( (
!!!答 案 !
(
命题意图本题 考 查 导 数 的 计 算#利 用 导 数 研 究 函
( (
'!答 案 "
( 命题意图本题考查茎叶图和数字特征考 查 数 据 分
( (
析和数学运算核心素养!
( 解题分析由茎叶图可得"甲 ("乙 (21所以排除 !
( (
甲的 中 位 数 为 2.乙 的 中 位 数 为 23所 以 排 除 #
( (
)-甲
(
& 2
02)21-%
命题意图本题考查平面向量的数量积和 夹 角 问 题 考 查 推 理 论 证 能 力 考 查 数 学 运 算 核 心 素 养 !
示
可
知当
直
线
%(
1-")
& -
过
点
#
时
&
有
最
小
值
2023年高考数学模拟试题(一)参考答案
f(
y0 )
f(
y0 )
。又 函 数 f (
= y0 ,y0 ∈ [
1,e]
x )=
,所 以 等
0,+ ∞ )
l
nx+x+a 的定 义 域 为 (
π
。综上 可 得,
实 数α 的 取 值 范
9
π
2π
。
围为 0, ∪
9
9
9π
17π
1
6. 2e4 ,2e4
提示:
已 知 f(
x)=
1 ,
4 4
设平 面 ACE 的 一 个 法 向 量 为 m = (
x,
,
则
z)
y,
→
CA ·m =x+y=0,
→
CE ·m =
取 z=
3
1
x+ y+z=0,
4
4
。
得 m=(
-1,
2,
-2,
-1)
设直线 BE 与 平 面 ACE 所 成 角 为α,则
→
|BE ·m| 4 3
4
,即 直 线 BE 与 平
2
π
9π
1
7π
,所 以
= 17π ,易 知 φ
>φ
>φ
4
4
4
4
e
2
2
2
2
1
即 2e4 <a< 2e4 。
< 9π ,
17π <
a
4
4
e
e
9π
17π
三、
解答题
2
天利三十八套数学答案
天利三十八套数学答案天利38套数学答案(一):急用.高一天利38套单元专题数学,专题6,函数的图像,题实在太难了大题要详细的选择填空直接答案就行名字是天利38套单元专题专题6 函数的图像每个年级都有几个版本的天利,你说的是哪个版本的》天利这练习很好,很强大,我在高中时全校都是用的天利,天利38套数学答案(二):2010天利38套英语答案1-5张的答案只有一到三套单选:(一)ABBBA DDDCC CDACB(二)ACCBD BDACB BDCBA (三)ACDBC BBBCD CBAA【天利38套数学答案】天利38套数学答案(三):天利38套2011语文答案11-13张一套一套的在百度上收,因为是中考题所以有答案,但你要检查一下是不是你哪一套.天利38套数学答案(四):天利38套单元专题7函数的概念与图像7A答案找度娘 == 天利38套数学答案(五):天利38套六年级英语13完形填空和14阅读理解的答案【天利38套数学答案】(1)亲爱的老师,几年来是您带领我在知识的海洋中遨游;是您引领我放飞理想,我想对您说一声,“老师,您辛苦了!" (2)三年的时光如云般飘过,时间的天使不苟地将时针拨向离别.在这临别之际,我们的心情如大海的波涛汹涌澎湃.曾记得,我们刚进校门时,还是蹦蹦跳跳的少年,多么幼稚、多么天真!而如今,我们已长大,脸上写满了成熟曾记得,我们刚进校门时,还只会加减乘除,多么无知,多么贫乏.而如今,我们似乎上通天文,下明地理,洋洋洒洒,满腹经伦三年的阳光雨露,三年的辛勤耕耘,花儿开放了,姹紫嫣红;果实成熟了,硕果累累.花儿翩翩起舞,是在感谢这片沃土;果实频频点声,是在报答辛勤的园丁风筝飞得再高,它的线仍牵着您的手;游子走得再远,他的心仍挂着母亲.不管走向哪里,我们都不会忘记您——老师;我们会努力学习,用优异的成绩献给您——老师敬爱的老师,是您给了我健飞的翅膀,是您给了我青春的光亮,您是漆黑夜空中的恒星,将照亮我的一生.(3)光阴似箭,日月如梭,转眼间,美好的小学生活将要结束,我的心中不免掠过一丝莫名的忧伤,寻找这忧伤的源头,原来是不忍与您分别.您平易近人,和蔼可亲,您对我们的爱像暖流一样温暖着学生的心,也像熊熊热火,照亮我学习的前程.不知在以后的学习生涯中,我还会不会再一次幸运的遇到您这么优秀的老师,在这里,我想对您说谢谢您对我的教育,老师,您辛苦了.(4)老师你如一位园丁,每天浇灌这我们这些祖国的花朵,你浇灌的是太阳水肥料,也是知识.(5) 一句轻柔的的表扬,心里是那么的甘甜;一句亲切的鼓励,浑身充满了力量……至今铭记也许不仅仅是老师无意间说的话,没有您的话语不会有我今天的收获.老师!我会带着这些话踏入中学的大门.一股流水,不分昼夜滋润一方土地,流过后也不怨辛劳.永远都是那么流啊流,浇灌着一批批花草.今年流到了我们这批花草.亲爱的水!(6)我在绿荫下为你祝福,老师!我们就像这棵树上的叶子,马上就要离你而去,请相信我们一定会在一个云淡风轻的午后,捎上祝福,静静地在你四周撑起一片阴凉.我在花朵旁为你祝福,老师!我们就像这朵花的花瓣,马上就要离你而去,请相信我们一定会在一个风和日丽的早上,捎上成绩,静静地在你四周散出一阵芬芳.我在小河边为你祝福,老师!我们就像这条河里的水珠,马上就要离你而去,请相信我们一定会在一个清风鸣蝉的夜晚,捎上谢意,静静地在你四周撒下一滴清凉.天利38套数学答案(六):关于数学的动点问题的典型例题以及解析动点题,那种基本图形是四边形的,在平行四边形、矩形、菱形、正方形、等腰梯形等等中所出现的动点问题.另一种可能是抛物线与动点相结合的,你可以看其他省市的中考题,象天利38套等带答案的那种,自己看几道同类型的答案,你就知道动点题怎么做了. 总之,动点问题的解题思路是动中取定(或说动中取静都可以),多画几个图形,通常一种情况画出一个图形,就可以把动点转化成一般的几何证明了. 希望会对你有所帮助,祝你中考取得好成绩!例:在平行四边形ABCD中,DA=4cm,角A=60度,BD垂直AD,以动点P从A出发,以每秒1cm的速度沿A到B到C的路线匀速运动,过点P作直线PM,使PM垂直AD(1)当点P运动2秒,设直线PM与AD相交于点E,求三角形APE的面积(2)当点P运动2秒时,另一动点Q也从A出发沿A到B到C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动,过Q作直线QN,使QN平行PM,设点Q运动速度为t秒(t大于等于0,小于等于10),直线PM与QN截平行四边形ABCD所得图形的面积为scm^2 1.求s关于t的函数关系式(1)答案是(√3)/2 这一问很简单,就不写过程了. (2)当0≤t≤6时,截面为梯形(开始是三角形),过Q作QO⊥PM,垂足为O,易求QO为1. 因为QA=tcm,在Rt三角形QAN中,因为角A=60度,所以QN等于QA/2=(√3t)/2,PM=OM+PO=(√3t)/2+√3S=(QN+PM)_QO/2=(√3t+√3)/2 当6<t≤8时,截面为六边形S =S平行四边形ABCD-S三角形AQN-S三角形CPM=-(5√3)/8_(t-8)^2+6√3 当8天利38套数学答案(七):谁有初三下册数学第二章二次函数那一部分的习题(带答案)啊,最好稍微难一点的.我建议你去买《天利38套》或《五三中考数学版》天利38套数学答案(八):一个概率统计题从某自动包装机包袋的食盐中,随机抽取20袋作为样本,按各袋的质量(单位:g)分成四组,[490,495),[495,500),[500,505),[505,510],相应的样本频率分布直方图如图所示,(Ⅰ)估计样本的中位数是多少?落入[500,505)的频数是多少?(Ⅱ)现从这台自动包装机包袋的大批量食盐中,随机抽取3袋,记{表示食盐质量属于[500,505)的袋数,依样本估计总体的统计思想,求ξ的分布列及其期望.题目我会做,但是我只想知道 1 最后一问为什么要强调“大批量”?2 C (k,n)P的n-k次方(1-P)的k次方有什么使用条件么?我做天利38套题为什么有的题目答案用此公式有时又不用?强调“大批量”,是使实验的次数足够多,从而使实验结果的频率等于其概率.独立重复实验才能用此公式.即每次实验的结果对下一次实验没有影响.比如取球的问题,只有有放回地取球才是独立重复实验,如果无放回地取球,则不能用这个公式.天利38套数学答案(九):交流发电机和直流发电机的原理都是“电磁感应”?为什么《2010年的物理中考天利38套》上的第32套安徽省的22题答案是直流发电机的原理是磁场对通电导体有力的作用?直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理. 交流发电机和直流发电机的原理是一样的,都是通过电磁感应来发电.直流发电机只是将交流发电机滑环用换向器代替,从而使线圈产生交流电而供给外部的电流方向不变,所以产生的是直流电,没有换向器产生的是交流电!可以看图会发现输出的那个滑片有所不同 . 交流发电机是利用电磁感应原理,将发动机带动发电机轴转动的机械能转变为交流电电能输出的发电机.其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的.直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理.天利38套数学答案(共9篇)。
高中高考数学模拟试卷试题含答案.docx
16.有以下几个命 :
①曲x2-(y+1)2=1按a=(-1,2)平移可得曲
(x+1)2-(y+3)2=1
②与直相交,所得弦2
③A、B两个定点,m常数,, 点P的 迹
④若 的左、右焦点分F1、F2,P是 上的任意一点, 点F2关于∠F1PF2的外角平分 的 称点M的 迹是
B.向右平移个单位
C.向左平移个单位
D.向右平移个单位
5.如图,是一程序框图,则输出结果中()
.
精品文档
A.B.
C.D.
6.平面的一个充分不必要条件是()
A.存在一条直B.存在一个平面
C.存在一个平面D.存在一条直
7.已知以F1(-2,0),F2(2,0) 焦点的 与直有且 有一个交点, 的
()
A.B.C.D.
在答题卡上把所选题目对应的题号涂黑.
22.(本小题满分10分)
[几何证明选讲]如图,E是圆内两弦AB和CD的交点, 直线EF//CB,交AD的延长线于F,FG切圆于G,求证:
(1)∽;
(2)EF=FG.
23.[选修4-4:坐标系与参数方程]
已知曲线C:(t为参数),C:(为参数).
(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;
8.O是平面上一定点,A、B、C是平面上不共 的三个点, 点P足
,p的 迹一定通 △ABC的 ( )
A.外心B.重心C.内心D.垂心
9. {an}是等差数列,从{a1,a2,a3,⋯,a20}中任取3个不同的数,使3个数仍成等差数列, 不同的等差数列最多有 ( )
A.90个B.120个C.180个D.200个
精选2020高考数学(理)各地名校模拟试题汇编01(含解析)
精选2020各地名校模拟试题汇编01理科数学试题本试卷共 23 题。
满分150分,考试用时120分钟。
注意事项:1. 答题前,考生务必将自己的姓名.准考证号填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效.3. 填空题和解答题答在答题卡上每题对应的答题区域内,答在试题卷上无效. 一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将正确的答案填涂在答题卡上。
)2.已知全集,集合,则( )A .B .C .D .3.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下图,则下面结论中错误的一个是( )A .甲的极差是29B .甲的中位数是24C .甲罚球命中率比乙高D .乙的众数是21A. B. C. D.{}2,1,0,1,2U =--{}2|20,M x x x x N =--<∈U C M ={}2,1,2-{}2,1,2--{}2-{}2(1,2)(2,3)(3,4)(e,)+∞6.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n =( )A .4B .5 C .2 D .3则双曲线的离心率是( ) 8.若的展开式中的系数为,则实数的值为A .B .2C .3D .49.唐朝著名的凤鸟花卉纹浮雕银杯如图1所示,它的盛酒部分可以近似地看作是半球与圆柱的组合体(如图.当这种酒杯内壁表面积(假设内壁表面光滑,表面积为平方厘米,Γ()421ax x -+5x 56-a 2-2)S半球的半径为厘米)固定时,若要使得酒杯的容积不大于半球体积的2倍,则的取值范围为圆的公共点为、,点为圆上一动点,则到直线的距离的最大值为( )最小值为() 二、填空题(本大题共4小题,每小题5分,共20分)13.已知中,43AB i j =+u u u r r r ,34AC i j =+u u u r r r ,其中,i j r r 是垂直的单位向量,则的面积为________.R R ()C A B P M P AB ABC ∆ABC∆14.定义在R 上的奇函数,当时,则函数的所有零点之和为_____. 15.已知将函数的图象向右平移个单位长度得到函数的图象,若和的图象都关于对称,则______.16.如图,在直角梯形ABCD 中,AB ⊥BC ,AD ∥BC ,,点E 是线段CD 上异于点C ,D 的动点,EF ⊥AD 于点F ,将△DEF 沿EF 折起到△PEF 的位置,并使PF ⊥AF ,则五棱锥P -ABCEF 的体积的取值范围为______.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 17.(本小题满分12分)已知△ABC 的三个内角A ,B ,C 对应的边分别为a ,b ,c ,且acosB =4,bsinA =3. (1)求a ;(2)若△ABC 的面积为9,求△ABC 的周长.18.(本小题满分12分)如图所示,在梯形ABCD 中,AB CD ∥,120BCD ∠=o ,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD CD BC CF ===.()f x 0x ≥()12log (1),[0,1)13,[1,)x x f x x x +∈⎧⎪=⎨⎪--∈+∞⎩()()()01F x f x a a =-<<()()sin 06,22f x x ππωϕωϕ⎛⎫=+<<-<<⎪⎝⎭3π()g x ()f x ()g x 4x π=⋅=ωϕ1AB BC AD 12===(1)求证:EF⊥平面BCF;(2)点M在线段EF上运动,设平面MAB与平面FCB所成锐二面角为θ,试求cosθ的取值范围.19.(本小题满分12分)已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),长为PQ的两端点在轨迹C上滑动.当x轴是∠PBQ的角平分线时,求直线PQ的方程.20.(本小题满分12分)已知.(Ⅰ)若在上恒成立,求实数的取值范围;(Ⅱ)证明:当时,.21.(本小题满分12分)一种掷骰子走跳棋的游戏:棋盘上标有第0站、第1站、第2站、…、第100站,共101站,设棋子跳到第n 站的概率为P n ,一枚棋子开始在第0站,棋手每掷一次骰子,棋子向前跳动一次.若掷出奇数点,棋子向前跳一站;若掷出偶数点,棋子向前跳两站,直到棋子跳到第99站(获胜)或第100站(失败)时,游戏结束(骰子是用一种均匀材料做成的立方体形状的游戏玩具,它的六个面分别标有点数1,2,3,4,5,6). (1)求P 0,P 1,P 2,并根据棋子跳到第n 站的情况,试用P n -2和P n -1表示P n ; (2)求证:{P n -P n -1}(n =1,2,…,100)为等比数列; (3)求玩该游戏获胜的概率.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程(本小题满分10分)在极坐标系下,方程2sin 2ρθ=的图形为如图所示的“幸运四叶草”,又称为玫瑰线.(Ⅰ)当玫瑰线的0,2πθ⎡⎤∈⎢⎥⎣⎦时,求以极点为圆心的单位圆与玫瑰线的交点的极坐标;(Ⅱ)求曲线22sin 4ρπθ=⎛⎫+ ⎪⎝⎭上的点M 与玫瑰线上的点N 距离的最小值及取得最小值时的点M 、N 的极坐标.23.选修4-5:不等式选讲(本小题满分10分)已知函数,. (Ⅰ)当时,解关于的不等式;(Ⅱ)若对任意,都存在,使得不等式成立,求实数的取值范围.()223f x x a x a =-+-+()24,g x x ax a R =++∈1a =x ()4f x ≤1x R ∈2x R ∈()()12f x g x >a一、选择题:(本大题共12小题,每小题5分,共60分。
天利三十八套2022数学答案
天利三十八套2022数学答案1.如图1,抛物线y =ax 2−154x +c 交x 轴于A ,B 两点,交y 轴于点C .直线y =−34x +3经过点B ,C .(1)求抛物线的解析式;(2)若点P 为直线BC 下方的抛物线上一动点(不与点B ,C 重合),则△PBC 的面积能够等于△BOC 的面积吗?若能,求出相应的点P 的坐标;若不能,请说明理由; (3)如图2,现把△BOC 平移至如图所示的位置,此时三角形水平方向一边的两个端点点O ′与点B ′都在抛物线上,称点O ′和点B ′为△BOC 在抛物线上的一“卡点对”;如果把△BOC 旋转一定角度,使得其余边位于水平方向然后平移,能够得到这个三角形在抛物线上新的“卡点对”.请直接写出△BOC 在已知抛物线上所有“卡点对”的坐标.解:(1)分别把x =0,y =0代入一次函数表达式得:点C 、B 的坐标分别为(0,3)、(4,0),将点B 、C 的坐标代入二次函数表达式得:{16a −15+c =0c =3,解得:{a =34c =3, 故抛物线的表达式为:y =34x 2−154x +3; (2)直线y =−34x 和直线BC 平行,直线y =−34x 和抛物线的交点就是满足条件的点P , 则{y =34x 2−154x +3y =−34x ,解得:{x =2y =−32, 即当(2,−32)时,两个三角形面积相同; (3)抛物线的对称轴为:x =52,①当O ′B ′在水平位置时,如图2所示, O ′B ′=4,则点B ′和O ′的横坐标分别为12、92,将横坐标代入二次函数表达式得:y =2116, 故此时的“卡点对”坐标为(12,2116)和(92,2116);②当O ′C ′在水平位置时,O ′C ′=3,则点B ′和O ′的横坐标分别为4、1, 将横坐标代入二次函数表达式得:y =0, 故此时的“卡点对”坐标为(1,0)和(4,0); ③当B ′C ′在水平位置时,同理可得:此时的“卡点对”坐标为(0,3)和(5,3); 故抛物线上所有“卡点对”的坐标是(12,2116)和(92,2116)、(1,0)和(4,0)、(0,3)和(5,3).2.定义:对于给定的一次函数y =ax +b (a ≠0),把形如y ={ax +b(x ≥0)−ax +b(x <0)的函数称为一次函数y =ax +b (a ≠0)的衍生函数.已知矩形ABCD 的顶点坐标分别为A (1,0),B (1,2),C (﹣3,2),D (﹣3,0). (1)已知函数y =2x +1.①若点P (﹣1,m )在这个一次函数的衍生函数图象上,则m = 3 .②这个一次函数的衍生函数图象与矩形ABCD 的边的交点坐标分别为 (12,2)或(−12,2) .(2)当函数y =kx ﹣3(k >0)的衍生函数的图象与矩形ABCD 有2个交点时,k 的取值范围是 1<k <3 .解:(1)①x =﹣1<0,则m =﹣2×(﹣1)+1=3, 故答案为3;②一次函数的衍生函数图象与矩形ABCD 的边的交点位置在BC 上, 当y =2时,2x +1=2,解得:x =12, 当y =2时,﹣2x +1=2,解得:x =−12, 故答案为(12,2)或(−12,2);(2)函数可以表示为:y =|k |x ﹣3,如图所示当直线在位置①时,函数和矩形有1个交点,当x =3时,y =|k |x ﹣3=3|k |﹣3=0,k =±1, k >0,取k =1当直线在位置②时,函数和图象有3个交点, 同理k =3,故在图①②之间的位置,直线与矩形有2个交点,即:1<k<3.3.如图,在平面直角坐标系中,直线l:y=−√33x+2√3与x轴、y轴分别交于点A,B,将点B绕坐标原点O顺时针旋转60°得点C,解答下列问题:(1)求出点C的坐标,并判断点C是否在直线l上;(2)若点P在x轴上,坐标平面内是否存在点Q,使得以P、C、Q、A为顶点的四边形是菱形?若存在,请直接写出Q点坐标;若不存在,请说明理由.解:(1)设旋转后OB所在的直线m与直线l交于点C′,直线l:y=−√33x+2√3,令x=0,则y=2√3,令y=0,则x=6,则点A、B的坐标分别为(6,0)、(0,2√3),则AO=6,OB=2√3,tan∠OBA=OAOB=√3,则∠OBA=60°,∠OAB=30°,而∠BOC′=60°,则△OBC′为等边三角形,即:OC′=OB,即点C′为点B旋转后对应的点,即点C在直线l上,则点C、C′重合,∠AOC′=90﹣∠BOC′=30°=∠OAB,而∠OBA=∠BOC′=60°,则OC′=AC′=BC′,则OC′是Rt△ABC的中线,则x C′=12OA=3,y C′=12OB=√3,故点C′(C)的坐标为(3,√3);(2)存在,理由:点A、C的坐标分别为(6,0)、(3,√3),则AC=2√3,①当AC是菱形的一条边时,当点Q在x轴上方,当菱形为ACQP时,则AC=AP=2√3=CQ,则点Q(3+2√3,√3);当菱形为ACQ′P′时,点Q′(3﹣2√3,√3);当点Q在x轴下方,同理可得:点Q″(3,−√3);②当AC是菱形的对角线时,设点P(s,0),点Q(m,n),则AC的中点即为PQ的中点,且P A=PC(即:P A2=PC2),∴s+m=9,n+0=√3,(s﹣3)2+(√3)2=(6﹣s)2,解得:m=5,n=√3,s=4,故点Q(5,√3);综上,点Q坐标为:(3+2√3,√3)或(3﹣2√3,√3)或(3,−√3)或(5,√3).4.如图,AB是⊙O的直径,点C是⊙O上一点(与点A,B不重合),过点C作直线PQ,使得∠ACQ=∠ABC.(1)求证:直线PQ是⊙O的切线.(2)过点A作AD⊥PQ于点D,交⊙O于点E,若⊙O的半径为2,sin∠DAC=12,求图中阴影部分的面积.解:(1)证明:如图,连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵OA=OC,∴∠CAB=∠ACO.∵∠ACQ=∠ABC,∴∠CAB+∠ABC=∠ACO+∠ACQ=∠OCQ=90°,即OC⊥PQ,∴直线PQ是⊙O的切线.(2)连接OE,∵sin∠DAC=12,AD⊥PQ,∴∠DAC=30°,∠ACD=60°.∴∠ABC=∠ACD=60°,∴∠CAB=90°﹣60°=30°,∴∠EAO=∠DAC+∠CAB=60°,又∵OA=OE,∴△AEO为等边三角形,∴∠AOE=60°.∴S阴影=S扇形﹣S△AEO=S 扇形−12OA •OE •sin60° =60π360×22−12×2×2×√32 =2π3−√3.∴图中阴影部分的面积为2π3−√3.5.如图,在△ABC 中,∠ACB =90°,将△ABC 沿直线AB 翻折得到△ABD ,连接CD 交AB 于点M .E 是线段CM 上的点,连接BE .F 是△BDE 的外接圆与AD 的另一个交点,连接EF ,BF .(1)求证:△BEF 是直角三角形; (2)求证:△BEF ∽△BCA ;(3)当AB =6,BC =m 时,在线段CM 上存在点E ,使得EF 和AB 互相平分,求m 的值.(1)证明:∵∠ACB =90°,将△ABC 沿直线AB 翻折得到△ABD , ∴∠ADB =∠ACB =90°,∵∠EFB =∠EDB ,∠EBF =∠EDF ,∴∠EFB +∠EBF =∠EDB +∠EDF =∠ADB =90°, ∴∠BEF =90°, ∴△BEF 是直角三角形.(2)证明:∵BC =BD , ∴∠BDC =∠BCD , ∵∠EFB =∠EDB , ∴∠EFB =∠BCD ,∵AC =AD ,BC =BD , ∴AB ⊥CD , ∴∠AMC =90°,∵∠BCD +∠ACD =∠ACD +∠CAB =90°, ∴∠BCD =∠CAB , ∴∠BFE =∠CAB , ∵∠ACB =∠FEB =90°, ∴△BEF ∽△BCA .(3)解:设EF 交AB 于J .连接AE . ∵EF 与AB 互相平分, ∴四边形AFBE 是平行四边形, ∴∠EF A =∠FEB =90°,即EF ⊥AD , ∵BD ⊥AD , ∴EF ∥BD , ∵AJ =JB , ∴AF =DF , ∴FJ =12BD =m 2, ∴EF =m ,∵△ABC ∽△CBM , ∴BC :MB =AB :BC ,∴BM =m 26,∵△BEJ ∽△BME , ∴BE :BM =BJ :BE , ∴BE =m √2, ∵△BEF ∽△BCA , ∴AC EF=BC BE,即√36−m 2m=mm √2, 解得m =2√3(负根已经舍弃).。
【天利38套】2020届高三高考知识巩固卷数学(文)参考答案(3套)
个
单
位
长
度
得
到
*+
3;7<!
&0
% &
+3;7<
!&0
! &
+-3<)=!&故选 $!
!!!答 案 $ 考查角度本题考查数学文化长方体 表 面 积体 对
角线以 及 体 对 角 线 与 外 接 球 的 关 系球 的 体 积
公式! 解题分析由 题 得 该 直 四 棱 柱 为 长 方 体设 长宽
# $ +&槡&<)=" <)='3!;7<"-;7<'3!<)="
+&#<)=";7<"0<)=&"$
+<)=&"0%-;7<&"
# $ +槡&<)=
&"-
! 3
0%"
#%% 分 $
数学文科答!"
.当
&"-
! 3
+
! &
"即
"+'@!时
"
) )
$,"65 的 最 大 值 为槡&0%!
) )
678',而*+678'& 是*09上的单调 递 增 函 数所 )
以%(&(,由 几 何 概 型 的 概 率 公 式 得%%,--%-%+
) )
& '
高考模拟题复习试卷习题资料高考数学试卷理科附详细答案13838
高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(13)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.44.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.728.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.39.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.16810.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=.12.(5分)函数f(x)=log2•log(2x)的最小值为.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(13)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列【分析】利用等比中项的性质,对四个选项中的数进行验证即可.【解答】解:A项中a3=a1•q2,a1•a9=•q8,(a3)2≠a1•a9,故A项说法错误,B项中(a3)2=(a1•q2)2≠a2•a6=•q6,故B项说法错误,C项中(a4)2=(a1•q3)2≠a2•a8=•q8,故C项说法错误,D项中(a6)2=(a1•q5)2=a3•a9=•q10,故D项说法正确,故选:D.【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.【解答】解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选:A.【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2﹣3=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=0'∴2(2k﹣3)+1×(﹣6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>【分析】程序运行的S=××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=××…×,∵输出的k=6,∴S=××=,∴判断框的条件是S>,故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q【分析】由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x>2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.【解答】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.【点评】判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.72【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+×4+×5+3×5=60.故选:B.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.3【分析】不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率.【解答】解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2ex=3b,(ex)2﹣a2=ab∴b2﹣a2=ab,即9b2﹣4a2﹣9ab=0,∴(3b﹣4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.9.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.10.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24【分析】根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论. 【解答】解:∵△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,∴sin2A+sin2B=﹣sin2C+,∴sin2A+sin2B+sin2C=,∴2sinAcosA+2sin(B+C)cos(B﹣C)=,2sinA(cos(B﹣C)﹣cos(B+C))=,化为2sinA[﹣2sinBsin(﹣C)]=,∴sinAsinBsinC=.设外接圆的半径为R,由正弦定理可得:=2R,由S=,及正弦定理得sinAsinBsinC==,即R2=4S,∵面积S满足1≤S≤2,∴4≤R2≤8,即2≤R≤,由sinAsinBsinC=可得,显然选项C,D不一定正确,A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16,不一定正确,故选:A.【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B={7,9}.【分析】由条件利用补集的定义求得∁UA,再根据两个集合的交集的定义求得(∁UA)∩B.【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁UA)={4,6,7,9 },∴(∁UA)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.12.(5分)函数f(x)=log2•log(2x)的最小值为.【分析】利用对数的运算性质可得f(x)=,即可求得f(x)最小值. 【解答】解:∵f(x)=log2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:﹣【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆心C(1,a),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d=,平方得a2﹣8a+1=0,解得a=4±,故答案为:4±【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=4.【分析】由题意,∠PAB=∠C,可得△PAB∽△PCA,从而,代入数据可得结论.【解答】解:由题意,∠PAB=∠C,∠APB=∠CPA,∴△PAB∽△PCA,∴,∵PA=6,AC=8,BC=9,∴,∴PB=3,AB=4,故答案为:4.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x﹣1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.【点评】本题考查直线l的参数方程、曲线C的极坐标方程,考查学生的计算能力,属于中档题.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是[﹣1,].【分析】利用绝对值的几何意义,确定|2x﹣1|+|x+2|的最小值,然后让a2+a+2小于等于它的最小值即可.【解答】解:|2x﹣1|+|x+2|=,∴x=时,|2x﹣1|+|x+2|的最小值为,∵不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,∴a2+a+2≤,∴a2+a﹣≤0,∴﹣1≤a≤,∴实数a的取值范围是[﹣1,].故答案为:[﹣1,].【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α﹣)=.再根据α﹣的范围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得 2×+φ=kπ+,k∈z.结合﹣≤φ<可得φ=﹣.(Ⅱ)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据 0<α﹣<,∴cos(α﹣)==,∴cos(α+)=sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)【分析】第一问是古典概型的问题,要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;第二问应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如1或2)或不同数字(1和2、1和3、2和3三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.【解答】解:(Ⅰ)由古典概型的概率计算公式得所求概率为P=,(Ⅱ)由题意知X的所有可能取值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,所以X的分布列为:X 1 2 3P所以E(X)=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题.19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.【分析】(Ⅰ)连接AC,BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,分别求出向量,的坐标,进而根据MP⊥AP,得到•=0,进而求出PO的长;(Ⅱ)求出平面APM和平面PMC的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得:二面角A﹣PM﹣C的正弦值.【解答】解:(Ⅰ)连接AC,BD,∵底面是以O为中心的菱形,PO⊥底面ABCD,故AC∩BD=O,且AC⊥BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,∵AB=2,∠BAD=,∴OA=AB•cos(∠BAD)=,OB=AB•sin(∠BAD)=1,∴O(0,0,0),A(,0,0),B(0,1,0),C(﹣,0,0),=(0,1,0),=(﹣,﹣1,0),又∵BM=,∴=(﹣,﹣,0),则=+=(﹣,,0),设P(0,0,a),则=(﹣,0,a),=(,﹣,a),∵MP⊥AP,∴•=﹣a2=0,解得a=,即PO的长为.(Ⅱ)由(Ⅰ)知=(﹣,0,),=(,﹣,),=(,0,),设平面APM的法向量=(x,y,z),平面PMC的法向量为=(a,b,c),由,得,令x=1,则=(1,,2),由,得,令a=1,则=(1,﹣,﹣2),∵平面APM的法向量和平面PMC的法向量夹角θ满足:cosθ===﹣故sinθ==【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.【分析】(Ⅰ)根据函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,构造关于a,b的方程,可得a,b的值;(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)∵函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)∴f′(x)=2ae2x+2be﹣2x﹣c,由f′(x)为偶函数,可得2(a﹣b)(e2x﹣e﹣2x)=0,即a=b,又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,即f′(0)=2a+2b﹣c=4﹣c,故a=b=1;(Ⅱ)当c=3时,f′(x)=2e2x+2e﹣2x﹣3≥2=1>0恒成立,故f(x)在定义域R为均增函数;(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e﹣2x﹣c,而2e2x+2e﹣2x≥2=4,当且仅当x=0时取等号,当c≤4时,f′(x)≥0恒成立,故f(x)无极值;当c>4时,令t=e2x,方程2t+﹣c=0的两根均为正,即f′(x)=0有两个根x1,x2,当x∈(x1,x2)时,f′(x)<0,当x∈(﹣∞,x1)∪(x2,+∞)时,f′(x)>0,故当x=x1,或x=x2时,f(x)有极值,综上,若f(x)有极值,c的取值范围为(4,+∞).【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.【分析】(Ⅰ)若b=1,利用an+1=+b,可求a2,a3;证明{(an﹣1)2}是首项为0,公差为1的等差数列,即可求数列{an}的通项公式;(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.用数学归纳法证明加强命题a2n<c<a2n+1<1即可.【解答】解:(Ⅰ)∵a1=1,an+1=+b,b=1,∴a2=2,a3=+1;又(an+1﹣1)2=(an﹣1)2+1,∴{(an﹣1)2}是首项为0,公差为1的等差数列;∴(an﹣1)2=n﹣1,∴an=+1(n∈N*);(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.下面用数学归纳法证明加强命题a2n<c<a2n+1<1.n=1时,a2=f(1)=0,a3=f(0)=﹣1,∴a2<c<a3<1,成立;设n=k时结论成立,即a2k<c<a2k+1<1∵f(x)在(﹣∞,1]上为减函数,∴c=f(c)>f(a2k+1)>f(1)=a2,∴1>c>a2k+2>a2,∴c=f(c)<f(a2k+2)<f(a2)=a3<1,∴c<a2k+3<1,∴a2(k+1)<c<a2(k+1)+1<1,即n=k+1时结论成立,综上,c=使得a2n<c<a2n+1对所有的n∈N*成立.【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆的半径.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C.由F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,知CP1⊥CP2,又|CP1|=|CP2|,故圆C的半径|CP1|=|P1P2|=|x1|=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.高考数学高三模拟试卷试题压轴押题试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)函数y=3sin(2x+)的最小正周期为.2.(5分)设z=(2﹣i)2(i为虚数单位),则复数z的模为.3.(5分)双曲线的两条渐近线方程为.4.(5分)集合{﹣1,0,1}共有个子集.5.(5分)如图是一个算法的流程图,则输出的n的值为.6.(5分)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第一次第二次第三次第四次第五次甲87 91 90 89 93乙89 90 91 88 92则成绩较为稳定(方差较小)的那位运动员成绩的方差为.7.(5分)现在某类病毒记作XmYn,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为.8.(5分)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=.9.(5分)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是.10.(5分)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.11.(5分)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f (x)>x 的解集用区间表示为.12.(5分)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d1,F到l的距离为d2,若d2=,则椭圆C的离心率为.13.(5分)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为.14.(5分)在正项等比数列{an}中,,a6+a7=3,则满足a1+a2+…+an>a1a2…an的最大正整数n的值为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.16.(14分)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(14分)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣3上,过点A作圆C的切线,求切线方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标的取值范围.18.(16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(16分)设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);(2)若{bn}是等差数列,证明:c=0.20.(16分)设函数f(x)=lnx﹣ax,g(x)=ex﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修41:几何证明选讲](本小题满分10分)21.(10分)如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC.求证:AC=2AD.B.[选修42:矩阵与变换](本小题满分10分)22.(10分)已知矩阵A=,B=,求矩阵A﹣1B.C.[选修44:坐标系与参数方程](本小题满分0分)23.在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.D.[选修45:不等式选讲](本小题满分0分)24.已知a≥b>0,求证:2a3﹣b3≥2ab2﹣a2b.第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(10分)如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.26.(10分)设数列{an}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…,,…,即当<n≤(k∈N*)时,.记Sn=a1+a2+…+an(n∈N∗).对于l∈N∗,定义集合Pl=﹛n|Sn为an的整数倍,n∈N∗,且1≤n≤l}(1)求P11中元素个数;(2)求集合P2000中元素个数.高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)函数y=3sin(2x+)的最小正周期为π.【分析】将题中的函数表达式与函数y=Asin(ωx+φ)进行对照,可得ω=2,由此结合三角函数的周期公式加以计算,即可得到函数的最小正周期.【解答】解:∵函数表达式为y=3sin(2x+),∴ω=2,可得最小正周期T=||=||=π故答案为:π【点评】本题给出三角函数表达式,求函数的最小正周期,着重考查了函数y=Asin (ωx+φ)的周期公式的知识,属于基础题.2.(5分)设z=(2﹣i)2(i为虚数单位),则复数z的模为5.【分析】把给出的复数展开化为a+bi(a,b∈R)的形式,然后直接利用模的公式计算.【解答】解:z=(2﹣i)2=4﹣4i+i2=3﹣4i.所以,|z|==5.故答案为5.【点评】本题考查了复数代数形式的混合运算,考查了复数模的求法,是基础题.3.(5分)双曲线的两条渐近线方程为.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=4,b=3,焦点在x轴上而双曲线的渐近线方程为y=±x∴双曲线的渐近线方程为故答案为:【点评】本题考查了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想4.(5分)集合{﹣1,0,1}共有8个子集.。