六年级比例的应用题和答案
6年级比例应用题
6年级比例应用题一、简单比例关系应用题(1 10题)1. 一辆汽车3小时行驶180千米,照这样的速度,5小时行驶多少千米?解析:首先根据速度 = 路程÷时间,求出汽车的速度。
汽车3小时行驶180千米,速度为公式千米/小时。
然后根据路程 = 速度×时间,5小时行驶的路程为公式千米。
设5小时行驶公式千米,根据速度一定,路程和时间成正比例关系,可得公式,解得公式。
2. 配制一种农药,药粉和水的比是1:500,现有水6000千克,配制这种农药需要药粉多少千克?解析:药粉和水的比是公式,即水是药粉的500倍。
现有水6000千克,那么药粉的重量为公式千克。
设需要药粉公式千克,根据比例关系公式,解得公式。
3. 学校图书馆科技书与故事书的比是3:5,科技书有180本,故事书有多少本?解析:因为科技书与故事书的比是公式,设故事书有公式本,则公式,交叉相乘得公式,公式本。
思路是根据两种书数量的比例关系列方程求解。
4. 一块长方形菜地长和宽的比是5:3,长是40米,宽是多少米?解析:设宽是公式米,因为长和宽的比是公式,所以公式,交叉相乘得公式,公式米。
利用长和宽的比例关系来建立方程求解宽的长度。
5. 某工厂男职工与女职工的人数比是4:3,男职工有320人,女职工有多少人?解析:设女职工有公式人,根据男职工与女职工人数比是公式,可得公式,交叉相乘得公式,公式人。
依据给定的人数比例关系列方程求解女职工人数。
6. 一种混凝土是由水泥、沙子和石子按2:3:5配制而成的。
现在要配制150吨这种混凝土,需要水泥、沙子和石子各多少吨?解析:水泥、沙子和石子的比例为公式,总份数为公式份。
水泥占公式,沙子占公式,石子占公式。
水泥的重量为公式吨,沙子的重量为公式吨,石子的重量为公式吨。
先求出各成分占总量的比例,再根据总量求出各成分的量。
7. 小明和小红的零花钱之比是7:5,如果小明有56元零花钱,小红有多少元零花钱?解析:设小红有公式元零花钱,因为小明和小红零花钱之比是公式,所以公式,交叉相乘得公式,公式元。
六年级数学比应用题
六年级数学比应用题一、简单的比的计算应用题(1 - 5题)1. 已知甲、乙两数的比是3:5,甲数是12,求乙数。
- 解析:- 因为甲、乙两数的比是3:5,设乙数为x,则(甲)/(乙)=(3)/(5)。
- 已知甲数是12,即(12)/(x)=(3)/(5)。
- 根据比例的性质,内项之积等于外项之积,可得3x = 12×5。
- 解得x=(12×5)/(3)=20。
2. 某班男、女生人数比是4:3,男生有24人,女生有多少人?- 解析:- 设女生有x人,因为男、女生人数比是4:3,所以(24)/(x)=(4)/(3)。
- 由比例性质可得4x = 24×3。
- 解得x=(24×3)/(4)=18人。
3. 一种药水是把药粉和水按照1:100的比配成的。
要配制这种药水4040克,需要药粉多少克?- 解析:- 药粉和水的比是1:100,那么药水就是1 + 100=101份。
- 这种药水共4040克,那么一份就是4040÷101 = 40克。
- 药粉占1份,所以需要药粉40克。
4. 学校图书馆里科技书和故事书的比是3:4,科技书有180本,故事书有多少本?- 解析:- 设故事书有x本,因为科技书和故事书的比是3:4,所以(180)/(x)=(3)/(4)。
- 根据比例性质3x=180×4。
- 解得x=(180×4)/(3)=240本。
5. 甲、乙两个数的比是5:6,它们的和是66,求甲、乙两数。
- 解析:- 甲、乙两个数的比是5:6,设甲数是5x,乙数是6x。
- 它们的和是66,则5x + 6x=66。
- 即11x = 66,解得x = 6。
- 所以甲数5x = 5×6 = 30,乙数6x=6×6 = 36。
二、比在几何中的应用题(6 - 10题)6. 一个长方形的长和宽的比是5:3,长是25厘米,宽是多少厘米?- 解析:- 设宽是x厘米,因为长和宽的比是5:3,所以(25)/(x)=(5)/(3)。
苏教版数学六年级下册专项~比例解决问题【含答案】
苏教版数学六年级下册专项-比例解决问题1.一个精密零件,长5厘米,画在图纸上长0.4米.这张图纸的比例尺是多少?2.填空并按要求作图。
(1)以AB为轴,将三角形ABC旋转一周能形成________。
(填几何体名称)(2)在适当的位置按2∶1的比画出三角形ABC放大后的图形。
(3)在适当的位置按1∶2的比画出长方形缩小后的图形。
3.在一幅比例尺是1∶4000000的地图上量得甲、乙两地的距离是16厘米。
若画在比例尺是1∶8000000的地图上,两地间的图上距离是多少厘米?4.画一画,填一填。
(1)按3∶1的比画出图形A放大后得到的图形B。
(2)按1∶2的比画出图形B缩小后得到的图形C。
我发现:放大或缩小前后的图形()变了,但()没有变,而且图形各部分长度是按一定的比变化的。
5.在一张比例尺是1∶150的建筑图纸上,量得一座大楼的长是6分米,这座大楼的实际长与宽的比是3∶1,这座大楼的实际宽是多少米?6.下图中小平行四边形按比放大后得到大平行四边形,求大平行四边形的高。
(单位:分米)12.根据图中提供的信息,完成下列问题。
(1)自来水厂要从水库取水,取水管道怎样铺最短,请在图中画出来。
(2)自来水厂到城区的送水管道经测算最短是2000米,请你测算:自来水厂到水库的取水管道最短需多少米?13.在一幅地图上,用5厘米长的线段表示实际距离100千米,这幅地图的比例尺是多少?如果甲市至乙市的铁路线路长150千米,那么这段铁路线路在这幅地图上的长度是多少厘米?14.江苏省云龙湖景区杏花坞广场是人们夏天避暑纳凉的佳处。
广场绿地面积与铺装面积的比是6∶5,其中铺装面积共5000平方米,绿地面积有多少平方米?15.甲乙两城相距150千米,在一幅地图上量得甲乙两城之间的距离是5厘米,同时在这幅地图上量得乙丙两城之间的距离是8厘米。
乙丙两城之间的实际距离是多少千米?20.下图中A点是游乐场所在的位置,B点是电影院所在的位置,两地实际距离相距2千米。
比例的应用题六年级
比例的应用题六年级一、按比例分配问题。
1. 学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。
三个班各应栽树多少棵?- 解析:首先求出三个班的总人数:46 + 44+50=140(人)。
然后计算各班人数占总人数的比例,一班:(46)/(140),二班:(44)/(140),三班:(50)/(140)。
最后用树的总数乘以各班所占比例得到各班应栽树的棵数。
- 一班应栽树:70×(46)/(140) = 23(棵);- 二班应栽树:70×(44)/(140)=22(棵);- 三班应栽树:70×(50)/(140)=25(棵)。
2. 一种混凝土是由水泥、沙子和石子按2:3:5的比例混合而成的。
如果要配制20吨这种混凝土,需要水泥、沙子和石子各多少吨?- 解析:首先求出总份数:2 + 3+5 = 10份。
然后计算每份的重量:20÷10 = 2吨。
最后根据各自的份数求出水泥、沙子和石子的重量。
- 水泥:2×2 = 4吨;- 沙子:2×3 = 6吨;- 石子:2×5 = 10吨。
3. 某工厂有三个车间,第一车间、第二车间、第三车间的人数比是8:12:21,第一车间比第二车间少80人,三个车间共有多少人?- 解析:设第一车间有8x人,第二车间有12x人。
根据第一车间比第二车间少80人,可列方程12x-8x = 80,解得x = 20。
则三个车间总人数为(8 +12+21)×20=41×20 = 820人。
二、比例尺问题。
4. 在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米。
一辆汽车以每小时75千米的速度从A地开往B地,需要多少小时?- 解析:根据比例尺公式,实际距离=图上距离÷比例尺,所以A、B两地的实际距离为5÷(1)/(6000000)=5×6000000 = 30000000厘米=300千米。
六年级比应用题及答案
六年级比应用题及答案一、题目:小明和小华共有120本故事书。
小明的故事书数量是小华的2倍。
请问小明和小华各有多少本故事书?答案:设小华有x本故事书,那么小明有2x本故事书。
根据题意,我们可以得到方程:x + 2x = 120。
解方程得:3x = 120,x = 40。
所以,小华有40本故事书,小明有2x = 80本故事书。
二、题目:一个长方形的长是宽的3倍,周长是40米。
求长方形的长和宽。
答案:设长方形的宽为x米,那么长为3x米。
根据周长公式,我们可以得到方程:2(x + 3x) = 40。
解方程得:2(4x) = 40,8x = 40,x = 5。
所以,长方形的宽为5米,长为3x = 15米。
三、题目:一个数的3倍加上4等于这个数的5倍减去6。
求这个数。
答案:设这个数为x。
根据题意,我们可以得到方程:3x + 4 = 5x - 6。
解方程得:3x - 5x = -6 - 4,-2x = -10,x = 5。
所以,这个数是5。
四、题目:一个班级有48名学生,男生人数是女生人数的2倍。
求男生和女生各有多少人?答案:设女生人数为x,那么男生人数为2x。
根据题意,我们可以得到方程:x + 2x = 48。
解方程得:3x = 48,x = 16。
所以,女生有16人,男生有2x = 32人。
五、题目:一个数的1/4加上这个数的1/3等于2。
求这个数。
答案:设这个数为x。
根据题意,我们可以得到方程:(1/4)x +(1/3)x = 2。
解方程得:(3/12)x + (4/12)x = 2,(7/12)x = 2,x = 24。
所以,这个数是24。
六年级关于比例的应用题
六年级关于比例的应用题一、比例应用题。
1. 一辆汽车3小时行驶180千米,照这样的速度,行驶300千米需要几小时?- 解析:首先根据速度 = 路程÷时间,求出汽车的速度。
已知汽车3小时行驶180千米,那么速度为180÷3 = 60(千米/小时)。
设行驶300千米需要x小时,因为速度一定,路程和时间成正比例,所以可列出比例式180:3 = 300:x,即180x=300×3,180x = 900,解得x = 5小时。
2. 用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?- 解析:因为每块方砖的面积是一定的,所以方砖的块数和铺地的面积成正比例。
设铺42平方米要用x块方砖。
可列出比例式20:320 = 42:x,20x=320×42,20x = 13440,解得x = 672块。
3. 配制一种农药,药粉和水的比是1:500。
- 现有水6000千克,配制这种农药需要药粉多少千克?- 解析:药粉和水的比是1:500,设需要药粉x千克,可列出比例式1:500=x:6000,500x = 6000,解得x = 12千克。
- 现有药粉3.6千克,配制这种农药需要水多少千克?- 解析:设需要水y千克,根据比例1:500 = 3.6:y,y=3.6×500 = 1800千克。
4. 学校操场长120米,宽80米,画在比例尺为1:4000的图纸上,长和宽各应画多少厘米?- 解析:因为比例尺=图上距离:实际距离,所以图上距离 = 实际距离×比例尺。
操场长120米=12000厘米,宽80米=8000厘米。
长应画12000×(1)/(4000)=3厘米,宽应画8000×(1)/(4000) = 2厘米。
5. 一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。
- 解析:首先统一单位,4厘米= 40毫米。
比例尺=图上距离:实际距离=40:5 = 8:1。
比例应用题(专项训练)数学六年级下册人教版
比例应用题(专项训练)20232024学年数学六年级下册人教版典例分析一.工程队修一段公路,原计划每天修4.8千米,18天修完。
实际提前2天修完,实际每天修多少千米?【答案】5.4千米【分析】根据题意可知:工作总量是一定的,工作效率和工作时间成反比例关系,设实际每天修x千米,据此列比例解答。
【详解】解:设实际每天修x千米。
(18-2)x=4.8×1816x=86.4x=86.4÷16x=5.4答:实际每天修5.4千米。
【点睛】明确工作总量一定,工作效率和工作时间成反比例关系,据此列出比例是解答本题的关键。
典例分析二.如图,学校大门在孔子雕像的正东方240米处。
1号教学楼在孔子雕像北偏东45°的200米处。
(1)分别计算出学校大门、1号教学楼到孔子雕像的图上距离。
(2)在图纸上画出学校大门和1号教学楼的位置。
【答案】(1)学校大门6厘米;1号教学楼5厘米(2)见详解【分析】(1)根据进率“1米=100厘米”以及“图上距离=实际距离×比例尺”,分别求出学校大门、1号教学楼到孔子雕像的图上距离。
(2)以图上的“上北下南,左西右东”为准,在孔子雕像的正东方画6厘米长的线段,即是学校大门;在孔子雕像的北偏东45°方向画5厘米长的线段,即是1号教学楼。
【详解】(1)240米=24000厘米24000×14000=6(厘米)200米=20000厘米20000×14000=5(厘米)答:学校大门到孔子雕像的图上距离是6厘米,1号教学楼到孔子雕像的图上距离是5厘米。
(2)如图:【点睛】本题考查比例尺的应用、根据比例尺画图以及根据方向、角度和距离确定物体的位置。
典例分析三.旗杆有多长?(1)操场上,同学们正在阳光下测量不同长度的竹竿、木棒、大树的长度及它们的影长,测量数据如表:实际长度(米)影长(米)实际长度与影长的比值跟踪训练1.在比例尺是1∶400000的地图上量得甲、乙两地的距离是6厘米。
六年级比例应用题50道含答案难
六年级比例应用题50道含答案难
一、题目
1. 小明有50元,买了一件衣服,价格是30元,小明还剩多少钱?
答案:小明还剩20元。
2. 小红有100元,买了一双鞋,价格是60元,小红还剩多少钱?
答案:小红还剩40元。
3. 小刚有120元,买了一件外套,价格是90元,小刚还剩多少钱?
答案:小刚还剩30元。
4. 小芳有150元,买了一件裙子,价格是100元,小芳还剩多少钱?
答案:小芳还剩50元。
5. 小强有200元,买了一件衬衫,价格是120元,小强还剩多少钱?
答案:小强还剩80元。
6. 小李有250元,买了一条裤子,价格是150元,小李还剩多少钱?
答案:小李还剩100元。
7. 小燕有300元,买了一件外套,价格是180元,小燕还剩多少钱?
答案:小燕还剩120元。
8. 小虎有350元,买了一双鞋,价格是210元,小虎还剩多少钱?
答案:小虎还剩140元。
9. 小龙有400元,买了一件衣服,价格是240元,小龙还剩多少钱?
答案:小龙还剩160元。
10. 小马有450元,买了一件裙子,价格是270元,小马还剩多少钱?
答案:小马还剩180元。
经典习题六年级比的应用57题(有答案)
比的应用题57题(有答案)1.沙、石共36吨,沙与石的比是1:8,沙、石各是多少吨?2.水泥、沙子和石子的比是2:3:5。
要搅拌20吨这样的混凝土,需要水泥、沙子和石子各是多少吨?3.甲、乙两数的平均数是56,甲与乙的比是4:3,甲、乙各是多少?4.一个长方形周长是88cm,长与宽的比是4:7。
长方形的长、宽各是多少厘米?面积是多少?5.等腰三角形的周长是70厘米,一条腰与底边长度的比是3:4,这个三角形的底边是多少厘米?6.用120厘米的铁丝做一个长方体的框架。
长、宽、高的比是3:2:1。
这个长方体的长、宽、高分别是多少?体积是多少?7. 一批图书有1200本,把其中的41分给低年级,余下的按4:5分给中、高年级,低、中、高年级各几本?8. 李惠家8月份共缴纳水费、电费、煤气费140元,其中电费占整个费用的74,水费与煤气费的比是1:3,李惠家水费、电费、煤气费各付多少元?9. 家里的菜地共800平方米,用52种西红柿。
剩下的按2:1的面积比种黄瓜和茄子。
三种蔬菜的面积分别是多少平方米?10.男工有40人,男工与女工的比是4:5,女工有多少人?一共有多少人?(1)如果先称20千克的水果糖,奶糖与软糖各需多少千克?(2)如果先称出15千克的奶糖,水果糖与软糖各需多少千克?12、男工与女工的比是4:5,女比男多4人,男、女各多少人?13、沙和石的比是7:9,沙比石少10吨,沙、石各多少吨?14、一桶油用去的量占剩下的73,已知这桶油共有50千克,用去了多少千克?还剩下多少千克?15、一套西装320元,其中裤子的价格是上衣的53,上衣和裤子的价格各是多少元?16、一个三角形的内角度数比为5:3:2,这个三角形的三个角的度数各是多少?这是一个什么三角形?17、一个长方形的周长是18米,长和宽的比是5:4,这个长方形的面积是多少平方米?18、某校六年级三个班的人数在100-150之间,在学校运动会上,六一班运动员占全年级人数的1/6,六二班占1/8,六三班占1/9,六年级共有多少人?19、商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱多少台?20、学校有足球蓝球共65个,其中足球和蓝球数量比是1:4,今年又买回一些足球,这时足球和篮球数量比是3:4,今年买回足球多少个?21、大母鸡和小母鸡的生蛋数量比是10:9,大母鸡比小母鸡多生2个鸡蛋,求大、小母鸡各生多少个蛋?22、甲乙两人下班回家,甲走的路程比乙多1/5,乙用的时间比甲多1/8,求甲乙两人的速度比23、建筑工地用2份水泥,3份沙子和5份石子配制一种混凝土,要配12吨这种混凝土需要水泥、沙子和石子各多少吨?24、一种混凝土的水泥、黄沙和石子的比是2:3:5,如果有2/5吨的水泥搅拌混凝土,需要黄沙、石子各多少吨?25、三个同学跑步,甲、乙、丙的速度比是4:3:2.甲跑了600米,乙比丙多跑多少米?26、工地用100千克水泥、150千克沙子、250千克石子配制一种混凝土。
小学六年级正反比例的应用题含答案
小学六年级正反比例的应用题含答案1、用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?2、一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0. 25平方米的方砖铺地,需要方砖多少块?3、建筑工地原来用4辆汽车,每天运土60立方米,如果用6辆同样的汽车来运,每天可以运土多少立方米?4我国发射的人造地球卫星绕地球运行3周约3.6小时,运行20周约需多少小时?5、一种铁丝,7.5米长重3千克,现在有19.5米长的这种铁丝,重多少千克?6、汽车在高速公路上3小时行240千米,照这样计算,5小时行多少千米?7、修一条公路,4天修了200米,照这样计算,又修了6天,又修了多少米?8、小明读一本书,每天读12页,8天可以读完。
如果每天多读4页,几天可以读完?9、今春分配给学校一些植树任务,每天栽200棵6天可以完成任务,现在需要4天完成任务,实际每天比原计划多栽多少棵?10、农场用3辆拖拉机耕地,每天共耕225公顷,照这样速度,用5辆同样拖拉机,每天共耕地多少公顷?11、一艘轮船,从甲地从开往乙地,每小时航行20千米,12小时到达,从乙地返回甲地时,每小时多航行4千米,几小时可以到达?12、100千克黄豆可以榨油13千克,照这样计算,要榨豆油6.5吨,需黄豆多少吨?13、学校计划买54张桌子,每张30元,如果这笔钱买椅子,可以买90张,每张椅子多少钱?14、一对互相咬合的齿轮,主动轮有20个齿,每分钟转60转,如果要使从动轮每分钟转40转,从动轮的齿数应是多少?15、把3米长的竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米?16、一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。
(5分)17、地图上的26厘米,在比例尺为1∶1300000的地图上约是多少千米?(5分)18、李师傅计划生产450个零件,工作8小时后还差330个零件没有完成,照这样速度,共要几小时完成任务?19、用一批纸装订同样的练习本,如果每本30页,可以装订80本。
人教版六年级下册数学第四单元比例应用题专题训练(带答案)
人教版六年级下册数学第四单元比例应用题专题训练1.把一个长方形养鱼池按1:200 的比例尺画在图纸上,长是4d m,宽是3dm。
这个养鱼池的实际占地面积是多少平方米?2.两个互相咬合的齿轮,大齿轮有60个齿,每分钟转80圈,小齿轮有20个齿,每分钟转多少圈?3.一架飞机所带的燃料最多可以飞行6小时,飞机去时顺风,每小时可以飞行1500 km,返回时逆风,每小时可以飞行1200 km。
这架飞机最多能飞行多少千米就需要返回?4.制一批零件,甲单独完成要8小时,已知甲、乙的工作效率比是4:3,则乙单独完成要多长时间?5.有种钢管长6 m,把它锯成50 cm的小段,要锯44分钟,照这样计算,如果把它锯成40 cm的小段,要锯多少分钟?6.王大爷种了一块直角三角形的菜地,两条直角边共长10.8 m,它们的长度比是5:4。
将这块菜地用1:200的比例尺画在图上,这块菜地的图上面积是多少平方厘米?7.在比例尺为1 :9000000的航空图上,甲、乙两地相距30cm,有两架飞机同时从甲、乙两地起飞,分别以810km/h和690km/h的速度相向飞行,经过几小时两架飞机在空中相遇?8.在比例尺是1:2500000的地图上,量得A、B两地相距12厘米。
如果李叔叔和王叔叔开车同时从两地相对出发,李叔叔开车每小时行105千米,王叔叔开车每小时行95千米,几小时后两人能相遇?9.为了加快推进美丽乡村建设,某工程队铺一条乡村公路,原计划每天铺320m,15天铺完。
实际施工时,由于改进了铺路方法,前4天就铺了1600m。
照这样计算,该工程队可以比原计划提前几天完成铺路任务?(用比例解答)10.一间房子用方砖铺地,如果用边长4分米的正方形地砖一共需要360块;如果改用边长为6分米的正方形地砖来铺,一共需要多少块?11.爸爸暑假准备开车带小明去上海迪士尼玩,他在一幅比例尺是1:4000000的中国地图上量得台州到上海的距离大约是8.5cm,如果爸爸开车平均每小时行驶85km,多少小时能到达?12.一间房子要用方砖铺地,用边长3分米的方砖,需要96块;如果改用边长是2分米的方砖,需要多少块?(用比例知识解答)13.在一幅比例尺是1∶5000000 的地图上,量得A地和B 地相距6 厘米。
六下数学 正比例与反比例 应用题训练30题 带答案
相同时间内,路程和速度成正比例,速度之比=路程之比
(2x-130):(x+130)=3:2 解得x=650
8、一辆卡车与一辆小轿车同时从甲、乙两城相对开出,相遇后两 车继续向前行驶.当小轿车到达甲地、卡车到达乙地后.立即返回 ,第二次相遇点距甲城120千米,已知:卡车与小轿车的速度比是3 :4,甲、乙两城相距多少千米?
13、用方砖铺一间教室的地面,如果用边长为2dm的方砖 ,需要用60块,如果改用边长为3dm的方砖,需要用多少 块? 27块 解析:解设需要用x块砖 教室的面积一定,所用的方砖的块数和每块方砖的面积成 反比例
2×2×60=3×3×x 解得 x=80/3 进一法,所以需要27块
14、有甲乙丙三个相互咬合的齿轮,当甲齿轮转动2圈时, 乙齿轮转动3圈,丙齿轮转动4圈,这三个齿轮的齿数之比 是( ):( ):( )。 6:4:3 解析:相互咬合的齿轮转动的总齿数是相同的,那么一圈 的齿数和转动的圈数是成反比例的,设三个齿轮的齿数分 别为x y z 则2x=3y=4z 得x:y :z=6:4:3
16、学校组织同学参观爱国主义纪念展,每60名同学配2
X=18
4、某修路队修一条公路,前6天修了180米,照这样的速度,修路 队又修了5天才全部修完,这条公路全长是多少米?
解设这条公路的全长是x米 每天修的长度一定,路的全长和时间成正比例关系 180:6=x:(6+5)
X=330
5、甲乙丙三人进行200米赛跑(他们的速度保持不变),甲到 终点时,乙还差20米,丙离终点还有25米,问乙到达终点时, 丙还差多少米?
解设:甲乙两城相距x千米 则第二次相遇时,卡车经过的路程为:x+x-120=2x-120 小轿车经过的路程为:x+120
人教版六年级下册数学第四单元比例应用题训练(含简单答案)
人教版六年级下册数学第四单元比例应用题训练1.曲港高速公路(曲阳至黄骅港)是河北省“东出西联”出海通道,其定州段连通京昆和京港澳高速,填补安国、博野两地无高速公路的空白,项目建设里程约为92千米,在一幅1∶4000000的地图上,这条高速公路的长度是多少?2.一个骑兵俑模型身高是18厘米,模型高度与实际高度的比是1∶10。
这个骑兵俑的实际身高是多少?(用比例解)3.在的地图上量得甲乙两地的距离是4厘米,甲乙两地的实际距离是多少?把它画在1∶4000000的地图上应画多长?4.在一幅比例尺为1∶2000000的地图上,量得甲乙两地之间的公路长10厘米。
一辆汽车和一辆货车从两地同时出发相向而行,汽车以每小时55千米的速度行驶,2小时后在超过中点10千米的地方相遇。
货车每小时行多少千米?5.在比例尺1∶4000000的地图上,量得天津到北京的距离是3厘米。
一辆汽车以每小时60千米的速度从天津开往北京,几小时能到达?6.一种药水,药液与水的比是1∶180,如果配制905千克的药水,需要药液多少千克?(用比例解)7.学校把制作爱心贺卡的任务按5∶4分配给六年级和五年级。
六年级实际制作了108张贺卡,超过原分配任务的20%,原计划五年级制作多少张爱心贺卡?8.小红去银行换港币,当天人民币与港币的兑换比是1∶1.25,小红要兑换1000元港币,她需要给银行多少元人民币?(用比例解)9.某市修一条道路,计划每天修120米,8天可以修完。
但因为天气原因,12天才完成任务,实际每天修多少米?(用比例方法解)10.一列动车从A城开往B城前3小时行了540千米,照这样的速度,动车还要行驶4小时才能到达B城,A城和B城相距多远?(用比例的方法解答)11.小明和小英住在同一个小区、小明家上个月用电102度,电费是61.2元。
小英家上个月用电85度,小英家上个月的电费是多少元?(用比例知识解答)12.小东家的客厅是正方形的,用边长0.6m的方砖铺地,正好需要100块。
六年级比例的应用题及答案
六年级比例的应用题及答案篇一:六年级数学按比分配应用题及答案】>1、把300 本作业按4∶5∶6 分给四、五、六年级的同学,四、五、六年级的同学各得多少本作业本?解:4+5+6=15答:四年级得80 本,五年级得100 本,六年级得120 本。
2、一种生理盐水是把盐水和水按照1∶ 100 配制而成,要配制这种生理盐水5050 千克,需要盐水多少千克?解:1+100=101答:需要盐水50 千克。
答:山羊和绵羊一共有140 头。
4、一种石灰水是用石灰和水按1∶ 100 配成的,要配制5656 千克的石灰水,需石灰多少千克?解:1+100=101 答:需石灰56 千克。
5、体育室有200 根跳绳,按人数分配给六年级一、二两个班,一班有52 人,二班有48 人,两个班各得跳绳多少根?解:52 +48=100 (人)答:一班可得跳绳104 根,二班可得跳绳96 根。
6、一个分数,它的分子和分母的和是40, 分子和分母的比是4∶ 6 ,这个分数是几分之几?解:4+6=10 答:这个分数是24 分之16。
7、一种药水是用药粉和水按 1 ∶80 配制成的。
⑴、40 千克药粉,可配制成多少千克的药水?3200 +40=3240 (千克)答:40 千克药粉,可配制成3240 千克的药水。
⑵、60 千克水,需要药粉多少千克?答:60 千克水,需要药粉0.75 千克。
⑶、配制这种药水1620 千克,需要药粉多少千克?解:1+80=81答:配制这种药水1620 千克,需要药粉20 千克。
8、把96 分米长的铁丝焊成一个长方体框架,长、宽、和高的比是3∶2∶1,这个长方体的体积和表面各是多少?3+2+1=6答:这个长方体的体积是384 立方分米,表面是352 平方分米。
9、五年级有140 人,六年级有130 人,从六年级调多少人到五年级,才能使五年级、六年级的人数比为5∶1?解:140 +130 =270 (人)5+1=6130 -45=85(人)答:从六年级调85 人到五年级。
六年级比例奥数题及答案
六年级比例奥数题及答案六年级比例奥数题及答案 11、李明的爸爸经营个水果店,按开始的定价,每买出1千克水果,可获利0.2元。
后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。
问:每千克水果降价多少元?答案:设以前卖出X千克降价a元。
那么0.2X×(1+0.5)=(0.2-a)×2x则0.1X=2aXa=0.05答:每千克水果降价0.05元2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
解析与答案:首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉。
把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果。
把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉。
由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
六年级比例奥数题及答案 2猎狗发现在离它10米的前方有一只奔跑着的兔子,马上追上去,兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。
问狗追上兔时,共跑了多少米路程?答案与解析:60米对于追及问题,我们知道:10米=速度差×追及时间狗追上兔时,所跑路程应为:总路程=狗的速度×追及时间这就是要弄清狗的速度与兔的速度差之间的倍数关系。
另一方面,在分析速度时,一定是相同时间内狗与兔的速度之间的倍数,而不是相同的步数或相同的路程。
只要分析清楚这些,就可以解出本题了。
详解1:为了看相同时间的路程关系,也就是速度关系,我们进行如下处理:狗跑2步的时间兔跑3步,则狗跑6步的时间兔子跑了9步,也就是兔子跑了狗的5步,那么在这段时间内,狗追上了兔子,狗的一步或狗兔间的距离缩短了狗的1步,而狗跑了6步,所以狗的速度是速度差的6倍。
人教版六年级下册数学第四单元 比例应用题训练
人教版六年级下册数学第四单元比例应用题训练1.聪聪用240毫升的酸梅原汁加500毫升水调制了酸梅汤。
妈妈说,当酸梅原汁和水的比是3∶7时,口感最佳。
为了使调制的酸梅汤口感最佳,聪聪应再往酸梅汤中加水多少毫升?2.在比例尺是1∶5000000的地图上,量得甲、乙两地的距离是25厘米。
客车和货车同时从甲、乙两地相对开出,货车平均每时行驶80千米,货车和客车的速度比是2∶3,几时后两车相遇?3.小马骑自行车从家里到书店一共用了20分钟,每分钟行160米;返回时每分钟行100米,返回时用了多少分钟?(用比例解)4.一张精密零件图纸的比例尺是40:1,在图纸上量得零件的长是18厘米。
这个零件实际长多少毫米?5.一辆汽车的模型与实际长度的比是1:30,如果模型的长是15cm,汽车的长是多少米?(用方程解)6.海滨市计划修一条迎宾路,4天修了328米。
照这样计算,这条迎宾路一共修了20天,这条迎宾路全长是多少米?(用比例解)7.在比例尺1:20000000的地图上,量得甲、乙两地长4.2厘米,一辆客车分两天按3:4行完全程。
这辆客车第二天行了多少千米?8.甲地到乙地的公路全长225千米,2小时行驶90千米。
照这样计算,行驶完全程一共要多少小时?9.小华看一本书,4天看了48页。
照这样计算,他看完一本192页的书,需要多少天?10.甲、乙、丙三人跑200米(假设三人速度一定),甲到达终点时,乙距终点还有20米,丙距终点还有29米。
当乙到达终点时,丙距终点还有多少米?(用比例解)11.甲、乙两个仓库原有货物的质量比是6:5,后来甲仓库运出16吨货物,乙仓库运进4吨货物,这时甲、乙两个仓库货物的质量比是10:9。
原来甲、乙仓库各有多少吨货物?12.在比例尺是1:5000的图纸上,画一个长为5厘米宽为4厘米的长方形草坪,草坪的实际面积是多少平方米?13.北京的世界公园里有一座埃菲尔铁塔的模型,高度是32m。
与原塔高度的比是1:10。
小学六年级比例应用题及答案
小学六年级比例应用题及答案【篇一:人教版六年级数学《比例》试题及答案】一、填一填1、()叫做比例。
2、在一个比例中,两个内项正好互为倒数,已知一个外项是3、北京到天津的实际距离是120千米,在比例尺是2,则另一个外项是()。
51的地图上,两地的图上距离是()厘米。
50000004、如果2a=3b,那么a:b=():()。
5、用12的因数中的任意四个数组成一个比例是()。
6、 3:()=6:10=():357、在总价、单价和数量三种量中,当()一定时,()与()成正比例当()一定时,()与()成正比例当()一定时,()与()成反比例8、配置一种淡盐水,盐占盐水的119,盐与水的比是()。
二、判断对错1、如果甲数是乙数的15(甲、乙均不为0),甲与乙的比是1:5。
()。
2、用同样的方砖铺地,铺地面积与方砖块数成反比例。
()3、一项工程,甲独做要10小时,乙独做要8小时,甲、乙工作效率的之比是()4、圆的面积与它的半径成正比例关系。
()5、求比例中的未知项,叫做解比例。
()6、一幅地图的比例尺是1:500000m。
()三、选一选,将正确答案的序号填在括号里。
1、一个加数一定,和与另一个加数()。
a、成正比例 b成反比例c不成比例2、出粉率一定,面粉质量与小麦质量成()a、成正比例 b成反比例c不成比例3、在一副平面图上,用图上距离2cm表示实际距离200m,这幅图的比例尺是()a、1:100b、 1:1000c 1:100005:4 14、按1:5将长方形缩小,就是将长方形的面积缩小到原来的()a、111b、c、 525105、用3、4、16、12四个数组成比例,正确的是()a、3:16=4:12b、3:4=12:16c、16:12=4:3四、算一算,解比例 x:10=11123: 0.4:x=1.2:2 = 432.4x五、画一画,操作题。
学校要建一个长100m,宽60m的长方形操场用1:1000的比例尺画出操场的平面图。
六年级比例应用题及答案
六年级比例应用题及答案题目:小明和小华在公园里比赛跑步,小明跑了全程的1/3,小华跑了全程的1/4。
如果小明跑了300米,那么小华跑了多少米?答案:1. 分析:首先,我们需要确定小明和小华跑步的比例关系。
题目中提到小明跑了全程的1/3,小华跑了全程的1/4。
2. 计算:已知小明跑了300米,这代表了全程的1/3。
我们可以通过除法计算出全程的距离。
全程距离 = 小明跑的距离 / 小明跑的比例全程距离 = 300米 / (1/3)3. 计算全程距离:全程距离 = 300米 * 3全程距离 = 900米4. 求小华跑的距离:现在我们知道了全程的距离,我们可以计算小华跑了多少米。
小华跑了全程的1/4。
小华跑的距离 = 全程距离 * 小华跑的比例小华跑的距离 = 900米 * (1/4)5. 计算小华跑的距离:小华跑的距离 = 900米 / 4小华跑的距离 = 225米6. 结论:所以,小华跑了225米。
题目:一个班级有60名学生,其中男生人数是女生人数的2倍。
如果男生人数增加了10人,那么男生和女生的人数比是多少?答案:1. 分析:题目中提到男生人数是女生人数的2倍,我们设女生人数为x,那么男生人数就是2x。
2. 计算:已知班级总人数为60人,可以建立方程:男生人数 + 女生人数 = 总人数2x + x = 603. 解方程:3x = 60x = 60 / 3x = 20所以,女生人数为20人,男生人数为2 * 20 = 40人。
4. 男生人数增加:题目中提到男生人数增加了10人,那么男生人数变为40 + 10 = 50人。
5. 求男生和女生的人数比:现在男生人数为50人,女生人数为20人。
男生和女生的人数比 = 男生人数 : 女生人数男生和女生的人数比 = 50 : 206. 简化比例:男生和女生的人数比 = 5 : 27. 结论:男生和女生的人数比是5:2。
题目:一个果园里有苹果树和梨树,苹果树的数量是梨树的3倍。
小学数学六年级上学期 比的应用题30题 带答案
19、工程队修一条路,上半月修好的米数与全长的比是1:5 .如果再修360米,就正好修了这条路的一半.这条路全长 多少米?
360÷(1/2-1/5)=1200(米)
20、一堆煤,第一天运走的吨数与总吨数的比是1:3,第 二天运走4.5吨后,两天正好运走了总数的一半,这堆煤有 多少吨?
4.5÷(1/2-1/3)=27(吨)
45÷3×(3+4)=105(千米)
10、医院的消毒酒精是由纯酒精和蒸馏水按3:1的比例配制而 成的,现在有600克纯酒精,需要加入多少克蒸馏水?
600÷3×1=200(克)
11、甲、乙、丙三堆苹果共重280千克,甲堆苹果与乙堆苹 果的质量比是3:4,乙堆苹果与丙堆苹果的质量比是6:7, 三堆苹果的质量各是多少千克?
甲:乙:丙=9:12:14 甲:280÷(9+12+14)×9=72(千克) 乙:280÷(9+12+14)×12=96(千克) 丙:280÷(9+12+14)×14=112(千克)
12、一种饮料中橘汁与白糖的比是2:1,白糖和矿泉水的比 是1:9,现在有60千克这种饮料,其中橘汁,白糖,与矿泉 水各有多少千克?
21、两个厂在一月内生产的服装比为6:5,两种价格比为11 :10,总产值为6960元,两个工厂的产值各为多少元?
1份:5050÷(1+100)=50(毫升) 浓缩液:1×50=50(毫升) 水:50×100=5000(毫升)
3、三个车间一共要生产零件1288个,第一车间有16人,第二车 间有18人,第三车间有22人。按人数分配任务,三个车间各应生 产多少个零件?
1份:1288÷(16+18+22)=23(毫升) 第一车间:16×23=368(个) 第二车间:18×23=414(个) 第三车间:22×23=506(个)
六年级数学按比分配应用题及答案
六年级数学按比分配应用题及答案1.将300本作业按照4:5:6的比例分配给四年级、五年级和六年级的同学,每个年级分别得到80本、100本、120本作业本。
2.假设一种生理盐水是将盐水和水按照1:100的比例配制而成的。
需要配制5050千克这种生理盐水,那么需要多少千克的盐水?答案是50千克。
3.山羊和绵羊的头数比是2:5,山羊有40头。
那么山羊和绵羊的总头数是多少?答案是140头。
4.假设一种石灰水是将石灰和水按照1:100的比例配制而成的。
需要配制5656千克这种石灰水,那么需要多少千克的石灰?答案是56千克。
5.体育室有200根跳绳,需要按照人数分配给六年级一班和二班。
一班有52人,二班有48人。
那么一班和二班各得多少根跳绳?答案是一班得到104根跳绳,二班得到96根跳绳。
6.一个分数,它的分子和分母的和是40,分子和分母的比是4:6.那么这个分数是多少?答案是24/16.7.假设一种药水是将药粉和水按照1:80的比例配制而成的。
⑴如果有40千克的药粉,那么可以配制多少千克的药水?答案是3240千克。
⑵如果有60千克的水,那么需要多少千克的药粉?答案是0.75千克。
⑶如果需要配制1620千克的这种药水,那么需要多少千克的药粉?答案是20千克。
8.将96分米长的铁丝焊成一个长方体框架,长、宽、高的比例是3:2:1.那么这个长方体的体积和表面积分别是多少?答案是体积为384立方分米,表面积需要计算。
解析:1.第一段:没有明显格式错误,但是可以将“答”和“解”两个字加粗或者改为标题格式更加清晰。
改写如下:题目:长方体的体积和表面积答案:这个长方体的体积是384立方分米,表面积是352平方分米。
2.第二段:没有明显格式错误。
3.第三段:没有明显格式错误。
4.第四段:没有明显格式错误。
5.第五段:没有明显格式错误。
6.第六段:没有明显格式错误。
7.第七段:没有明显格式错误。
8.第八段:没有明显格式错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级比例的使用题及答案【篇一:六年级数学按比分配使用题及答案】>1、把300本作业按4∶5∶6分给四、五、六年级的同学,四、五、六年级的同学各得多少本作业本?解:4+5+6=15答:四年级得80本,五年级得100本,六年级得120本。
2、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=101答:需要盐水50千克。
答:山羊和绵羊一共有140头。
4、一种石灰水是用石灰和水按1∶100配成的,要配制5656千克的石灰水,需石灰多少千克?解:1+100=101答:需石灰56千克。
5、体育室有200根跳绳,按人数分配给六年级一、二两个班,一班有52人,二班有48人,两个班各得跳绳多少根?解:52+48=100(人)答:一班可得跳绳104根,二班可得跳绳96根。
6、一个分数,它的分子和分母的和是40,分子和分母的比是4∶6,这个分数是几分之几?解:4+6=10答:这个分数是24分之16。
7、一种药水是用药粉和水按1∶80配制成的。
⑴、40千克药粉,可配制成多少千克的药水?3200+40=3240(千克)答:40千克药粉,可配制成3240千克的药水。
⑵、60千克水,需要药粉多少千克?答:60千克水,需要药粉0.75千克。
⑶、配制这种药水1620千克,需要药粉多少千克?解:1+80=81答:配制这种药水1620千克,需要药粉20千克。
8、把96分米长的铁丝焊成一个长方体框架,长、宽、和高的比是3∶2∶1,这个长方体的体积和表面各是多少?3+2+1=6答:这个长方体的体积是384立方分米,表面是352平方分米。
9、五年级有140人,六年级有130人,从六年级调多少人到五年级,才能使五年级、六年级的人数比为5∶1?解:140+130=270(人)5+1=6130-45=85(人)答:从六年级调85人到五年级。
10、甲做3000个零件比乙做2400个零件多用1小时,甲、乙的工作效率的比是6∶5。
乙每小时做多少个零件?解:因甲、乙的工作效率的比是6∶52500-2400=100(个)]答:乙每小时做100个零件。
11、客车和货车同时从a、b两地相对开出,客车每小时行60千米,货车每1 小时行全程的,相遇时客车和货车所行的路程比是5∶4。
a、b两地相距多少 15千米?4 4 1 20 解:货车行了全程的 9 9 15 320 5 60=720(千米) 3 9答:a、b两地相距720千米。
12、第一组和第二组人数的比是5∶3,从第一组调14人到第二组,第一组和第二组人数的比是1∶2。
两组原来各有多少人?5 1 解:原来第一组占总人数的调出14人后,第一组人数占总数的, 8 3所以两组总人数有:答:原来第一组有30人,第二组有18人。
13、甲、乙两个建筑队原有水泥重量比是4∶3,当甲队给乙队54吨水泥后,甲乙两队水泥的重量比变成3∶4,原来甲、乙两队各有水泥多少吨?4 解:原来甲建筑队水泥占总数的,给乙队54吨后,甲建筑队水泥占总数的 73 7所以,原来两队水泥的总吨数是:4 3 1 54-)=54=378(吨) 7 7 7答:原来甲有216吨水泥,乙有126吨水泥。
14、上、下两层书架放书本数之比是4∶3,如果从上层取出80本放到下层,则本数之比是4∶5,那么上、下两层书架现在分别放了多少本书?4 4 ,取出80本后,上层书占总数的 7 94 4 8 所以,两架书总数有:80-80=630(本) 7 9 63答:现在上层书架有280本,下层书架上有350本。
15、小明读一本120页的书,已经读的和未读的页数比是1∶2,再读多少页,已经读的和未读的页数之比是2∶1?1 1 ,120=40(页) 3 32 2 现在读过的占总数的120=80(页)3 380-40=40(页)答:再读40页,已经读的和未读的页数之比是2∶1.【篇二:小学数学六年级上册-比例使用练习题(提高题含分析答案)】例1:袋子里红球和白球的个数比是19:13。
放入若干只红球后,红球和白球数量之比是5:3,放入若干只白球后,红球和白球数量之比是13:11。
已知放入的白球比红球多80只。
那么原来袋子中有白球多少只?分析和解答(1)原来红球和白球的个数比是19:13,加入红球后,红球和白球数量之比是5:3,白球数量不变,所以红球和白球的个数比是57:39加入红球后,红球和白球数量之比是65:39,也就是说加入的红球是65-57=8份.(2)放入若干只白球后,红球和白球数量之比是13:11。
红球不变,将上面的比转化为红球和白球数量之比是65:55。
白球增加了55-39=16份.(3)已知放入的白球比红球多80只。
所以1份是80/(16-8)=10只.(4)原来有白球10*39=390只.例2:张家和李家本月收入钱数之比是8:5,本月开支的钱数之比是8:3,月底张家节余240元,李家节余510元,本月张家和李家分别收入多少元?解:设张家的开支为8x,李家的开支为3x.他们的收入分别为 8x+240,3x+510 所以(8x+240)/(3x+510)=8:524x+4080=40x+120016x=2880x=180张家的收入是8x+240=8*180+240=1680(元)李家的收入是3x+510=3*180+510=1050(元)例3:甲、乙两堆棋子中都有白子和黑子。
甲堆中白子和黑子的比是2:1,乙堆中白子和黑子的比是4:7。
如果从乙堆拿出3粒黑子放入甲堆,则甲堆中白子和黑子的比是7:4;如果把两堆棋子合在一起,白子和黑子数一样多。
问:原来甲乙两队各有多少棋子?解:甲堆中白子和黑子的比是2:1,如果从乙堆拿出3粒黑子放入甲堆,则甲堆中白子和黑子的比是7:4。
甲堆中白子数量不变,所以,甲堆中原来的白子和黑子的比是14:7,增加3粒黑子后,白子和黑子的比是14:8。
甲堆原来有黑子:3/(8-7)*7=21粒甲堆原来有白子:3/(8-7)*14=42粒。
甲堆共有42+21=63粒根据如果把两堆棋子合在一起,白子和黑子数一样多。
乙堆中白子和黑子的比是4:7。
甲的黑子比白子少42-21=21粒,所以乙堆的黑子有21/(7-4)*7=49粒乙堆的白子有21/(7-4)*4=28粒乙堆共有49+28=77粒例4:某食堂买回100个鸡蛋,每袋装十个,其中9只袋里装的鸡蛋,每个都是50克重,另一袋装的每个都是四十克重,这十袋混在一起,只准用称称一次就能找出哪一袋装的是40克重的鸡蛋,如何称法(1)编号。
把每袋鸡蛋从1到10编号;(2)取蛋。
第一袋取1个,第2袋取2个,……第10袋取10个,共55个;(3)称重。
把取出的55个鸡蛋称重;(4)比较。
如果都是标准重量,应该重55*50=2750克;如果比标准重量轻10克,那么第1袋鸡蛋每个重40克,如果比标准重量轻20克,那么第2袋鸡蛋每个重40克,……【篇三:人教版六年级数学《比例》试题及答案】一、填一填1、()叫做比例。
2、在一个比例中,两个内项正好互为倒数,已知一个外项是3、北京到天津的实际距离是120千米,在比例尺是2,则另一个外项是()。
51的地图上,两地的图上距离是()厘米。
50000004、如果2a=3b,那么a:b=():()。
5、用12的因数中的任意四个数组成一个比例是()。
6、 3:()=6:10=():357、在总价、单价和数量三种量中,当()一定时,()和()成正比例当()一定时,()和()成正比例当()一定时,()和()成反比例8、配置一种淡盐水,盐占盐水的119,盐和水的比是()。
二、判断对错1、如果甲数是乙数的15(甲、乙均不为0),甲和乙的比是1:5。
()。
2、用同样的方砖铺地,铺地面积和方砖块数成反比例。
()3、一项工程,甲独做要10小时,乙独做要8小时,甲、乙工作效率的之比是()4、圆的面积和它的半径成正比例关系。
()5、求比例中的未知项,叫做解比例。
()6、一幅地图的比例尺是1:500000m。
()三、选一选,将正确答案的序号填在括号里。
1、一个加数一定,和和另一个加数()。
a、成正比例 b成反比例c不成比例2、出粉率一定,面粉质量和小麦质量成()a、成正比例 b成反比例c不成比例3、在一副平面图上,用图上距离2cm表示实际距离200m,这幅图的比例尺是()a、1:100b、 1:1000c 1:100005:4 14、按1:5将长方形缩小,就是将长方形的面积缩小到原来的()a、111b、c、 525105、用3、4、16、12四个数组成比例,正确的是()a、3:16=4:12b、3:4=12:16c、16:12=4:3四、算一算,解比例 x:10=11123: 0.4:x=1.2:2 = 432.4x五、画一画,操作题。
学校要建一个长100m,宽60m的长方形操场用1:1000的比例尺画出操场的平面图。
六、想一想,解决问题1、六年级学生外出活动,每6人一组,可分为56组,如果每8人一组,可分为多少组?2、一辆汽车2小时行90km,照这样计算,行驶315km要多少小时?3、一个长方形足球场,长180米,宽90米,把它画在比例尺是上的足球场面积是多少?4、一根木料,锯3段需要4分钟,如果钜5段,需要多少分钟?2 1的图纸上,画在图2000答案:一、填一填1、表示两个比相等的式子2、 5 23、 2.44、 3:25、 1:6=2:12(答案不唯一)6、 5 217、单价总价数量;数量总价单价;总价单价数量8、 1:18三、选一选1、c2、a 3、c 4、c 5、b c四、算一算1、x=7.5 2、x=六、解决问题面积是40.5 cm24、3-1=2(次)5-1=4(次)解:设需要x分钟4x= 24x=8 答:需要8分钟。
3。