数字图像处理-7第七章图像锐化
数字图像处理课程设计-图像锐化
数字图象处理课程设计报告设计题目:MATLAB实现数字图象锐化处理系(院):专业:班级:学生姓名:学号:指导教师:目录1.报告摘要 (2)2.设计原理 (2)2.1MATLAB软件简介 (2)2.2MATLAB软件对图象的处理 (2)2.3图象锐化概述 (3)2.4图象锐化的原理 (3)3.设计过程 (4)3.1线性锐化 (4)3.1.1用线性高通滤波实现图像锐化的结果: (4)3.1.2线性高通滤波图象锐化的程序: (5)3.2非线性锐化 (5)3.2.1用Sobel 梯度算子实现图像锐化的结果及程序: (5)3.2.2用Prewitt梯度算子实现图像锐化的结果及程序: (6)3.2.3用log梯度算子实现图像锐化的结果及程序: (7)3.3设计总结 (8)4.心得体会 (9)1.报告摘要本次课程设计讨论了数字图像增强技术中空域图像锐化的四种算法及其用MATLAB的实现;同时给出了利用四种算法进行图像锐化后的对照图像。
[关键词] MATLAB 线性锐化非线性锐化sobel算子prewitt算子log 算子2.设计原理2.1MATLAB软件简介MATLAB全称是MatrixLaboratory(矩阵实验室),一开始它是一种专门用于矩阵数值计算的软件,从这一点上也可以看出,它在矩阵运算上有自己独特的特点。
实际运用中MATLAB中的绝大多数的运算都是通过矩阵这一形式进行的,这一特点决定了MATLAB在处理数字图像上的独特优势。
2.2MATLAB软件对图象的处理理论上讲,图像是一种二维的连续函数,然而计算机对图像进行数字处理时,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。
二维图像均匀采样,可得到一幅离散化成M×N样本的数字图像,该数字图像是一个整数阵列,因而用矩阵来描述该数字图像是最直观最简便的。
而MATLAB 的长处就是处理矩阵运算,因此用MATLAB处理数字图像非常的方便。
数字图像处理- 图像平滑与锐化
数字图像处理
7
数字图像处理
8
巴特沃斯滤波器
通带波动下的切比雪夫滤波器
阻带波动下的切比雪夫滤波器
数字图像处理
椭圆函数滤波器
9
数字图像处理
10
数字图像处理
11
数字图像处理
12
数字图像处理
13
涉及4种图像初始、中间或最终结果,和三个主要 处理步骤。
图像结果包括原始图像、原始变换域、滤波后的变换域 和滤波后的图像; 处理步骤包括傅里叶正变换、低通滤波和傅lt; complex > CImageProcessing::Low_pass_filter( CTArray< complex > original_signal ) { long dimension = original_signal.GetDimension(); double threshold = 0; for( int index = 0; index < dimension; index ++ ) { double magnitude = sqrt( original_signal[ index ].m_re * original_signal[ index ].m_re + original_signal[ index ].m_im * original_signal[ index ].m_im ); if( magnitude > threshold ) threshold = magnitude; } threshold /= 100; for( int index = 0; index < dimension; index ++ ) { double magnitude = sqrt( original_signal[ index ].m_re * original_signal[ index ].m_re + original_signal[ index ].m_im * original_signal[ index ].m_im ); double eplon = 1.0 / sqrt( 1 + ( threshold / magnitude ) * ( threshold / magnitude ) ); original_signal[ index ].m_re *= eplon; original_signal[ index ].m_im *= eplon; } return original_signal; } 21 数字图像处理
图像锐化算法实现
算法原理:通过将图像分解成多个频带,对每个频带进行滤波处理,再合并处理后的频带得到 锐化图像。
算法特点:能够更好地保留图像细节,提高图像清晰度,适用于各种类型的图像。
算法步骤:频带分解、滤波处理、频带合并、锐化图像。
算法应用:广泛应用于图像处理领域,如医学影像、遥感图像、安全监控等。
算法原理:根据图像局部特性自适 应调整滤波器系数,以提高图像边 缘清晰度
优点:对噪声具有较好的鲁棒性, 能够自适应地处理不同场景下的图 像锐化
添加标题
添加标题
常用实现方法:Laplacian、 Unsharp Masking等
添加标题
添加标题
适用场景:适用于各种类型的图像, 尤其适用于存在噪声和模糊的图像
图像锐化的实现步 骤
将彩色图像转换为灰度图像 增强图像对比度 突出图像边缘信息 减少图像数据量,加速处理速度
边缘检测是图像 锐化的重要步骤, 通过检测图像中 的边缘信息,可 以对图像进行清 晰化处理。
常见的边缘检测 算法包括Sobel、 Prewitt、Canny 等,这些算法通 过不同的方式检 测图像中的边缘 信息。
在边缘检测之后, 通常需要进行阈 值处理,将边缘 信息与阈值进行 比较,保留重要 的边缘信息,去 除不必要的噪声。
经过边缘检测和 阈值处理后,可 以对图像进行锐 化处理,使其更 加清晰。
对图像进行滤波处理,去除噪声和干扰 选择合适的滤波器,如高斯滤波器、中值滤波器等 对滤波后的图像进行锐化处理,增强边缘和细节 可根据实际需求选择不同的滤波器和参数,以达到最佳效果
对图像进行滤波处理,去除噪声 对图像进行边缘检测,突出边缘信息 对图像进行对比度增强,提高图像的清晰度 对图像进行细节增强,增强图像的纹理和细节信息
(完整版)数字图像处理每章课后题参考答案
数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。
1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。
实验报告-图像锐化
lWidth=m_BmpInfo.bmiHeader.biWidth;
lHeight=m_BmpInfo.bmiHeader.biHeight;
//分配内存,以保存新DIB
hDIB=GlobalAlloc(GHND,nBytePerLine*lHeight);
//判断是否内存分配失败
if(hDIB==NULL)
3.编写图像锐化的彩色图像灰度化,Sobel算法锐化,图像二值化处理相关的程序代码。
4.对程序进行相关调试,修改程序,去除其中的BUG。
5.利用自己准备的图像的文件和编写的程序,进行图像锐化处理。
6.截屏,保留实验结果,进行实验结果分析,并撰写实验报告。
三、相关背景知识
(写你自己觉得比较重要的与本实验相关的背景知识)
+ 0*val21+ 0*val22+ 0*val32
+ 1.0*val11+ 2.0*val12+ 1.0*val13;
//计算梯度的大小
Sobel=sqrt(gx*gx+gy*gy);
*(pImageDataNew+j*nBytePerLine+i* 3 + 0) =int(Sobel);
*(pImageDataNew+j*nBytePerLine+i* 3 + 1) =int(Sobel);
lHeight=m_BmpInfo.bmiHeader.biHeight;
for(intj= 0 ;j<lHeight;j++)
{
for(inti= 0 ;i<lWidth;i++)
{
//灰度化临时值
数字图像处理实验五、图像锐化
实验目的:通过实验掌握图像锐化的基本概念和方法
掌握二维傅里叶变换的基本概念和实现方法 实验内容: 一、掌握锐化空间滤波的概念和方法 二、掌握傅里叶变换和其反变换的基本概念
一、锐化空间滤波的概念和方法 拉普拉斯变换(算子):
2 f 2 f 2 f 2 2 x y 在数字图像处理中
2 f [ f ( x 1, y ) f ( x 1, y ) f ( x, y 1)
f ( x, y 1) 4 f ( x, y )]
对应 模板 为: 0
1 0
1
-4 1
0
1 0
扩展 模板 为:
1
1 1
1
-8 1
1
1 1
输入图像
拉普拉斯变换后的输出图像
moon.bmp
Matlab
Matlab
二、傅里叶变换的定义
F (u, v)
f ( x, y ) F (u, v)e j 2 ( ux vy )dudv
f ( x, y )e j 2 ( ux vy )dxdy
FFT IFFT
f ( x, y )
F (u, v)
实验结果
原图
sobel
prewitt
原图二值化bwmo源自ph原图edge原图
傅里叶变换
傅里叶逆变换
思考题
试述图像锐化的应用领域
7-图像锐化与边缘检测教学课件
一阶微分算子锐化与边缘检测 • 水平微分和垂直微分算子
不管是水平微分还是垂直微分,其计算结果都可能出 现负数。因此,需要对这种情况进行处理,常见的处 理方式有两种:一种是直接取绝对值,另一种是在计 算结果上整体加上一个偏移量。两种处理结果最后的 图像效果有一定区别。
15/
一阶微分算子锐化与边缘检测
4/
图像锐化与边缘检测
4、锐化的结果是突出了图像的边缘轮廓,但是图像 的其他部分依然保留。两者都可以在空域或频域进行, 在空域进行的操作通常采用一阶或二阶微分算子。 5、二维图像通过梯度实现图像的锐化或边缘检测, 图像锐化的结果是原图像与边缘检测结果图像进行加 减运算的结果。因此,锐化是基于边缘检测结果之后 的操作。 6、在实际机器视觉应用中,锐化操作作为图像处理 的中间步骤,尤其在图像的空域进行操作时,往往只 进行一阶微分或二阶微分运算,其结果不再与原图进 行加减运算,如果为了观察锐化效果,才进行这样的 操作。
12/
一阶微分算子锐化与边缘检测 • 水平微分和垂直微分算子
分别计算的是x方向的梯度和y方向的梯度。
(a)水平差分模板
(b)垂直差分模板
分别检测图像在水平或垂直方向的像素灰度值的 变化情况。其计算过程与图像的卷积计算类似.
13/
一阶微分算子锐化与边缘检测 • 水平微分和垂直微分算子
(a)水平微分计算示意图 (b)垂直微分计算示意图 14/
5/
图像梯度
1、连续函数的一阶导数表示如下:
df dx
lim f(x
x 0
x ) f(x ) x
2、二维函数f(x,y),其一阶导数如下:
f(x,y ) x
lim f(x
x 0
x,y) f(x,y ) x
第七章 图象增强之平滑与锐化
D0
D(u,v)
20
北京大学遥感所
图象平滑—频域法
§理想低通滤波器与Butterworth滤波器的比较
理想低通滤波器
Butterworth滤波器
21
北京大学遥感所
图象平滑—频域法
§梯形滤波器 传递函数
D (u , v ) D 0 1, D ( u , v ) D1 H (u , v ) , D 0 D (u , v ) D1 D 0 D 1 0, D (u , v ) D1
图象平滑—空域法
§邻域平均法 采用 此法的前提: 图像是由许多灰度恒定的小块组成的,相邻像素间存在很高的空 间相关性,而噪声则是统计独立的。 基本思想: 用图像上点(x,y)及其邻域像素的灰度平均值来代替点(x,y) 的灰度值。
方法: 采用3×3、5×5或7×7邻域不等,以3×3邻域为例 e* = 1/9(a+b+c+d+e+f+g+h+i) a b c
(a)
(b)
(c)
(d)
(a)(c)邻域平均:3×3 5×5 (b)(d)中值滤波:3×3 5×5
14
北京大学遥感所
图象平滑—频域法
§频域法 图像经过二维傅立叶变换后,噪声频率一般位于空间频率较高的区域,而 图像本身的频率分量处于空间频率较低的区域内,因此可以通过低通滤波的方 法使高频分量受到抑制,而让低频分量通过,实现图像的平滑
30
北京大学遥感所
图像锐化—空域法
§空域锐化方法—拉普拉斯算子
0 x-1,y 0 X,y- x,y ,y+ 1 1 x 0 +1, y 0 x 0 1 1 -4 0 1
遥感数字图像处理第7章 图像滤波
不足:会造成图像模糊,削弱边缘和细节
均值滤波模板
1 1 1 1 1 1 1 ,或 1 1 1 1 1 1 1 9 8 1 1 1 1 1 1
中值滤波(Median filtering)
中值滤波取每个领域像素值的中均作为该像素的新值。
图像滤波的方法:
1. 空间域滤波
通过窗口或卷积核
2. 频率域滤波
通过傅立叶变换和逆变换
相关概念
1. 邻域、4-邻域、8-邻域
2. 卷积、窗口卷积
噪声
噪声是影响对图像信息理解或分析的成分
遥感图像中常见的噪声:
1. 高斯噪声
在信号上附加均值为0,具有高斯概率密度的函数值
2. 椒盐噪声(脉冲噪声)
随机改变一些像素值
优点:对椒盐噪声比较有效,能保留部分细节信息,
减少模糊
不足:计算复杂,对随机噪声效果不好
高斯低通滤波(Gaussian low-pass filtering)
高斯低通滤波的模板由二维高斯分布计算得到,使用
窗口卷积计算像素新值。
优点:对高斯噪声比较有效
不足:计算复杂
梯度倒数加权法
在离散图像内部相邻区域的变化大于区域内部的变化,
通过微分过程来实现。
梯度
梯度反映了相邻像素之间灰度的变化率,图像中的边
缘部分灰度变化率大,因此梯度值较大;相应的灰
度值变化小的地方,梯度值也较小。
f ( x , y ) ' f x x gradf ( x , y ) ' f ( x , y ) fy y
1 1 1 0 或1 0 1 1 0 0 1 1 2 2 1 1 或 1 2 1 1 1 1 1 2
数字图像处理课后参考答案
数字图像处理课后参考答案数字图像处理第⼀章1.1解释术语(2)数字图像:为了便于⽤计算机对图像进⾏处理,通过将⼆维连续(模拟)图像在空间上离散化,也即采样,并同时将⼆维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来⽤⼆维数字阵列并表⽰其中各个像素的空间位置和每个像素的灰度级数的图像形式称为数字图像。
(3)图像处理:是指对图像信息进⾏加⼯以满⾜⼈的视觉或应⽤需求的⾏为。
1.7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理⽅法等。
彩⾊图像、多光谱图像和⾼光谱图像的处理技术沿⽤了前述的基本图像处理技术,也发展除了⼀些特有的图像处理技术和⽅法。
1.8基本思路是,或简单地突出图像中感兴趣的特征,或想⽅法显现图像中那些模糊了的细节,以使图像更清晰地被显⽰或更适合于⼈或及其的处理与分析。
1.9基本思路是,从图像退化的数学或概率模型出发,研究改进图像的外观,从⽽使恢复以后的图像尽可能地反映原始图像的本来⾯⽬,从⽽获得与景物真实⾯貌相像的图像。
1.10基本思路是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满⾜图像存储和实时传输的应⽤需求。
1.11基本思路是,通过数学⽅法和图像变换算法对图像的某种变换,以便简化图像进⼀步处理过程,或在进⼀步的图像处理中获得更好的处理效果。
1.12基本⽬的是,找出便于区分和描述⼀幅图像中背景和⽬标的⽅法,以⽅便图像中感兴趣的⽬标的提取和描述。
第⼆章2.1解释下列术语(18)空间分辨率:定义为单位距离内可分辨的最少⿊⽩线对的数⽬,⽤于表⽰图像中可分辨的最⼩细节,主要取决于采样间隔值的⼤⼩。
(19)灰度分辨率:是指在灰度级别中可分辨的最⼩变化,通常把灰度级数L称为图像的灰度级分辨率。
(20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其⽔平相邻和垂直相邻的4个像素称为该像素的4邻域像素,他们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。
数字图像处理PPT——第七章 图像分割
p-参数法
针对已知目标物在画面中所占比例的情况。 基本设计思想 选择一个值Th,使前景目标物所占的比例 为p,背景所占比例为1-p。 基本方法 先试探性地给出一个阈值,统计目标物的 像素点数在整幅图中所占的比例是否满足 要求,是则阈值合适;否则,阈值则偏大 或者偏小,再进行调整,直到满足要求。
p-参数法算法步骤
⎧ σ b2 ⎫ η | Th* = max ⎨ 2 ⎬ ⎩σ in ⎭
局部阈值方法
提出的原因 阈值方法对于较为简单的图像(目标 与背景差别大,容易区分的图像)简 单有效,对于较为复杂的图像,分割 效果不稳定。 方法 把图像分成子块,在每个子块上再采 样前述阈值分割方法
灰度-局部灰度均值散布图法
σ 12 =
f ( x , y )∈C 1
∑
( f ( x, y ) − μ1 )2
2 σ2 =
f ( x , y )∈C 22 )2
1 μ1 = N C1
f ( x , y )∈C 1
∑
f ( x, y )
1 μ2 = NC 2
f ( x , y )∈C 2
∑
f ( x, y )
参数空间的一条直线对应xy空间的一 个点
Hough变换提取直线原理
Xy空间一条直线上的n个点,对应kb 空间经过一个公共点的n条直线 Kb空间一条直线上的n点对应于xy空 间中过一公共点的n条直线
Hough变换提取直线算法
假设原图像为二值图像,扫描图中的每一 个像素点: 背景点,不作任何处理 目标点,确定直线: b = − xk + y 参数空间上的对应直线上所有的值累加1 循环扫描所有点 参数空间上累计值为最大的点(k*,b*)为所求 直线参数 按照该参数与原图像同等大小的空白图像 上绘制直线
图像预处理—图像锐化(数字图像处理课件)
四种高通滤波器比较:
理想高通有明显振铃,图像的边缘模糊不清。 Butterworth高通效果较好,振铃不明显,但计算复杂。 指数高通效果比Butterworth差些,但振铃也不明显。 梯形高通的效果是微有振铃、但计算简单,故较常用。
8
项目五
同态滤波器图像增强的方法
一幅图像f(x,y)能够用它的入射光分量和反射光分量来表示,其关 系式: f(x,y)=i(x,y)r(x,y)
移函数定义为: H (u, v) exp[ (D0 / D(u, v)) n ]
6
项目五
(4)梯形高通滤波器 梯形高通滤波器的滤波函数由下式给出:
H (u, v)
0
D(u, v) D1 D0 D1 1
D(u, v) D1 D1 D(u, v) D0 D(u, v) D0
7
项目五
则有:
z(x, y) ln f (x, y) ln i(x, y) ln r(x, y)
或者
Z (u, v) I (u, v) R(u, v)
这里I(u,v)以及R(u,v)分别是lni(x,y)和 lnr(x,y)的傅里叶变换。
同态滤波方法就是利用上式的形式将图像中的照明分量和反射
分量分开。这样同态滤波函数就可以分别作用在这两个分量上。
同态滤波的增强效果
14
滤波器转移函数 :
H
(u,
v)
0 1
透视图和剖面图:
D(u, v) D0 D(u, v) D0
4
项目五
(2)巴特沃斯高通滤波器 n阶高通具有D0截止频率的Butterworth高通
滤波器滤波函数定义如下 :
H (, v) 1/[1 (D0 / D(u, v))] 2n
图像锐化
高提升滤波及其实现 原理: 无论是基于一阶微分的Robert、Sobel模板还是基于二阶 微分的拉普拉斯模板,锐化处理后的图像中,原图像的平 滑区域近乎于黑色,而原图中所有的边缘、细节和灰度跳 变点都作为黑背景中的高灰度部分突出显示。在基于锐化 的图像增强中,我们常常希望在增强边缘和细节的同时仍 然保留原图像中的信息,而不是将平滑区域的灰度信息丢 失。因此可以把原图像加上锐化后的图像以得到比较理想 的结果。 注意:对于中心系数为负的模板(如w1,w3,w5),要达 到上述的增强效果,显然应当让原图像f(i,j)减去锐化算子 直接处理后的图像,即:
f ( x, y ) = ∂ ∇ ∂
2 2
f
2
x
+∂2f来自2∂y对于离散的二维图像f(x,y),可以用下式作为对二阶偏微 分的近似:
∂ f = ( f (i +1, j) − f (i, j)) −( f (i, j) − f (i −1, j)) = f (i +1, j) + f (i −1, j) −2 f (i, j) ∂x ∂ f = ( f (i, j +1) − f (i, j)) −( f (i, j) − f (i, j −1)) = f (i, j +1) + f (i, j −1) − sf (i, j) ∂y
g (i, j ) =
Af (i, j ) − Sharpen( f (i, j )),
这样的滤波处理就称为高提升滤波。 一般来说,权重系数A应为一个大于等于1的实数,A越大 原图像所占比重越大,锐化效果越不明显。下面分别给出 A取1.8和3时的效果图,可以看出细节得到了有效增强, 对比度也有了一定的改善。
2 2 2
第7章 图像的锐化处理
利用拉普拉斯算子进 原图像 行边缘提取的结果
利用拉普拉斯算子进 行边缘提取的结果
47
•拉普拉斯是一种微分算子,强调图像中灰度的 突变的区域。这将产生一幅把图像中的浅灰色 边线和突变点叠加到暗背景中的图像。 •将原始图像和拉普拉斯图像叠加在一起的简单 方法可以保护拉普拉斯锐化处理的效果,同时 又能复原背景信息。 •设原图为f (x, y),处理后的图像为g(x,y): •其模板表示为:
0 34 14 0 7 9 0 29 23 0 7 10 0 0 0 0
g (2,2) [(3 1) (7 5) (10 15)]2 [(15 1) (14 1) (10 3)]2 34
36
Priwitt锐化效果图例
37
Priwitt锐化效果图例2
特点:与Sobel相比,有一定的抗干扰性。图像效 果比较干净。
35
1 1 1 0 0 0 dx 1 1 1
1 0 1 1 0 1 dy 1 0 1
Priwitt算子 ——例题
1 1 3 1 5 15 8 7 14 9 7 10 11 0 4 6 0 0 0 0
49原图像原图像利用拉普拉斯算子进利用拉普拉斯算子进行边缘提取的结果行边缘提取的结果利用拉普拉斯算子进利用拉普拉斯算子进行边缘提取的结果行边缘提取的结果50732wallis算子因为人眼对画面信号的处理过程中有一个近似的对数运算环节因此通过对数运算构成非线性动态范围调整可以得到图像的增根据这个思路wallis微分算子实际上就是结合拉普拉斯算子与对数算子构造出来的一种锐化算子
• 这种锐化算法需要进行后处理,
以解决像素值为负的问题。
• 后处理的方法不同,则所得到的
数字图像处理--图像的锐化处理实验报告
江 西 理 工 大 学江 西 理 工 大 学 实 验 报 告 纸第 1 页/共 2页一、实验目的了解图像增强中的模板锐化法;要求先选择两幅图像,对其进行a=1和a=2的锐化处理,实现教材中图4.4.2的效果;再选择一幅图像,验证教材中提出的锐化实质,实现教材中图4.4.3的效果,并对实验结果进行分析。
二、实验内容1、选择两幅图像,对其进行a=1和a=2的锐化处理,实现教材中图4.4.2的效果,并分析实验结果。
2、选择一幅图像,验证教材中提出的锐化实质,实现教材中图4.4.3的效果,并分析实验结果。
三、实验步骤和设计思想设计思想:在matlab 环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。
f11=imread('lena1.bmp');f21=imread('442.bmp');%读取图像subplot(2,3,1);imshow(f11) %输出图像 title('原图') %在原始图像中加标题 a=1; %当a=1时w1=[0 -a 0;-a 1+4*a -a;0 -a 0]; %设置w1J1= imfilter(f11,w1,'symmetric','conv'); %进行锐化处理 f12=uint8(J1); %数据类型转换 subplot(2,3,2);imshow(f12); %显示锐化后的图像 title('a=1'); 实验步骤:1. 启动matlab 双击桌面matlab 图标启动matlab 环境;2. 在matlab 命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab 自带的图像,如: lena1.bmp 、lena1.bmp 图像;再调用相应的锐化函数,设置参数;最后输出处理后的图像; 3.浏览源程序并理解含义; 4运行,观察显示结果; 5结束运行,退出;四、程序清单任务一源代码: clc close clear allf11=imread('lena1.bmp'); f21=imread('442.bmp'); figure(1);subplot(2,3,1); imshow(f11); title('原图'); subplot(2,3,4); imshow(f21); a=1;w1=[0 -a 0;-a 1+4*a -a;0 -a 0];J1= imfilter(f11,w1,'symmetric','conv'); f12=uint8(J1); subplot(2,3,2); imshow(f12); title('a=1'); a=2;w2=[0 -a 0;-a 1+4*a -a;0 -a 0];J1= imfilter(f11,w2,'symmetric','conv'); f13=uint8(J1); subplot(2,3,3); imshow(f13); title('a=2');数字图像处理 实验报告姓名: 江 西 理 工 大 学 实 验 报 告 纸第 2 页/共 2页J1=imfilter(f21,w1,'symmetric','conv'); f22=uint8(J1); subplot(2,3,5); imshow(f22);J1=imfilter(f21,w2,'symmetric','conv'); f23=uint8(J1); subplot(2,3,6); imshow(f23);任务二源代码: clc close clear allf1=imread('lena1.bmp'); figure(1);subplot(1,3,1); imshow(f1); title('原图'); a=2;w=[0 -a 0;-a 4*a -a;0 -a 0];J= imfilter(f1,w,'symmetric','conv'); f12=uint8(J); subplot(1,3,2); imshow(f12); title('加重边缘');w1=[0 -a 0;-a 1+4*a -a;0 -a 0];J= imfilter(f1,w1,'symmetric','conv'); f12=uint8(J); subplot(1,3,3); imshow(f12); title('锐化结果');五、实验调试记录六、实验结果及其分析任务一结果:任务二结果:七、实验心得通过这次我对图像锐化法有了进一步了解,对图像处理中锐化的效果进一步掌握,对于以后的学习有很大的帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可以减少噪声影响
Prewitt算子
1 1 1
1
0
0
0
1 1 1
1 0 1
2 2 0 2
1 0 1
1 0 1
2 1 0 1
1 0 1
I=imread('rice.bmp');
h=edge(I,'sobel',0.1,'horizontal'); %edge调用Sobel算子检测水平方向边缘
变化平缓部分
v
频域滤波增强
频域滤波增强
频域滤波增强
低通滤波器 高通滤波器 带通、带阻滤波器
f=imread(‘lena.bmp’); F=fft2(f); Fs=fftshift(F); [M,N]=size(f); M0=round(M/2); N0=round(N/2); D0=10;n=1; for i=1:M for j=1:N D(i,j)=sqrt((i-M0)^2+(j-N0)^2); h(i,j)=1/(1+sqrt(2)*((D0/D(i,j))^(2*n)));%BLPF滤波函数 end; end; BHPFG=h.*Fs; BHPFG=ifftshift(BHPFG); BHPFg=uint8(real(ifft2(BHPFG)));%BLPF滤波结果 BHPFg1=BHPFg+f;%BLPF高频加强结果
第7章 图像锐化
7.1 空间域微分算子 7.2 频域高通滤波
图像锐化
目的 图像经转换或传输后,质量可能下
降,难免有些模糊。 图像锐化目的:加强图像轮廓,使
图像看起来比较清晰。
图像轮廓上,像素灰度有陡然变化,梯 度值很大。
图象灰度变化平缓区域,梯度值很小。
等灰度区域,梯度值为零。
空间域微分算子
一阶微分算子
f
Gx Gy
x f
y
Robert算子
用差分代替微分
f f m 1, n f m, n
x
f f m, n 1 f m, n
y
1
1
0
0 1
2
敏感。想一下为什么?
Robert算子
Sobel算子
1 2 1
1
0
0
0
1 2 1
v=edge(I,'sobel',0.1,'vertical'); %edge调用Sobel算子检测垂直方向边缘
g=edge(I,'sobel',0.1,'both');
%edge调用Sobel算子检测两个方向边缘
(a)原始图像
(b)w1模板滤波后
(c)w2模板滤波后 (d)sobel梯度图像
二阶微分算子
拉普拉斯算子
0 1 0 L1 1 4 1
0 1 0
0 1 0 L2 1 4 1
0 1 0
1 1 1 L3 1 8 1
1 1 1
1 1 1 L4 1 8 1
1 1 1
1 4 1 L5 4 20 4
1 4 1
避免使用梯度算子需要两次模板运算的麻烦,可用于检测孤立点
I=imread('rice.bmp'); I=double(I); L1=fspecial('laplacian'); g1=imfilter(I,L1,'corr','replicate'); L3=[1 1 1;1 -8 1;1 1 1]; g2=imfilter(I,L3,'corr','replicate'); L5=[1 4 1;4 -20 4;1 4 1]; g3=imfilter(I,L5,'corr','replicate');
(a)原始图像
(b)L1模板锐化效果
(a)原始图像 (b)L1模板锐化效果 (c)L3模板锐化效果 (d)L5模板锐化效果 与一阶算子相比,拉普拉斯算子提取更多的图像细节,对噪声更加敏感
拉普拉斯-高斯变换算子
Laplacian of Gaussian, LoG
0 0 1 0 0
0
1 2 1
0
L3
1
0
2 1
16 2
2 1
1
0
0 0 1 0 0
频域滤波增强
频域增强的原理
频率平面与图像空域特性的关系 图像变化平缓的部分靠近频率平面的
圆心,这个区域为低频区域 图像中的边、噪音、变化陡峻的部分,
以放射方向离开频率平面的圆心,这 个区域为高频区域
频域滤波增强
频域增强的原理
u
边、噪音、变化陡峭部分