因式分解配方法1ppt课件
合集下载
因式分解法解一元二次方程课件
解:(1)移项,得
3( + 2) − 5( + 2) =0
( + 2)(3 − 5) =0
∴ + = 或- =
5
∴ 1 = −2 , 2 =
3
(2)(3 + 1 + 5)(3 + 1 − 5) = 0
∴ 3 + 1 + 5 = 0或3 + 1 − 5=0
−1 − 5
2
2
2
3
=
2
3
3
∴− =±
2
2
3 3
∴= ±
2 2
∴ 1 = 3, 2 = 0.
3
=
2
2
2
2 = 3
公式法
解:
2 − 3 = 0
其中, = 1, = 3, = 0
∴ 2 − 4ac = 9 > 0
3± 9
∴=
2
∴ 1 = 3, 2 = 0.
尝试新的方法
有同学是这样解的:
3. 分解因式的方法有哪些?
提公因式法、公式法、十字相乘法.
情景引入
一个数的平方与这个数的3倍相等,这个数是几?
解:设这个数为,根据题意得
2
= 3
思考
1.你能用哪些方法解这个方程?
2.直接开平方法可以吗?
2 = 3
配方法
解:
2 − 3 = 0
3
2
∴ − 3 +
2
3
∴ −
因式分解法
解一元二次方程
回顾与复习
1. 我们已经学过了几种解一元二次方程的方法?
2 = ( ≥ 0)
人教版初中数学课标版九年级上册第二十一章 21.2 解一元二次方程因式分解法(共17张PPT)
还
10x - 4.9x 2 = 0
有
其
降 配方法
它
更
次 公式法
简 便
?
的 方
x1=
0
,x2 =
100 49
2.04
法 吗 ?
探究新知
观察方程 10x - 4.9x2 = 0,它有什么特点?你能根据 它的特点找到更简便的方法吗?
10x - 4.9x2 = 0
左边因式分解
x(10 - 4.9x)= 0
用降次法中的因式分解法解一元二次方程.
复习引入
1、解一元二次方程的基本思路是什么? 把二次方程转化为一次方程即降次
2、我们学过了用降次法中的哪几种方法来 解一元二次方程?
配方法和公式法
复习引入
3、什么叫因式分解?因式分解有哪几种方 法?
把一个多项式化成几个整式的积的形式叫做因式 分解或分解因式;
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。21.8.2421.8.2422:38:5422:38:54August 24, 2021
•
14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月24日星期二下午10时38分54秒22:38:5421.8.24
应用新知
1、用因式分解法解下列方程
(1)3x2+6x=0
(2)y(y-1)=2y-2
解 (1)3x(x+2)=0
:
∴3x=0或x+2=0
∴x1=0,x2=-2
(2)y(y-1)-2(y-1)=0 (y-1)(y-2)=0
∴y-1=0或y-2=0
(人教版)数学九年级上课件:21-2-3因式分解法-课件
(4) 4x2 121 0; (5) 3x(2x 1) 4x 2; (6) ( x 4)2 (5 2x)2 .
(1)x2+x=0
解:因式分解,得 x(x+1)=0. 得x=0或x+1=0,
x1=0,x2=-1.
2 x2 2 3x 0
解:因式分解,得
x x 2 3 0.
2019/11/15
布置作业
• 教材习题21.2
2019/11/15
得 x 0 或 x 2 3 0, x1 0, x2 2 3.
2019/11/15
3 3x2 6x 3, 4 4x2 121 0
解:化为一般式为 x2-2x+1=0.
因式分解,得 (x-1)(x-1)=0. 有x-1=0或x-1=0,
50 49
2
b2-4ac =(-10)2-4×4.9×0=100
x 50 50 49 49
x 50 50 49 49
x1
100 9/11/15
x b b2 4ac 10 10
2a
2 4.9
x1
100 , 49
实际问题
根据物理学规律,如果把一个 物体从地面10m/s的速度竖直上 抛,那么经过xs物体离地面的高 度(单位:m)为
10x 4.9x2
根据这个规律求出物体经过多少秒落回地面?(精 确到0.01s)
提示
2019/11/15
设物体经过xs落回地面,这时它离 地面的高度为0,即
10x 4.9x2 0
配方法
公式法
10x 4.9x2 0
新北师大版九年级数学上册《用因式分解法求解一元二次方程》优质课课件(共19张PPT)
用因式分解法求解一元二次方程
复习引入:
1、已学过的一元二次方程解 法有哪些?
2、请用已学过的方法解方程 x2 - 4=0
x2-4=0
解:原方程可变形为
(x+2)(x-2)=0
AB=0A=0或B=0
X+2=0 或 x-2=0 ∴ x1=-2 ,x2=2
X2-4= (x+2)(x-2)
教 1、熟练掌握用因式分解法解一 学 元二次方程。 目 2、通过因式分解法解一元二次 标 方程的学习,树立转化的思想。
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
(1)x(x 2) 0
x1 0, x2 2
(2)(y 2)(y 3) 0 y1 2, y2 3
(3)(3x
2)(2x 1)
0
x12Leabharlann 3,x21 2
(4)x2 x
x1 0, x2 1
下面的解法正确吗?如果不正确, 错误在哪?
解方程 (x 5)(x 2) 18
解: 原方程化为 (x 5)(x 2) 3 6
x-5=0或x+2=0
x-2=0或x+4=0
复习引入:
1、已学过的一元二次方程解 法有哪些?
2、请用已学过的方法解方程 x2 - 4=0
x2-4=0
解:原方程可变形为
(x+2)(x-2)=0
AB=0A=0或B=0
X+2=0 或 x-2=0 ∴ x1=-2 ,x2=2
X2-4= (x+2)(x-2)
教 1、熟练掌握用因式分解法解一 学 元二次方程。 目 2、通过因式分解法解一元二次 标 方程的学习,树立转化的思想。
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
(1)x(x 2) 0
x1 0, x2 2
(2)(y 2)(y 3) 0 y1 2, y2 3
(3)(3x
2)(2x 1)
0
x12Leabharlann 3,x21 2
(4)x2 x
x1 0, x2 1
下面的解法正确吗?如果不正确, 错误在哪?
解方程 (x 5)(x 2) 18
解: 原方程化为 (x 5)(x 2) 3 6
x-5=0或x+2=0
x-2=0或x+4=0
因式分解法ppt课件
(1)提公因式法:am+bm+cm= m(a+b+c)
;
( 2)公式法:a²-b²= (a+b)(a-b) ,a²±2ab+b²= (a± b)²
(3)十字相乘法 X
)(x
根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛, 那么物体经过xs 离地面的高度(单位:m) 为10-4.9x².
解 :(1) x(x-4)=2-8x
方程整理,得x²+4x=2,
配方,得x²+4x+4=6, 即(x+2)²=6 开平方,得x+2=± √6,
解得x
=-2+√6,x₂=-2-√6.
解 :(2) x²-4x=0
分解因式,得x(x-4)=0, 所以x=0 或x-4=0, 解得x=0,x₂=4.
解:(3)2 x(x+4)=1
解得
,X
₂
解 :2(x-3)²=x²-9,
2(x-3)²=(x-3)(x+3) (x-3)[2(x-3)-(x+3)]=0 (x-3)[x-9]=0 x₁=3,x₂=9.
练习6 按要求解一元二次方程.
(1)x(x-4)=2-8x
(配方法) .
(2)x²-4x=0
(因式分解法).
(3)2x(x+4)=1 (公式法) .
元
先配方,再用直接开平方法降
二 配方法 次 方
次
适用于全部
一
程 公式法
直接利用求根公式
元二次方程
的 方
先使方程一边化为两个一次因
法
因式分解法
式乘积的形式,另一边为0,适用于部分一
课件《因式分解》课件PPT_人教版1
x=
(b2-4ac≥0)
( x -4 ) 2 - ( 5 - 2x )2=0.
5 , x2=5.
导入新知
1. 解一元二次方程的方法有哪些?
直接开平方法 x2=a (a≥0)
配方法
(x+m)2=n (n≥0)
公式法
x= b b2 4ac(b2-4ac≥0)
2a
2. 什么叫因式分解?
把一个多项式分解成几个整式乘积的形式叫做因式 分解,也叫把这个多项式分解因式.
(4)移项,得 y2-2y-15=0.
a b c (∵2ax=∵+31,)(b2==x--314,,)=c0=. -=1,-4, =-1,
②(x-1)2=3;
把方程左边因式分解,
y y x①b=2x-∴2-4ax3c=x=+(-1-=100);-(2-b240-=41±a0c0≥0)-24×2-3 4×3×-1=2±3
能力提升题
我们已经学习了一元二次方程的四种解法:直 接开平方法、配方法、公式法和因式分解法.请从 以下一元二次方程中任选一个,并选择你认为适当 的方法解这个方程.
降次,化为两个一次方程
x 0 或 10 4.9x 0
解两个一次方程,得出原方程的根
x1 0,
100 x2 49 2.04
这种解法是不是很简单?
探究新知
【思考】以上解方程 10x-4.9x2=0 的方法是如何使二次方 程降为一次的?
x(10-4.9x)=0 ①
x=0或10-4.9x=0 ②
(2)x(x+4)=8x+12. 解:x2-4x-12=0,
(x+1)2=-1.
(x-2)2=16.
此方程无解.
x1=6, x2=-2.
人教九年级数学上册《因式分解法》课件
5.用因式分解法解下列方程: (1)x2-4=0;
解:x1=2,x2=-2 (2)x2-2 3x=0;
解:x1=0,x2=2 3
(3)(3-x)2-9=0;
解:x1=0,x2=6 (4)x2-4x+4=(3-2x)2. 解:x1=1,x2=53
知识点2:用适当的方法解一元二次方程
6.解方程(x+1)2-5(x+1)+6=0时,我们可以将x+1看成一个整
8.方程x(x-1)=-x+1的解为( D )
A.x=1
B.x=-1
C.x1=0,x2=-1
D.x1=1,x2=-1
9.用因式分解法解方程,下列方法中正确的是( A )
A.(2x+2)(3x+4)=0化为2x+2=0或3x+4=0
B.(x-3)(x+1)=1化为x-3=1或x+1=1
C.(x-2)(x-3)=2×3化为x-2=2或x-3=3
2.解一元二次方程,首先看能否用___直__接__开__平__方__法______;再看 能否用____因__式__分__解__法______;否则就用____公__式__法_____;若二次项 系数为1,一次项系数为偶数可先用__配__方__法_____.
知识点1:用因式分解法解一元二次方程
1.方程(x+2)(x-3)=0的解是( C )
解:x1=x2=2
(2)(x-3)2=3(x-3).
解:x1=3,x2=6
15.用适当的方法解下列方程:
(1)4(x-1)2=2;
解:x1=
22+2,x2=-
2+2 2
(2)x2-6x+4=0;
解:x1=3+ 5,x2=3- 5
(3)x2-4=3x-6;
解:x1=1,x2=2 (4)(x+5)2+x2=25.
配方法因式分解
§2.3运用配方法的因式分解法 学习目标
1. 理解掌握运用配方法进行因式分解;
2. 能根据具体情况灵活运用各种方法进行因式分解..
重点、难点
1. 配方法的运用方法;
2. 根据具体情况灵活选择方法进行因式分解
新课引入
1. 把下列各多项式因式分解:
1962-+x x ;22842--x x
小结:这种设法配成有完全平方式的方法叫做配方法..
说明:配方法的关键是将二次三项式变形为:A 2—B 2的形式;然后要平方差公式继续分解.. 例题选讲
例1. 把下列各多项式因式分解:
112366+--x y x ;2422497y y x x +-;★3ab b ax x 2222+--
例2.把下列各多项式因式分解:
1362025422--+ab b a ;216)5(6)5(222--+-x x x x
说明:把一个多项式因式分解的基本步骤:
1)如果多项式各项有公因式;那么先提取公因式;
2)如果多项式各项没有公因式;那么可以尝试运用公式来分解;
3)如果上述两种方法不能分解;那么可以尝试分组或十字相乘法或配方法来分解;
4)分解因式时;必须进行到每一个多项式因式都不能再分解为止..
巩固练习
把下列各多项式因式分解:
118724--x x ;222484n mn mx x -+-
小结
把一个多项式因式分解的基本方法:
提取公因式法、公式法、分组分解法、十字相乘法和配方法
课后练习
把下列各多项式因式分解: 1y xy x x 621552-+-;2432234ab b a b a b a --+; 3142222---+xy y x y x。
因式分解 配方法1最新版
向;我们习惯了飞翔,却成了无脚的鸟。年轻时我们并不了解自己,不知道自己需要什么。不知道什么才是自己最想要的,什么才是最适合自己的,自己又是怎么样的一个 人。”时光叠加,沧桑有痕,终究懂得,漫漫人生路,得失爱恨别离,不过是生命的常态。原来,人生最曼妙的风景,就是那颗没被俗世河流污染的初心。大千世界,有很多 的东西可以去热爱,或许一株风中摇曳的小草,一朵迎风招展的小花,一条弯弯曲曲的小河,都足够让我们触摸迷失的初心。紫陌红尘,芸芸众生,皆是过客。若时光允许, 我愿意一生柔软,爱了樱桃,爱芭蕉,静守于轮回的渡口,揣一颗云水禅心,将寂寞坐断,将孤独守成一帧最美的山水画卷。一直渴盼着,与心悦的人相守于古朴的小院,守 着老旧的光阴,只闻花香,不谈悲喜,读书喝茶,不争朝夕。阳光暖一点,再暖一点,日子慢一些,再慢一些,从容而优雅地老去。浮生荡荡,阳春白雪,触目横斜千万朵, 赏心不过两三枝;任凭弱水三千,只取一瓢饮。有梦的季节,有爱的润泽,走过的日子,都会成为笔尖温润如玉的诗篇。相信越是走到最后,剩下的唯有一颗向真向善向美的 初心。似水流年,如花美眷,春潮带雨晚来急,野渡无人舟自横朝花夕拾,当回望过往,你是此生无憾,还是满心懊悔呢?随着芳华的流逝,我们终究会明白:任何的财富都 比不上精神上的愉悦,任何的快感都不及对初心的执着。愿你不趋炎附势,不阿谀奉迎,不苟且偷生,不虚掷有限的年华,活出属于自己的风采,活在每一个当下,不忘初心,
因式分解
——配方法
对于 ax2bxc(a0)
这样的二次三项式,可以用 什么方法进行因式分解?
分解因式:
x2 3x402x2 x3
1、写出用配方法解方程
2x2x30的过程。
2、回忆并说出用配方法解方程 有哪几个步骤。
3、其中最关键的一步是什么?
用配方法怎样进行因式分解呢?
因式分解
——配方法
对于 ax2bxc(a0)
这样的二次三项式,可以用 什么方法进行因式分解?
分解因式:
x2 3x402x2 x3
1、写出用配方法解方程
2x2x30的过程。
2、回忆并说出用配方法解方程 有哪几个步骤。
3、其中最关键的一步是什么?
用配方法怎样进行因式分解呢?
初中数学经典课件:因式分解(人教版)
全平方公式吗?
a b2 a2 2ab b2 a b2 a2 2ab b2
a b2 a2 2ab b2
计 算
x 44 x _x_2__8_x__1_6__
: 7 b2 _b_2__1_4b___49__
m 99 m __m_2__1_8_m__8_1_
这两个数的积的两倍,等于这两个 数的和(或差)的平方。
牛刀小试(对下列各式因式分解): ① a2+6a+9 = _______(a_+__3_)2______ ② n2–10n+25 = _____(n__–_5_)2______ ③ 4t2–8t+4 = _______4_(_t–_1_)_2_____ ④ 4x2–12xy+9y2 = ___(2_x_–_3_y_)_2____
② – 4x2 + y2 = y2 – 4x2 = (y+2x)(y–2x) = – ( 4x2 – y2 ) = – (2x+y)(2x–y)
③ x4 – 1 = (x2)2 – 12 = (x2+1) (x22+–11))(x–1)
因式分解一定要分解彻底 !
④ x2 – x6
④ x2 – x6
既然是二次式,就可以写成(ax+b)(cx+d)的形式。 (ax+b)(cx+d)=acx2+(ad+bc)x+bd
所以,需要将二次项系数与常数项分别拆成两 个数的积,而这四个数中,两个数的积与另外两 个数的积之和刚好等于一次项系数,那么因式分 解就成功了。
6 x2 + 7 x + 2
2
1
3
2 ∴6x2+7x+2=(2x+1)(3x+2)
a b2 a2 2ab b2 a b2 a2 2ab b2
a b2 a2 2ab b2
计 算
x 44 x _x_2__8_x__1_6__
: 7 b2 _b_2__1_4b___49__
m 99 m __m_2__1_8_m__8_1_
这两个数的积的两倍,等于这两个 数的和(或差)的平方。
牛刀小试(对下列各式因式分解): ① a2+6a+9 = _______(a_+__3_)2______ ② n2–10n+25 = _____(n__–_5_)2______ ③ 4t2–8t+4 = _______4_(_t–_1_)_2_____ ④ 4x2–12xy+9y2 = ___(2_x_–_3_y_)_2____
② – 4x2 + y2 = y2 – 4x2 = (y+2x)(y–2x) = – ( 4x2 – y2 ) = – (2x+y)(2x–y)
③ x4 – 1 = (x2)2 – 12 = (x2+1) (x22+–11))(x–1)
因式分解一定要分解彻底 !
④ x2 – x6
④ x2 – x6
既然是二次式,就可以写成(ax+b)(cx+d)的形式。 (ax+b)(cx+d)=acx2+(ad+bc)x+bd
所以,需要将二次项系数与常数项分别拆成两 个数的积,而这四个数中,两个数的积与另外两 个数的积之和刚好等于一次项系数,那么因式分 解就成功了。
6 x2 + 7 x + 2
2
1
3
2 ∴6x2+7x+2=(2x+1)(3x+2)
课件《因式分解》精品PPT课件_人教版2
十字相乘法②随堂练习: 1)4a2–9a+2 a 24a 1
2)7a2–19a–6 7a 2a 3 3)2(x2+y2)+5xy 2x y x 2y
例 .将 2(6x2 +x) 2-11(6x2 +x) +5 分解因式 解:2(6x2 +x)2-11(6x2 +x) +5 = [(6x2 +x) -5][2(6x2 +x)-1] = (6x2 +x-5) (12x2 +2x-1 ) = (6x -5)(x +1) (12x2 +2x-1 )
x2 13x 42 x 6 x 7
对二次三项式x2+px+q用x2+(a+b)x+ab=(x+a)(x+b)进行因式分解, 应重点掌握以下问题:
1.适用范围:只有当q=ab,且p=a+b时 才能用十字相乘法进
我
行分解。
2.掌握方法:拆分常数项,验证一次项.
3.符号规律:
当q>0时,a、b同号,且a、b的符号与p的符号相同;
3.(x-2)(x+1)= x2-x-2
4.(x-2)(x-1)= x2-3x+2 5.(x+2)(x+3)= x2+5x+6 6.(x+2)(x-3)= x2-x-6 7.(x-2)(x+3)= x2+x-6 8.(x-2)(x-3)= x2-5x+6
(x+a)(x+b) =x2+(a+b)x+ab
2
-1
例1:2x2-7x+3
解:原式=(2x-1)(x-3) 1
-3
总结:
2 × (-3)+(-1) × 1=-7
一元二次方程的解法(4)因式分解法课件全面版
右化零 左分解
两因式 各求解
布置作业 1、家庭作业:练习册17.2(5) 2、课堂作业:课本习题17.2第4题; 3、预学下一课时内容。
只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其 目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小 小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠脚步去 丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的 渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于 “我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们 奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约 约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局, 或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开 了又落了。无数个岁月就这样在悄无声息的时光里静静的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中,走过了青春年少, 走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人生的真味!生老病死是自然规律。所以,面对生活中经历的一切顺境和逆境都学会 了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够的胸襟! 一生有多少 属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了沿途美丽的风景,淡漠了 对未来美好生活的憧憬。没有十全十美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历经磨砺的生命才丰盈而深刻。 见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里的际遇沉浮,走不出个人心里的 藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世界,一树一菩提,就是一粒小小的 沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么?未曾生我谁是我?生我之时我是谁? 长大成人方是我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升起;你愁与不愁,生活都将要继续。时
两因式 各求解
布置作业 1、家庭作业:练习册17.2(5) 2、课堂作业:课本习题17.2第4题; 3、预学下一课时内容。
只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其 目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小 小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠脚步去 丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的 渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于 “我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们 奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约 约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局, 或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开 了又落了。无数个岁月就这样在悄无声息的时光里静静的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中,走过了青春年少, 走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人生的真味!生老病死是自然规律。所以,面对生活中经历的一切顺境和逆境都学会 了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够的胸襟! 一生有多少 属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了沿途美丽的风景,淡漠了 对未来美好生活的憧憬。没有十全十美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历经磨砺的生命才丰盈而深刻。 见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里的际遇沉浮,走不出个人心里的 藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世界,一树一菩提,就是一粒小小的 沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么?未曾生我谁是我?生我之时我是谁? 长大成人方是我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升起;你愁与不愁,生活都将要继续。时
北师大版初中九年级上册数学课件 《用因式分解法求解一元二次方程》一元二次方程PPT教学课件
第二章一元二次方程
用因式分解法求解 一元二次方程
1 课堂讲解 因式分解法的依据
用因式分解法解方程
用适当的方法解一元二次方程
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?
你是怎样求出来的?
小颖、小明、小亮都设这个数为x,根据题意,可得方程x2=3x.但
7 97
7 97
x1 4 , x2 4
知3-讲
知3-讲
(3) (x-1)2-3(x-1)=0,(x-1)(x-1-3)=0, ∴x-1=0或x-4=0, ∴x1=1,x2=4.
(来自点拨)
总结
知3-讲
在没有规定方法的前提下解一元二次方程,首先 考虑用因式分解法,其次考虑用公式法.对于系 数较大时,一般不适宜用公式法,如果一次项系 数是偶数,可选用配方法.
(2x+1)(2x-1)=0. 于是得
2x+1=0,或2x-1=0,
x1
1 2
,
x2
1 2
知2-讲
总结
知2-讲
1. 采用因式分解法解一元二次方程的技巧为: 2. 右化零,左分解,两因式,各求解. 3. 2. 用因式分解法解一元二次方程时,不能将“或” 4. 写成“且”,因为降次后两个一元一次方程并 5. 没有同时成立,只要其中之一成立了就可以了
导引:方程(1)选择配方法;方程(2)选择公式法; 方程(3)选择因式分解法.
知3-讲
(来自点拨)
解: (1)x2-2x-3=0,
移项,得x2-2x=3,
配方,得(x-1)2=4,x-1=±2,
∴x1=3,x2=-1.
(2)2x2-7x-6=0,
用因式分解法求解 一元二次方程
1 课堂讲解 因式分解法的依据
用因式分解法解方程
用适当的方法解一元二次方程
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?
你是怎样求出来的?
小颖、小明、小亮都设这个数为x,根据题意,可得方程x2=3x.但
7 97
7 97
x1 4 , x2 4
知3-讲
知3-讲
(3) (x-1)2-3(x-1)=0,(x-1)(x-1-3)=0, ∴x-1=0或x-4=0, ∴x1=1,x2=4.
(来自点拨)
总结
知3-讲
在没有规定方法的前提下解一元二次方程,首先 考虑用因式分解法,其次考虑用公式法.对于系 数较大时,一般不适宜用公式法,如果一次项系 数是偶数,可选用配方法.
(2x+1)(2x-1)=0. 于是得
2x+1=0,或2x-1=0,
x1
1 2
,
x2
1 2
知2-讲
总结
知2-讲
1. 采用因式分解法解一元二次方程的技巧为: 2. 右化零,左分解,两因式,各求解. 3. 2. 用因式分解法解一元二次方程时,不能将“或” 4. 写成“且”,因为降次后两个一元一次方程并 5. 没有同时成立,只要其中之一成立了就可以了
导引:方程(1)选择配方法;方程(2)选择公式法; 方程(3)选择因式分解法.
知3-讲
(来自点拨)
解: (1)x2-2x-3=0,
移项,得x2-2x=3,
配方,得(x-1)2=4,x-1=±2,
∴x1=3,x2=-1.
(2)2x2-7x-6=0,
用因式分解法求解一元二次方程课件19张北师大版九年级上册数学
等式两边加4,得x2+4x+4=6,
由完全平方公式得(x+2)2=6,
∴x+2= 或x+2=- ,
所以原方程的解为x1=-2+ ,x2=-2- .
合作探究
(2)移项,得(x-2)2-3(x-2)=0,
提取公因式,得(x-2)(x-5)=0,
则x-2=0或x-5=0,
解得x1=2,x2=5.
把解一元二次方程变为解两个 一
元 一
次方程的情势,
从而求得方程的解.我们把这种解一元二次方程的方法称为
解因式法 .
分
预习导学
2.分解因式法解一元二次方程的一般步骤:
(1)移项:把方程的右边变为
(2)化积:把方程的左边分解为
0
;
两
个一次因式的积;
(3)转化:令两个一次因式分别为0,把方程转化为两个
元
方法归纳交流 因式分解法是把一元二次方程转化为两个
一元一次方程,再求解即可.逆向思维,我们可以构造两个一元
一次方程,把两个一元一次方程相乘,得到一元二次方程.
合作探究
2.三角形两边长分别为3和6,第三边是方程x2-6x+8=0的
解,则这个三角形的周长是( B )
A.11
B.13
C.11或13
D.不能确定
合作探究
1.方程3x(x+1)=3x+3的解为( D )
A.x=1
B.x=-1
C.x1=0,x2=-1
D.x1=1,x2=-1
2.用指定方法解下列方程:
(1)x2+4x-2=0(配方法);
(2)(x-2)2=3(x-2)(因式分解法);
(3)2x2-4x-1=0(公式法).
合作探究
解:(1)原方程可化为x2+4x=2,
由完全平方公式得(x+2)2=6,
∴x+2= 或x+2=- ,
所以原方程的解为x1=-2+ ,x2=-2- .
合作探究
(2)移项,得(x-2)2-3(x-2)=0,
提取公因式,得(x-2)(x-5)=0,
则x-2=0或x-5=0,
解得x1=2,x2=5.
把解一元二次方程变为解两个 一
元 一
次方程的情势,
从而求得方程的解.我们把这种解一元二次方程的方法称为
解因式法 .
分
预习导学
2.分解因式法解一元二次方程的一般步骤:
(1)移项:把方程的右边变为
(2)化积:把方程的左边分解为
0
;
两
个一次因式的积;
(3)转化:令两个一次因式分别为0,把方程转化为两个
元
方法归纳交流 因式分解法是把一元二次方程转化为两个
一元一次方程,再求解即可.逆向思维,我们可以构造两个一元
一次方程,把两个一元一次方程相乘,得到一元二次方程.
合作探究
2.三角形两边长分别为3和6,第三边是方程x2-6x+8=0的
解,则这个三角形的周长是( B )
A.11
B.13
C.11或13
D.不能确定
合作探究
1.方程3x(x+1)=3x+3的解为( D )
A.x=1
B.x=-1
C.x1=0,x2=-1
D.x1=1,x2=-1
2.用指定方法解下列方程:
(1)x2+4x-2=0(配方法);
(2)(x-2)2=3(x-2)(因式分解法);
(3)2x2-4x-1=0(公式法).
合作探究
解:(1)原方程可化为x2+4x=2,
因式分解配方法课件讲课教案
❖步骤:1提:提出二次项系数;
2配:配成完全平方;
3化:化成平方差;
4分解:运用平方差分解因式。 ❖实质:对二次三项式的常数项进行 “添项”。“添”的是一次项系数一 半的平方。(添项拆项法)
练习3 把下列各式分解因式
x4 4
3x26x1(在实数范围内)
你领略到配方的魅力了吗?
❖配方法是一种“通法”,就是说只 要是能分解的二次三项式,都能用配 方法来分解。
对于 ax2bxc(a0) 这样
的二次三项式,可以进行因式分解吗?
例:如 x22x3 解:原式=(x22x1)13
(x1)2 4 [x ( 1 ) 2 ]x [ ( 1 ) 2 ] (x3)(x1)
练习1 把下列各式分解因式
(1)x2 2x8 (2)x26xy5y2
综合应用
1.若x2 (m3)x4是完全平方式
则实数m的值是______.
分析:两种情况: ( 1)如 x2(果 m3)x4(x2)2
则 m34即 m7; (2)如x果 2(m3)x4(x2)2 则 m34即 m1;
m7或1。
提高练习:已知a2+b2-6a+2b+10=0, 求a,b的值.
(3)x2y220 xy96
试试用配方法怎样进行下列式子 的因式分解呢?
(1)x2 3x40
(2)2x2 x3
➢在分解过程中,为什么要加上一项,又减 去该项?
➢在第2题中怎样把二次项系数变为1?
➢能总结出用配方法分解因式的步骤吗?
➢对比用配方法解方程,你觉得用配方法分 解因式的过程中,哪些值得注意的地方?
( 2 )999 2 1002 998 解: ( 9原 9 1 ) 2 8 式 10 9 09 28
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)-x2-2x+15
.
家庭作业
1、如果x2+2(k+4)x+25是完全平方式,求k的值。
2、已知x2+y2+6x-4y+13=0,求x,y的值.
3、分解因式
(1)x2-4x-12 (2)y2+12y-133
(3)x2-3x-28
(4)y2+18y+56
(5)x2+4xy-21y2 (6)x2y2+5xy+6
∴(a-3)2+(b+1)2=0 ∴a=3,b)x2-18x+ =( )2 (2) 9x2 + +16y2=( )2
2、如果x2-2kx+4是完全平方式,则k=
.
3、分解因式
(1)x2+2x-24
(2) x2+8xy+12y2
(3)x2-3x-10
(4)x2y2-9xy+20
因式分解
——配方法
知识回顾
1、分解下列因式:
(1)7x2-28x
(2) 5ab2-80a3
(3) -9a2+36b2 (4)25a2-30ab+9b2
(5)18x3y+24x2y2+8xy3 (6) a4-4 (在实数范围内)
.
提升训练
2.因式分解:
(1 ) 3 ax 2 6 axy 3 ay 2 3 a x 2 2 x y 2
(1)x2 3x40
(2)2x2 x3
➢在分解过程中,为什么要加上一项,又减 去该项?
➢在第2题中怎样把二次项系数变为1?
➢能总结出用配方法分解因式的步骤吗?
➢对比用配方法解方程,你觉得用配方法分 解因式的过程中,哪些值得注意的地方?
❖步骤:1提:提出二次项系数;
2配:配成完全平方;
3化:化成平方差;
1.若x2 (m3)x4是完全平方式
则实数m的值是______.
分析:两种情况: ( 1)如 x2(果 m3)x4(x2)2
则 m34即 m7; (2)如x果 2(m3)x4(x2)2 则 m34即 m1;
m7或1。
.
提高练习:已知a2+b2-6a+2b+10=0, 求a,b的值.
解:∵ a2+b2-6a+2b+10=0 ∴a2-6a+9+b2+2b+1=0
4分解:运用平方差分解因式。 ❖实质:对二次三项式的常数项进行 “添项”。“添”的是一次项系数一 半的平方。(添项拆项法)
.
练习3 把下列各式分解因式
x4 4
3x26x1(在实数范围内)
你领略到配方的魅力了吗?
❖配方法是一种“通法”,就是说只 要是能分解的二次三项式,都能用配 方法来分解。
综合应用
的二次三项式,可以进行因式分解吗?
例:如 x22x3 解:原式=(x22x1)13
(x1)2 4 [x ( 1 ) 2 ]x [ ( 1 ) 2 ] (x3)(x1)
练习1 把下列各式分解因式
(1)x2 2x8 (2)x26xy5y2
(3)x2y220 xy96
.
试试用配方法怎样进行下列式子 的因式分解呢?
( 2 )999 2 1002 998 解: ( 9原 9 1 ) 2 8 式 10 9 09 28
92 9 2 8 9 9 1 8 10 9 09 28
9 ( 998 9 2 8 10 ) 1 02
99 ( 8 2 ) 1 1997
.
对于 ax2bxc(a0) 这样
.
3a(xy)2
( 2 ) a 4 8 a 2 b 2 16 b 4 (a24b2)2
[a (2b)a (2b)2] (a2b)2(a2b)2 ( 3 )( a 2 9 ) 2 36 a 2 (a 2 9 6 a )a (2 9 6 a )
(a3)2(a3)2
.
综合应用
3 .用简便方计算:
( 1)2008 2 64 16 2008 解: 2原 0 2 0 2 式 2 80 8 0 8 2 8 (20088) 220020400000