函数的图象及变换31页PPT

合集下载

高一必修1-函数图象的变换ppt课件.ppt

高一必修1-函数图象的变换ppt课件.ppt
如:y=f(x)±h的图象可由y=f(x)的图象 _向__上__(__下__)__平__移__h_个__单__位__而得到.
练习: 将直线y=2x+1向左平移5个单位,
得到的函数为__y_=_2_x+_1_1_______
左右平移时,发生变化的仅是x本身,如果x的系 数不是1时,需要把系数提出来,再进行变换.
(6)y=f(|x|)的图象:可先作出y=f(x)当x≥0 时的图象,再利用_偶__函__数__的__图__象__关__于__y_轴__对__称, 作出y=f(x)(x≤0)的图象.
函数y=|log2x|的图象是( A )
解析
f
(x)
|
lo g2
x
|
lo g2
lo
g1
2
x, x x,0
1, x
课前练习:
当a>2时,函数 y ax和y (a 1)x2 的图 象只可能是( )
y
y
y
y
0
x
A
0
x
B
0x
C
0x
D
知识回顾:基本初等函数及图象(大致图象)
函数 一次函数 y=kx+b
图象
二次函数
y=ax2+bx+ c
指数函数 y=ax
对数函数 y=logax
知识回顾:
下列二次函数的图象,是由 抛物线y=x2通过怎样的平移变换得 到的?
y f 1(x) 与y=f(x)的图象关于直线y=x对称.
设奇函数 f(x) 的定义域为[-5, 5], 若当x∈[0, 5]时, f(x)的图象如右图所
示. 则不等式 f(x)<0 的解集
是 (-2, 0)∪(2, 5]

函数图像变换ppt课件

函数图像变换ppt课件

横坐标取相反数 纵坐标不变
y=f(x)与y=f(-x)图象关
横坐标、纵坐标 同时取相反数
y=f(x)与y=-f(-x)图象
对 称 变 换Biblioteka 于y轴对称关于原点对称
问题2:说出下列函数的图象与指数函数y=2x的 图象的关系,并画出它们的示意图. (4)y=log2x (3)y=-2-x (1)y=2-x (2)y=-2x
2 x (x1 )1 1 1 y x 1 x 1 x1
1 y x x换成x-1
1 y x 1
向右平移1个单位
y
O
1 -1
(1,-1)
x
向下平移1个单位
1 y 1 x 1
例3.已知函数y=|2x-2| (1)作出函数的图象; (2)指出函数 的单调区间; (3)指出x取何值时,函数有最值。
y y y y
1
O
1 1 x
O
1 x -1
O
-1
x
O1
x
(x,y)和(-x,y) 关于y轴对称! (x,y)和(y,x) y 轴y=x 与和 y=f(-x) 的图象关于 对称; 关于直线 对 ( x,y)和(-x,-y) 对 (1)y=f(x) (x,y) (x,-y) 称! 关于原点对称! x 轴 对称; 与 y=-f(x) 的图象关于 关于x 轴对称! 称 (2)y=f(x) 变 (3)y=f(x)与y=-f(-x)的图象关于 原 点 对称;
y=f(x-1) 1 -1 O 1
x
y=f(x)-1 -1
a>0,向左平移a个单位 y=f(x+a)左右平移 a<0,向右平移|a|个单位 k>0,向上平移k个单位 y=f(x)+k 上下平移 k<0,向下平移|k|个单位

函数图像的变换PPT

函数图像的变换PPT
总结词
当函数图像在y轴方向上伸缩时,其形状和位置会发生变化,但对称性保持不变。
详细描述
沿y轴伸缩是指保持x轴不变,只改变y轴的长度。当y增大时,整个函数图像向上平移;当y减小时, 整个函数图像向下平移。这种变换不会改变函数的值,只是改变了图像在y轴上的位置。
同时沿x轴和y轴伸缩
总结词
当函数图像在x轴和y轴方向上都发生 伸缩时,其形状和位置会发生变化, 但对称性保持不变。
03
伸缩变换
沿x轴伸缩
总结词
当函数图像在x轴方向上伸缩时,其 形状和位置会发生变化,但对称性保 持不变。
详细描述
沿x轴伸缩是指保持y轴不变,只改变x 轴的长度。当x增大时,整个函数图像 向右平移;当x减小时,整个函数图像 向左平移。这种变换不会改变函数的 值,只是改变了图像在x轴上的位置。
沿y轴伸缩
详细描述
旋转角度的大小对函数图像的形状和位置有 直接影响。例如,当一个正弦函数图像顺时 针旋转90度时,它将变成一个余弦函数图像 ;而当它逆时针旋转90度时,它将变成一个 正切函数图像。此外,旋转角度也会影响图 像的位置,例如,当图像逆时针旋转30度时 ,图像上的所有点都会沿着顺时针方向移动
30度。
旋转变换实例
总结词
旋转变换是指函数图像绕原点旋转的过程。
详细描述
旋转变换可以通过将直角坐标转换为极坐标 来实现。例如,函数$y = f(x)$的图像绕原 点逆时针旋转$theta$角度后,新的函数可 以表示为$y = f(rcostheta), x = rsintheta$。
复合变换实例
总结词
复合变换是指同时进行平移、伸缩和旋转变换的过程 。
与顺时针旋转相反,如果函数图像按照逆时针方向旋转 ,那么图像上的每一个点都会沿着顺时针方向移动。例 如,如果一个函数图像是关于x轴对称的,那么当它逆时 针旋转90度时,原来的对称轴将变成垂直轴,而原来的y 轴将变成水平轴。

函数图像专题PPT课件图文

函数图像专题PPT课件图文
答案 B
2.(2011·福州质检)函数y=log2|x|的图象大致是( ) 答案 C 解析 函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选C.
答案 A
4.(08·山东)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( ) A.3 B.2 C.1 D.-1 答案 A 解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0).即3+|2-a|=1+|a|,用代入法知选A.
思考题1 将函数y=lg(x+1)的图象沿x轴对折,再向右平移一个单位,所得图象的解析式为________. 【答案】 y=-lgx
题型二 知式选图或知图选式问题 例2 (2011·合肥模拟)函数f(x)=loga|x|+1(0<a<1)的图象大致为( )
【解析】 首先分析奇偶性,知函数为偶函)=1,∴选A.
1.函数图象的三种变换 (1)平移变换:y=f(x)的图象向左平移a(a>0)个单位,得到y=f(x+a)的图象;y=f(x-b)(b>0)的图象可由y=f(x)的图象向右平移b个单位而得到;y=f(x)的图象向下平移b(b>0)个单位,得到y=f(x)-b的图象;y=f(x)+b(b>0)的图象可由y=f(x)的图象向上平移b个单位而得到.总之,对于平移变换,记忆口诀为:左加右减上加下减.
【答案】 C
题型三 函数图象的对称性 例3 (1)已知f(x)=ln(1-x),函数g(x)的图象与f(x)的图象关于点(1,0)对称,则g(x)的解析式为________________. (2)设函数y=f(x)的定义域为实数集R,则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称

函数图像的变换优秀课件

函数图像的变换优秀课件
函数图像的变换优秀课件
平移变换—水平平移
f(x+2)=(x+2)2
y f(x)=x2
-2 O
f(x-2)=(x-2)2
2
x
ቤተ መጻሕፍቲ ባይዱ
平移变换—水平平移
小结:
y=f(x) 沿 x轴
y=f(x+a) 当a>0时,向左平移 a个单位 当a<0时,向右平移
|a|个规单律位:左加右减
平移变换—竖直平移 y=x2 +1
1 1 , 1 0,1 2
-4 -3 -2 -1 0 1 2 3 4 x
-1
y (1) x 2
-2
-3
y
4
y log2x
3
y log2x1
-4 -3 -2 -1
2
1,1
1
4,2 4,1
1,0
x 0 1 2 1 , 1 3 4
-1 2 1,1
ylog2x1
-2 1 , 2 2
(x,y)换成(x,-y)
1、 y f (x) 关于y轴对称 yf(x) 3、y f (x) 关于原点对称 yf(x)
(x,y)换成(-x,y)
(x,y)换成(-x,-y)
三、适应练习Ⅰ
1、y x2 与 y x2 的图像关于______x__轴_____对称;
2、 f (x)2x1 与g(x)21x的图像关于_____y__轴______对称;
y f(x)=x2
1
O -1
y=x2 -1 x
平移变换—竖直平移
小结:
y=f(x)沿 y轴 y =f(x) +a
当a>0时,向上平移a个单位 当a<0时,向下平移|a|个单 位

高中数学《函数图象的变换》课件

高中数学《函数图象的变换》课件
将y = f(x)在 x 轴上方的图 象保留,下方的图象以 x 轴为对 称轴翻折到上方可得到 y =|f(x)| 的图象.(保上方,下方翻上方)
翻折变换
y = f(x) 的图象
y =|f( x )| 的图象
将y = f(x)在 x 轴上方的图 象保留,下方的图象以 x 轴 为对称轴翻折到上方可得到 y =|f(x)|的图象.
平移变换
左上 右下 平平 移移
对称变换
关关关 于于于 x y原 轴轴点
翻折变换
上左 下右 翻翻 折折
归纳总结
平 y = f(x) 左移 h (h>0) y = f(x + h)
移 的图象 个 单 位
的图象
变 换
y = f(x) 右移 h (h>0) y = f(x - h)
的图象 个 单 位
的图象
问题与思考——复习
1、在同一坐标系中作下列函数 的图象,并说明每组两函数图象间的 关系.
(1) y = |log2x| (2) y = x2 - 2x,y = |x2 - 2x|
yy= log2 x
o
o
1
x
1
x
将 y = log2x 在 x 轴上方的图象保留, 下方的图象以 x 轴为对称轴翻折到上方可
翻 的图象 折 变 换
y =f( |x| ) 的图象

谢 谢
翻折变换
问题与思考:
2、在同一坐标系中作下列函数 的图象,并说明每组两函数图象间的 关系.
(1) y = 2x,y = 2|x| (2) y = x2 - 2x,y = |x|2 - 2|x|
y
y
y = 2x 11
o x
y = 2|x| 1

函数图像及其变换PPT优秀课件

函数图像及其变换PPT优秀课件

从图象的左右分布,分析函数的定义域;从 图象的上下分布,分析函数的值域;从图象 的最高点、最低点,分析函数的最值、极值; 从图象的对称性,分析函数的奇偶性;从图 象的走向趋势,分析函数的单调性、周期性 等.
1.要准确记忆一次函数、二次函数、反比 例函数、指数函数、对数函数、三角函数等 各种基本初等函数的图象.
(1)y=|xx3|;(2)y=xx+ -21; (3)y=|log2x-1|;(4)y=2|x-1|.
【解析】
(1)y=x-2 x2
(x>0) (x<0)
,利用二次
函数的图象作出其图象,如图①.
(3)先作出y=log2x的图象,再将其图象向下平 移一个单位,保留x轴上及x轴上方的部分,
将x轴下方的图象翻折到x轴上方,即得 y=|log2x-1|的图象,如图③.
(4)选择描点法或图象变换法作出相数图象 要标出特殊的线(如渐近线)和特殊的点,以 显示图象的主要特征,处理这类问题的关键 是找出基本函数,将函数的解析式分解为只 有单一变换的函数链,然后依次进行单一变 换,最终得到所要的函数图象.
作出下列函数的大致图像:
(4)先作出y=2x的图象,再将其图象在y轴左边 的部分去掉,并作出y轴右边的图象关于y轴对 称的图象,即得y=2|x|的图象,再将y=2|x|的图 象向右平移一个单位,即得y=2|x-1|的图象,如 图④.
由图象求解析式
如图所示,函数的图象由两条射线 及抛物线的一部分组成,求函数解析式.
【思路点拨】 分段求函数解析式,再 合成分段函数形式,本题分别设为一次 函数和二次函数形式,应抓住特殊点 (0,2),(1,1),(2,2),(3,1)和(4,2).
函数图像及其变换
1.几种函数的图像 函数

函数图象的变换PPT

函数图象的变换PPT
总结词
水平平移是指函数图像在水平方向上移动一定的距离。
详细描述
水平平移不改变函数的值,只是改变了图像的位置。对于函数y=f(x),若图像向 右平移a个单位,则新的函数为y=f(x-a);若图像向左平移a个单位,则新的函 数为y=f(x+a)。
垂直平移
总结词
垂直平移是指函数图像在垂直方向上移动一定的距离。
函数图象的变换
• 函数图象变换概述 • 平移变换 • 伸缩变换 • 翻折变换 • 旋转变换 • 应用实例
01
函数图象变换概述
函数图象变换的定义
01
函数图象变换是指通过平移、伸 缩、翻转等几何变换操作,改变 函数图象的位置、形状和大小。
02
这些变换操作可以通过代数表达 式或矩阵变换来实现,使得函数 图象在坐标系中按照特定的规则 进行移动、旋转和缩放。
详细描述
当函数图像在y轴方向上伸缩时,其形状和大小会发生变化,但x轴上的比例保持不变。例如,将函数y=f(x)的图 像在y轴方向上放大2倍,得到新的函数y=2f(x)。
斜向伸缩
要点一
总结词
斜向伸缩是指同时沿x轴和y轴方向对函数图像进行放大或 缩小。
要点二
详细描述
当函数图像在x轴和y轴方向上同时伸缩时,其形状和大小 会发生变化,x轴和y轴上的比例都会改变。例如,将函数 y=f(x)的图像在x轴方向上放大2倍,在y轴方向上放大3倍 ,得到新的函数y=3f(2x)。
逆时针旋转
总结词
当函数图像按照逆时针方向旋转时,其形状和大小也不会发生变化,同样只是位置发生 了移动。
详细描述
与顺时针旋转相反,当函数图像按照逆时针方向旋转一定的角度时,每个点的坐标同样 会发生变化,但方向是远离原点。同样地,这种变化也可以用三角函数的性质来描述。

高中数学《函数图象的变换》精品课件

高中数学《函数图象的变换》精品课件

y f ( x) y f ( x)
谢谢大家!
解:f (x) x 1 x 1
y
y x 1
-1 o
1
x
成果二
对称变换
关于y轴对称
y f ( x) 横坐标互为相反数, y f ( x)
纵坐标不变
y f ( x) 横坐标不变, y f ( x)
关于x轴对称
纵坐标互为相反数
2
YLeabharlann X O 2群策群力
若f ( x) x 2 x,
2
(2)作出f ( x )的图象,它与函数 f ( x) x 2 x的图象有何区别?
2
方法一
Y
X O
方法二
Y
X O
成果三:
上不变, 下去掉, 下翻上
1、 y=f(x)y=|f(x)|,将y=f(x)图象 在x轴下侧部分沿x轴翻折到x轴上 侧,并保留x轴上侧部分。
关于原点对称
y f ( x) 横坐标互为相反数, y f ( x)
纵坐标互为相反数
学以致用
2.函数y 1 x 1的图象与x轴所围成 封闭图形的面积为
y 1
y x 1
-1 o
1
2
x
课堂探究
若f ( x) x 2 x,
2
(1)作出 f ( x) 的图象,它与函数 f ( x) x 2 x的图象有何区别?
变式
已知函数f ( x) x 4 x 3
2
(3)求方程f ( x) n(n R)解的个数.
Y
1 X O
盘点收获
函 数
y f ( x c) y f ( x) c y f ( x) y f ( x) y f ( x) y f ( x) 的图像

函数图像的变换课件

函数图像的变换课件

向右平移
总结词
图像沿x轴正方向移动
数学表达式
y=f(x-a)
详细描述
对于函数y=f(x),若图像向右平移a个单位,则新的函数 解析式为y=f(x-a)。
举例
函数y=cos(x)的图像向右平移π/2个单位后,得到新的函 数y=cos(x-π/2),其图像与原图像相比沿x轴正方向移动 了π/2个单位。
双向伸缩
总结词
同时改变x轴和y轴的长度。
详细描述
当函数图像在x轴和y轴方向上都发生伸缩时,x轴和y轴的长度都会发生变化。这 种变换可以通过将函数中的x和y都替换为其倍数来实现,例如将f(2x)/3替换为 f(x)会使x轴压缩为原来的一半,同时y轴拉伸为原来的三倍。
04
函数图像的旋转变换
逆时针旋转
关于y轴对称
总结词
函数图像关于y轴对称时,图像在y轴两侧对称分布,x值 不变,y值相反。
详细描述
当一个函数图像关于y轴对称时,图像在y轴两侧呈现出 对称分布的特点。这意味着对于任意一个点$(x, y)$在图 像上,关于y轴对称的点$(x, -y)$也在图像上。这种对称 变换不会改变x值,只是将y值取反。例如,函数$f(x) = x^3$的图像关于y轴对称,因为$f(-y) = (-y)^3 = -y^3 = -f(y)$。
任意角度旋转
总结词
任意角度旋转是指将函数图像按照任意角度进行旋转。
详细描述
任意角度旋转函数图像是指将图像上的每个点都按照任意指定的角度进行旋转。这种旋转可以通过参数方程或极 坐标系来实现,其中参数方程为$x = x cos theta - y sin theta$,$y = x sin theta + y cos theta$,极坐标系 下的表示为$x = r cos theta$,$y = r sin theta$。

正弦 余弦 正切函数PPT31页

正弦 余弦 正切函数PPT31页
正弦 余弦 正切函数
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
31
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档