测量平差超级经典试卷含答案汇总知识讲解

合集下载

测量平差超级试卷含答案汇总

测量平差超级试卷含答案汇总

1 / 18一、填空题(每空1分,共20分) 1、测量平差就是在 多余观测 基础上,依据 一定的 原则,对观测值进行合理的调整,即分别给以适当的 改正数 ,使矛盾消除,从而得到一组最可靠的结果,并进行 精度评估 。

2、条件平差中,条件方程式的选取要求满足 、 。

3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= ,1k p =,2k p = 。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按条件平差进行求解时,条件方程式个数为 ,法方程式个数为 。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。

6、间接平差中误差方程的个数等于2 / 18________________,所选参数的个数等于_______________。

7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。

二、选择题(每题2分,共20分)1、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合. D)观测时的天气状况与观测点地理状况诸因素的综合答:_____2、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于?(A)1/4 (B)23 / 181/2(D )4答:__3、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L1的方差σL 12等于:(A)0.4 (B)2.5(C)3 (D)253答:____4、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。

《测量平差》实习三例题知识讲解

《测量平差》实习三例题知识讲解

《测量平差》实习三
例题
实习三:间接平差方法应用
(一)、有关距离的平差:
1、在下图中,A、B、C三点在一直线上,测出了AB、BC及AC的距离,得4个独立观测值:L1=200.010m,L2=300.050m,L3=300.070m,L
4
=500.090m。

若令100m量距的权为单位权,试按条件平差法确定A、C之间各段距离的平差值。

(二)、有关水准的平差
2、水准网图(1)的观测高差及水准路线长度见下表:按条件平差求:(1)高
差平差值ˆ
i
h;
(2)A点至E点平差后高差的中
误差ˆAE h
σ;(3)E点至C点平差后
高差的中误差ˆEC h
σ。

3、在下图的水准网中,观测高差及路线长度见下表:已知A,B点的高程
差法求:(1)各观测高差平差值;(2)平差后P1
到P2点间高差的中误差。

(三)、有关角度的平差
4、在下图左中,观测了测站O上的4个角度,得同精度观测值:
L1=30˚00΄20˝、L2=50˚00΄00˝、L3=20˚00΄00˝、L4=40˚00΄20˝,试按条件平差求:
(1)各角度的平差值及平差值协因数阵;(2)平差后∠AOC的权倒数。

5、在上图右的测角网中,A、B、C、D均为待定点,观测5个角度,得观测值:β1=40˚00΄20˝、β2=100˚00΄30˝、β3=50˚00΄20˝、β4=120˚00΄00˝、
β5=50˚00΄20˝,其中,A角为固定值90˚00΄00˝,按条件平差求各角平差值及其协
因数阵。

最新《测量平差》重要试卷及答案

最新《测量平差》重要试卷及答案

《误差理论与测量平差》试卷(D )卷考试时间:100分钟考试方式:闭卷题号-一- -二二二四五六总分得分阅卷人、填空题(共20分,每空2 分)1、观测误差产生的原因为:仪器、外界环境、观测者2、已知一水准网如下图,其中A、B为已知点,观测了8段高差,若设E点高程的平差值与BE之间高差的平差值为未知参数)?1>刃2,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为_4 _________ ,多余观测个数为_4 ________ ,一般条件方程个数为5 ______ ,限制条件方程个数为_ 1 __________3、取一长度为d的直线之丈量结果的权为1,则长度为D的直线之丈量结果的权为d/D _______ ,若长度为D的直线丈量了n次,则其算术平均值的权为_______ nd/D ______ 。

24、已知某点(X、Y)的协方差阵如下,其相关系数p XY=0.6________ ,其点位方差为CT 1.25 mm9.25 0.30D XX =030 1.00?二、设对某量分别进行等精度了 n 、m 次独立观测,分别得到观测值L i , (\ = 1,2- n),L i , (i =1,2,…m),权为 P i = p ,试求:1)n 次观测的加权平均值 Xn = 的权p n[p]解:因为p i=px -用]X n1 Pl_1 pl_2pL n[p]np=-L 1L nn—1 1 …1 r (L 1 L 2 …Ln Tn根据协因数传播定律,则 X n 的权p n :■v1 1 J——=—(1 1 …1 )* % +*1 1 a 1 P m mm ■'mp兀」订丿贝U : p n 二 np2)m 次观测的加权平均值 x m = 的权p m[p]X m =[PL]—PL I PL2 pL m[p] mp1L i L2 L mm」1 1 1 * L i L2 L m Tm根据协因数传播定律,则X m的权p m:1 1 ,111——=—(1 1…1)*+* __ I-P m m m■mp< ZP」11丿则:P m 二mp3)加权平均值x二叭P m X m的权p xP n + P mP n P m n p*X n mp*X mnp mp根据协因数传播定律,则X的权Y XnI(2 分)(2 分)贝U: p X = (n • m) p (1 分)三、已知某平面控制网中待定点坐标平差参数?的协因数为Q X? *1.5 1in +m2其单位为(dm/s),并求得<?o =二2 ",试用两种方法求E、F o(15分)若选择/ ABC平差值为未知参数X ,用附有参数的条件平差法列岀其平差值条件方程式。

测量平差超级经典试卷含答案

测量平差超级经典试卷含答案

一、填空题(每空 1 分,共 20 分)1、测量平差就是在多余观测基础上,依据一定的原则,对观测值进行合理的调整,即分别给以适当的改正数,使矛盾消除,从而得到一组最可靠的结果,并进行精度评估。

2、条件平差中,条件方程式的选取要求满足、。

3已知条件平差的法方程为{ EMBEDEquation.3| 42k140 ,则=,23k22=, =,=。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按条件平差进行求解时,条件方程式个数为,法方程式个数为。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选 6 个独立参数按具有参数的条件平差进行求解,则函数模型个数为,联系数法方程式的个数为;若在 22 个独立参数的基础上,又选了 4 个非独立参数按具有条件的参数平差进行求解,则函数模型个数为,联系数法方程式的个数为。

6、间接平差中误差方程的个数等于________________, 所选参数的个数等于_______________。

7、已知真误差向量及其权阵,则单位权中误差公式为,当权阵为此公式变为中误差公式。

二、选择题(每题2分,共20分)1、观测条件是指:A)产生观测误差的几个主要因素: 仪器, 观测者 , 外界条件等的综合B)测量时的几个基本操作 : 仪器的对中 , 整平 , 照准 , 度盘配置 , 读数等要素的综合C)测量时的外界环境 : 温度 , 湿度 , 气压 , 大气折光⋯⋯等因素的综合 .D)观测时的天气状况与观测点地理状况诸因素的综合答:_____2、已知观测向量的协方差阵为, 若有观测值函数Y1=2L1, Y2=L1+L2,则等于?(A)1/4(B)2《测量平差基础》期末试卷本卷共 4页第2页3、已知观测向量的权阵, 单位权方差 ,则观测值的方差等于:((A)0.4D(B)2.5(C)3(D)答:____)4 、已知测角网如下图, 观测了各4三角形的内角 , 判断下列结果 , 选出正确答案。

《误差理论与测量平差基础》考试试卷(含参考答案)

《误差理论与测量平差基础》考试试卷(含参考答案)

《误差理论与测量平差基础》考试试卷一、名词解释1.观测条件2.偶然误差3.精确度4.多余观测5.权6.权函数式7.相对误差椭圆8.无偏性二、填空题1.观测误差包括偶然误差、、。

2.偶然误差服从分布,其图形越陡峭,则方差越。

3.独立观测值L1和L2的协方差为。

4.条件平差的多余观测数为减去。

5.间接平差的未知参数协因数阵由计算得到。

6.观测值的权与精度成关系,权越大,则中误差越。

7. 中点多边形有个极条件和个圆周条件。

8. 列立测边网的条件式时,需要确定与边长改正数的关系式。

9. 秩亏水准网的秩亏数为个。

三、 问答题1. 写出协方差传播律的应用步骤。

2. 由最小二乘原理估计的参数具有哪些性质?3. 条件平差在列立条件式时应注意什么?什么情况下会变为附有参数的条件平差?4. 如何利用误差椭圆求待定点与已知点之间的边长中误差?5. 为什么在方向观测值的误差方程式里面有测站定向角参数?6. 秩亏测角网的秩亏数是多少?为什么?7. 什么是测量的双观测值?举2个例子说明。

8. 方向观测值的误差方程式有何特点?四、 综合题1. 下列各式中的Li (i=1,2,3)均为等精度独立观测值,其中误差为σ,试求X 的中误差:(1) 321)(21L L L X ++= ,(2)321L L L X =。

2. 如图1示,水准网中A,B,C 为已知高程点,P1,P2,P3为待定点,h1~h6为高差观测值,按条件平差方法,试求: (1) 全部条件式; (2) 平差后P2点高程的权函数式。

3. 如图2示,测边网中A,B,C 为已知点,P 为未知点,观测边长为L1~L3,设P 点坐标P X 、P Y 为参数,按间接平差方法,试求: (1) 列出误差方程式; (2) 按矩阵符号写出法方程及求解参数平差值的公式; (3) 平差后AP 边长的权函数式。

4. 在条件平差中,0=+∆WA ,试证明估计量^L 为其真值~L 的无偏估计。

(提示:~)(L L E =,须证明0)(=V E )5. 在某测边网中,设待定点P 的坐标为未知参数,即[]TX X X 21^=,平差后得到^X 的协因数阵为⎥⎦⎤⎢⎣⎡=yy xyxy xx XX Q Q Q Q Q ^^,且单位权中误差为0^σ,求:(1)P 点的纵横坐标中误差和点位中误差; (2)P 点误差椭圆三要素 E ϕ、E 、F 。

测量平差经典试卷含答案

测量平差经典试卷含答案

一、填空题(每空2分,共20分)1、最优估计量应具有的性质为 、 和 最优估计量主要针对观测值中仅含 误差而言。

2、间接平差中,未知参数的选取要求满足 、 。

3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= , 1k p = ,2k p = 。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按间接平差进行求解时,误差方程式个数为 ,法方程式个数为 。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。

6、条件平差中条件方程的个数等于________________,所选参数的个数等于_______________。

7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。

二、计算题(每题2分,共20分)1、条件平差的法方程等价于:A 、0=+W K Q KB 、0=+W Q K WC 、0=+W P K WD 、0=+W P K K答:______2、水准测量中,10km 观测高差值权为8,则5km 高差之权为:A 、2B 、4C 、8D 、16答:______3、已知⎥⎦⎤⎢⎣⎡=∆3112P ,则2L p 为:A 、2B 、3C 、25D 、35答:______4、间接平差中,L Q ˆ为:A 、TA AN 1- B 、A N A T1-C 、T A AN P11--- D 、A N A P T 11---答:______5、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合 C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合. D)观测时的天气状况与观测点地理状况诸因素的综合答:______ 6、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于(A)1/4 (B)2 (C)1/2 (D)4 答:_____ 7、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A) (B) (C)3 (D)253答:____ 8、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。

测量平差复习题(测绘工程)汇总

测量平差复习题(测绘工程)汇总

第一章:绪论1、什么是观测量的真值?任何观测量,客观上总存在一个能反映其真正大小的数值,这个数值称为观测量的真值。

2、什么是观测误差?观测量的真值与观测值的差称为观测误差。

3、什么是观测条件?仪器误差、观测者和外界环境的综合影响称为观测条件。

4、根据误差对观测结果的影响,观测误差可分为哪几类?根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。

5、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。

6、观测条件与观测质量之间的关系是什么?观测条件好,观测质量就高,观测条件差,观测质量就低。

7、怎样消除或削弱系统误差的影响?一是在观测过程中采取一定的措施;二是在观测结果中加入改正数。

8、测量平差的任务是什么?⑴求观测值的最或是值(平差值);⑵评定观测值及平差值的精度。

第二章:误差理论与平差原则1、描述偶然误差分布常用的三种方法是什么?⑴列表法;⑵绘图法;⑶密度函数法。

2、偶然误差具有哪些统计特性?(1) 有界性:在一定的观测条件下,误差的绝对值不会超过一定的限值。

(2) 聚中性:绝对值较小的误差比绝对值较大的误差出现的概率要大。

(3) 对称性:绝对值相等的正负误差出现的概率相等。

(4) 抵偿性:偶然误差的数学期望或偶然误差的算术平均值的极限值为0。

3、由偶然误差特性引出的两个测量依据是什么?⑴制定测量限差的依据;⑵判断系统误差(粗差)的依据。

4、什么叫精度?精度指的是误差分布的密集或离散的程度。

5、观测量的精度指标有哪些?(1) 方差与中误差;(2) 极限误差;(3) 相对误差。

6、极限误差是怎样定义的?在一定条件下,偶然误差不会超过一个界值,这个界值就是极限误差。

通常取三倍中误差为极限误差。

当观测要求较严时,也可取两倍中误差为极限误差。

7、误差传播律是用来解决什么问题的?误差传播律是用来求观测值函数的中误差。

8、应用误差传播律的实际步骤是什么? (1) 根据具体测量问题,分析写出函数表达式),,,(21n x x x f z =;(2) 根据函数表达式写出真误差关系式n nx x f x x f x x f z ∆∂∂++∆∂∂+∆∂∂=∆ 2211; (3) 将真误差关系式转换成中误差关系式。

测量平差练习题及参考答案

测量平差练习题及参考答案

计算题1、如图,图中已知A 、B 两点坐标,C 、D 、E 为待定点,观测了所有内角,试用条件平差的方法列出全部条件方程并线性化。

解:观测值个数 n =12,待定点个数t =3,多余观测个数r =n -2t =6① 图形条件4个:)180(0)180(0)180(0)180(0121110121110987987654654321321-++-==-++-++-==-++-++-==-++-++-==-++L L L w w v v v L L L w w v v v L L L w w v v v L L L w w v v v d d c c b b a a② 圆周条件1个:)360(0963963-++-==-++L L L w w v v v e e③ 极条件1个:ρ''--==----++)sin sin sin sin sin sin 1(0cot cot cot cot cot cot 852741774411885522L L L L L L w w v L v L v L v L v L v L f f3、如图所示水准网,A 、B 、C 三点为已知高程点, D 、E 为未知点,各观测高差及路线长度如下表所列。

用间接平差法计算未知点D 、E 的高程平差值及其中误差;ACBDh 1h 2h 3h 4h 5Eh 6高差观测值/m 对应线路长度/km已知点高程/mh 1= -1.348 h 2= 0.691 h 3= 1.265 h 4= -0.662 h 5= -0.088 h 5= 0.763 1 1 1 1 1 1H A =23.000 H B =23.564 C B =23.6633、解:1)本题n=6,t=2,r=n-t=4;选D 、E 平差值高程为未知参数21ˆˆX X 、 则平差值方程为:1615142322211ˆˆˆˆˆˆˆˆˆˆˆˆˆX H hH X h H X h H X h H X h X X h AA BAB -=-=-=-=-=-=则改正数方程式为:6165154143232221211ˆˆˆˆˆˆˆl xv l xv l x v l xv l x v l x xv --=-=-=-=-=--=取参数近似值 255.24907.2220221011=+==++=h H X h h H X B B 、令C=1,则观测值的权阵:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=10111101P ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=010*********B ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------=+-=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=7551000)()()()()()()(016015014023022020110654321X H h H X h H X h H X h H X h X X h d BX h l l l l l l l C A B A B组法方程0ˆ=-W xN ,并解法方程: ⎪⎪⎭⎫ ⎝⎛--==3114PB B N T⎪⎪⎭⎫ ⎝⎛-==107Pl B W T⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛==-311074113111ˆ1W N x求D 、E 平差值:m x X X H m x X X H D C 258.24ˆˆˆ906.22ˆˆˆ20221011=+===+==2)求改正数:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=-=664734ˆl xB v 则单位权中误差为:mm r pv v T 36.64162ˆ0±=±=±=σ则平差后D 、E 高程的协因数阵为:⎪⎪⎭⎫⎝⎛==-41131111ˆˆNQ X X根据协因数与方差的关系,则平差后D 、E 高程的中误差为:mmmm Q mm mm Q E D 84.311229ˆˆ32.322669ˆˆ220110±=±==±=±==σσσσ4、如图,在三角形ABC 中,同精度观测了三个内角:4000601'''︒=L ,5000702'''︒=L ,7000503''''︒=L ,按间接平差法列出误差方程式。

测量平差经典试卷含答案

测量平差经典试卷含答案

1一、填空题(每空2分,共20分)1、最优估计量应具有的性质为 、 和 最优估计量主要针对观测值中仅含 误差而言。

2、间接平差中,未知参数的选取要求满足 、 。

3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= , 1k p = ,2k p = 。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按间接平差进行求解时,误差方程式个数为 ,法方程式个数为 。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。

6、条件平差中条件方程的个数等于________________,所选参数的个数等于_______________。

7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为此公式变为中误差公式。

二、计算题(每题2分,共20分)1、条件平差的法方程等价于:A 、0=+W K Q KB 、0=+W Q K WC 、0=+W P K WD 、0=+W P K K答:______2、水准测量中,10km 观测高差值权为8,则5km 高差之权为:A 、2B 、4C 、8D 、16答:______ 3、已知⎥⎦⎤⎢⎣⎡=∆3112P ,则2L p 为:A 、2B 、3C 、25D 、35 答:______4、间接平差中,L Q ˆ为:A 、TA AN 1- B 、A N A T1-C 、T A AN P11--- D 、A N A P T 11---答:______5、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合 C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合.D)观测时的天气状况与观测点地理状况诸因素的综合 答:______ 6、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于(A)1/4 (B)2 (C)1/2 (D)4 答:_____7、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A) (B) (C)3 (D)253答:____ 8、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。

测量平差试卷及答案

测量平差试卷及答案

A1《 误差理论与测量平差 》试卷一、填空题 (共20分,每空 2 分)1、观测误差产生的原因为:仪器、 、2、已知一水准网如下图,其中A 、B 为已知点,观测了8段高差,若设E 点高程的平差值与B 、E 之间高差的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为C3、取一长度为d 的直线之丈量结果的权为1,则长度为D 的直线之丈量结果的权为 ,若长度为D 的直线丈量了n 次,则其算术平均值的权为 。

4、已知某点(X 、Y)的协方差阵如下,其相关系数ρXY = ,其点位方差为2σ= mm2⎪⎪⎭⎫⎝⎛=00.130.030.025.0XX D二、设对某量分别进行等精度了n 、m 次独立观测,分别得到观测值),2,1(,n i L i =,),2,1(,m i L i =,权为p p i =,试求:1)n 次观测的加权平均值][][p pL x n =的权n p 2)m 次观测的加权平均值][][p pL x m =的权m p 3)加权平均值mn mm n n p p x p x p x ++=的权x p (15分)三、 已知某平面控制网中待定点坐标平差参数y xˆˆ、的协因数为 ⎪⎪⎭⎫⎝⎛=2115.1ˆˆX X Q 其单位为()2s dm ,并求得2ˆ0''±=σ,试用两种方法求E 、F 。

(15分)四、得到如下图所示,已知A 、B 点,等精度观测8个角值为:L1L2L3L4L5L6L7L8ABCD若选择∠ABC平差值为未知参数Xˆ,用附有参数的条件平差法列出其平差值条件方程式。

(10分)五、如图所示水准网,A、B、C三点为已知高程点,P1,P2为未知点,各观测高差及路线长度如下表所列。

(20分)用条件平差法计算未知点P1,P2的高程平差值及其中误差;C A六、如下图所示,A,B点为已知高程点,试按间接平差法求证在单一附合水准路线中,平差后高程最弱点在水准路线中央。

测量平差复习题答案

测量平差复习题答案

测量平差复习题答案一、选择题1. 平差的目的是什么?A. 确定测量数据的准确度B. 消除测量误差C. 计算未知点的坐标D. 以上都是2. 测量平差中,观测值的权值与什么有关?A. 观测值的精度B. 观测条件C. 测量仪器的精度D. 观测者的经验3. 测量误差的来源主要包括哪些?A. 仪器误差B. 人为误差C. 环境误差D. 所有以上4. 测量平差中,最小二乘法的基本原理是什么?A. 误差平方和最小B. 误差绝对值和最小C. 误差乘积最小D. 误差平均值最小5. 测量平差中,如何确定观测值的权?A. 根据观测者的经验和直觉B. 根据观测值的精度C. 根据测量仪器的精度D. 根据观测条件二、填空题6. 平差过程中,测量误差的改正数通常用________表示。

7. 测量平差中,权的概念是指________。

8. 测量误差的类型包括系统误差和________。

9. 最小二乘法中,观测值的权值通常与________成反比。

10. 测量平差中,常用的权函数有________和________。

三、简答题11. 简述测量平差中,最小二乘法的计算步骤。

12. 说明测量平差中,如何确定观测值的权值。

13. 描述测量平差中,误差传播的概念及其重要性。

四、计算题14. 假设有一组观测数据,其观测值为:x1=100.2mm, x2=100.3mm, x3=100.1mm。

已知观测误差的标准差为σ=0.1mm,试计算这组数据的平均值及其标准误差。

五、论述题15. 论述测量平差在工程测量中的重要性及其应用。

【答案】1. D2. A3. D4. A5. B6. 改正数7. 观测值的相对重要性8. 随机误差9. 观测误差的方差10. 倒数权函数,倒数平方权函数11. 略(根据最小二乘法的基本原理和计算步骤回答)12. 略(根据观测值的精度和误差方差来确定权值)13. 略(描述误差传播的概念,以及在测量平差中的重要性)14. 平均值 = (100.2 + 100.3 + 100.1) / 3 = 100.2mm;标准误差= σ / √3 = 0.1 / √3 mm15. 略(根据测量平差在工程测量中的重要性和应用进行论述)【结束语】测量平差是确保测量结果准确性的重要手段,通过本复习题的练习,希望能够帮助大家更好地理解和掌握测量平差的基本理论、方法和应用。

测量平差练习题及参考答案

测量平差练习题及参考答案

计算题1、如图,图中已知A 、B 两点坐标,C 、D 、E 为待定点,观测了所有内角,试用条件平差的方法列出全部条件方程并线性化。

解:观测值个数 n =12,待定点个数t =3,多余观测个数r =n -2t =6① 图形条件4个:)180(0)180(0)180(0)180(0121110121110987987654654321321-++-==-++-++-==-++-++-==-++-++-==-++L L L w w v v v L L L w w v v v L L L w w v v v L L L w w v v v d d c c b b a a② 圆周条件1个:)360(0963963-++-==-++L L L w w v v v e e③ 极条件1个:ρ''--==----++)sin sin sin sin sin sin 1(0cot cot cot cot cot cot 852741774411885522L L L L L L w w v L v L v L v L v L v L f f2、设有一函数2535+=x T ,6712+=y F 其中:⎩⎨⎧+++=+++=n n nn L L L y L L L x βββααα 22112211 αi =A 、βi =B (i =1,2,…,n )是无误差的常数,L i 的权为p i =1,p ij =0(i ≠j )。

1)求函数T 、F 的权; 2)求协因数阵TF Ty Q Q 、。

2、解:(1)L 向量的权阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001 p 则L 的协因数阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛==-1000100011p Q LL ()2531115253555253555253)(*52535212122112211+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=++++=++++=++++=+=n n n n n n L L L A AL AL AL L L L L L L x T αααααα()6711112671222671222671)(*26712212122112211+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=++++=++++=++++=+=n n n n n n L L L B BL BL BL L L L L L L y F ββββββ 依协因数传播定律 则函数T 的权倒数为:()()225)1115(**11151nA A Q A Q p T LL TT T===则:2251nA p T =则函数F 的权倒数为:()()24)1112(**11121nB B Q B Q p T LL FF F===则:241nB p F =(2)()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+++=+++=n n n n L L L B BL BL BL L L L y 21212211111βββ依协因数传播定律()()nABB Q A Q T L L T y 5)111(**1115==()()nABB Q A Q T LL TF 10)1112(**1115==3、如图所示水准网,A 、B 、C 三点为已知高程点, D 、E 为未知点,各观测高差及路线长度如下表所列。

测量平差复习题及答案

测量平差复习题及答案

测量平差复习题及答案一、综合题1.已知两段距离(de)长度及中误差分别为cm m 5.4465.300±及cm m 5.4894.660±,试说明这两段距离(de)真误差是否相等他们(de)精度是否相等答:它们(de)真误差不一定相等;相对精度不相等,后者高于前者.2.已知观测值向量⎪⎪⎭⎫ ⎝⎛=2121L L L (de)权阵为⎥⎥⎦⎤⎢⎢⎣⎡=32313132LL P ,现有函数21L L X +=,13L Y =,求观测值(de)权1L P ,2L P ,观测值(de)协因数阵XY Q .答:12/3L P =;22/3L P =;3XY Q =3.在下图所示三角网中,A .B 为已知点,41~P P 为待定点,已知32P P 边(de)边长和方位角分别为0S 和0α,今测得角度1421,,,L L L 和边长21,S S ,若按条件平差法对该网进行平差:(1)共有多少个条件方程各类条件方程各有多少个(2)试列出除图形条件和方位角条件外(de)其它条件方程(非线性条件方程不要求线性化)答:(1)14216,6,10n t r =+=== ,所以图形条件:4个;极条件:2个;边长条件:2个;基线条件:1个;方位角条件:1个 (2)四边形14ABPP (de)极条件(以1P 为极): 34131241314ˆˆˆˆsin()sin sin 1ˆˆˆˆsin sin sin()L L L L L L L L +⋅⋅=+ 四边形1234PP P P (de)极条件(以4P 为极): 10116891167ˆˆˆˆsin()sin sin 1ˆˆˆˆsin sin sin()L L L L L L L L +⋅⋅=+ 边长条件(1ˆAB S S - ):123434ˆˆˆˆˆˆsin()sin()AB S S L L L L L =+++ 边长条件(12ˆˆS S - ):1121314867ˆˆˆsin ˆˆˆˆˆsin()sin sin()S L S L L L L L ⋅=++ 基线条件(0AB S S - ):02101191011ˆˆˆˆˆsin()sin()S S L L L L L =+++4.A .B .C 三点在同一直线上,测出了AB .BC 及AC(de)距离,得到4个独立观测值,m L 010.2001=,m L 050.3002=,m L 070.3003=,m L 090.5004=,若令100米量距(de)权为单位权,试按条件平差法确定A .C 之间各段距离(de)平差值Lˆ.答:ˆ[200.0147,300.0635,300.0635,500.0782]T L=5.在某航测像片上,有一块矩形稻田.为了确定该稻田(de)面积,现用卡规量测了该矩形(de)长为cm L 501=,方差为22136.0cm =σ,宽为cm L 302=,方差为22236.0cm =σ,又用求积仪量测了该矩形(de)面积231535cm L =,方差为42336cm =σ,若设该矩形(de)长为参数1ˆX ,宽为参数2ˆX ,按间接平差法平差:(1)试求出该长方形(de)面积平差值;(2)面积平差值(de)中误差.答:(1)令0111ˆX X x =+,0222ˆX X x =+,011X L =,022X L =,误差方程式为: 1122312ˆˆ305035v xv xv v v ===+-令:10013050B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,0035L ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,单位权方差为2036σ=,则法方程为:T TB PBX B PL=,可得:120.30.5x X x ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,则0111ˆ50.3X X x =+=,0222ˆ30.5X X x =+= 所以面积平差值为2312ˆˆˆ50.3*30.51534L X X cm ===(2)2200.35T V PVcm rσ== ()12112212ˆˆˆˆˆˆˆˆˆdXdS X dX X dX X X dX ⎛⎫=+= ⎪ ⎪⎝⎭,所以ˆˆ98.94SS Q =则2ˆ 3.4814S cm σσ==±6.如图水准网中,A 为已知点,高程为10.000A H m =,观测高差及路线长度为:m h 563.21=,km S 11=;m h 326.12-=,km S 12=;m h 885.33-=,km S 23=;m h 883.34-=,km S 24=;若设参数12334ˆˆˆˆˆˆˆTTBX X X X H h h ⎡⎤⎡⎤==⎣⎦⎣⎦,定权时C= 2 km ,试列出:(1)、误差方程和限制条件; (2)、法方程式.答:(1)误差方程为:112231243ˆˆˆˆ4ˆv xv x v x x v x=⎧⎪=⎪⎨=++⎪⎪=⎩ 限制条件为:13ˆˆ20xx --= (2)法方程为:1234ˆ31004ˆ130140ˆ00110ˆ01102x x xx-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 7.设对某量进行了两组观测,得到观测值(de)真误差如下: 第一组:3,-3,2,4,-2,-1,0,-4,3,-2 第二组:0,-1,-7,2,1,-1,8,0,-3,1 试回答如下问题:(1)两组值(de)平均误差1ˆθ、2ˆθ和中误差1ˆσ、2ˆσ(2)这两组观测值(de)精度,哪一组精度高,为什么答:(1)1ˆθ=,2ˆθ=;1ˆσ=,2ˆσ=(2)两组观测值(de)平均误差相同,而中误差不同,由于中误差对大(de)误差反应敏感,故通常采用中误差作为衡量精度(de)指标,本题中1ˆσ<2ˆσ,故第一组观测值精度高.8.设对丈量10km(de)距离同精度丈量10次,令其平均值(de)权为5,现以同样等级(de)精度丈量(de)距离.问丈量此距离一次(de)权是多少.(问答题,10分)答:一次观测值(de)权倒数1025N C P === ,所以每次丈量10km 距离(de)权为:100.5P =长度为i S 距离(de)权为:1i i C P S = ,则112.510,2.510C C P P == ,所以15C = 故12.522.5C P == 9.下列各式中(de)()1,2,3i L i =均为等精度独立观测值,其中误差为σ,试求下列函数(de)中误差:(1)()12312X L L L =++;(2)321L L L Y =答:(1)x σ= (2)3x σ=10.在图一所示测角网中,A 、B 、C 为待定点,同精度观测了1L 、2L 、3L 和4L 共四个角度观测值.设平差后BAC ∠为参数Xˆ. (1)试指出采用何种平差模型; (2)写出函数模型和法方程.答:采用附有参数(de)条件平差模型;平差方程为:123ˆˆˆ1800L L L ++-= 34ˆˆ3600L L +-= 1ˆˆ0L X -= 则条件方程为:12313421300ˆ0v v v w v v w v x w +++=⎧⎪++=⎨⎪-+=⎩ ,其中闭合差方程为1123234031w L L L w L L w L X ⎧=++⎪=+⎨⎪=-⎩,建立法方程为: 1122333110120001011ˆ0100k w k w k w x⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪+= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 11.有水准网如下图,网中A .B 为已知水准点,高程m H A 013.12+=.m H B 013.10+=可视为无误差,C .D 为待定点,共观测了四个高差,高差观测值及相应水准路线(de)距离为:km S 21=,m h 004.11-=,km S 12=,m h 516.12+=,km S 23=,m h 512.23+=,km S 5.14=,m h 520.14+=.试用条件平差法求C 和D 两点高程(de)平差值.答:4,2n t == ,所以2r = ,条件方程如下:12324ˆˆˆ0ˆˆ0A Bh h h H H h h ⎧+-+-=⎪⎨-=⎪⎩ 以ˆi i ih h v =+ 代入上式,可得上述方程(de)最终形式为: 123411100001014v v v v ⎛⎫⎪-⎛⎫⎛⎫ ⎪-= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎪ ⎪⎝⎭ ,以1km 观测高差为单位权观测,则法方程为: 1212502.540k k k k +=⎧⎨+-=⎩ ,解得120.35, 1.74k k =-= 进而求得()0.74 1.40.7 2.6TV mm =--观测值(de)平差值为:1234ˆˆˆˆ1.0047, 1.5174, 2.5127, 1.5174L m L m L m L m =-=== 则C 、D 两点(de)平差高程为:11.0083,12.5257C D H m H m ==12.设在三角形ABC 中,观测三内角321,,L L L ,将闭合差平均分配后得到(de)各角之值为014489ˆ,025050ˆ,030140ˆ321'''='''='''= L L L ,如下图.它们(de)协方差阵为⎪⎪⎪⎭⎫⎝⎛------=633363336LLD ,已知边长m S 000.15000=(无误差),试求ba S S ,(de)长度和它们(de)协方差SS D .答:013023ˆˆˆˆsin /sin 967.679,sin /sin 1150.573a b S S L L m S S L L m ==== 对函数式取自然对数,并微分得:331213231323ˆˆˆˆcos cos cos cos ˆˆˆˆ,ˆˆˆˆsin sin sin sin a b a b dS L dS L L L dL dL dL dL S S L L L L ====即1132233ˆˆˆ0ˆˆˆ0ˆa a a b b b dLdS S ctgL S ctgL dS dL dS S ctgL S ctgL dL ⎛⎫ ⎪⎛⎫-⎛⎫== ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭ ⎪⎝⎭则23263311460114604 1.860.7713630962096250.77 1.32(20610)33645SS D cm --⎛⎫⎛⎫--⎛⎫⎛⎫ ⎪⎪=--⨯= ⎪ ⎪ ⎪⎪--⨯⎝⎭⎝⎭⎪⎪----⎝⎭⎝⎭。

误差理论与测量平差期末试卷及答案(1)

误差理论与测量平差期末试卷及答案(1)

《误差理论与测量平差》期末试卷(1)班级____________学号____________________姓名____________题号一二三四五六总分成绩一、填空题(每题3分,共计30分)1.观测误差的来源主要有测量仪器、观测者、外界环境三个方面。

2.根据观测误差对观测结果的影响性质,可将观测误差分为系统误差、偶然误差和粗差。

3.在测量平差中,常用的衡量精度的指标主要有中误差、相对误差和限差。

4.在1:1000的地形图上,量得a、b 两点间的距离d=40.6mm,量测中误差为d σ=0.2mm,则该两点间的实际距离中误差为200mm 。

5.在测量中权为1的观测值称为单位权观测值,与之对应的中误差称为单位权中误差。

6.间接平差中,未知参数X 的选取要求满足相互独立和参数个数等于必要观测个数。

7.在条件平差中,已知观测总量n=7,其中t=3,r=4,则条件方程的个数为4。

8.已知观测值L 的方差D LL =4,单位权中误差为2,则该观测值的权为P L =1。

9.不论在条件平差还是间接平差中,单位权中误差的计算公式都为0ˆσ=t n PV V T -=0σ。

10.若某待定点P 两个相互垂直方向上的坐标方差为2x σ、2y σ,则该点的点位中误差P σ=22y x P σσσ+=。

二、简答题:(每题5分,共25分)1、什么叫测量误差?产生测量误差的原因有哪些?答:(1)对某量进行多次观测,所得的各次观测结果都存在差异,通常将每次测量所得的观测值与该量的真值之间的差值称为测量误差,即测量误差=真值-观测值。

(2)产生测量误差的原因主要有:观测仪器,观测者和外界环境。

2、系统误差、偶然误差各自的特性?并举例说明。

答:系统误差指在相同的观测条件下作一系列的观测时,大小和符号表现出系统性,或按一定规律变化,或者为某一常数的误差,其具有累积性,如水准尺的刻画不准确、水准仪的视准轴误差、温度对钢尺量距的误差、尺长误差等;偶然误差指在相同的观测条件下作一系列的观测时,从单个误差看,该列误差的大小和符号表现出偶然性,无规律,但就大量误差的总体而言,具有一定的统计规律,主要表现为有界性、对称性,单峰性和抵偿性,如对中整平误差、照准目标误差、读数时估读误差等。

测量平差期末考试题及答案

测量平差期末考试题及答案

测量平差期末考试题及答案一、选择题(每题2分,共20分)1. 平差的基本目的是()。

A. 确定测量数据的准确度B. 确定测量误差的来源C. 消除测量误差D. 优化测量数据的分布答案:C2. 测量误差的来源主要包括()。

A. 测量仪器的误差B. 测量方法的误差C. 测量环境的误差D. 以上都是答案:D3. 测量平差中,权的概念是指()。

A. 测量数据的可靠性B. 测量数据的准确性C. 测量数据的重要性D. 测量数据的稳定性答案:A4. 测量平差中,最小二乘法的基本原理是()。

A. 使得测量误差的绝对值之和最小B. 使得测量误差的平方和最小C. 使得测量误差的平均值最小D. 使得测量误差的方差最小答案:B5. 在测量平差中,观测值的改正数是指()。

A. 观测值与真值之差B. 观测值与平均值之差C. 观测值与预测值之差D. 观测值与估计值之差答案:A...(此处省略其他选择题)二、填空题(每空2分,共20分)1. 平差的基本任务是_________测量误差,以获得_________的测量结果。

答案:消除或减小;准确可靠2. 测量误差可以分为系统误差和_________误差。

答案:随机3. 权的倒数称为_________。

答案:权的倒数4. 最小二乘法是一种常用的平差方法,其核心思想是使观测值的_________达到最小。

答案:残差平方和5. 测量平差中,观测值的改正数是指观测值与_________之差。

答案:平差值...(此处省略其他填空题)三、简答题(每题10分,共30分)1. 简述最小二乘法在测量平差中的应用。

答案:最小二乘法在测量平差中是一种常用的数据处理方法,它通过最小化观测值的残差平方和来寻找最佳估计值。

在应用时,首先需要建立观测方程,然后通过求解线性方程组来得到未知参数的估计值。

这种方法在处理多个观测数据时,能够合理地分配误差,使得所有观测数据的误差总和最小,从而得到更加准确的测量结果。

2. 解释什么是权,它在测量平差中的作用是什么。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7、已知真误差向量 及其权阵 P ,则单位 n1
权中误差公式为
,当权阵 P 为
此公式变为中误差公式。
二、选择题( 每题 2 分,共 20 分)
1、观测条件是指 :
A) 产生观测误差的几个主要因素 : 仪
器 , 观测者 , 外界条件等的综合
B) 测量时的几个基本操作 : 仪器的对
中 , 整平 , 照准 , 度盘配置 , 读数等要素的综
3 题 10 分,共 25 分)
1 、 解 : 由 于 QZZ
PZ 1 , 所 以
3/ 4 1/ 4 1/ 2
QZZ 1/ 4 3 / 4 1/ 2 ,通过该式子可以 1/ 2 1/ 2 1
看出, QXX
3 / 4 , QYY
3/ 4 1/ 2 1/ 2 1 ,
则 PX
Q1 XX
4 / 3 ,PY
Q1 YY
_
:______
_
7、条件平差的法方程等_价于:
A、 QKK W 0
_
B、
K QWW 0
C、 K PWW 0
D、
K PKW 0
:______
8、水准测量中, 10km 观测高差值权为 8,
则 5km 高差之权为:
A、2
B 、4
D、 16
C、8
:______ 9、已知 P
A 、2
21 13
,则
pL2 为:
一、填空题(每空 1 分,共 20 分)
1、测量平差就是在 多余观测
基础
上,依据
一定的
原则,对观测值
进行合理的调整,即分别给以适当的 改正

,使矛盾消除,从而得到一组最
可靠的结果,并进行
精度评估

2、条件平差中,条件方程式的选取要求满



3 已知条件平差的法方程为
4 2 k1 2 3 k2
4 0,
3、如下图所示的水准网中,A、B为 己知水准点 , P 1 、P 2 为待定点。设 P 1 、P 2 点的高程平差值为参数 x1,x2 。己算出法方程 为
5x1 4 x2 2.5 0 4 x1 5x2 1.2 0
试求 P 1 至 P 2 点间高差平差值的权倒数。 (答案可以写到背面。 )
h1
h2
A
2
则 V T PV =
,=

= pk1
, pk2 =

4、已知某平差问题, 观测值个数为 79,必
要观测量个数为 35,则按条件平差进行求
解时,条件方程式个数为
,法方
程式个数为

5、已知某平差问题观测值个数为 50,必要 观测量个数为 22,若选 6 个独立参数按具
有参数的条件平差进行求解,则函数模型
B、3
D、 5
3
C、 5
2
:______
10、间接平差中, QL? 为:
A

B、 AT N 1 A
C、
AN 1 AT P 1 AN 1 AT
D、 P 1 AT N 1 A
:______
三、简答题 (第 1、答2 题 3 分,第 3 题 4 分,
第 4 题 5 分,共 15 分)
1 、什么叫必要起算数据?各类控制网
1.894
T
0.781
,
据此可
求得改正数 v 5 为: A)-3.0
B)-1.113
C
)
-
1
6 、 已知误差方程为
v1 x 5 v2 x 6
由此组成法方程为 :
A)
2x+1=0

B) 10x+16=0
p1 4 ,
p2 6

B)
4答 0 x 5
0

06
60
:
D) 4 0 x1
0 6 x2
20 0
36 0 _
0 40
1
Q X?
N -1= 5 4
4 5
15 4 94 5
0 40 20 20
20 20
列出平差值的函数式子: H?C
通过这个式子可以求出系数阵
H A h?1 , f T ,因为
H?C
(1 0) h?1 h?2
H A ,则
评定精度量的函数式:
?=h?2
X?1 X?2
其权倒 数为 :
Q ? Qh?3
(B)2
3 、 已 知 观 测 向 量 L L1 L2 T( 的 权 阵
PL
2 1 , 单位权方差
13
2 0
5, 则观D测值 L1
) 的方差 2 等于 :
L1
4
(A)0.4
(B)2.5
(C)3
(D) 25 答:____
3

4 、已知测角网如下图 , 观测了各三角形
:
的内角 , 判断下列结果 , 选出正确答案。
1-5:ADCCA 6-10: BADCA
三、简答题 (第 1、2 题 3 分,第 3 题
4 分,第 4 题 5 分,共 15 分)
1、 确定几何(物理)图形的位置, 所必须据有的已知数据 :
水准网:一个已知
高程点 测站平差:一个已
知方位 测角网:一个已知
点坐标,一个方位,一个边或两个相临点 坐标
P1 h3
h4 P2
B
一、填空(每空 1 分,共 20 分) 1:多余观测,一定的(注:如最
小二乘原理) ,改正数,精度估计
2:独立、足数、最简 3: 4 , 2 , 8 , 2
3
4: 44、44
5: 34 、40、 54、30
6:观测值个数、必要观测数
7:
T P ,单位阵
n
二、选择题(每题 2 分,共 20 分)
评分标准 :第一条 2 分,第二条 3 分。
。.
6、列方程题(第 1 题 12 分,第 2 题 8 分, 共 20 分)
1 、 (12 分 ) 、条件方程:
v1 v2 v3 wa 0, v4 v5 v6 wb 0, v7 v8 v9 wc 0, v2 v6 v8 wd 0,
wa L1 L 2 L3 180 0 wb L 4 L5 L6 1800 wc L 7 L8 L9 1800 wd L 2 L6 L8 180 0
(2) 条件方程式之间必须函数独立;
(3) 尽量选择形式简单便于计算的条件 方程式。
评分标准 :条件平差步骤 2 分,条件方 程满足的条件 2 分。
4、优点有二: (1) 协方差传播率所处理的自变量对
象之间不一定要求相互独立,而误差传播 率要求自变量对象必须相互独立;
(2) 协方差传播率可以同时处理多个函 数关系,而误差传播率只能处理一个函数 关系;
测边网和边网:1个已 知点坐标,1个已知方位
评分标准 :答错一项扣 1 分
2、参数个数等于必要观测个数;所选参 数之间线性无关 .
评分标准 :答错一项扣 1.5 分
3、 (1) 根据实际问题,确定条件方程的 个数 ( 等于多余观测的个数 ) ,列出改正数 条件方程;
(2) 组成法方程式 ( 等于条件方程的个 数) ;
40 0 0 40 ,
则法方程
AP 1AT K W 0



N AP 1AT 80
(4) 由于条件平差中
(6) 所以 PH?C 1/ QH?CH?C
3、协因数阵:
1/ 20
QL?L? Q QAT N 1 AQ 40 0 20 20
40 0 0 40
40 0 0 40
20 20
11
40 0
11
1 80
(3) 解算法方程,求出联系数 k; (4) 将 k 代入改正数方程求出改正数 v, 并计算平差值 L?i Li vi ; (5) 计算单位权中误差 0 ; (6) 将平差值代入平差值条件方程式, 检核平差值计算的正确性。 条件方程必须:
(1) 条件方程的个数必须等于多余观测
的个数,不能多也不能少;
的必要起算数据是如何确定的?
2 、 间接平差时,对选择的参数有什么
要求?

3、 简述条件平差步骤,并说明对所列
条件方程有什么要求?
4、 试说明协方差传播率相对我们在测
量学中所学的误差传播率有什么优点?
四、列方程题 (第 1 题 12 分,第 2 题 8 分, 共 20 分)
1、下图为测角三角网 , 由图列出改正数 条件方程及求 CD边相对中误差时的权函数 式。
1 11 5 4 1 2 94 5 1 9
(5)



QH?C H?C
f T QL?L? f
20 20 1 10
20 20 0
20
评分标准 :每个方程 2 分,权函数式 2 分
2、(8 分 ) 、设 P 点坐标为未知参数, 误 差方程为 :
v1 2.06y p v2 2.06x p v3 2.06 xp 2.06 y p 10 vs x p 1cm
评分标准 :每个方程 2 分
7、计算题(第 1 题 8 分,第 2 题 7 分,第
PZ
02
1 ,试求权阵 PX , PY 及
1 12
权 PY1 , PY 2 。
五、计算题(第 1 题 8 分,第 2 题 7 分,
第 3 题 10 分,共 25 分)
1、若令 Z
权阵 PZ 为
X
11
Y
,其中
Y
21
Y1 Y2 ,已知
2、设已知点A、 B 之间的附合水准路线长 80km,令每公里观测高差的权等于 1,试按 条件平差 法求平差后线路中点 C 点高程的 权。
相关文档
最新文档