2019.1江苏苏北三市2019届高三数学模拟考试卷及答案解析
2019年江苏省高考数学全真模拟试卷(1)含答案
![2019年江苏省高考数学全真模拟试卷(1)含答案](https://img.taocdn.com/s3/m/4f164901f011f18583d049649b6648d7c1c708b4.png)
2019年江苏省高考数学全真模拟试卷(1)含答案2019年江苏省高考数学全真模拟试卷(一)注意事项:1.本试卷共4页,包括填空题(第1题~第14题)和解答题(第15题~第20题)两部分。
本试卷满分为160分,考试时间为120分钟。
2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内。
试题的答案写在答题纸上对应题目的答案空格内。
考试结束后,交回答题纸。
一、填空题(本大题共14小题,每小题5分,计70分。
不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合A = {2.3},B = {1.log2a},若AB = {3},则实数a的值为 ________。
2.已知复数z = 1 - i3,其中i为虚数单位,则z的模为________。
3.根据XXX所示的伪代码,可知输出的结果S为________。
4.一组数据2.x。
4.6.1的平均值是5,则此组数据的标准差是 ________。
5.有一个质地均匀的正四面体木块,4个面分别标有数字1.2.3.4.将此木块在水平桌面上抛两次,则两次看不到的数字都大于2的概率为 ________。
6.若抛物线x^2 = 4y的焦点到双曲线C:x^2/a^2 - y^2/b^2 = 1(a。
0,b。
0)的渐近线距离等于1/3,则双曲线C的离心率为 ________。
7.若实数a。
b满足a ≤ 1,b - a - 1 ≤ 0,则(a + 2b)/(2a + b)的最大值为 ________。
8.在三棱锥P-ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABC的体积为V1,三棱锥DE-ABC的体积为V2,则V1/V2 = ________。
9.设等差数列{an}的公差为d(d ≠ 0),若a1 + a2 + a3 = 6,a2 + a3 + a4 = 8,则d的值为 ________。
10.已知tan(α + β) = 1,tan(α - β) = 2,其前n项和为Sn。
2019年江苏省高考数学模拟试卷共八套含答案
![2019年江苏省高考数学模拟试卷共八套含答案](https://img.taocdn.com/s3/m/25f76bc5d15abe23482f4d90.png)
2019年江苏省高考数学模拟试卷共十套 2019年江苏省高考数学全真模拟试卷01一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合}{1,1,2A =-,{}13B x x =-<<,则A B =I . 2.已知复数12i z =+,其中i 是虚数单位,则z 的模为 .3.已知一组数据4,3,5,7,1,则该组数据的方差为 . 4.执行如图所示的伪代码,最后输出的a 的值是 .5.从1,2,3,4,5中任取2个不同的数,则取到的2个数的和大于5的概率为 .6.已知sin 2cos 0αα+=,则tan 2α= .7.在平面直角坐标系xOy 中,双曲线2211x y m -=+的离心率为2,则实数m 的值 是 。
8.在三棱锥S ABC -中,直线SA ⊥平面ABC ,1SA =,ABC ∆的面积为3,若点G 为ABC ∆的重心,则三棱锥S AGB -的体积为 .9.已知1130,15n n θθθ+=︒=+︒,1sin n n a θ+=,N *n ∈,则224a a += . 10.在平面直角坐标系xOy 中,若圆2220x y x ay +-+=与曲线220x y -=有2个公共点,则实数a 的值是 .11.已知定义在区间[2,2]-的函数()f x 满足1(2)()2f x f x +=,当20x -≤<时,2()f x x x =-,则不等式()f x x ≤的解集为 .12.已知函数11()1,()(())k k f x x f x f f x +=-=,其中N k *∈,且6k ≤,若方程()l n 0k f x x -=恰有两个不相等的实数根,则k 的取值集合为 . 13.在ABC ∆中,点D ,E 分别在线段AC ,BC 上,DE AB BE AD ⋅=⋅,若,AE BD 相交于点F3=,则=⋅BF BE .(第4题)14. 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若2s i n s i n 2s i n C B A =,且3s i n bB a=,则实数m 的最小值是 。
江苏省苏北三市2019届高三模拟考试数学试卷(有答案)
![江苏省苏北三市2019届高三模拟考试数学试卷(有答案)](https://img.taocdn.com/s3/m/691e5168aeaad1f347933f56.png)
2019届高三模拟考试试卷数 学(满分160分,考试时间120分钟)2019.1参考公式:样本数据x 1,x 2,…,x n 的方差 一、填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={0,1,2,3},B ={x |0<x ≤2},则A ∩B = W.2. 已知复数z =(2-i)2(i 是虚数单位),则z 的模为 W.3. 已知一组样本数据5,4,x ,3,6的平均数为5,则该组数据的方差为 W.4. 运行如图所示的伪代码,则输出的结果S 为 W. I ←1While I <8 I ←I +2 S ←2I +3 End While Print S(第4题)5. 若从2,3,6三个数中任取一个数记为a ,再从剩余的两个数中任取一个数记为b ,则“ab是整数”的概率为 W.6. 若抛物线y 2=2px (p >0)的焦点与双曲线x 2-y 23=1的右焦点重合,则实数p 的值为W.7. 在等差数列{a n }中,若a 5=12,8a 6+2a 4=a 2,则{a n }的前6项和S 6的值为 W.8. 已知正四棱锥的底面边长为23,高为1,则该正四棱锥的侧面积为 W.9. 已知a ,b ∈R ,函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)上是减函数,则关于x 的不等式f (2-x )>0的解集为 W.10. 已知a >0,b >0,且a +3b =1b -1a,则b 的最大值为 W.11. 将函数f (x )=sin 2x 的图象向右平移π6个单位长度得到函数g (x )的图象,则以函数f (x )与g (x )的图象的相邻三个交点为顶点的三角形的面积为 W.12. 在△ABC 中,AB =2,AC =3,∠BAC =60°,P 为△ABC 所在平面内一点,满足CP →=32PB→+2P A →,则CP →·AB →的值为 W.13. 在平面直角坐标系xOy 中,已知圆C 1:x 2+y 2+2mx -(4m +6)y -4=0(m ∈R )与以C 2(-2,3)为圆心的圆相交于A (x 1,y 1),B (x 2,y 2)两点,且满足x 21-x 22=y 22-y 21,则实数m 的值为 W.14. 已知x >0,y >0,z >0,且x +3y +z =6,则x 3+y 2+3z 的最小值为 W.二、解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,sin A =23,A ∈(π2,π).(1) 求sin 2A 的值;(2) 若sin B =13,求cos C 的值.16. (本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,D ,E ,F 分别是B 1C 1,AB ,AA 1的中点. (1) 求证:EF ∥平面A 1BD ;(2) 若A 1B 1=A 1C 1,求证:平面A 1BD ⊥平面BB 1C 1C .17. (本小题满分14分)如图,某公园内有两条道路AB ,AP ,现计划在AP 上选择一点C ,新建道路BC ,并把△ABC所在的区域改造成绿化区域.已知∠BAC =π6,AB =2 km.(1) 若绿化区域△ABC 的面积为1 km 2,求道路BC 的长度;(2) 若绿化区域△ABC 改造成本为10万元/km 2,新建道路BC 成本为10万元/km.设∠ABC =θ(0<θ≤2π3),当θ为何值时,该计划所需总费用最小?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点到右准线l 的距离为1.过x 轴上一点M (m ,0)(m 为常数,且m ∈(0,2))的直线与椭圆C 交于A ,B 两点,与l 交于点P ,D 是弦AB 的中点,直线OD 与l 交于点Q .(1) 求椭圆C 的标准方程;(2) 试判断以PQ 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.19. (本小题满分16分)已知函数f(x)=(x-a)ln x(a∈R).(1) 若a=1,求曲线y=f(x)在点(1,f(1))处的切线的方程;(2) 若对于任意的正数x,f(x)≥0恒成立,求实数a的值;(3) 若函数f(x)存在两个极值点,求实数a的取值范围.20. (本小题满分16分)已知数列{a n }满足对任意的n ∈N *,都有a n (q n a n -1)+2q n a n a n +1=a n +1(1-q n a n +1),且a n +1+a n≠0,其中a 1=2,q ≠0.记T n =a 1+qa 2+q 2a 3+…+q n -1a n .(1) 若q =1,求T 2 019的值;(2) 设数列{b n }满足b n =(1+q )T n -q n a n . ①求数列{b n }的通项公式;②若数列{c n }满足c 1=1,且当n ≥2时,c n =2b n -1-1,是否存在正整数k ,t ,使c 1,c k -c 1,c t -c k 成等比数列?若存在,求出所有k ,t 的值;若不存在,请说明理由.2019届高三模拟考试试卷数学附加题(满分40分,考试时间30分钟)21. 【选做题】在A ,B ,C 三小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤0123,B =⎣⎢⎡⎦⎥⎤2018,求A -1B .B. (选修44:坐标系与参数方程)在极坐标系中,曲线C :ρ=2cos θ.以极点为坐标原点,极轴为x 轴非负半轴建立平面直角坐标系xOy ,设过点A (3,0)的直线l 与曲线C 有且只有一个公共点,求直线l 的斜率.C. (选修45:不等式选讲) 已知函数f (x )=|x -1|.(1) 解不等式f (x -1)+f (x +3)≥6;(2) 若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f (ba).【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在三棱锥DABC 中,DA ⊥平面ABC ,∠CAB =90°,且AC =AD =1,AB =2,E 为BD 的中点.(1) 求异面直线AE 与BC 所成角的余弦值; (2) 求二面角ACEB 的余弦值.23. 已知数列{a n }满足a 1=13,a n +1=-2a 2n +2a n ,n ∈N *. (1) 用数学归纳法证明:a n ∈(0,12);(2) 令b n =12-a n ,求证:2019届高三模拟考试试卷(五)(苏北三市)数学参考答案及评分标准1. {1,2}2. 53. 24. 215. 136. 47. 1528. 839. (0,4) 10. 13 11. 3π212. -1 13. -6 14. 37415. 解:(1) 由sin A =23,A ∈(π2,π),则cos A =-1-sin 2A =-1-(23)2=-53,(2分)所以sin 2A =2sin A cos A =2×23×(-53)=-459.(6分)(2) 由A ∈(π2,π),则B 为锐角.又sin B =13,所以cos B =1-sin 2B =1-(13)2=223,(8分)所以cos C =-cos (A +B )=-(cos A cos B -sin A sin B )(12分)=-(-53×223-23×13)=210+29.(14分)16. 证明:(1) 因为E ,F 分别是AB ,AA 1的中点,所以EF ∥A 1B .(3分) 因为EF ⊄平面A 1BD ,A 1B ⊂平面A 1BD , 所以EF ∥平面A 1BD .(6分)(2) 在直三棱柱ABCA 1B 1C 1中,BB 1⊥平面A 1B 1C 1. 因为A 1D ⊂平面A 1B 1C 1,所以BB 1⊥A 1D . (8分) 因为A 1B 1=A 1C 1,且D 是B 1C 1的中点, 所以A 1D ⊥B 1C 1.(10分)因为BB 1∩B 1C 1=B 1,B 1C 1,BB 1⊂平面BB 1C 1C , 所以A 1D ⊥平面BB 1C 1C .(12分) 因为A 1D ⊂平面A 1BD ,所以平面A 1BD ⊥平面BB 1C 1C . (14分)17. 解:(1) 在△ABC 中,已知∠BAC =π6,AB =2 km ,所以△ABC 的面积S =12×AB ×AC ×sin π6=1,解得AC =2.(2分)在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2×AB ×AC ×cos π6=22+22-2×2×2×cos π6=8-43,(4分)所以BC =8-43=6-2(km).(5分)(2) 由∠ABC =θ,则∠ACB =π-(θ+π6), 0<θ≤2π3.在△ABC 中,∠BAC =π6,AB =2 km ,由正弦定理得AC sin B =BC sin A =ABsin C,所以BC =1sin (θ+π6),AC =2sin θsin (θ+π6).(7分)记该计划所需费用为F (θ),则F (θ)=12×2sin θsin (θ+π6)×2×12×10+1sin (θ+π6)×10=10(sin θ+1)sin (θ+π6)(0<θ≤2π3).(10分)令f (θ)=sin θ+132sin θ+12cos θ,则f ′(θ)=sin (θ-π3)+12(32sin θ+12cos θ)2.(11分)由f ′(θ)=0,得θ=π6.所以当θ∈(0,π6)时,f ′(θ)<0,f (θ)单调递减;当θ∈(π6,2π3)时,f ′(θ)>0,f (θ)单调递增.(12分)所以当θ=π6时,该计划所需费用最小.答:当θ=π6时,该计划所需总费用最小.(14分)18. 解:(1) 设椭圆的右焦点为(c ,0),由题意,得⎩⎨⎧c a =22,a 2c -c =1,解得⎩⎨⎧a =2,c =1,所以a 2=2,b 2=1,所以椭圆C 的标准方程为x22+y 2=1.(4分)(2) 由题意,当直线AB 的斜率不存在或为零时显然不符合题意. 设AB 的斜率为k ,则直线AB 的方程为y =k (x -m ). 又准线方程为x =2,所以点P 的坐标为P (2,k (2-m )).(6分) 由⎩⎨⎧y =k (x -m ),x 2+2y 2=2,得x 2+2k 2(x -m )2=2, 即(1+2k 2)x 2-4k 2mx +2k 2m 2-2=0,所以x D =12·4k 2m 2k 2+1=2k 2m 2k 2+1,y D =k (2k 2m 2k 2+1-m )=-km2k 2+1,(8分)所以k OD =-12k ,从而直线OD 的方程为y =-12kx ,所以点Q 的坐标为Q (2,-1k),(10分)所以以PQ 为直径的圆的方程为(x -2)2+[y -k (2-m )](y +1k)=0,即x 2-4x +2+m +y 2-[k (2-m )-1k]y =0.(14分)因为该式对∀k ≠0恒成立,所以⎩⎨⎧y =0,x 2-4x +2+m +y 2=0,解得⎩⎨⎧x =2±2-m ,y =0. 所以以PQ 为直径的圆经过定点(2±2-m ,0).(16分)19. 解:(1) 因为f (x )=(x -a )ln x (a ∈R ),所以当a =1时,f (x )=(x -1)ln x ,则f ′(x )=ln x +1-1x.(1分)当x =1时,f (1)=0,f ′(1)=0,所以曲线f (x )在点(1,f (1))处的切线的方程为y =0.(3分) (2) 因为对于任意的正数x ,f (x )≥0恒成立,所以当ln x =0,即x =1时,f (x )=0,a ∈R ;(5分)当ln x >0,即x >1时,x ≥a 恒成立,所以a ≤1; (6分) 当ln x <0,即x <1时,x ≤a 恒成立,所以a ≥1.综上可知,对于任意的正数x ,f (x )≥0恒成立,a =1. (7分) (3) 因为函数f (x )存在两个极值点,所以f ′(x )=ln x -ax +1存在两个不相等的零点.设g (x )=ln x -a x +1,则g ′(x )=1x +a x 2=x +ax2.(8分)当a ≥0时,g ′(x )>0,所以g (x )单调递增,至多一个零点.(9分) 当a <0时,x ∈(0,-a )时,g ′(x )<0,g (x )单调递减, x ∈(-a ,+∞)时,g ′(x )>0,g (x )单调递增,所以x =-a 时,g (x )min =g (-a )=ln(-a )+2. (11分)因为g (x )存在两个不相等的零点,所以ln(-a )+2<0,解得-e -2<a <0.因为-e -2<a <0,所以-1a>e 2>-a .因为g (-1a )=ln(-1a)+a 2+1>0,所以g (x )在(-a ,+∞)上存在一个零点.(13分)因为-e -2<a <0,所以a 2<-a .又g (a 2)=ln a 2-1a +1=2ln(-a )+1-a+1,设t =-a ,则y =2ln t +1t +1(0<t <1e2).因为y ′=2t -1t 2<0,所以y =2ln t +1t +1(0<t <1e2)单调递减.又函数图象是连续的,所以y >2ln 1e2+e 2+1=e 2-3>0,所以g (a 2)=ln a 2-1a +1>0,所以在(0,-a )上存在一个零点.综上可知,-e -2<a <0.(16分)20. 解:(1) 当q =1时,由a n (q n a n -1)+2q n a n a n +1=a n +1(1-q n a n +1), 得(a n +1+a n )2=a n +1+a n .又a n +1+a n ≠0,所以a n +1+a n =1.(2分) 又a 1=2,所以T 2 019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 018+a 2 019)=1 011.(4分)(2) ①由a n (q n a n -1)+2q n a n a n +1=a n +1(1-q n a n +1),得q n (a n +1+a n )2=a n +1+a n .又a n +1+a n ≠0,所以a n +1+a n =1q n .(6分)因为T n =a 1+qa 2+q 2a 3+…+q n-1a n , 所以qT n =qa 1+q 2a 2+q 3a 3+…+q n a n ,所以(1+q )T n =a 1+q (a 1+a 2)+q 2(a 2+a 3)+q 3(a 3+a 4)+…+q n -1(a n -1+a n )+q n a n , b n =(1+q )T n -q n a n =a 1+1+1+…+1+q n a n -q n a n =a 1+n -1=n +1, 所以b n =n +1.(10分)②由题意,得c n =2b n -1-1=2n -1,n ≥2. 因为c 1,c k -c 1,c t -c k 成等比数列,所以(c k -c 1)2=c 1(c t -c k ),即(2k -2)2=2t -2k , (12分)所以2t =(2k )2-3·2k +4,即2t -2=(2k -1)2-3·2k -2+1 (*).由于c k-c1≠0,所以k≠1,即k≥2.当k=2时,2t=8,得t=3.(14分)当k≥3时,由(*)得(2k-1)2-3·2k-2+1为奇数,所以t-2=0,即t=2,代入(*)得22k-2-3·2k-2=0,即2k=3,此时k无正整数解. 综上,k=2,t=3.(16分)2019届高三模拟考试试卷(五)(苏北三市)数学附加题参考答案及评分标准21. A. 解:由题意得A -1=⎣⎢⎢⎡⎦⎥⎥⎤-3212 10,(5分) 所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-3212 10⎣⎢⎡⎦⎥⎤2018=⎣⎢⎢⎡⎦⎥⎥⎤-524 20.(10分) B. 解:曲线C :ρ=2cos θ的直角坐标方程为(x -1)2+y 2=1.(4分)设过点A (3, 0)的直线l 的直角坐标方程为x =my +3,因为直线l 与曲线C 有且只有一个公共点,所以|1-3|1+m 2=1,解得m =±3.(8分) 从而直线l 的斜率为±33.(10分) C. (1) 解:不等式的解集是(-∞,-3]∪[3,+∞).(4分)(2) 证明:要证f (ab )>|a |f (b a),只要证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2. 而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. (10分)22. 解:因为DA ⊥平面ABC ,∠CAB =90°,所以以A 为坐标原点,建立如图所示的空间直角坐标系Axyz .因为AC =AD =1,AB =2,所以A (0,0,0),C (1,0,0),B (0,2,0),D (0,0,1).因为点E 为线段BD 的中点,所以E (0,1,12). (1) AE →=(0,1,12),BC →=(1,-2,0), 所以cos 〈AE →,BC →〉=AE →·BC →|AE →||BC →|=-254×5=-45, 所以异面直线AE 与BC 所成角的余弦值为45.(5分) (2) 设平面ACE 的法向量为n 1=(x ,y ,z ),因为AC →=(1,0,0),AE →=(0,1,12), 所以n 1·AC →=0,n 1·AE →=0,即x =0且y +12z =0,取y =1,得x =0,z =-2, 所以n 1=(0,1,-2)是平面ACE 的一个法向量.设平面BCE 的法向量为n 2=(x ,y ,z ),因为BC →=(1,-2,0),BE →=(0,-1,12), 所以n 2·BC →=0,n 2·BE →=0,即x -2y =0且-y +12z =0,取y =1,得x =2,z =2, 所以n 2=(2,1,2)是平面BCE 的一个法向量.所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-35×9=-55. (8分) 所以二面角ACEB 的余弦值为-55. (10分)23. 证明:(1) 当n =1时,a 1=13∈(0,12),结论显然成立; 假设当n =k (k ≥1,k ∈N *)时,a k ∈(0,12), 则当n =k +1时,a k +1=-2a 2k +2a k =-2(a k -12)2+12∈(0,12). 综上,a n ∈(0,12).(4分) (2) 由(1)知,a n ∈(0,12),所以b n =12-a n ∈(0,12). 因为a n +1=-2a 2n +2a n ,所以12-a n +1=12-(-2a 2n +2a n )=2a 2n -2a n +12=2(a n -12)2,即b n +1=2b 2n . 于是log 2b n +1=2log 2b n +1,所以(log 2b n +1+1)=2(log 2b n +1),故{log 2b n +1}构成以2为公比的等比数列,其首项为log 2b 1+1=log 216+1=log 213. 于是log 2b n +1=(log 213)·2n -1,从而log 2(2b n )=(log 213)·2n -1=log 2(13)2n -1, 所以2b n =(13)2n -1,即b n =(13)2n -12,于是1b n=2·32n -1.(8分) 因为当i =1,2时,2i -1=i ,当i ≥3时,2i -1=(1+1)i -1=C 0i -1+C 1i -1+…+C i -1i -1>C 0i -1+C 1i -1=i ,所以对∀i ∈N *,有2i -1≥i ,所以32i -1≥3i ,所以1b i=2·32i -1≥2·3i , 从而=1b 1+1b 2+…+1b n ≥2(31+32+…+3n )=2×3(1-3n )1-3=3n +1-3.(10分)。
2019年1月江苏省苏北三市2019届高三模拟联考数学试题及答案
![2019年1月江苏省苏北三市2019届高三模拟联考数学试题及答案](https://img.taocdn.com/s3/m/3af681366c175f0e7cd137a7.png)
绝密★启用前2019年1月江苏省苏北三市2019届高三模拟联考数学试题(满分160分,考试时间120分钟)参考公式:样本数据x 1,x 2,…,x n 的方差一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={0,1,2,3},B ={x |0<x ≤2},则A ∩B = W.2. 已知复数z =(2-i)2(i 是虚数单位),则z 的模为 W.3. 已知一组样本数据5,4,x ,3,6的平均数为5,则该组数据的方差为 W.4. 运行如图所示的伪代码,则输出的结果S 为 W.I ←1While I <8I ←I +2S ←2I +3End WhilePrint S(第4题)5. 若从2,3,6三个数中任取一个数记为a ,再从剩余的两个数中任取一个数记为b ,则“a b是整数”的概率为 W. 6. 若抛物线y 2=2px (p >0)的焦点与双曲线x 2-y 23=1的右焦点重合,则实数p 的值为 W.7. 在等差数列{a n }中,若a 5=12,8a 6+2a 4=a 2,则{a n }的前6项和 S 6的值为 W. 8. 已知正四棱锥的底面边长为23,高为1,则该正四棱锥的侧面积为 W.9. 已知a ,b ∈R ,函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)上是减函数,则关于x 的不等式f (2-x )>0的解集为 W.10. 已知a >0,b >0,且a +3b =1b -1a,则b 的最大值为 W. 11. 将函数f (x )=sin 2x 的图象向右平移π6个单位长度得到函数g (x )的图象,则以函数f (x )与g (x )的图象的相邻三个交点为顶点的三角形的面积为 W.12. 在△ABC 中,AB =2,AC =3,∠BAC =60°,P 为△ABC 所在平面内一点,满足CP →=32PB →+2P A →,则CP →·AB →的值为 W. 13. 在平面直角坐标系xOy 中,已知圆C 1:x 2+y 2+2mx -(4m +6)y -4=0(m ∈R )与以C 2(-2,3)为圆心的圆相交于A (x 1,y 1),B (x 2,y 2)两点,且满足x 21-x 22=y 22-y 21,则实数m 的值为 W.14. 已知x >0,y >0,z >0,且x +3y +z =6,则x 3+y 2+3z 的最小值为 W.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,sin A =23,A ∈(π2,π). (1) 求sin 2A 的值;(2) 若sin B =13,求cos C 的值.16. (本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,D ,E ,F 分别是B 1C 1,AB ,AA 1的中点.(1) 求证:EF ∥平面A 1BD ;(2) 若A 1B 1=A 1C 1,求证:平面A 1BD ⊥平面BB 1C 1C .。
2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)
![2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)](https://img.taocdn.com/s3/m/df4e5de327fff705cc1755270722192e453658cf.png)
2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)文章中没有明显的格式错误和有问题的段落,因此直接改写每段话。
2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分。
1.已知集合A为{x-1<x<1},集合B为{-1≤x≤2},则AB 的并集为[ -1.2 )。
2.复数z=2i/(1-i)的实部是2/5.3.甲、乙两人下棋,结果是一人获胜或下成和棋。
已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为0.06.4.某地区连续5天的最低气温(单位:°C)依次为8,-4,-1,0,2,则该组数据的方差为23.2.5.根据XXX所示的伪代码,当输出y的值为2时,则输入的x的值为e。
6.在平面直角坐标系xOy中,圆x^2+y^2-4x+4y+4=0被直线x-y-5=0所截得的弦长为4.7.如图,三个相同的正方形相接,则XXX∠XXX的值为1.8.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E为PD上一点,且PE=2ED。
设三棱锥P-ACE的体积为V1,三棱锥P-ABC的体积为V2,则.9.已知F是抛物线C:y=8x的焦点,M是C上一点,FM的延长线交y轴于点N。
若M是FN的中点,则FN的长度为16.10.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<-e的解集为(1/e。
e)。
11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图)。
现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为3.12.如图,在△ABC中,点M为边BC的中点,且AM=2,点N为线段AM的中点,若AB×AC=28,则NB×NC的值为21.13.已知正数x,y满足x+y+1/x+1/y=10,则x+y的最小值是4.14.设等比数列{an}满足:a1=2,an=cos(πn/2)+3sin(πn/2),其中n∈N,且nπ/2∈(0.π/2)。
2019-2020学年江苏省苏北三市高三模拟考试数学模拟试卷(有答案)
![2019-2020学年江苏省苏北三市高三模拟考试数学模拟试卷(有答案)](https://img.taocdn.com/s3/m/bed76fa483c4bb4cf6ecd114.png)
高三模拟考试试卷数 学(满分160分,考试时间120分钟)参考公式:样本数据x 1,x 2,…,x n 的方差一、填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={0,1,2,3},B ={x |0<x ≤2},则A ∩B = W.2. 已知复数z =(2-i)2(i 是虚数单位),则z 的模为 W.3. 已知一组样本数据5,4,x ,3,6的平均数为5,则该组数据的方差为 W.4. 运行如图所示的伪代码,则输出的结果S 为 W.I ←1While I <8 I ←I +2 S ←2I +3 End While Print S (第4题)5. 若从2,3,6三个数中任取一个数记为a ,再从剩余的两个数中任取一个数记为b ,则“a b是整数”的概率为 W.6. 若抛物线y 2=2px (p >0)的焦点与双曲线x 2-y 23=1的右焦点重合,则实数p 的值为W.7. 在等差数列{a n }中,若a 5=12,8a 6+2a 4=a 2,则{a n }的前6项和S 6的值为 W.8. 已知正四棱锥的底面边长为23,高为1,则该正四棱锥的侧面积为 W. 9. 已知a ,b ∈R ,函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)上是减函数,则关于x 的不等式f (2-x )>0的解集为 W.10. 已知a >0,b >0,且a +3b =1b -1a,则b 的最大值为 W.11. 将函数f (x )=sin 2x 的图象向右平移π6个单位长度得到函数g (x )的图象,则以函数f (x )与g (x )的图象的相邻三个交点为顶点的三角形的面积为 W.12. 在△ABC 中,AB =2,AC =3,∠BAC =60°,P 为△ABC 所在平面内一点,满足CP →=32PB →+2PA →,则CP →·AB →的值为 W.13. 在平面直角坐标系xOy 中,已知圆C 1:x 2+y 2+2mx -(4m +6)y -4=0(m ∈R )与以C 2(-2,3)为圆心的圆相交于A (x 1,y 1),B (x 2,y 2)两点,且满足x 21-x 22=y 22-y 21,则实数m 的值为 W.14. 已知x >0,y >0,z >0,且x +3y +z =6,则x 3+y 2+3z 的最小值为 W. 二、解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,sin A =23,A ∈(π2,π).(1) 求sin 2A 的值;(2) 若sin B =13,求cos C 的值.16. (本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,D ,E ,F 分别是B 1C 1,AB ,AA 1的中点. (1) 求证:EF ∥平面A 1BD ;(2) 若A1B1=A1C1,求证:平面A1BD⊥平面BB1C1C.17. (本小题满分14分)如图,某公园内有两条道路AB ,AP ,现计划在AP 上选择一点C ,新建道路BC ,并把△ABC 所在的区域改造成绿化区域.已知∠BAC =π6,AB =2 km.(1) 若绿化区域△ABC 的面积为1 km 2,求道路BC 的长度;(2) 若绿化区域△ABC 改造成本为10万元/km 2,新建道路BC 成本为10万元/km.设∠ABC =θ(0<θ≤2π3),当θ为何值时,该计划所需总费用最小?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点到右准线l 的距离为1.过x 轴上一点M (m ,0)(m 为常数,且m ∈(0,2))的直线与椭圆C 交于A ,B 两点,与l 交于点P ,D 是弦AB 的中点,直线OD 与l 交于点Q .(1) 求椭圆C 的标准方程;(2) 试判断以PQ 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.19. (本小题满分16分)已知函数f(x)=(x-a)ln x(a∈R).(1) 若a=1,求曲线y=f(x)在点(1,f(1))处的切线的方程;(2) 若对于任意的正数x,f(x)≥0恒成立,求实数a的值;(3) 若函数f(x)存在两个极值点,求实数a的取值范围.20. (本小题满分16分)已知数列{a n }满足对任意的n ∈N *,都有a n (q n a n -1)+2q n a n a n +1=a n +1(1-q na n +1),且a n +1+a n≠0,其中a 1=2,q ≠0.记T n =a 1+qa 2+q 2a 3+…+qn -1a n .(1) 若q =1,求T 2 019的值;(2) 设数列{b n }满足b n =(1+q )T n -q n a n . ①求数列{b n }的通项公式;②若数列{c n }满足c 1=1,且当n ≥2时,c n =2b n -1-1,是否存在正整数k ,t ,使c 1,c k -c 1,c t -c k 成等比数列?若存在,求出所有k ,t 的值;若不存在,请说明理由.高三模拟考试试卷数学附加题(满分40分,考试时间30分钟)21. 【选做题】在A ,B ,C 三小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤0123,B =⎣⎢⎡⎦⎥⎤2018,求A -1B .B. (选修44:坐标系与参数方程)在极坐标系中,曲线C :ρ=2cos θ.以极点为坐标原点,极轴为x 轴非负半轴建立平面直角坐标系xOy ,设过点A (3,0)的直线l 与曲线C 有且只有一个公共点,求直线l 的斜率.C. (选修45:不等式选讲) 已知函数f (x )=|x -1|.(1) 解不等式f (x -1)+f (x +3)≥6;(2) 若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f (b a).【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在三棱锥DABC 中,DA ⊥平面ABC ,∠CAB =90°,且AC =AD =1,AB =2,E 为BD 的中点.(1) 求异面直线AE 与BC 所成角的余弦值; (2) 求二面角ACEB 的余弦值.23. 已知数列{a n }满足a 1=13,a n +1=-2a 2n +2a n ,n ∈N *.(1) 用数学归纳法证明:a n ∈(0,12);(2) 令b n =12-a n ,求证:高三模拟考试试卷(五)(苏北三市)数学参考答案及评分标准1. {1,2}2. 53. 24. 215. 136. 47. 1528. 8 39. (0,4) 10. 13 11.3π2 12. -1 13. -6 14. 37415. 解:(1) 由sin A =23,A ∈(π2,π),则cos A =-1-sin 2A =-1-(23)2=-53,(2分)所以sin 2A =2sin A cos A =2×23×(-53)=-459.(6分)(2) 由A ∈(π2,π),则B 为锐角.又sin B =13,所以cos B =1-sin 2B =1-(13)2=223,(8分)所以cos C =-cos (A +B )=-(cos A cos B -sin A sin B )(12分) =-(-53×223-23×13)=210+29.(14分) 16. 证明:(1) 因为E ,F 分别是AB ,AA 1的中点,所以EF ∥A 1B .(3分) 因为EF ⊄平面A 1BD ,A 1B ⊂平面A 1BD , 所以EF ∥平面A 1BD .(6分)(2) 在直三棱柱ABCA 1B 1C 1中,BB 1⊥平面A 1B 1C 1. 因为A 1D ⊂平面A 1B 1C 1,所以BB 1⊥A 1D . (8分) 因为A 1B 1=A 1C 1,且D 是B 1C 1的中点, 所以A 1D ⊥B 1C 1.(10分)因为BB 1∩B 1C 1=B 1,B 1C 1,BB 1⊂平面BB 1C 1C , 所以A 1D ⊥平面BB 1C 1C .(12分) 因为A 1D ⊂平面A 1BD ,所以平面A 1BD ⊥平面BB 1C 1C . (14分)17. 解:(1) 在△ABC 中,已知∠BAC =π6,AB =2 km ,所以△ABC 的面积S =12×AB ×AC ×sin π6=1,解得AC =2.(2分)在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2×AB ×AC ×cos π6=22+22-2×2×2×cos π6=8-43,(4分)所以BC =8-43=6-2(km).(5分)(2) 由∠ABC =θ,则∠ACB =π-(θ+π6), 0<θ≤2π3.在△ABC 中,∠BAC =π6,AB =2 km ,由正弦定理得AC sin B =BC sin A =ABsin C ,所以BC =1sin (θ+π6),AC =2sin θsin (θ+π6).(7分)记该计划所需费用为F (θ), 则F (θ)=12×2sin θsin (θ+π6)×2×12×10+1sin (θ+π6)×10=10(sin θ+1)sin (θ+π6)(0<θ≤2π3).(10分) 令f (θ)=sin θ+132sin θ+12cos θ,则f ′(θ)=sin (θ-π3)+12(32sin θ+12cos θ)2.(11分)由f ′(θ)=0,得θ=π6.所以当θ∈(0,π6)时,f ′(θ)<0,f (θ)单调递减;当θ∈(π6,2π3)时,f ′(θ)>0,f (θ)单调递增.(12分)所以当θ=π6时,该计划所需费用最小.答:当θ=π6时,该计划所需总费用最小.(14分)18. 解:(1) 设椭圆的右焦点为(c ,0),由题意,得⎩⎪⎨⎪⎧c a =22,a 2c-c =1,解得⎩⎨⎧a =2,c =1,所以a 2=2,b 2=1,所以椭圆C 的标准方程为x 22+y 2=1.(4分)(2) 由题意,当直线AB 的斜率不存在或为零时显然不符合题意. 设AB 的斜率为k ,则直线AB 的方程为y =k (x -m ). 又准线方程为x =2,所以点P 的坐标为P (2,k (2-m )).(6分)由⎩⎪⎨⎪⎧y =k (x -m ),x 2+2y 2=2,得x 2+2k 2(x -m )2=2, 即(1+2k 2)x 2-4k 2mx +2k 2m 2-2=0,所以x D =12·4k 2m 2k 2+1=2k 2m 2k 2+1,y D =k (2k 2m 2k 2+1-m )=-km2k 2+1,(8分)所以k OD =-12k ,从而直线OD 的方程为y =-12k x ,所以点Q 的坐标为Q (2,-1k),(10分)所以以PQ 为直径的圆的方程为(x -2)2+[y -k (2-m )](y +1k)=0,即x 2-4x +2+m +y 2-[k (2-m )-1k]y =0.(14分)因为该式对∀k ≠0恒成立,所以⎩⎪⎨⎪⎧y =0,x 2-4x +2+m +y 2=0,解得⎩⎨⎧x =2±2-m ,y =0.所以以PQ 为直径的圆经过定点(2±2-m ,0).(16分)19. 解:(1) 因为f (x )=(x -a )ln x (a ∈R ),所以当a =1时,f (x )=(x -1)ln x , 则f ′(x )=ln x +1-1x.(1分)当x =1时,f (1)=0,f ′(1)=0,所以曲线f (x )在点(1,f (1))处的切线的方程为y =0.(3分) (2) 因为对于任意的正数x ,f (x )≥0恒成立, 所以当ln x =0,即x =1时,f (x )=0,a ∈R ;(5分) 当ln x >0,即x >1时,x ≥a 恒成立,所以a ≤1; (6分) 当ln x <0,即x <1时,x ≤a 恒成立,所以a ≥1.综上可知,对于任意的正数x ,f (x )≥0恒成立,a =1. (7分) (3) 因为函数f (x )存在两个极值点,所以f ′(x )=ln x -a x+1存在两个不相等的零点.设g (x )=ln x -a x+1,则g ′(x )=1x +a x2=x +ax2.(8分)当a ≥0时,g ′(x )>0,所以g (x )单调递增,至多一个零点.(9分) 当a <0时,x ∈(0,-a )时,g ′(x )<0,g (x )单调递减,x ∈(-a ,+∞)时,g ′(x )>0,g (x )单调递增,所以x =-a 时,g (x )min =g (-a )=ln(-a )+2. (11分)因为g (x )存在两个不相等的零点,所以ln(-a )+2<0,解得-e -2<a <0. 因为-e -2<a <0,所以-1a>e 2>-a .因为g (-1a )=ln(-1a)+a 2+1>0,所以g (x )在(-a ,+∞)上存在一个零点.(13分)因为-e -2<a <0,所以a 2<-a .又g (a 2)=ln a 2-1a +1=2ln(-a )+1-a +1,设t =-a ,则y =2ln t +1t +1(0<t <1e2).因为y ′=2t -1t 2<0,所以y =2ln t +1t +1(0<t <1e 2)单调递减.又函数图象是连续的,所以y >2ln 1e 2+e 2+1=e 2-3>0,所以g (a 2)=ln a 2-1a+1>0,所以在(0,-a )上存在一个零点.综上可知,-e -2<a <0.(16分)20. 解:(1) 当q =1时,由a n (q n a n -1)+2q n a n a n +1=a n +1(1-q na n +1), 得(a n +1+a n )2=a n +1+a n .又a n +1+a n ≠0,所以a n +1+a n =1.(2分) 又a 1=2,所以T 2 019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 018+a 2 019)=1 011.(4分) (2) ①由a n (q na n -1)+2q na n a n +1=a n +1(1-q na n +1),得q n(a n +1+a n )2=a n +1+a n . 又a n +1+a n ≠0,所以a n +1+a n =1qn .(6分)因为T n =a 1+qa 2+q 2a 3+…+qn -1a n ,所以qT n =qa 1+q 2a 2+q 3a 3+…+q na n ,所以(1+q )T n =a 1+q (a 1+a 2)+q 2(a 2+a 3)+q 3(a 3+a 4)+…+qn -1(a n -1+a n )+q na n ,b n=(1+q)T n-q n a n=a1+1+1+…+1+q n a n-q n a n=a1+n-1=n+1,所以b n=n+1.(10分)②由题意,得c n=2b n-1-1=2n-1,n≥2.因为c1,c k-c1,c t-c k成等比数列,所以(c k-c1)2=c1(c t-c k),即(2k-2)2=2t-2k, (12分)所以2t=(2k)2-3·2k+4,即2t-2=(2k-1)2-3·2k-2+1 (*).由于c k-c1≠0,所以k≠1,即k≥2.当k=2时,2t=8,得t=3.(14分)当k≥3时,由(*)得(2k-1)2-3·2k-2+1为奇数,所以t-2=0,即t=2,代入(*)得22k-2-3·2k-2=0,即2k=3,此时k无正整数解. 综上,k=2,t=3.(16分)2019届高三模拟考试试卷(五)(苏北三市)数学附加题参考答案及评分标准21. A. 解:由题意得A -1=⎣⎢⎢⎡⎦⎥⎥⎤-3212 10,(5分)所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-3212 10⎣⎢⎡⎦⎥⎤2018=⎣⎢⎢⎡⎦⎥⎥⎤-524 20.(10分) B. 解:曲线C :ρ=2cos θ的直角坐标方程为(x -1)2+y 2=1.(4分) 设过点A (3, 0)的直线l 的直角坐标方程为x =my +3, 因为直线l 与曲线C 有且只有一个公共点, 所以|1-3|1+m2=1,解得m =± 3.(8分)从而直线l 的斜率为±33.(10分) C. (1) 解:不等式的解集是(-∞,-3]∪[3,+∞).(4分)(2) 证明:要证f (ab )>|a |f (b a),只要证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2. 而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0, 从而原不等式成立. (10分)22. 解:因为DA ⊥平面ABC ,∠CAB =90°,所以以A 为坐标原点,建立如图所示的空间直角坐标系Axyz .因为AC =AD =1,AB =2,所以A (0,0,0),C (1,0,0),B (0,2,0),D (0,0,1). 因为点E 为线段BD 的中点,所以E (0,1,12).(1) AE →=(0,1,12),BC →=(1,-2,0),所以cos 〈AE →,BC →〉=AE →·BC →|AE →||BC →|=-254×5=-45,所以异面直线AE 与BC 所成角的余弦值为45.(5分)(2) 设平面ACE 的法向量为n 1=(x ,y ,z ),因为AC →=(1,0,0),AE →=(0,1,12),所以n 1·AC →=0,n 1·AE →=0,即x =0且y +12z =0,取y =1,得x =0,z =-2,所以n 1=(0,1,-2)是平面ACE 的一个法向量.设平面BCE 的法向量为n 2=(x ,y ,z ),因为BC →=(1,-2,0),BE →=(0,-1,12),所以n 2·BC →=0,n 2·BE →=0,即x -2y =0且-y +12z =0,取y =1,得x =2,z =2,所以n 2=(2,1,2)是平面BCE 的一个法向量.所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-35×9=-55. (8分)所以二面角ACEB 的余弦值为-55. (10分) 23. 证明:(1) 当n =1时,a 1=13∈(0,12),结论显然成立;假设当n =k (k ≥1,k ∈N *)时,a k ∈(0,12),则当n =k +1时,a k +1=-2a 2k +2a k =-2(a k -12)2+12∈(0,12).综上,a n ∈(0,12).(4分)(2) 由(1)知,a n ∈(0,12),所以b n =12-a n ∈(0,12).因为a n +1=-2a 2n +2a n ,所以12-a n +1=12-(-2a 2n +2a n )=2a 2n -2a n +12=2(a n -12)2,即b n +1=2b 2n .于是log 2b n +1=2log 2b n +1, 所以(log 2b n +1+1)=2(log 2b n +1),故{log 2b n +1}构成以2为公比的等比数列,其首项为log 2b 1+1=log 216+1=log 213.于是log 2b n +1=(log 213)·2n -1,从而log 2(2b n )=(log 213)·2n -1=log 2(13)2n -1,所以2b n =(13)2n -1,即b n =(13)2n -12,于是1b n =2·32n -1.(8分)因为当i =1,2时,2i -1=i ,当i ≥3时,2i -1=(1+1)i -1=C 0i -1+C 1i -1+…+C i -1i -1>C 0i -1+C 1i -1=i ,所以对∀i∈N*,有2i-1≥i,所以32i-1≥3i,所以1b i=2·32i-1≥2·3i,从而=1b1+1b2+…+1b n≥2(31+32+…+3n)=2×3(1-3n)1-3=3n+1-3.(10分)。
江苏省苏北三市2019届高三模拟考试数学试卷(含答案)
![江苏省苏北三市2019届高三模拟考试数学试卷(含答案)](https://img.taocdn.com/s3/m/22447e3759eef8c75fbfb356.png)
2019届高三模拟考试试卷数学(满分160分,考试时间120分钟)2019.1 参考公式:样本数据x1,x2,…,x n的方差一、填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A={0,1,2,3},B={x|0<x≤2},则A∩B=W.2. 已知复数z=(2-i)2(i是虚数单位),则z的模为W.3. 已知一组样本数据5,4,x,3,6的平均数为5,则该组数据的方差为W.4. 运行如图所示的伪代码,则输出的结果S为W.I←1While I<8I←I+2S←2I+3End WhilePrint S(第4题)5. 若从2,3,6三个数中任取一个数记为a,再从剩余的两个数中任取一个数记为b,则“ab是整数”的概率为W.6. 若抛物线y2=2px(p>0)的焦点与双曲线x2-y23=1的右焦点重合,则实数p的值为W.7. 在等差数列{a n}中,若a5=12,8a6+2a4=a2,则{a n}的前6项和S6的值为W.8. 已知正四棱锥的底面边长为23,高为1,则该正四棱锥的侧面积为W.9. 已知a,b∈R,函数f(x)=(x-2)(ax+b)为偶函数,且在(0,+∞)上是减函数,则关于x的不等式f(2-x)>0的解集为W.10. 已知a>0,b>0,且a+3b=1b-1a,则b的最大值为W.11. 将函数f(x)=sin 2x的图象向右平移π6个单位长度得到函数g(x)的图象,则以函数f(x)与g(x)的图象的相邻三个交点为顶点的三角形的面积为W.12. 在△ABC中,AB=2,AC=3,∠BAC=60°,P为△ABC所在平面内一点,满足CP→=32PB→+2PA→,则CP→·AB→的值为W.13. 在平面直角坐标系xOy中,已知圆C1:x2+y2+2mx-(4m +6)y-4=0(m∈R)与以C2(-2,3)为圆心的圆相交于A(x1,y1),B(x2,y2)两点,且满足x21-x22=y22-y21,则实数m的值为W.14. 已知x>0,y>0,z>0,且x+3y+z=6,则x3+y2+3z 的最小值为W.二、解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC中,sin A=23,A∈(π2,π).(1) 求sin 2A的值;(2) 若sin B=13,求cos C的值.16. (本小题满分14分)如图,在直三棱柱ABCA1B1C1中,D,E,F分别是B1C1,AB,AA1的中点.(1) 求证:EF∥平面A1BD;(2) 若A1B1=A1C1,求证:平面A1BD⊥平面BB1C1C.17. (本小题满分14分)如图,某公园内有两条道路AB ,AP ,现计划在AP 上选择一点C ,新建道路BC ,并把△ABC 所在的区域改造成绿化区域.已知∠BAC =π6,AB =2 km.(1) 若绿化区域△ABC 的面积为1 km 2,求道路BC 的长度; (2) 若绿化区域△ABC 改造成本为10万元/km 2,新建道路BC 成本为10万元/km.设∠ABC =θ(0<θ≤2π3),当θ为何值时,该计划所需总费用最小?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点到右准线l 的距离为1.过x 轴上一点M (m ,0)(m 为常数,且m ∈(0,2))的直线与椭圆C 交于A ,B 两点,与l 交于点P ,D 是弦AB 的中点,直线OD 与l 交于点Q .(1) 求椭圆C的标准方程;(2) 试判断以PQ为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.19. (本小题满分16分)已知函数f(x)=(x-a)ln x(a∈R).(1) 若a=1,求曲线y=f(x)在点(1,f(1))处的切线的方程;(2) 若对于任意的正数x,f(x)≥0恒成立,求实数a的值;(3) 若函数f(x)存在两个极值点,求实数a的取值范围.20. (本小题满分16分)已知数列{a n}满足对任意的n∈N*,都有a n(q n a n-1)+2q n a n a n+1=a n+1(1-q n a n+1),且a n+1+a n≠0,其中a1=2,q≠0.记T n=a1+qa2+q2a3+…+q n-1a n.(1) 若q=1,求T2 019的值;(2) 设数列{b n}满足b n=(1+q)T n-q n a n.①求数列{b n}的通项公式;②若数列{c n}满足c1=1,且当n≥2时,c n=2b n-1-1,是否存在正整数k,t,使c1,c k-c1,c t-c k成等比数列?若存在,求出所有k,t的值;若不存在,请说明理由.2019届高三模拟考试试卷数学附加题(满分40分,考试时间30分钟)21. 【选做题】在A,B,C三小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤0123,B =⎣⎢⎢⎡⎦⎥⎥⎤2018,求A -1B .B. (选修44:坐标系与参数方程)在极坐标系中,曲线C :ρ=2cos θ.以极点为坐标原点,极轴为x 轴非负半轴建立平面直角坐标系xOy ,设过点A (3,0)的直线l 与曲线C 有且只有一个公共点,求直线l 的斜率.C. (选修45:不等式选讲)已知函数f(x)=|x-1|.(1) 解不等式f(x-1)+f(x+3)≥6;(2) 若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(b a).【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在三棱锥DABC 中,DA ⊥平面ABC ,∠CAB =90°,且AC =AD =1,AB =2,E 为BD 的中点.(1) 求异面直线AE 与BC 所成角的余弦值; (2) 求二面角ACEB 的余弦值.23. 已知数列{a n }满足a 1=13,a n +1=-2a 2n +2a n ,n ∈N *.(1) 用数学归纳法证明:a n ∈(0,12);(2) 令b n =12-a n ,求证:2019届高三模拟考试试卷(五)(苏北三市)数学参考答案及评分标准1. {1,2}2. 53. 24. 215. 136. 47.1528.8 3 9. (0,4) 10. 1311.3π212. -1 13. -6 14.37415. 解:(1) 由sin A=23,A∈(π2,π),则cos A=-1-sin 2A=-1-(23)2=-53,(2分)所以sin 2A=2sin A cos A=2×23×(-53)=-459.(6分)(2) 由A∈(π2,π),则B为锐角.又sin B=13,所以cos B=1-sin 2B=1-(13)2=223,(8分)所以cos C=-cos (A+B)=-(cos A cos B-sin A sin B)(12分)=-(-53×223-23×13)=210+29.(14分)16. 证明:(1) 因为E,F分别是AB,AA1的中点,所以EF∥A1B.(3分)因为EF⊄平面A1BD,A1B⊂平面A1BD,所以EF∥平面A1BD.(6分)(2) 在直三棱柱ABCA1B1C1中,BB1⊥平面A1B1C1.因为A1D⊂平面A1B1C1,所以BB1⊥A1D. (8分)因为A1B1=A1C1,且D是B1C1的中点,所以A1D⊥B1C1.(10分)因为BB1∩B1C1=B1,B1C1,BB1⊂平面BB1C1C,所以A1D⊥平面BB1C1C.(12分)因为A1D⊂平面A1BD,所以平面A1BD⊥平面BB1C1C. (14分)17. 解:(1) 在△ABC中,已知∠BAC=π6,AB=2 km,所以△ABC的面积S=12×AB×AC×sinπ6=1,解得AC=2.(2分)在△ABC中,由余弦定理得BC2=AB2+AC2-2×AB×AC×cos π6=22+22-2×2×2×cos π6=8-43,(4分)所以BC=8-43=6-2(km).(5分)(2) 由∠ABC=θ,则∠ACB=π-(θ+π6),0<θ≤2π3.在△ABC中,∠BAC=π6,AB=2 km,由正弦定理得ACsin B=BCsin A=ABsin C,所以BC=1sin(θ+π6),AC=2sin θsin(θ+π6).(7分)记该计划所需费用为F(θ),则F(θ)=12×2sin θsin(θ+π6)×2×12×10+1sin(θ+π6)×10=10(sin θ+1)sin(θ+π6)(0<θ≤2π3).(10分)令f(θ)=sin θ+132sin θ+12cosθ,则f′(θ)=sin (θ-π3)+12(32sin θ+12cos θ)2.(11分)由f ′(θ)=0,得θ=π6.所以当θ∈(0,π6)时,f ′(θ)<0,f (θ)单调递减;当θ∈(π6,2π3)时,f ′(θ)>0,f (θ)单调递增.(12分)所以当θ=π6时,该计划所需费用最小.答:当θ=π6时,该计划所需总费用最小.(14分)18. 解:(1) 设椭圆的右焦点为(c ,0),由题意,得⎩⎪⎨⎪⎧c a =22,a 2c-c =1,解得⎩⎪⎨⎪⎧a =2,c =1,所以a 2=2,b 2=1,所以椭圆C 的标准方程为x 22+y 2=1.(4分)(2) 由题意,当直线AB 的斜率不存在或为零时显然不符合题意. 设AB 的斜率为k ,则直线AB 的方程为y =k (x -m ). 又准线方程为x =2,所以点P 的坐标为P (2,k (2-m )).(6分)由⎩⎪⎨⎪⎧y =k (x -m ),x 2+2y 2=2,得x 2+2k 2(x -m )2=2,即(1+2k 2)x 2-4k 2mx +2k 2m 2-2=0,所以x D =12·4k 2m 2k 2+1=2k 2m 2k 2+1,y D =k (2k 2m 2k 2+1-m )=-km 2k 2+1,(8分)所以k OD =-12k,从而直线OD 的方程为y =-12kx ,所以点Q 的坐标为Q (2,-1k),(10分)所以以PQ 为直径的圆的方程为(x -2)2+[y -k (2-m )](y +1k)=0,即x 2-4x +2+m +y 2-[k (2-m )-1k]y =0.(14分)因为该式对∀k ≠0恒成立,所以⎩⎪⎨⎪⎧y =0,x 2-4x +2+m +y 2=0,解得⎩⎪⎨⎪⎧x =2±2-m ,y =0.所以以PQ 为直径的圆经过定点(2±2-m ,0).(16分)19. 解:(1) 因为f (x )=(x -a )ln x (a ∈R ),所以当a =1时,f (x )=(x -1)ln x ,则f ′(x )=ln x +1-1x.(1分)当x =1时,f (1)=0,f ′(1)=0,所以曲线f (x )在点(1,f (1))处的切线的方程为y =0.(3分) (2) 因为对于任意的正数x ,f (x )≥0恒成立, 所以当ln x =0,即x =1时,f (x )=0,a ∈R ;(5分) 当ln x >0,即x >1时,x ≥a 恒成立,所以a ≤1; (6分) 当ln x <0,即x <1时,x ≤a 恒成立,所以a ≥1.综上可知,对于任意的正数x ,f (x )≥0恒成立,a =1. (7分) (3) 因为函数f (x )存在两个极值点,所以f ′(x )=ln x -a x+1存在两个不相等的零点.设g (x )=ln x -a x+1,则g ′(x )=1x +a x2=x +a x 2.(8分)当a ≥0时,g ′(x )>0,所以g (x )单调递增,至多一个零点.(9分) 当a <0时,x ∈(0,-a )时,g ′(x )<0,g (x )单调递减,x ∈(-a ,+∞)时,g ′(x )>0,g (x )单调递增,所以x=-a时,g(x)min=g(-a)=ln(-a)+2. (11分)因为g(x)存在两个不相等的零点,所以ln(-a)+2<0,解得-e-2<a<0.因为-e-2<a<0,所以-1a>e2>-a.因为g(-1a)=ln(-1a)+a2+1>0,所以g(x)在(-a,+∞)上存在一个零点.(13分)因为-e-2<a<0,所以a2<-a.又g(a2)=ln a2-1a+1=2ln(-a)+1-a+1,设t=-a,则y=2ln t+1t+1(0<t<1e2).因为y′=2t-1t2<0,所以y=2ln t+1t+1(0<t<1e2)单调递减.又函数图象是连续的,所以y>2ln 1e2+e2+1=e2-3>0,所以g(a2)=ln a2-1a+1>0,所以在(0,-a)上存在一个零点.综上可知,-e-2<a<0.(16分)20. 解:(1) 当q=1时,由a n(q n a n-1)+2q n a n a n+1=a n+1(1-q n a n+1),得(a n+1+a n)2=a n+1+a n.又a n+1+a n≠0,所以a n+1+a n=1.(2分)又a1=2,所以T2 019=a1+(a2+a3)+(a4+a5)+…+(a2 018+a2 019)=1 011.(4分)(2) ①由a n(q n a n-1)+2q n a n a n+1=a n+1(1-q n a n+1),得q n(a n+1+a n)2=a n+1+a n.又a n+1+a n≠0,所以a n+1+a n=1q n.(6分)因为T n=a1+qa2+q2a3+…+q n-1a n,所以qT n=qa1+q2a2+q3a3+…+q n a n,所以(1+q)T n=a1+q(a1+a2)+q2(a2+a3)+q3(a3+a4)+…+q n -1(a n-1+a n)+q n a n,b n=(1+q)T n-q n a n=a1+1+1+…+1+q n a n-q n a n=a1+n-1=n+1,所以b n=n+1.(10分)②由题意,得c n=2b n-1-1=2n-1,n≥2.因为c1,c k-c1,c t-c k成等比数列,所以(c k-c1)2=c1(c t-c k),即(2k-2)2=2t-2k,(12分)所以2t=(2k)2-3·2k+4,即2t-2=(2k-1)2-3·2k-2+1 (*).由于c k-c1≠0,所以k≠1,即k≥2.当k=2时,2t=8,得t=3.(14分)当k≥3时,由(*)得(2k-1)2-3·2k-2+1为奇数,所以t-2=0,即t=2,代入(*)得22k-2-3·2k-2=0,即2k=3,此时k无正整数解.综上,k=2,t=3.(16分)2019届高三模拟考试试卷(五)(苏北三市)数学附加题参考答案及评分标准21. A. 解:由题意得A -1=⎣⎢⎢⎡⎦⎥⎥⎤-3212 10,(5分) 所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-3212 10⎣⎢⎢⎡⎦⎥⎥⎤2018=⎣⎢⎢⎡⎦⎥⎥⎤-524 20.(10分) B. 解:曲线C :ρ=2cos θ的直角坐标方程为(x -1)2+y 2=1.(4分)设过点A (3, 0)的直线l 的直角坐标方程为x =my +3, 因为直线l 与曲线C 有且只有一个公共点, 所以|1-3|1+m 2=1,解得m =±3.(8分)从而直线l 的斜率为±33.(10分)C. (1) 解:不等式的解集是(-∞,-3]∪[3,+∞).(4分) (2) 证明:要证f (ab )>|a |f (b a),只要证|ab -1|>|b -a |,只需证(ab-1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0, 从而原不等式成立. (10分)22. 解:因为DA⊥平面ABC,∠CAB=90°,所以以A为坐标原点,建立如图所示的空间直角坐标系Axyz.因为AC=AD=1,AB=2,所以A(0,0,0),C(1,0,0),B(0,2,0),D(0,0,1).因为点E为线段BD的中点,所以E(0,1,1 2 ).(1) AE→=(0,1,12),BC→=(1,-2,0),所以cos〈AE→,BC→〉=AE→·BC→|AE→||BC→|=-254×5=-45,所以异面直线AE与BC所成角的余弦值为45.(5分)(2) 设平面ACE的法向量为n1=(x,y,z),因为AC→=(1,0,0),AE→=(0,1,12 ),所以n1·AC→=0,n1·AE→=0,即x=0且y+12z=0,取y=1,得x =0,z=-2,所以n1=(0,1,-2)是平面ACE的一个法向量.设平面BCE的法向量为n2=(x,y,z),因为BC→=(1,-2,0),BE→=(0,-1,12 ),所以n2·BC→=0,n2·BE→=0,即x-2y=0且-y+12z=0,取y=1,得x=2,z=2,所以n2=(2,1,2)是平面BCE的一个法向量.所以cos〈n1,n2〉=n1·n2|n1||n2|=-35×9=-55. (8分)所以二面角ACEB的余弦值为-55. (10分)23. 证明:(1) 当n=1时,a1=13∈(0,12),结论显然成立;假设当n=k(k≥1,k∈N*)时,a k∈(0,12 ),则当n=k+1时,a k+1=-2a2k+2a k=-2(a k-12)2+12∈(0,12).综上,a n∈(0,12).(4分)(2) 由(1)知,a n ∈(0,12),所以b n =12-a n ∈(0,12).因为a n +1=-2a 2n +2a n ,所以12-a n +1=12-(-2a 2n +2a n )=2a 2n -2a n +12=2(a n -12)2,即b n +1=2b 2n .于是log 2b n +1=2log 2b n +1, 所以(log 2b n +1+1)=2(log 2b n +1),故{log 2b n +1}构成以2为公比的等比数列,其首项为log 2b 1+1=log 216+1=log 213. 于是log 2b n +1=(log 213)·2n -1,从而log 2(2b n )=(log 213)·2n -1=log 2(13)2n -1,所以2b n =(13)2n -1,即b n =(13)2n -12,于是1b n =2·32n -1.(8分)因为当i =1,2时,2i -1=i ,当i ≥3时,2i -1=(1+1)i -1=C 0i -1+C 1i -1+…+C i -1i -1>C 0i -1+C 1i -1=i ,所以对∀i∈N*,有2i-1≥i,所以32i-1≥3i,所以1b i=2·32i-1≥2·3i,从而=1b1+1b2+…+1b n≥2(31+32+…+3n)=2×3(1-3n)1-3=3n+1-3.(10分)。
2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)
![2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)](https://img.taocdn.com/s3/m/77a6638fdaef5ef7ba0d3c74.png)
A NB(第7题)2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分. 1. 已知集合{}11A x x =-<<,{}102B =-,,,则A B = ▲ .2. 复数2i1iz =-(i 为虚数单位)的实部是 ▲ . 3. 甲、乙两人下棋,结果是一人获胜或下成和棋.已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为 ▲ .4. 某地区连续5天的最低气温(单位:°C )依次为8,-4,-1,0,2,则该组数据的方差为 ▲ .5. 根据如图所示的伪代码,当输出y 的值为12时,则输入的x 的值为 ▲ .6. 在平面直角坐标系xOy 中,圆224440x y x y +-++=被直线50x y --=所截得的弦长为 ▲ .7. 如图,三个相同的正方形相接,则tan ABC ∠的值为 ▲ .8. 如图,四棱锥P ABCD -的底面ABCD 是矩形,PA ⊥底面ABCD ,E 为PD 上一点,且2PE ED =.设三棱锥P ACE -的体积为1V ,三棱锥P ABC -的体积为2V ,则12:V V = ▲ .9. 已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 是FN 的中点,则FN 的长度为 ▲ .10.若函数()f x 为定义在R 上的奇函数,当0x >时,()ln f x x x =,则不等式()e f x <-的解集为 ▲ .11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图).现将99根相同的圆钢 捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为 ▲ .Read xIf x ≤0 Then y ←x 2+1 Elsey ←ln x End If Print y(第5题)( 第8题 )ACPEABCB 1C 1A 1MN (第16题)12.如图,在△ABC 中,点M 为边BC 的中点,且2AM =,点N 为线段AM 的中点,若74AB AC ⋅=,则NB NC ⋅的值为 ▲ . 13.已知正数x y ,满足11910x y x y +++=,则1x y+的最小值是 ▲ . 14.设等比数列{a n }满足:1cos n n n a a θθ=,其中π02n θ⎛⎫∈ ⎪⎝⎭,,*n ∈N .则 数列{}n θ的前2 018项之和是▲ . 二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)已知sin cos θθ+=,ππ44θ⎛⎫∈- ⎪⎝⎭,. (1)求θ的值;(2)设函数()22()sin sin f x x x θ=-+,x ∈R ,求函数()f x 的单调增区间.16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,已知M ,N 分别为线段1BB ,1A C 的中点,MN 与1AA 所成角的大小为90°,且1MA MC =.求证:(1)平面1A MC ⊥平面11A ACC ; (2)//MN 平面ABC .(第18题)17.(本小题满分14分某厂花费2万元设计了某款式的服装.根据经验,每生产1百套该款式服装的成本为1万元,每生产x (百套)的销售额(单位:万元)20.4 4.20.805()914.7 5.3x x x P x x x ⎧-+-<⎪=⎨->⎪-⎩≤,,, (1)该厂至少生产多少套此款式服装才可以不亏本?(2)试确定该厂生产多少套此款式服装可使利润最大,并求最大利润. (注:利润=销售额-成本,其中成本=设计费+生产成本)18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C :222210x y a b ab+=>>()的离心率为2,且过点1⎛⎝⎭.设P 为椭圆C 在第一象限上的点,A ,B 分别为椭圆C 的左顶点和 下顶点,且PA 交y 轴于点E ,PB 交x 轴于点(1)求a b ,的值;(2)若F 为椭圆C 的右焦点,求点E 的坐标; (3)求证:四边形ABFE 的面积为定值.19.(本小题满分16分)设数列{a n }的前n 项和为n S ,且满足:()()2*0n n n a S a p n p >=+∈∈N R ,,.(1)若29p =,求a 1的值;(2)若123a a a ,,成等差数列,求数列{a n }的通项公式.20.(本小题满分16分)已知函数()e (1)xf x a x =-+,其中e 为自然对数的底数,a ∈R . (1)讨论函数()f x 的单调性,并写出相应的单调区间;(2)已知0a >,b ∈R ,若()f x b ≥对任意x ∈R 都成立,求ab 的最大值; (3)设()(e)g x a x =+,若存在0x ∈R ,使得00()()f x g x =成立,求a 的取值范围.2019年高考模拟试卷(1)数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定..两题,并在相应的答题区域内作答................ A . [选修4—1:几何证明选讲](本小题满分10分)如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E , 交圆O 在A 点处的切线于点P .求证:△P AE ∽△BDE .B . [选修4-2:矩阵与变换](本小题满分10分)已知2143-⎡⎤=⎢⎥-⎣⎦M ,4131-⎡⎤=⎢⎥-⎣⎦N .求满足方程=MX N 的二阶矩阵X .C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l的参数方程为12x t y ⎧=⎪⎪⎨⎪=⎪⎩, (t 为参数),圆C的参数方程(第21—A 题)ABCDP(第22题)为2cos 22sin x a y θθ=+⎧⎨=+⎩,(θ为参数).设直线l 与圆C 相切,求正实数a 的值.D .[选修4-5:不等式选讲](本小题满分10分)设0x y z >,,,证明:222111x y z y z x x y z++++≥. 【必做题】第22题、第23题,每题10分,共计20分.请在答卷纸指定区域内........作答. 22.(本小题满分10分)如图,在四棱锥P ABCD -中,棱AB ,AD ,AP 两两垂直,且长度均为1,BC AD λ=(01λ<≤). (1)若1λ=,求直线PC 与平面PBD 所成角的正弦值; (2)若二面角B PC D --的大小为120°,求实数λ的值.23.(本小题满分10分)甲,乙两人进行抛硬币游戏,规定:每次抛币后,正面向上甲赢,否则乙赢.此时, 两人正在游戏,且知甲再赢m (常数m >1)次就获胜,而乙要再赢n (常数n >m ) 次才获胜,其中一人获胜游戏就结束.设再进行ξ次抛币,游戏结束. (1)若m 2=,n 3=,求概率()4P ξ=;(2)若2n m =+,求概率()P m k ξ=+(23k =,,…1m +,)的最大值(用m 表示).2019年高考模拟试卷(1)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.1.{}0 2. -1 3.0.5 4. 16 5.6.7. 17【解析】设最右边的正方形的右下角顶点为D ,则()11tan tan 123tan tan 1tan tan 117123BCD BAD ABC BCD BAD BCD BAD -∠-∠∠=∠-∠===+∠∠+⨯.8. 23【解析】因为2PE ED =,所以三棱锥E ACD -的体积是三棱锥P ACD -体积的13,所以三棱锥P ACE -的体积是P ACD -体积的23.因为三棱锥P ABC -与三棱锥P ACD -体积相等,所以12:V V =23.9. 6【解析】如图,过点M 作准线的垂线,垂足为T ,交y 轴于点P ,所以112MP OF ==,3MF MT ==,所以26FN MF ==.10. (,e)-∞-【解析】11()ln 1,(0,),(,),(e)e e ef x x f '=++∞=为减区间为增区间.由于()f x 是奇函数,结合函数图像得,不等式的解集是(,e)-∞-.11. 8【解析】设99根相同的圆钢捆扎成的尽可能大的1个正六边形垛的边长为n 根,则这个正六边形垛的层数是21n -,每一层的根数从上往下依次为: 12(2)(1)(2)21n n n n n n n n n n n n ++⋅⋅⋅+-+-+-⋅⋅⋅++,,,,,,,,,,,则圆钢的总根数为:()222(1)2(21)33 1.2n n n n n n +--⨯+-=-+由题意2331n n -+≤99即2993n n --≤0, 设函数299()3f x x x =--,则299()3f x x x =--在[)1+∞,上单调递增. 因为(6)0(7)0f f <>,,所以6n =.此时剩余的圆钢根数为299(36361)8-⨯-⨯+=.12. 54-【解析】由极化恒等式知,22AB AC AM BM ⋅=-,则2342BM AB AC =-⋅==,所以()222235124NB NC MN BM ⋅=-=-=-. 13. 2【解析】设1a x y =+,19b y x=+,则10a b +=.ABCB 1C 1A 1MN 因为ab =()1x y+⋅()1191091016y xy x xy +=+++≥(当且仅当19xy xy =时取“=”),所以()1016a a -≥,解得28a ≤≤,所以1x y +的最小值是2.14. 1009π6【解析】因为()π02n θ∈,,所以()(]πcos 2sin 126n n n n a θθθ=+=+∈,,所以等比数列{a n }的公比0q >.若1q >,由1a n 充分大,则2n a >,矛盾; 若01q <<,由1a n 充分大,则1n a <,矛盾, 所以1q =,从而1n a a =π12n θ=.则数列{}n θ的前2 018项之和是1009π6.二、解答题:本大题共6小题,共计90分.15.(本小题满分14分)解:(1)由sin cos θθ+=2(sin cos )1θθ+=-,即22sin 2sin cos cos 1θθθθ++=-sin 2θ=.因为()ππ44θ∈-,,所以()ππ222θ∈-,,所以π23θ=-,即π6θ=-. (2)由(1)知,()22π()sin sin 6f x x x =--,所以()()11π()1cos21cos 2223f x x x ⎡⎤=----⎢⎥⎣⎦()1πcos 2cos223x x ⎡⎤=--⎢⎥⎣⎦112cos222x x ⎫=-⎪⎭()1πsin 226x =-. 令πππ2π22π+262k x k --≤≤, 得ππππ+63k x k -≤≤,所以函数()f x 的单调增区间是ππππ+63k k ⎡⎤-⎢⎥⎣⎦,,Z k ∈. 16.(本小题满分14分证明:(1)因为MN 与1AA 所成角的大小为90°,所以MN ⊥1AA , 因为1MA MC =,且N 是A 1C 的中点,所以MN ⊥1A C . 又111AA AC A =,1AC ,1AA ⊂平面11A ACC ,故MN ⊥平面11A ACC ,因为MN ⊂平面1A MC ,所以平面1A MC ⊥平面11A ACC .(2)取AC 中点P ,连结NP ,BP .因为N 为A 1C 中点,P 为AC 中点,所以PN //AA 1,且PN 12=AA 1.在三棱柱111ABC A BC -中,BB 1 // AA 1,且BB 1=AA 1. 又M 为BB 1中点,故BM // AA 1,且BM 12=AA 1.所以PN // BM ,且PN =BM ,于是四边形PNMB 是平行四边形, 从而MN // BP .又MN ⊄平面ABC ,BP ⊂平面ABC ,故//MN 平面ABC . 17.(本小题满分14分解:(1)考虑05x <≤时,利润()()22()20.4 4.20.820.4 3.2 2.8y P x x x x x x x =-+=-+--+=-+-. 令20.4 3.2 2.80y x x =-+-≥得,17x ≤≤,从而15x ≤≤,即min 1x =. (2)当05x <≤时,由(1)知()220.4 3.2 2.80.44 3.6y x x x =-+-=--+, 所以当4x =时,max 3.6y =(万元).当5x >时,利润()()()99()214.729.7333y P x x x x x x =-+=--+=--+--.因为9363x x -+-≥(当且仅当933x x -=-即6x =时,取“=”), 所以max 3.7y =(万元). 综上,当6x =时,max 3.7y =(万元).答:(1)该厂至少生产1百套此款式服装才可以不亏本;(2)该厂生产6百套此款式服装时,利润最大,且最大利润为3.7万元. 18.(本小题满分16分)解:(1)依题意,221314a b +=,c a =222(0)c a b c =->, 解得2241a b ==,. 因为0a b >>,所以21a b ==,.(2)由(1)知,椭圆C 的右焦点为)0F,椭圆C 的方程为2214x y +=,① 所以()()2001A B --,,,.从而直线BF 1y =. ②由①②得,)17P ,.从而直线AP 的方程为:2)y x =+.令0x =,得7y =-E 的坐标为(07-,.(3)设()00P x y ,(0000x y >>,),且220014x y +=,即220044x y +=.则直线AP 的方程为:00(2)2y y x x =++,令0x =,得0022y y x =+. 直线BP 的方程为:0011y y x x ++=,令0y =,得001xx y =+. 所以四边形ABFE 的面积S =()()00002121212x y y x ++++00000022221212x y x y y x ++++=⋅⋅++ ()2200000000004222441222x y x y x y x y x y +++++=⋅+++00000000224422x y x y x y x y +++=+++ 2=. 19.(本小题满分16分)解:(1)因为29p =,所以()211129a S a ==+,即211540981a a -+=,解得119a =或49.(2)设等差数列123a a a ,,的公差为d . 因为()()2*n n S a p n p =+∈∈N R ,,所以()211a a p =+, ①()2122a a a p +=+, ②()21233a a a a p ++=+. ③ ②-①,得()()22221a a p a p =+-+,即()2122a d a a p =++, ④③-②,得()()22332a a p a p =+-+,即()3232a d a a p =++, ⑤ ⑤-④,得()()32231222a a d a a p a a p ⎡⎤-=++-++⎣⎦,即22d d =. 若0d =,则230a a ==,与0n a >矛盾,故12d =.代入④得()1111112222a a a p +=+++,于是14p =.因为()()2*14n n S a n =+∈N ,所以()21114n n S a ++=+, 所以()()221111144n n nn na S S a a +++=-=+-+,即()()221111044n n n a a a +++--+=,整理得()()22111044n na a +--+=,于是()()11102n n n na a a a +++--=.因为0n a >,所以1102n n a a +--=,即112n n a a +-=.因为()21114a a =+,所以114a =.所以数列{a n }是首项为14,公差为12的等差数列.因此,*1121(1)()424n n a n n -=+-=∈N .20.(本小题满分16分)解:(1)由()e (1)x f x a x =-+,知()e x f x a '=-.若0a ≤,则()0f x '>恒成立,所以()f x 在()-∞+∞,上单调递增; 若0a >,令()0f x '=,得ln x a =,当ln x a <时,()0f x '<,当ln x a >时,()0f x '>,所以()f x 在(ln )a -∞,上单调递减;在(ln )a +∞,上单调递增. (2)由(1)知,当0a >时,min ()(ln )ln f x f a a a ==-.因为()f x b ≥对任意x ∈R 都成立,所以ln b a a -≤, 所以2ln ab a a -≤. 设2()ln t a a a =-,(0a >),由21()(2ln )(2ln 1)t a a a a a a a '=-+⋅=-+,令()0t a '=,得12e a -=,当120e a -<<时,()0t a '>,所以()t a 在()120e-,上单调递增;当12e a ->时,()0t a '<,所以()t a 在()12e -∞,+上单调递减,所以()t a 在12e a -=处取最大值,且最大值为12e.所以21ln 2e ab a a -≤≤,当且仅当12e a -=,121e 2b -=时,ab 取得最大值为12e. (3)设()()()F x f x g x =-,即()e e 2x F x x ax a =--- 题设等价于函数()F x 有零点时的a 的取值范围.① 当0a ≥时,由(1)30F a =-≤,1(1)e e 0F a --=++>,所以()F x 有零点. ② 当e 02a -<≤时,若0x ≤,由e 20a +≥,得()e (e 2)0x F x a x a =-+->;若0x >,由(1)知,()(21)0F x a x =-+>,所以()F x 无零点. ③ 当e 2a <-时,(0)10F a =->,又存在010e 2a x a -=<+,00()1(e 2)0F x a x a <-+-=,所以()F x 有零点.综上,a 的取值范围是e 2a <-或0a ≥.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作..................答..若多做,则按作答的前两题评分. C . [选修4—1:几何证明选讲](本小题满分10分)证明:因为P A 是圆O 在点A 处的切线,所以∠P AB =∠ACB . 因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠P AE =∠P AB =∠ACB =∠BDE . 又∠PEA =∠BED ,故△P AE ∽△BDE . D . [选修4-2:矩阵与变换](本小题满分10分)21B.【解】设1 -⎡⎤=⎢⎥⎣⎦a c b d A ,因为12 -1 1 02 1 0 1-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦a cb d AA , 所以2a b 1,2c d 0,2a b 0,2c d 1,-=⎧⎪-=⎪⎨+=⎪⎪+=⎩解之得1a 41b 21c 41d 2⎧=⎪⎪=-⎪⎪⎨⎪=⎪⎪=⎪⎩ ,所以A -1=11 4411- 22⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦.所以12131111 16164444()111131- - 222288-⎡⎤⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A .C .[选修4-4:坐标系与参数方程](本小题满分10分)解:直线l的普通方程为3y =+,圆C 的参数方程化为普通方程为22()(2)4x a y -+-=.因为直线l 与圆C2=.解得a =a =0a >,所以a = D .[选修4-5:不等式选讲](本小题满分10分)证明:由柯西不等式,得()()2222111y x z x y z y z x ++++≥,即()()()2222111111y x z x y zx y z y z x ++++++≥,所以222111yx z x y z y z x++++≥.【必做题】第22题、第23题,每题10分,共计20分.22.(本小题满分10分)解:(1)以{}AB AD AP ,,为一组基底建立如图所示的空间直角坐标系A —xyz .因为1λ=,所以BC AD =. 依题意,()110C ,,,()001P ,,,()100B ,,,()010D ,,, 所以()111PC =-,,, ()101PB =-,,,()11PD =-0,,. 设平面PBD 的一个法向量为n ()x y z =,,,则00PB PD ⎧⋅=⎪⎨⋅=⎪⎩,,n n 所以00x z y z -=⎧⎨-=⎩,. 取1z =得,n ()111=,,.所以1 cos3PC PC PC ⋅〈〉===⋅,n n n .所以直线PC 与平面PBD 所成角的正弦值为13.(2)依题意,()10C λ,,,101PB ,,,11PCλ,,,011PD,,.设平面PBC 的一个法向量为1n ()111x y z ,,=,则1100PB PC ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即1111100x z x y z λ-=⎧⎨+-=⎩,,取11z =得,()1101=,,n . 设平面PCD 的一个法向量为2n ()222x y z ,,=,则2200PC PD ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即2222200x y z y z λ+-=⎧⎨-=⎩,,取21z =得,2n ()111λ=-,,.所以121212 cos⋅〈〉=⨯,n n n n n n 1 cos120 2==, 解得1λ=或5λ=,因为01λ<≤,所以1λ=. 23.(本小题满分10分)解:(1)依题意, ()()31343128P ξ==⨯⨯=.(2)依题意,()()()11111C C2m km m m k m k P m k ξ+-++-+-=+=+⋅(23k =,,…1m +,). 设()()()11111CC2m km m m k m k f k +-++-+-=+⋅()()()()()()1!1!121!!1!2!m km k m k m k m k ++-+-⎡⎤=+⋅⎢⎥-+-⎣⎦()()()()()1111!21!!m km m k k m k m k +++-=⋅⋅+-+则()()1f k f k +()()()()()()()()()()()1111!21!1!1111!21!!m k m k m m k k m k m k m m k k m k m k ++++++⋅⋅+++=++-⋅⋅+-+()()()()()()112111m k m m k k k m m k k ++++⎡⎤⎣⎦=+++-⎡⎤⎣⎦. 而()()()()()()1112111m k m m k k k m m k k ++++⎡⎤⎣⎦+++-⎡⎤⎣⎦≥ (*) ()()()32221220k m k m k m m m ⇔-++----≤ ()()2220k m k k m m ⇔--+--≤.(#) 因为2220k k m m -+--=的判别式()21420m m ∆=---<2704m m ⇔--<(显然在*1m m >∈N ,时恒成立),所以2220k k m m -+-->.又因为k m ≤,所以(#)恒成立,从而(*)成立. 所以()()11f k f k +≥,即()()1f k f k +≥(当且仅当k m =时,取“=”), 所以()f k 的最大值为()()()()21112211C C2m m m mmf m f m +-+=+=+⋅,即()P m k ξ=+的最大值为()()2111221C C2m m m mm+-++⋅.。
2019届江苏省徐州市(苏北三市(徐州、淮安、连云港))高三第一次质量检测数学试题(解析版)
![2019届江苏省徐州市(苏北三市(徐州、淮安、连云港))高三第一次质量检测数学试题(解析版)](https://img.taocdn.com/s3/m/a1d6e57df01dc281e53af039.png)
2019届江苏省徐州市(苏北三市(徐州、淮安、连云港))高三第一次质量检测数学试题一、填空题1.已知集合,,则_________.【答案】【解析】利用交集的概念及运算即可得到结果.【详解】解:取集合的公共部分即可,所以,故答案为:【点睛】本题考查集合的运算,意在考查学生对基本知识的掌握情况.2.已知复数(是虚数单位),则的模为_________.【答案】5【解析】利用复数乘方法则及模的运算得到结果.【详解】解:,模故答案为:5【点睛】本题考查复数代数形式的乘方法则,模的运算,属于基础题.3.已知一组样本数据5,4,,3,6的平均数为5,则该组数据的方差为_________.【答案】2【解析】利用平均数得到x值,进而计算得到该组数据的方差.【详解】解:平均数为:,解得:,方差故答案为:2【点睛】本题考查几个数据的平均数与方差,考查计算能力,属于基础题.4.运行如图所示的伪代码,则输出的结果为_________.【答案】21【解析】由已知中的程序代码可得:程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案【详解】解:第1步:;第2步:;第3步:;第4步:,退出循环,故答案为:21【点睛】本题考查的知识点是程序框图和语句,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.5.若从2,3,6三个数中任取一个数记为,再从剩余的两个数中任取一个数记为,则“是整数”的概率为____________.【答案】【解析】利用古典概型公式直接计算即可.【详解】解:取出数为,所以可能为:,,,,,,共6种,满足是整数的有:,,共2种,所以,所求概率为:P=故答案为:【点睛】(1)古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,他们是否是等可能的.(2)用列举法求古典概型,是一个形象、直观的好方法,但列举时必须按照某一顺序做到不重复、不遗漏.(3)注意一次性抽取与逐次抽取的区别:一次性抽取是无顺序的问题,逐次抽取是有顺序的问题.6.若抛物线的焦点与双曲线的右焦点重合,则实数的值为___________.【答案】4【解析】先求出双曲线的半焦距c,进而得到实数的值.【详解】解:双曲线中:,所以,抛物线的焦点为,,故答案为:4【点睛】本题考查待定系数法求抛物线方程,考查双曲线简单的几何性质,属于基础题.7.在等差数列中,若,,则的前6项和的值为___________.【答案】【解析】根据题意布列基本量的方程组,结合等差数列前n项和得到结果.【详解】解:依题意,得:,化简,得:,解得:,所以,=故答案为:【点睛】本题考查等差数列通项公式与前n项和公式,考查计算能力,属于基础题.8.已知正四棱锥的底面边长为,高为1,则该正四棱锥的侧面积为__________.【答案】【解析】由题意先确定侧面的斜高,进而得到正四棱锥的侧面积.【详解】解:正四棱锥的侧面三角形的高为:,所以,侧面积为:故答案为:【点睛】本题考查正棱锥侧面积的求法,考查空间想象力与计算能力.9.已知,函数为偶函数,且在上是减函数,则关于的不等式的解集为_________.【答案】【解析】由函数为偶函数可得,即结合单调性可知,数形结合即可得到结果.【详解】解:因为=为偶函数,所以,,,又因为在上是减函数,所以,,由二次函数图象可知:的解集为,的图象看成是的图象向右平移2个单位,得到,所以,的解集为故答案为:【点睛】本题考查二次函数的图像与性质,考查函数的奇偶性与单调性,考查函数与方程思想,数形结合思想.10.已知,,且,则的最大值为_________.【答案】【解析】由题意可得,利用均值不等式可得,解不等式即可得到的最大值.【详解】解析:化为,即,解得:,所以,的最大值为。
2019年江苏省高考数学模拟试卷含答案解析
![2019年江苏省高考数学模拟试卷含答案解析](https://img.taocdn.com/s3/m/3be2966dbcd126fff7050bb9.png)
2019年江苏省高考数学模拟试卷
一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡
相应的位置上.
1.已知U=R,集合A={x|﹣1<x<1},B={x|x2﹣2x<0},则A∩(?U B)=.
2.已知复数,则z的共轭复数的模为.
3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶
数的概率是.
4.运行如图所示的伪代码,其结果为.
5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为.
6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值
为.
7.若函数是偶函数,则实数a的值为.
8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为.
9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集
是.
10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为.
11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象
上存在区域D上的点,则a的取值范围是.
12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是.13.若函数同时满足以下两个条件:
第1页(共25页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏北三市2019届高三数学模拟考试卷(满分160分;考时120分钟) 2019.1参考公式:样本数据x 1,x 2,…,x n 的方差一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={0,1,2,3},B ={x |0<x ≤2},则A ∩B = W.2. 已知复数z =(2-i)2(i 是虚数单位),则z 的模为 W.3. 已知一组样本数据5,4,x ,3,6的平均数为5,则该组数据的方差为 W.4. 运行如图所示的伪代码,则输出的结果S 为 W. I ←1 While I <8 I ←I +2 S ←2I +3 End While Print S (第4题)5. 若从2,3,6三个数中任取一个数记为a ,再从剩余的两个数中任取一个数记为b ,则“ab 是整数”的概率为 W.6. 若抛物线y 2=2px (p >0)的焦点与双曲线x 2-y 23=1的右焦点重合,则实数p 的值为 W.7. 在等差数列{a n }中,若a 5=12,8a 6+2a 4=a 2,则{a n }的前6项和 S 6的值为 W. 8. 已知正四棱锥的底面边长为23,高为1,则该正四棱锥的侧面积为 W.9. 已知a ,b ∈R ,函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)上是减函数,则关于x 的不等式f (2-x )>0的解集为 W.10. 已知a >0,b >0,且a +3b =1b -1a ,则b 的最大值为 W.11. 将函数f (x )=sin 2x 的图象向右平移π6个单位长度得到函数g (x )的图象,则以函数f (x )与g (x )的图象的相邻三个交点为顶点的三角形的面积为 W.12. 在△ABC 中,AB =2,AC =3,∠BAC =60°,P 为△ABC 所在平面内一点,满足CP →=32PB →+2P A →,则CP →·AB →的值为 W.13. 在平面直角坐标系xOy 中,已知圆C 1:x 2+y 2+2mx -(4m +6)y -4=0(m ∈R )与以C 2(-2,3)为圆心的圆相交于A (x 1,y 1),B (x 2,y 2)两点,且满足x 21-x 22=y 22-y 21,则实数m 的值为 W.14. 已知x >0,y >0,z >0,且x +3y +z =6,则x 3+y 2+3z 的最小值为 W.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,sin A =23,A ∈(π2,π). (1) 求sin 2A 的值;(2) 若sin B =13,求cos C 的值.如图,在直三棱柱ABCA 1B 1C 1中,D ,E ,F 分别是B 1C 1,AB ,AA 1的中点. (1) 求证:EF ∥平面A 1BD ;(2) 若A 1B 1=A 1C 1,求证:平面A 1BD ⊥平面BB 1C 1C .17. (本小题满分14分)如图,某公园内有两条道路AB ,AP ,现计划在AP 上选择一点C ,新建道路BC ,并把△ABC 所在的区域改造成绿化区域.已知∠BAC =π6,AB =2 km.(1) 若绿化区域△ABC 的面积为1 km 2,求道路BC 的长度;(2) 若绿化区域△ABC 改造成本为10万元/km 2,新建道路BC 成本为10万元/km.设∠ABC =θ(0<θ≤2π3),当θ为何值时,该计划所需总费用最小?如图,在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,且右焦点到右准线l的距离为1.过x轴上一点M(m,0)(m为常数,且m∈(0,2))的直线与椭圆C交于A,B两点,与l交于点P,D是弦AB的中点,直线OD与l交于点Q.(1) 求椭圆C的标准方程;(2) 试判断以PQ为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.19. (本小题满分16分)已知函数f(x)=(x-a)ln x(a∈R).(1) 若a=1,求曲线y=f(x)在点(1,f(1))处的切线的方程;(2) 若对于任意的正数x,f(x)≥0恒成立,求实数a的值;(3) 若函数f(x)存在两个极值点,求实数a的取值范围.已知数列{a n }满足对任意的n ∈N *,都有a n (q n a n -1)+2q n a n a n +1=a n +1(1-q n a n +1),且a n +1+a n ≠0,其中a 1=2,q ≠0.记T n =a 1+qa 2+q 2a 3+…+q n -1a n .(1) 若q =1,求T 2 019的值;(2) 设数列{b n }满足b n =(1+q )T n -q n a n . ①求数列{b n }的通项公式;②若数列{c n }满足c 1=1,且当n ≥2时,c n =2b n -1-1,是否存在正整数k ,t ,使c 1,c k -c 1,c t-c k 成等比数列?若存在,求出所有k ,t 的值;若不存在,请说明理由.2019届高三模拟考试试卷数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换) 已知矩阵A =⎣⎢⎡⎦⎥⎤0123,B =⎣⎢⎡⎦⎥⎤2018,求A -1B .B. (选修44:坐标系与参数方程)在极坐标系中,曲线C:ρ=2cos θ.以极点为坐标原点,极轴为x轴非负半轴建立平面直角坐标系xOy,设过点A(3,0)的直线l与曲线C有且只有一个公共点,求直线l的斜率.C. (选修45:不等式选讲)已知函数f(x)=|x-1|.(1) 解不等式f(x-1)+f(x+3)≥6;(2) 若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(b a).【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在三棱锥DABC中,DA⊥平面ABC,∠CAB=90°,且AC=AD=1,AB=2,E为BD的中点.(1) 求异面直线AE与BC所成角的余弦值;(2) 求二面角ACEB的余弦值.23. 已知数列{a n }满足a 1=13,a n +1=-2a 2n +2a n ,n ∈N *. (1) 用数学归纳法证明:a n ∈(0,12);(2) 令b n =12-a n ,求证:2019届高三模拟考试试卷(五)(苏北三市)数学参考答案及评分标准1. {1,2}2. 53. 24. 215. 136. 47. 1528. 839. (0,4) 10. 13 11. 3π2 12. -1 13. -6 14.37415. 解:(1) 由sin A =23,A ∈(π2,π),则cos A =-1-sin 2A =-1-(23)2=-53,(2分)所以sin 2A =2sin A cos A =2×23×(-53)=-459.(6分)(2) 由A ∈(π2,π),则B 为锐角. 又sin B =13,所以cos B =1-sin 2B =1-(13)2=223,(8分)所以cos C =-cos (A +B )=-(cos A cos B -sin A sin B )(12分) =-(-53×223-23×13)=210+29.(14分) 16. 证明:(1) 因为E ,F 分别是AB ,AA 1的中点,所以EF ∥A 1B .(3分) 因为EF ⊄平面A 1BD ,A 1B ⊂平面A 1BD , 所以EF ∥平面A 1BD .(6分)(2) 在直三棱柱ABCA 1B 1C 1中,BB 1⊥平面A 1B 1C 1.因为A 1D ⊂平面A 1B 1C 1,所以BB 1⊥A 1D . (8分) 因为A 1B 1=A 1C 1,且D 是B 1C 1的中点, 所以A 1D ⊥B 1C 1.(10分)因为BB 1∩B 1C 1=B 1,B 1C 1,BB 1⊂平面BB 1C 1C , 所以A 1D ⊥平面BB 1C 1C .(12分) 因为A 1D ⊂平面A 1BD ,所以平面A 1BD ⊥平面BB 1C 1C . (14分)17. 解:(1) 在△ABC 中,已知∠BAC =π6,AB =2 km ,所以△ABC 的面积S =12×AB ×AC ×sin π6=1,解得AC =2.(2分) 在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2×AB ×AC ×cos π6 =22+22-2×2×2×cos π6=8-43,(4分) 所以BC =8-43=6-2(km).(5分)(2) 由∠ABC =θ,则∠ACB =π-(θ+π6), 0<θ≤2π3.在△ABC 中,∠BAC =π6,AB =2 km ,由正弦定理得AC sin B =BC sin A =ABsin C , 所以BC =1sin (θ+π6),AC =2sin θsin (θ+π6).(7分)记该计划所需费用为F (θ),则F (θ)=12×2sin θsin (θ+π6)×2×12×10+1sin (θ+π6)×10=10(sin θ+1)sin (θ+π6)(0<θ≤2π3).(10分)令f (θ)=sin θ+132sin θ+12cos θ,则f ′(θ)=sin (θ-π3)+12(32sin θ+12cos θ)2.(11分)由f ′(θ)=0,得θ=π6.所以当θ∈(0,π6)时,f ′(θ)<0,f (θ)单调递减; 当θ∈(π6,2π3)时,f ′(θ)>0,f (θ)单调递增.(12分) 所以当θ=π6时,该计划所需费用最小. 答:当θ=π6时,该计划所需总费用最小.(14分)18. 解:(1) 设椭圆的右焦点为(c ,0),由题意,得⎩⎪⎨⎪⎧c a =22,a 2c -c =1,解得⎩⎨⎧a =2,c =1,所以a 2=2,b 2=1,所以椭圆C 的标准方程为x 22+y 2=1.(4分)(2) 由题意,当直线AB 的斜率不存在或为零时显然不符合题意. 设AB 的斜率为k ,则直线AB 的方程为y =k (x -m ). 又准线方程为x =2,所以点P 的坐标为P (2,k (2-m )).(6分)由⎩⎨⎧y =k (x -m ),x 2+2y 2=2,得x 2+2k 2(x -m )2=2, 即(1+2k 2)x 2-4k 2mx +2k 2m 2-2=0,所以x D =12·4k 2m 2k 2+1=2k 2m 2k 2+1,y D =k (2k 2m 2k 2+1-m )=-km2k 2+1,(8分)所以k OD =-12k ,从而直线OD 的方程为y =-12k x ,所以点Q 的坐标为Q (2,-1k ),(10分)所以以PQ 为直径的圆的方程为(x -2)2+[y -k (2-m )](y +1k )=0, 即x 2-4x +2+m +y 2-[k (2-m )-1k ]y =0.(14分)因为该式对∀k ≠0恒成立,所以⎩⎨⎧y =0,x 2-4x +2+m +y 2=0,解得⎩⎨⎧x =2±2-m ,y =0.所以以PQ 为直径的圆经过定点(2±2-m ,0).(16分)19. 解:(1) 因为f (x )=(x -a )ln x (a ∈R ),所以当a =1时,f (x )=(x -1)ln x , 则f ′(x )=ln x +1-1x .(1分)当x =1时,f (1)=0,f ′(1)=0,所以曲线f (x )在点(1,f (1))处的切线的方程为y =0.(3分) (2) 因为对于任意的正数x ,f (x )≥0恒成立, 所以当ln x =0,即x =1时,f (x )=0,a ∈R ;(5分) 当ln x >0,即x >1时,x ≥a 恒成立,所以a ≤1; (6分) 当ln x <0,即x <1时,x ≤a 恒成立,所以a ≥1.综上可知,对于任意的正数x ,f (x )≥0恒成立,a =1. (7分) (3) 因为函数f (x )存在两个极值点,所以f ′(x )=ln x -ax +1存在两个不相等的零点. 设g (x )=ln x -a x +1,则g ′(x )=1x +a x 2=x +ax 2.(8分)当a ≥0时,g ′(x )>0,所以g (x )单调递增,至多一个零点.(9分) 当a <0时,x ∈(0,-a )时,g ′(x )<0,g (x )单调递减,x ∈(-a ,+∞)时,g ′(x )>0,g (x )单调递增,所以x =-a 时,g (x )min =g (-a )=ln(-a )+2. (11分)因为g (x )存在两个不相等的零点,所以ln(-a )+2<0,解得-e -2<a <0.因为-e -2<a <0,所以-1a >e 2>-a .因为g (-1a )=ln(-1a )+a 2+1>0,所以g (x )在(-a ,+∞)上存在一个零点.(13分)因为-e -2<a <0,所以a 2<-a .又g (a 2)=ln a 2-1a +1=2ln(-a )+1-a+1, 设t =-a ,则y =2ln t +1t +1(0<t <1e 2). 因为y ′=2t -1t 2<0,所以y =2ln t +1t +1(0<t <1e 2)单调递减.又函数图象是连续的, 所以y >2ln 1e 2+e 2+1=e 2-3>0,所以g (a 2)=ln a 2-1a +1>0,所以在(0,-a )上存在一个零点.综上可知,-e -2<a <0.(16分)20. 解:(1) 当q =1时,由a n (q n a n -1)+2q n a n a n +1=a n +1(1-q n a n +1),得(a n +1+a n )2=a n +1+a n .又a n +1+a n ≠0,所以a n +1+a n =1.(2分)又a 1=2,所以T 2 019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 018+a 2 019)=1 011.(4分)(2) ① 由a n (q n a n -1)+2q n a n a n +1=a n +1(1-q n a n +1),得q n (a n +1+a n )2=a n +1+a n .又a n +1+a n ≠0,所以a n +1+a n =1q n .(6分)因为T n =a 1+qa 2+q 2a 3+…+q n -1a n ,所以qT n =qa 1+q 2a 2+q 3a 3+…+q n a n ,所以(1+q )T n =a 1+q (a 1+a 2)+q 2(a 2+a 3)+q 3(a 3+a 4)+…+q n -1(a n -1+a n )+q n a n , b n =(1+q )T n -q n a n =a 1+1+1+…+1+q n a n -q n a n =a 1+n -1=n +1, 所以b n =n +1.(10分)②由题意,得c n =2b n -1-1=2n -1,n ≥2.因为c 1,c k -c 1,c t -c k 成等比数列,所以(c k -c 1)2=c 1(c t -c k ),即(2k -2)2=2t -2k , (12分)所以2t =(2k )2-3·2k +4,即2t -2=(2k -1)2-3·2k -2+1 (*).由于c k -c 1≠0,所以k ≠1,即k ≥2.当k =2时,2t =8,得t =3.(14分)当k ≥3时,由(*)得(2k -1)2-3·2k -2+1为奇数, 所以t -2=0,即t =2,代入(*)得22k -2-3·2k -2=0,即2k =3,此时k 无正整数解. 综上,k =2,t =3.(16分)2019届高三模拟考试试卷(五)(苏北三市)数学附加题参考答案及评分标准21. A. 解:由题意得A -1=⎣⎢⎢⎡⎦⎥⎥⎤-3212 10,(5分) 所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-3212 10⎣⎢⎡⎦⎥⎤2018=⎣⎢⎢⎡⎦⎥⎥⎤-524 20.(10分) B. 解:曲线C :ρ=2cos θ的直角坐标方程为(x -1)2+y 2=1.(4分)设过点A (3, 0)的直线l 的直角坐标方程为x =my +3,因为直线l 与曲线C 有且只有一个公共点,所以|1-3|1+m 2=1,解得m =±3.(8分)从而直线l 的斜率为±33.(10分)C. (1) 解:不等式的解集是(-∞,-3]∪[3,+∞).(4分)(2) 证明:要证f (ab )>|a |f (b a),只要证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2. 而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. (10分)22. 解:因为DA ⊥平面ABC ,∠CAB =90°,所以以A 为坐标原点,建立如图所示的空间直角坐标系Axyz .因为AC =AD =1,AB =2,所以A (0,0,0),C (1,0,0),B (0,2,0),D (0,0,1).因为点E 为线段BD 的中点,所以E (0,1,12). (1) AE →=(0,1,12),BC →=(1,-2,0),所以cos 〈AE →,BC →〉=AE →·BC →|AE →||BC →|=-254×5=-45, 所以异面直线AE 与BC 所成角的余弦值为45.(5分)(2) 设平面ACE 的法向量为n 1=(x ,y ,z ),因为AC →=(1,0,0),AE →=(0,1,12),所以n 1·AC →=0,n 1·AE →=0,即x =0且y +12z =0,取y =1,得x =0,z =-2,所以n 1=(0,1,-2)是平面ACE 的一个法向量.设平面BCE 的法向量为n 2=(x ,y ,z ),因为BC →=(1,-2,0),BE →=(0,-1,12),所以n 2·BC →=0,n 2·BE →=0,即x -2y =0且-y +12z =0,取y =1,得x =2,z =2,所以n 2=(2,1,2)是平面BCE 的一个法向量.所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-35×9=-55. (8分) 所以二面角ACEB 的余弦值为-55. (10分) 23. 证明:(1) 当n =1时,a 1=13∈(0,12),结论显然成立;假设当n =k (k ≥1,k ∈N *)时,a k ∈(0,12),则当n =k +1时,a k +1=-2a 2k +2a k =-2(a k -12)2+12∈(0,12). 综上,a n ∈(0,12).(4分)(2) 由(1)知,a n ∈(0,12),所以b n =12-a n ∈(0,12).因为a n +1=-2a 2n +2a n ,所以12-a n +1=12-(-2a 2n +2a n )=2a 2n -2a n +12=2(a n -12)2,即b n +1=2b 2n . 于是log 2b n +1=2log 2b n +1,所以(log 2b n +1+1)=2(log 2b n +1),故{log 2b n +1}构成以2为公比的等比数列,其首项为log 2b 1+1=log 216+1=log 213. 于是log 2b n +1=(log 213)·2n -1,从而log 2(2b n )=(log 213)·2n -1=log 2(13)2n -1, 所以2b n =(13)2n -1,即b n =(13)2n -12,于是1b n=2·32n -1.(8分)因为当i=1,2时,2i-1=i,当i≥3时,2i-1=(1+1)i-1=C0i-1+C1i-1+…+C i-1i-1>C0i-1+C1i-1=i,所以对∀i∈N*,有2i-1≥i,所以32i-1≥3i,所以1b i=2·32i-1≥2·3i,从而=1b1+1b2+…+1b n≥2(31+32+…+3n)=2×3(1-3n)1-3=3n+1-3.(10分)。