一次函数图像与性质测试题
北师大版八年级上册一次函数之图像测试题(含答案与详细解析)
当 k< 0 b>0 时,一次函数 y=kx+b 的图象经过一、二、四象限. 所以一次函数 y=kx+b 的图象必经过的公共象限有 2个,即第一、四象限 .
故答案是: 2,一、四. 本题主要考查一次函数图象在坐标平面内的位置与
k、 b的关系.解答本
题注意理解:直线 y=kx+b 所在的位置与 k、 b的符号有直接的关系. k>
28.当 k 为何值时,函数 y= ( k 2+2k )
是正比例函数?
29.已知:
是一次函数,求 m的值.
30.如图,在 Rt△ ABC 中,∠ ACB=90°, AC=BC=10 , CD 是射线,∠ BCF=60°,点 D在 AB 上, AF 、 BE分别 垂直于 CD (或延长线)于 F、E,求 EF的长.
2
18.已知一次函数 y=( k﹣ 2) x﹣ 3k +12 .
(1) k为何值时,图象经过原点;
( 2) k为何值时,图象与直线 y=﹣ 2x+9 的交点在 y轴上;
(3) k为何值时,图象平行于 y=﹣ 2x的图象; ( 4) k为何值时, y随 x增大而减小.
19.如图,直线 y=x+b ( b> 0)与 x轴负半轴、 y轴正半轴分别交于 A 、 B两点,正比例函数 y=kx ( k<0)的图 象与直线 AB 交于点 Q,过 A 、 B两点分别作 AM ⊥ OQ 于 M ,BN ⊥ OQ 于 N,若 AM=10 , BN=3 ,
> 0时,直线必经过一、三象限. k< 0时,直线必经过二、四象限. b
> 0时,直线与 y轴正半轴相交. b=0 时,直线过原点; b< 0时,直线与
y轴负半轴相交.
7.已知一次函数 y=( m﹣ 2) x+3﹣ m的图象经过第一、二、四象限,化简
初中数学一轮复习-一次函数的图像与性质
3月17号 一次函数的图象与性质(本试题满分120分,建议测试时间60分钟)一.选择题(共10小题,每题3分,满分30分)1.(2015·上海)下列y 关于x 的函数中,是正比例函数的为( ) A .y =x 2 B .y =2x C .y =2x D .y =12x + 2.(2018·玉林市)等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数 3.(2016·黔南州)是关于x 的一次函数,则一元二次方程的根的情况为( ) A .没有实数根B .有一个实数根C .有两个不相等的实数根D .有两个相等的实数根 4.(2019·辽阳市)若0ab <且a b >,则函数y ax b =+的图象可能是( ) A . B .C .D .5.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 6.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限 7.若点(m ,n )在函数y=2x+1的图象上,则2m ﹣n 的值是( )A .2B .﹣2C .1D .﹣1 8.若点M(-7,m)、N(-8,n)都是函数y =-(k 2+2k +4)x +1(k 为常数)的图象上,则m 和n 的大小关系是( )A .m >nB .m <nC .m =nD .不能确定9.若点A (2,4)在函数y =kx ﹣2的图象上,则下列各点在此函数图象上的是( ) A .(1,1) B .(﹣1,1) C .(﹣2,﹣2) D .(2,﹣2) 10.(2019鄂州市中考)如图,在平面直角坐标系中,点1A 、2A 、3A …n A 在x 轴上,1B 、2B 、3B …n B 在直线3y x =上,若()11,0A ,且112A B A ∆、223A B A ∆…1n n n A B A +∆都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为1S 、2S 、3S …n S .则n S 可表示为( )A .223B .223n -C .223n -D .223n -二.填空题(共10小题,每题3分,满分30分)11.若()(),,0,42,7,10()A B C a -三点在同一直线上,则a = ___________.12.在平面直角坐标系中,把直线y=-2x+3沿y 轴向上平移两个单位后,得到的直线的函数关系式为_____.13.已知正比例函数y 2x =-与反比例函数k y x=的图象的一个交点坐标为(-1,2),则另一个交点的坐标为 .14.已知一次函数y=kx+b (k 、b 为常数且k≠0)的图象经过点A (0,﹣2)和点B (1,0),则k= ,b= .15.已知点P (a ,b )在一次函数y=4x+3的图象上,则代数式4a ﹣b ﹣2的值等于 . 16.已知关于x 的方程mx+3=4的解为x=1,则直线y=(m ﹣2)x ﹣3一定不经过第___象限.17.将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为____.18.如图,一次函数y=kx+b 的图象与正比例函数y=2x 的图象平行,且经过点A (1,﹣2),则kb=__.19.点,是直线上的两点,则 0(填“>”或“<”). 20.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…按如图所示放置,点A 1、A 2、A 3…在直线y=x+1上,点C 1、C 2、C 3…在x 轴上,则An 的坐标是________________.三.解答题(共6小题,满分60分)21.已知:一次函数(0)y kx b k =+≠的图象经过(0,2),(1,3)M N 两点.求该一次函数表达式.22.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上,请解答下列问题:(1)①作出△ABC 向左平移4个单位长度后得到的△A 1B 1C 1, 并写出点C 1的坐标;②作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(2)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l的函数解析式.23.(2016·江西)如图,过点A(2,0)的两条直线1l,2l分别交y轴于B,C,其中点B 在原点上方,点C在原点下方,已知AB=13.(1)求点B的坐标;(2)若△ABC的面积为4,求2l的解析式.24.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?25.(2019·上海)在平面直角坐标系xoy中(如图),已知一次函数的图像平行于直线12y x ,且经过点A(2,3),与x轴交于点B。
中考数学复习《一次函数》经典题型及测试题(含答案)
中考数学复习《一次函数》经典题型及测试题(含答案)命题点分类集训命题点1 一次函数的图象与性质【命题规律】1.考查内容:①一次函数所在象限;②一次函数(含正比例函数)解析式的确定;③一次函数的增减性与其系数之间的关系;④一次函数与方程(组)的关系;⑤一次函数与不等式的关系;⑥一次函数图象平移;⑦一次函数与几何图形结合.2.三大题型均有考查,但解答题的设题一般多与反比例函数结合(试题详见反比例函数).【命题预测】一次函数的图象与性质是命题的焦点与趋势,值得关注. 1. 一次函数y =-2x +3的图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 1. C2.在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( ) A. M (2,-3),N (-4,6) B. M (-2,3),N (4,6) C. M (-2,-3),N (4,-6) D. M (2,3),N (-4,6) 2. A3.若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的图象可能是( )3. B4.如图,直线y =ax +b 过点A (0,2)和点B (-3,0),则方程ax +b =0的解是( ) A. x =2 B. x =0 C. x =-1 D. x =-34. D 【解析】方程ax +b =0的解就是一元一次函数y =ax +b 的图象与x 轴交点的横坐标,即x =-3.5.设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A.2a +3b =0B.2a -3b =0C.3a -2b =0D.3a +2b =05. D 【解析】把点A (a ,b )代入y =-32x ,得b =-32a ,即2b =-3a ,∴3a +2b =0.6.关于直线l :y =kx +k (k ≠0),下列说法不正确...的是( ) A. 点(0,k )在l 上 B. l 经过定点(-1,0)C. 当k >0,y 随x 的增大而增大D. l 经过第一、二、三象限6. D 【解析】逐项分析如下:选项 逐项分析正误 A点(0,k )在直线l 上,是直线与y 轴的交点√B 当x =-1时,函数值y =-k +k =0,所以直线l 经过定点(-1,0)√ C当k >0时,y 随x 的增大而增大√D直线l 经过第一、二、三象限仅仅当k 是正数时成立,当k 是负数时,函数图象经过二、三、四象限×7.一次函数y =43x -b 与y =43x -1的图象之间的距离等于3,则b 的值为( )A. -2或4B. 2或-4C. 4或-6D. -4或67. D 【解析】∵直线y =43x -1 与x 轴的交点A 的坐标为(34 ,0),与y 轴的交点C 的坐标为(0,-1),∴OA =34,OC =1,直线y =43x -b 与直线y =43x -1的距离为3,可分为两种情况:(1)如解图①,点B 的坐标为(0,-b ),则OB =-b ,BC =-b +1,易证△OAC ∽△DBC ,则OA DB =ACBC ,即343=12+(34)2-b +1,解得b =-4;(2)如解图②,点F 的坐标为(0,-b ),则CF =b -1,易证△OAC ∽△ECF ,则OA EC =ACCF ,即343=12+(34)2b -1,解得b =6,故b =-4或6.8.将直线y =2x +1向下平移3个单位长度后所得直线的解析式是____________.8. y =2x -2 【解析】根据直线的平移规律:上加下减,可得到平移后的解析式为y =2x +1-3=2x -2. 9.若函数y =(m -1)x |m |是正比例函数,则该函数的图象经过第________象限. 9. 二、四 【解析】∵函数y =(m -1)x |m|是正比例函数,则⎩⎪⎨⎪⎧|m|=1m -1≠0,∴m =-1.则这个正比例函数为y =-2x ,其图象经过第二、四象限.10.若一次函数y =-2x +b (b 为常数)的图象经过第二、三、四象限,则b 的值可以是________(写出一个即可).10. -1(答案不唯一,满足b <0即可) 【解析】∵一次函数y =-2x +b 的图象经过第二、三、四象限,∴b <0,故b 的值可以是-1.11.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.11. -1 【解析】∵一次函数图象与y 轴的交点在y 轴的正半轴上,∴2k +3>0,∴k>-1.5;又∵函数值y 随x 的增大而减小,∴k<0,则-1.5<k<0,∵k 取整数,∴k =-1.12.如图,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB =13. (1)求点B 的坐标;(2)若△ABC 的面积为4,求直线l 2的解析式. 12. 解:(1)∵点A 的坐标为(2,0),∴AO =2.在Rt △AOB 中,OA 2+OB 2=AB 2,即22+OB 2=(13)2, ∴OB =3, ∴B(0,3).(2)∵S △ABC =12BC·OA ,即4=12BC ×2,∴BC =4,∴OC =BC -OB =4-3=1, ∴C(0,-1).设直线l 2的解析式为y =kx +b(k ≠0), ∵直线l 2经过点A(2,0),C(0,-1),∴⎩⎪⎨⎪⎧0=2k +b -1=b, 解得⎩⎪⎨⎪⎧k =12b =-1.∴直线l 2的解析式为y =12x -1.命题点2 一次函数的实际应用【命题规律】1.考查内容:①结合一次函数图象分析实际问题;②结合表格考查一次函数的实际应用;③以阶梯费用问题为背景,考查分段函数;④根据文字中的变量列一次函数解决实际问题;⑤与方程不等式综合的一次函数实际问题.2.主要以解答题形式出题,设问以两问为主.【命题预测】一次函数的实际应用是全国命题趋势之一,一次函数图象分析题和一次函数与方程综合题是重点.13.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.13. 120 【解析】从函数图象可知,小茜是正比例函数图象,小静是分段函数图象,小静第二段函数图象与小茜的函数图象的交点的横坐标便是她们第一次相遇的时间.可求出小茜的函数解析式为S =4t ,设小静第二段函数图象的解析式为S =kt +b ,把(60,360)和(150,540)代入得⎩⎪⎨⎪⎧60k +b =360150k +b =540,解得⎩⎪⎨⎪⎧k =2b =240,∴此段函数解析式为S =2t +240,解方程组⎩⎪⎨⎪⎧S =2t +240S =4t ,得⎩⎪⎨⎪⎧t =120S =480,故她们第一次相遇时间为起跑后第120秒.14.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回.如图,是小明昨天出行的过程中,他距西安的距离y (千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB 所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家? 确定14. (1)【思路分析】利用待定系数法可求出函数解析式,再根据图象出自变量的取值范围.解:设线段AB 所表示的函数关系式为y =kx +b(k ≠0),则根据题意,得⎩⎪⎨⎪⎧b =1922k +b =0,解得⎩⎪⎨⎪⎧k =-96b =192, ∴线段AB 所表示的函数关系式为y =-96x +192(0≤x ≤2).(2)【思路分析】利用待定系数法求出线段CD 的解析式,令y =192,解方程即可求出小明到家的时间.解:由题意可知,下午3点时,x =8,y =112.设线段CD 所表示的函数关系式为y =k′x +b′(k′≠0),则根据题意,得⎩⎪⎨⎪⎧8k′+b′=1126.6k′+b′=0,解得⎩⎪⎨⎪⎧k′=80b′=-528.∴线段CD 的函数关系式为y =80x -528.∴当y =192时,80x -528=192,解得x =9. ∴他当天下午4点到家.15.根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8∶00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11∶30全部排完,游泳池内的水量Q (m 3)和开始排水后的时间t (h)之间的函数图象如图所示,根据图象解答下列问题: (1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数表达式.15. 解:(1)暂停排水时间为30分钟(半小时);排水孔的排水速度为900÷(3.5-0.5)=300 (m 3/h ).(2)由图可知排水 1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 (m 3),设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b(k ≠0),把(2,450),(3.5,0)代入得⎩⎨⎧450=2k +b ,0=3.5k +b ,解得⎩⎪⎨⎪⎧b =1050k =-300.∴函数表达式为Q =-300t +1050.16.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如下表所示(教师按成人票价购买,学生按学生票价购买):若师生均购买二等座票,则共需1020元.(1)参加活动的教师有________人,学生有________人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x 人,购买一、二等座票全部费用为y 元. ①求y 关于x 的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?16. 解:(1)10,50;【解法提示】设有教师x 人,则有学生(60-x)人, 由题意列方程得: 22x +16(60-x)=1020, 解得x =10, ∴60-x =50(人),∴有教师10人,学生50人. (2)①由题意知:y =26x +22(10-x)+50×16 =26x +220-22x +800 =4x +1020; ②由题意得: 4x +1020≤1032, 解得x ≤3,∴提早前往的教师最多只能3人.中考冲刺集训一、选择题1.已知一次函数y =kx +5和y =k ′x +7,假设k >0且k ′<0,则这两个一次函数图象的交点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限1. A 【解析】根据题意画出两个函数的图象,大致图象如解图所示,∴这两个一次函数图象的交点在第一象限.2.若k ≠0,b <0,则y =kx +b 的图象可能是( )2. B3.已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A. k >1,b <0B. k >1,b >0C. k >0,b >0D. k >0,b <03. A 【解析】原解析式可变形为y =(k -1)x +b ,∵函数值y 随自变量x 的增大而增大,∴k -1>0,∴k >1,∵图象与x 轴正半轴相交,∴b <0,即k >1,b <0.4.如图,一直线与两坐标轴的正半轴分别交于A 、B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( ) A. y =x +5 B. y =x +10 C. y =-x +5 D. y =-x +104. C 【解析】设P (x ,y ),则由题意得2(x +y )=10,∴x +y =5,∴过点P 的直线函数表达式为y =-x +5,故选C.5.若式子k -1+(k -1)0有意义,则一次函数y =(1-k )x +k -1的图象可能是( )5. C 【解析】式子k -1+(k -1)0有意义,则k >1,∴1-k <0,k -1>0,∴一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.结合图象,故选C.6.在坐标平面上,某个一次函数的图象经过(5,0)、(10,-10)两点,则此函数图象还会经过下列哪点( ) A. (17,947) B. (18,958) C. (19,979) D. (110,9910)6. C 【解析】设该一次函数的解析式为y =kx +b (k ≠0),将点(5,0)、(10,-10)代入到y =kx +b 中得,⎩⎪⎨⎪⎧0=5k +b -10=10k +b ,解得⎩⎪⎨⎪⎧k =-2b =10,∴该一次函数的解析式为y =-2x +10.A.y =-2×17+10=957≠947,该点不在直线上;B.y =-2×18+10=934≠958,该点不在直线上;C.y =-2×19+10=979,该点在直线上;D.y =-2×110+10=945≠9910,该点不在直线上.二、填空题7.将正比例函数y =2x 的图象向上平移3个单位,所得的直线不经过第________象限.7. 四 【解析】根据平移规律“上加下减,左加右减”,将直线y =2x 向上平移3个单位,得到的直线解析式为y =2x +3,因为2>0,3>0,所以图象过第一、第二和第三象限,故不经过第四象限. 8.已知二元一次方程组⎩⎪⎨⎪⎧x -y =-5x +2y =-2的解为⎩⎪⎨⎪⎧x =-4y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为________.8. (-4,1) 【解析】二元一次方程x -y =-5对应一次函数y =x +5,即直线l 1;二元一次方程x +2y =-2对应一次函数y =-12x -1,即直线l 2.∴原方程组的解即是直线l 1与l 2的交点坐标,∴交点坐标为(-4,1).9.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是________. 9. x >3 【解析】由题可知,当x =3时,x +b =kx +6,在点P 左边即x <3时,x +b <kx +6,在点P 右边即x >3时,x +b >kx +6,故答案为x >3.10.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当C 点落在直线y =2x -6上时,线段BC 扫过的区域面积为________.10. 16 【解析】平移后如解图所示.∵点A 、B 的坐标分别为(1,0)、(4,0),∴AB =3,∵∠CAB =90°,BC =5,∴AC =4,∴A ′C ′=4,∵点C′在直线y =2x -6上,∴2x -6=4,解得x =5,即OA′=5,∴CC ′=5-1=4,∴S ▱BCC ′B ′=4×4=16,即线段BC 扫过的面积为16. 三、解答题11.为保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨.若从甲、乙两仓库运送物资到港口的费用(元/吨)如下表所示.(1)设从甲仓库运送到A 港口的物资为x 吨,求总费用y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明总费用最低时的调配方案.港口 费用(元/吨)甲库 乙库 A 港 14 20 B 港10811. 解:(1)∵从甲仓库运往A 港口的物资为x 吨, ∴从甲仓库运往B 港口的物资为(80-x)吨, ∴从乙仓库运往A 港口的物资为(100-x)吨,∴乙仓库运往B 港口的物资为70-(100-x)=(x -30)吨, ∴y =14x +10(80-x)+20(100-x)+8(x -30) =-8x +2560,∵80-x ≥0,x -30≥0,100-x ≥0∴30≤x ≤80.(2)由(1)知,y =-8x +2560, ∵k =-8<0,∴y 随x 的增大而减小,∴当x =80时,y 最小,最小值为1920元.此时的调配方案是,将甲仓库所有物资运往A 港口,乙仓库的20吨货物运往A 港口,50吨货物运往B 港口.12.某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运.如图,线段OG 表示A 种机器人的搬运量y A (千克)与时间x (时)的函数图象,线段EF 表示B 种机器人的搬运量y B (千克)与时间x (时)的函数图象.根据图象提供的信息,解答下列问题: (1)求y B 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时,那么B 种机器人比A 种机器人多搬运了多少千克?12. 解:(1)设y B 关于x 的解析式为y B =k 1x +b(k 1≠0),把E(1,0)和P(3,180)代入y B =k 1x +b 中,得:⎩⎪⎨⎪⎧k 1+b =03k 1+b =180, 解得⎩⎪⎨⎪⎧k 1=90b =-90,∴y B 关于x 的解析式为y B =90x -90.(2)设y A 关于x 的解析式为y A =k 2x(k 2≠0),由题意得: 180=3k 2,即k 2=60, ∴y A =60x ,当x =5时,y A =5×60=300(千克), 当x =6时,y B =90×6-90=450(千克)450-300=150(千克).答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克.13.下图中的折线ABC 表示某汽车的耗油量y (单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x ≤120).已知线段BC 表示的函数关系中,该汽车的速度每增加1 km/h ,耗油量增加0.002 L/km. (1)当速度为50 km/h 、100 km/h 时,该汽车的耗油量分别为________L/km 、________L/km ; (2)求线段AB 所表示的y 与x 之间的函数表达式; (3)速度是多少时,该汽车的耗油量最低?最低是多少?13. 解:(1)0.13,0.14.【解法提示】x 轴表示速度,从30到60之间为40,50,对应的y 轴汽车耗油的量由0.15到0.12,列表如下:速度(km /h ) 30 40 50 60 耗油量(L /km )0.150.140.130.12∴当速度为50 km /h 时,该汽车耗油量为0.13 L /km ,当速度为100 km /h 时,该汽车耗油量为 0.12+0.002×(100-90)=0.14 L /km .(2)设线段AB 所表示的y 与x 之间的函数表达式为y =kx +b(k ≠0), ∵y =kx +b 的图象过点(30,0.15)与(60,0.12),∴⎩⎪⎨⎪⎧30k +b =0.1560k +b =0.12, 解得⎩⎪⎨⎪⎧k =-0.001b =0.18.∴线段AB 所表示的y 与x 之间的函数表达式为y =-0.001x +0.18. (3)根据题意,得线段BC 所表示的y 与x 之间的函数表达式为y =0.12+0.002(x -90)=0.002x -0.06, 由图象可知,B 是折线ABC 的最低点,也是AB 与BC 的交点,解方程组⎩⎪⎨⎪⎧y =-0.001x +0.18y =0.002x -0.06,得⎩⎪⎨⎪⎧x =80y =0.1. 因此,速度是80km /h 时,该汽车的耗油量最低,最低是0.1 L /km .11。
中考数学 三轮冲刺专题:一次函数的图象与性质
2021中考数学 三轮冲刺专题:一次函数的图象与性质一、选择题1. 一次函数y =-2x +3的图象不经过的象限是( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2. 在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( ) A. M (2,-3),N (-4,6) B. M (-2,3),N (4,6) C. M (-2,-3),N (4,-6) D. M (2,3),N (-4,6)3. 直线y=3x+1向下平移2个单位,所得直线的解析式是 ( ) A .y=3x+3 B .y=3x -2 C .y=3x+2D .y=3x -14. (2019•辽阳)若0ab <且a b >,则函数y ax b =+的图象可能是A .B .C .D .5. 已知函数y =kx +b 的图象如图,则y =2kx +b 的图象可能是( )6. (2019•柳州)已知,A B 两地相距3千米,小黄从A 地到B 地,平均速度为4千米/小时,若用x 表示行走的时间(小时),y 表示余下的路程(千米),则y 关于x 的函数解析式是A .4(0)y x x =≥B .343()4y x x =-≥C .34(0)y x x =-≥D .334(0)4y x x =-≤≤7. (2019•枣庄)如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过点P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是A .4y x =-+B .4y x =+C .8y x =+D .8y x =-+8. 如图,在Rt △ABO 中,∠OBA=90°,A (4,4),点C 在边AB 上,且=,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为 ( )A .(2,2)B .C .D .(3,3)二、填空题9. 已知关于x 的方程mx +3=4的解为x =1,则直线y =(m -2)x -3一定不经过第________象限.10. 如图,已知直线y=kx+b 过A (-1,2),B (-2,0)两点,则0≤kx+b ≤-2x 的解集为 .11. 若函数y=(m-1)x|m|是正比例函数,则该函数的图象经过第________象限.12. 将直线y=2x+1向下平移3个单位长度后所得直线的解析式是____________.13. 在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=,则点P(3,-3)到直线y=-x+的距离为.14. (2019•上海)在登山过程中,海拔每升高1千米,气温下降6 °C,已知某登山大本营所在的位置的气温是2 °C,登山队员从大本营出发登山,当海拔升高x 千米时,所在位置的气温是y °C,那么y关于x的函数解析式是__________.15. 为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.16. 已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为____________.三、解答题17. 在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.18. 如图所示,已知正比例函数y x =和3y x =,过点()20A ,作x 轴的垂线,与这两个正比例函数的图象分别交与B C ,两点,求三角形OBC 的面积(其中O 为坐标原点)。
一次函数的图象- 2022-2023学年八年级上册数学同步培优题库(浙教版)(解析卷)
专题 5.4 一次函数的图象 模块一:知识清单 知识点1-4 一次(正比例)函数的图象与性质1)一次函数图象是一条直线;2)已知两点可以作图,也可求出解析式;3)交y 轴于点(0,b ),交x 轴于点(b k -,0); 4)过象限、增减性 0b >(过一、二象限) 0b <(过三、四象限) 0b =(过原点)0k >(过一、三象限) y 随x 的增大而增大经过第一、二、三象限 经过第一、三、四象限经过第一、三象限 0k <(过二、四象限) y 随x 的增大而减小经过第一、二、四象限 经过第二、三、四象限经过第二、四象限 5)函数图象大小比较:函数图象上的点是由适合函数解析式的一对x 、y 的值组成的(x 、y ),x 的值是点的横坐标,纵坐标就是与这个x 的值相对应的y 的值,因此,观察x 或y 的值就是看函数图象上点的横、纵坐标的值,比较函数值的大小就是比较同一个x 的对应点的纵坐标的大小,也就是函数图象上的点的位置的高低。
6) 一次函数的平移与位置关系1)一次函数11y k x b =+与22y k x b =+的位置关系:两直线平行⇔12=k k 且12b b ≠ 两直线垂直⇔12=1k k ⋅-2)、一次函数的平移法则:左加右减,上加下减。
模块二:同步培优题库全卷共24题 测试时间:80分钟 试卷满分:100分一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·河南·洛阳市第二外国语学校八年级期中)当0x >时,y 与x 之间的函数解析式为2y x =,当0x ≤时,y 与x 之间的函数解析式为2y x =-,则在同一直角坐标系中y 与x 之间的函数关系图象大致为图中的( )A .B .C .D . 【答案】C【分析】根据正比例函数的图象和性质判断即可;【详解】解:∵当0x >时,2y x =,∴此时函数在第一象限,∵当0x ≤时,2y x =-,∴此时函数过原点及第二象限,故选: C .【点睛】本题考查了正比例函数的性质:在y =kx (k ≠0)中,当k >0时,y 随x 的增大而增大,直线经过原点及第一、三象限, 当k <0时,y 随x 的增大而减小,直线经过原点及第二、四象限. 2.(2022·辽宁大连·八年级阶段练习)下列函数中,y 随x 的增大而减小的是( )A .42y x =-B .23y x =-C .13y x =D .1y x =- 【答案】A【分析】根据一次函数的增减性进行判断即可.【详解】解:A. 42y x =-,∵k =-2<0,∴y 随x 的增大而减小,故该选项符合题意;B. 23y x =-,∵k =2>0,∴y 随x 的增大而增大,故该选项不符合题意;C. 13y x =,∵k =13>0,∴y 随x 的增大而增大,故该选项不符合题意;D. 1y x =-,∵k =1>0,∴y 随x 的增大而增大,故该选项不符合题意.故选:A .【点睛】本题考查一次函数的增减性,熟记当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小是解题关键.3.(2022•陇县一模)若正比例函数y =4x 的图象经过点A (2,3﹣m ),则m 的值为( )A .6B .﹣6C .5D .﹣5【思路点拨】根据正比例函数y =4x 的图象经过点A (2,3﹣m ),可以得到3﹣m =4×2,从而可以求得m 的值.【答案】解:∵正比例函数y =4x 的图象经过点A (2,3﹣m ),∴3﹣m =4×2,解得m =﹣5,故选:D .【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.4.(2022·广东梅州·八年级期末)若点A (1x ,-1),B (2x ,-3),C (3x ,4)在一次函数y =-2x +m (m 是常数)的图象上,则1x ,2x ,3x 的大小关系是( )A .1x >2x >3xB .2x >1x >3xC .1x >3x >2xD .3x >2x >1x【答案】B【分析】利用一次函数的增减性判定即可.【详解】解:由y =-2x +m 知,函数值y 随x 的增大而减小,∵4>-1>-3,A (x 1,-1),B (x 2,-3),C (x 3,4),∴x 2>x 1>x 3.故选:B .【点睛】本题考查了一次函数的增减性,解题的关键是通过a =-2<0得知函数值y 随x 的增大而减小,反之x 随y 的增大也减小.5.(2022·河北清河·八年级期末)若0kb <,0b k ->,则一次函数y kx b =+与y bx k =+在同一坐标系中的大致图象为( )A .B .C .D .【答案】D【分析】由于k b 、的符号不能确定,只能对每个选项逐次分析.【详解】由0kb <可得:k b 、异号,由0b k ->得:0b >,从而:0k <.A.下面的直线:k b 、同号,故错误;B.上面的直线:k b 、同号,故错误;C.两条直线,一条直线直线k b 、同号、一条直线k b 、异号,故错误;D.两条直线k b 、都异号,故正确;故选:D .【点睛】本题考查一次函数图像与系数的关系,重点是掌握根据k b 、的取值,确定图像. 6.(2022·湖南常德·八年级期末)关于一次函数21y x =-+的图象和性质,下列结论不正确的是( ) A .图象与直线2y x =-平行B .图象与y 轴的交点坐标是(01),C .图象经过第一、二、四象限D .y 随自变量x 的增大而增大【答案】D【分析】根据一次函数的图象和性质,斜率相同,直线平行;当0x =时,1y =,得图象与y 轴的坐标;0k <,0b >,图像经过第一、二、四象限;0k <,y 随自变量x 的增大而减小,即可.【详解】∵两直线比例系数相同,直线平行又∵21y x =-+,2k =-,直线2y x =-,2k =-∴一次函数21y x =-+的图象与直线2y x =-平行∴A 正确;∵0x =时,1y =∴图像与y 轴的交点坐标是0,1∴B 正确;∵21y x =-+中20k =-<,10b =>∴图象经过第一、二、四象限∴C 正确;∵0k <,y 随自变量x 的增大而减小∴21y x =-+中20k =-<∴一次函数21y x =-+中,y 随自变量x 的增大而减小∴D 是错误的.故选:D .【点睛】本题考查一次函数的图象和性质,解题的关键是熟练掌握一次函数的性质.7.(2022•雁塔区模拟)若直线y =kx +b (k ≠0)的图象经过点A (﹣1,1).且与y 轴的交点在x 轴的下方.则k 的取值范围是( )A .k <﹣1B .k >﹣1C .k <1D .k >1【思路点拨】由直线y =kx +b (k ≠0)的图象与y 轴的交点在x 轴的下方,可得出b <0,由直线y =kx +b (k ≠0)的图象经过点A (﹣1,1),可得出1=﹣k +b ,结合b <0,即可求出k 的取值范围.【答案】解:∵直线y =kx +b (k ≠0)的图象与y 轴的交点在x 轴的下方,∴b <0,∵直线y =kx +b (k ≠0)的图象经过点A (﹣1,1),∴1=﹣k +b ,∴b =1+k <0∴k <﹣1.故选:A .【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y =kx +b 是解题的关键.8.(2022•台江区校级期中)若点(x 1,y 1)、(x 2,y 2)是一次函数y =ax +2图象上不同的两点,记m =(x 1﹣x 2)(y 1﹣y 2),当m <0时,a 的取值范围是( )A .a >0B .a <0C .a <1D .a >1【思路点拨】由已知条件可判断出y 随x 的增大而减小,根据一次函数图象增减性与一次项系数的关系,可得a <0.【答案】解:∵点(x 1,y 1)、(x 2,y 2)是一次函数y =ax +2图象上不同的两点,m =(x 1﹣x 2)(y 1﹣y 2)<0,∴x 1﹣x 2与y 1﹣y 2异号,∴该图象是y 随x 的增大而减小,∴a <0.故选:B .【点睛】此题考查了一次函数图象上点的坐标特征,解决本题的关键是要根据函数的增减性进行推理.9.(2022•鼓楼区校级期中)如果M (x 1,y 1),N (x 2,y 2)是一次函数y =kx ﹣2的图象的两点,且x 1﹣x 2=﹣1,y 1﹣y 2=3,那么k 的值为( )A .1B .2C .﹣3D .【思路点拨】将M (x 1,y 1),N (x 2,y 2)代入一次函数y =kx ﹣2的解析式,结合x 1﹣x 2=﹣1,y 1﹣y 2=3,即可求解.【答案】解:∵M (x 1,y 1),N (x 2,y 2)是一次函数y =kx ﹣2的图象的两点,∴y 1=kx 1﹣2,y 2=kx 2﹣2,∴y 1﹣y 2=kx 1﹣2﹣(kx 2﹣2)=k (x 1﹣x 2 ),∵y 1﹣y 2=3,∴k (x 1﹣x 2 )=3,∵x 1﹣x 2=﹣1,∴﹣k =3,解得k =﹣3.故选:C .【点睛】本题考查了一次函数图象上点的坐标特征,代数式整体思想,解决本题关键是代入后的变形.10.(2022•郑州期中)已知关于x 的一次函数为y =ax +2a ﹣2,下列说法中正确的个数为( ) ①若函数图象经过原点,则a =1; ②若a =,则函数图象经过第一、三、四象限;③函数图象与y 轴交于点(0,﹣2);④无论a 取任何实数,函数的图象总经过点(﹣2,﹣2).A .1个B .2个C .3个D .4个 【思路点拨】把(0,0)代入即可判断①;根据二次函数的性质即可判断②;令x =0,即可求得函数图象与y 轴交于点(0,2a ﹣2),即可判断③;把x =﹣2代入解析式求得y =﹣2,即可判断④.【答案】解:①∵函数图象经过原点,∴2a ﹣2=0,∴a =1,故正确;②∵a =>0,∴2a ﹣2=﹣1<0,∴函数图象经过第一、三、四象限,故正确;③当x =0时,y =2a ﹣2,∴函数图象与y 轴交于点(0,2a ﹣2),故错误;④∵y =ax +2a ﹣2=a (x +2)﹣2,∴x =﹣2时,y =﹣2,∴函数的图象总经过(﹣2,﹣2),故正确.故选:C .【点睛】本题考查一次函数的图象及性质,一次函数图象上点的坐标特征;熟练掌握一次函数的性质是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.(2022·河南·八年级期末)甲,乙两名同学观察完某个一次函数的图象,各叙述如下:甲:函数的图象经过点()0,2-;乙:y 随x 的增大而减小;根据他们的叙述,写出满足上述性质的一个一次函数的表达式为______.【答案】2y x =--【分析】设一次函数解析式为y =kx +b ,根据函数的性质得出2b =-,k < 0,从而确定一次函数解析式,本题答案不唯一.【详解】解:设一次函数解析式为y =kx +b ,∵函数的图象经过点(0,-2),∴2b =- ,∵y 随x 的增大而减小,∴k <0, 当取k =−1时,一次函数表达式为:2y x =--,∴满足上述性质的一个函数表达式为:2y x =--(答案不唯一).故答案为:2y x =--.【点睛】本题主要考查一次函数的性质,数形结合是解题的关键,属于开放型的题型.12.(2022•海陵区一模)将一次函数y =3x +2的图象向下平移3个单位,则平移后一次函数的图象与y 轴的交点坐标是 .【思路点拨】先求出该函数图象向下平移3个单位后的直线解析式,再令x =0,求出y 的值即可.【答案】解:由“上加下减”的原则可知:将一次函数y =3x +2的图象向下平移3个单位,则平移后一次函数的解析式为:y =3x +2﹣3,即y =3x ﹣1,∴当x =0时,y =﹣1,∴平移后与y 轴的交点坐标为(0,﹣1),故答案为(0,﹣1).【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.13.(2022•鼓楼区校级期中)若一次函数y =(2m ﹣1)x +3﹣m 的图象经过一、二、四象限,则m 的取值范围是 .【思路点拨】根据一次函数的性质可知(2m ﹣1)<0,3﹣m >0,即可求出m 的取值范围.【答案】解:∵y =(2m ﹣1)x +3﹣m 的图象经过 一、二、四象限∴,解得m <∴m 的取值范围是m <.故答案为:m <.【点睛】本题主要考查一次函数的图象与系数的关系,关键是熟练掌握一次函数的性质. 14.(2022·辽宁大连·八年级期末)已知一次函数11y kx k =-,当46x -≤≤时,39y ≤≤,则k 的值为_______.【答案】35##-0.6 【分析】由x 与y 的范围,确定出点坐标,代入一次函数解析式求出k 的值即可.【详解】解:当k >0时,y 随x 的增大而增大,∴x =−4,y =3,∴−4k −11k =3,解得:15k =-(不合题意,舍去), 当k <0时,y 随x 的增大而减小,∴x =−4时,y =9;x =6时,y =3,∴−4k −11k =9,∴35k =-.故答案为:35. 【点睛】本题主要考查了一次函数的性质,待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.15.(2022•海安市模拟)一次函数y =(2a ﹣3)x +a +2(a 为常数)的图象,在﹣1≤x ≤1的一段都在x轴上方,则a的取值范围是.【思路点拨】根据一次函数y=(2a﹣3)x+a+2的图象在﹣1≤x≤1的一段都在x轴的上方,由一次函数的性质,则有2a﹣3≠0,再分2a﹣3>0和2a﹣3<0来讨论,解得即可.【答案】解:因为y=(2a﹣3)x+a+2是一次函数,所以2a﹣3≠0,a≠,当2a﹣3>0时,y随x的增大而增大,由x=﹣1得:y=﹣2a+3+a+2,根据函数的图象在x轴的上方,则有﹣2a+3+a+2>0,解得:<a<5.当2a﹣3<0时,y随x的增大而减小,由x=1得:y=2a﹣3+a+2,根据函数的图象在x轴的上方,则有:2a﹣3+a+2>0,解得:<a<,故答案为:<a<5或<a<.【点睛】本题考查了一次函数图象和系数的关系,属于基础题,转化为解不等式的问题是解决本题的关键.16.(2022·黑龙江绥化·八年级期末)下列对于一次函数y=﹣3x+6的说法,正确的有________(填写序号).①图象经过一、二、四象限;②图象与两坐标轴围成的面积是6;③y随x的增大而增大;④当x>2时,﹣3x+6>0;⑤对于直线y=﹣3x+6上两点A(x1,y1),B(x2,y2),当x1<x2时,y1>y2.【答案】①②⑤【分析】根据一次函数图象的性质进行逐一分析解答即可.【详解】解:①∵﹣3<0,6>0,∴一次函数y=﹣3x+6的图象在一、二、四象限,故①正确,符合题意;②当y=0时,0=﹣3x+6,解得x=2,当x=0时,y=6,∴一次函数y=﹣3x+6的图象与x轴交于点(2,0),与y轴的交点为(0,6),∴图象与两坐标轴围成的面积是1262⨯⨯=6,故②正确,符合题意;③∵﹣3<0,∴一次函数y=﹣3x+6的图象y随x的增大而减小,故③错误,不符合题意;④当x>2时,﹣3x+6<0,故④错误,不符合题意;⑤∵﹣3<0,∴一次函数y=﹣3x+6的图象y随x的增大而减小,∴对于直线y=﹣3x+6上两点A(x1,y1),B(x2,y2),当x1<x2时,y1>y2.故⑤正确,符合题意.故答案为:①②⑤.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的图象与性质,一次函数图象与系数的关系,都是基础知识,需熟练掌握.17.(2022·福建·莆田哲理中学九年级期末)已知直线y=(m-1)x+3﹣2m(m为常数,且m≠1).当m变化时,下列结论正确的有_________.①当m=2,图象经过一、三、四象限;②当m>0时,y随x的增大而减小;③直线必过定点(2,1);④坐标原点到直线的最大距离是5.【答案】①③④【分析】根据一次函数的性质逐项分析即可.【详解】解:当m=2时,y=(2-1)x+3﹣2×2=x-1,此时一次函数y=x-1,经过一、三、四象限,故①正确;对于直线y=(m-1)x+3﹣2m(m为常数,且m≠1)来说,当m-1>0时,即m>1时,y随x的增大而减小;故②错误;当x=2时,y=(m-1)x+3﹣2m=2(m-1)+3-2m=2m-2+3-2m=1,∴直线必过定点(2,1);故③正确;设原点到直线的距离为d,∵由③知直线y=(m-1)x+3﹣2m必过定点(2,1),设点P(2,1),∴d≤|OP|=22,1+25∴坐标原点到直线的最大距离是5.故④正确.故答案为:①③④【点睛】此题主要考查了一次函数的性质、勾股定理等知识,熟练掌握一次函数的性质是解题的关键.18.(2022•莲都区期末)如图,在平面直角坐标系中,直线y=kx+4经过点A(3,0),与y轴交于点B.(1)k的值为;(2)y轴上有点M(0,),线段AB上存在两点P,Q,使得以O,P,Q为顶点的三角形与△OMP全等,则符合条件的点P的坐标为.【思路点拨】(1)根据点的坐标求出k;(2)分两种情况分别讨论,①过点O作OQ⊥AB于Q,过点M作MP⊥OB于M,用面积法求出OQ,证明△OPM≌△OPQ,从而得P点纵坐标,代入一次函数解析式求出横坐标;当OB=BP,OM=PQ,如图②,过点P作PF⊥OB于F,过点O作OE⊥AB于E,证明△MOP≌△QPO推这两个三角形面积相等,推出PF=OE=,从而得P点横坐标,代入一次函数解析式求出纵坐标.【答案】解:(1)把(3,0)横纵坐标代入y=kx+4,得k=﹣,y=﹣x+4,故答案为:﹣;(2)①过点O作OQ⊥AB于Q,过点M作MP⊥OB于M,如图①,∴∠PMO=∠OQP=90°,令x=0,y=4,y=0,x=3,∴OA=3,OB=4,∴AB==5,∵×AB•OQ=×OA•OB,∴OQ=,∴OQ=OM,在Rt△OPM和Rt△OPQ中,,∴△OPM≌△OPQ(HL),∴P点纵坐标是,∵点P在y=﹣x+4,∴x=,∴P(,),②当OB=BP,OM=PQ,如图②,过点P作PF⊥OB于F,过点O作OE⊥AB于E,∵OB=BP,∴∠BOP=∠BPO在△MOP和△QPO中,,∴△MOP≌△QPO(SAS),∴S△MOP=S△OPQ,∵OM=PQ.∴PF=OE=,∵点P在y=﹣x+4,∴把x=代入y=﹣x+4,解得y=,∴P(,),综上所述:P(,)或P(,).故答案为:P(,)或P(,).【点睛】本题考查了过定点的直线、一次函数的性质、全等三角形判定,掌握一次函数图象上点的坐标特点,性质、判定的熟练应用,分情况讨论和辅助线的做法是解题关键.三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2022•金安区校级月考)已知一次函数的图象经过点(3,5)和(﹣4,﹣9).(1)求此一次函数的表达式.(2)若点(a,2)在函数图象上,求a的值.【思路点拨】(1)利用待定系数法即可求得函数的解析式;(2)把点(a,﹣2)代入一次函数的解析式,求出a的值即可.【答案】解:(1)设一次数解析式为y=kx+b,把点(3,5),(﹣4,﹣9)分别代入解析式得,解得,∴一次函数解析式为y=2x﹣1;(2)把A(a,﹣2)在该函数的图象上,可得:2a﹣1=﹣2,解得:a=﹣0.5.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.20.(2022春•潮阳区期末)已知y﹣2与x成正比例,且当x=﹣2时,y=4.(1)求y与x的函数表达式;(2)在坐标系中画出(1)中的函数图象.【思路点拨】(1)根据正比例的定义设y﹣2=kx(k≠0),然后把已知数据代入进行计算求出k值,即可得解;(2)利用描点法法作出函数图象即可;【答案】解:(1)∵y﹣2与x成正比例.∴设y﹣2=kx.∵当x=﹣2时,y=4.∴4﹣2=﹣2k.∴k=﹣1.∴y与x的函数关系式为:y=﹣x+2;(2)由两点法取点(0.2),(2,0)通过描点,连线,函数图象如图:.【点睛】本题考查了待定系数法求一次函数解析式,一次函数图象的作法,根据正比例的定义设出函数表达式是解题的关键.21.(2022•淮北月考)已知一次函数y=ax﹣(a﹣2).(1)若图象经过点(0,3),则a的值是多少?.(2)若图象经过第一、二、四象限,则a的取值范围是多少?(3)若直线不经过第四象限,则a的取值范围是多少?【思路点拨】(1)根据一次函数y=ax﹣(a﹣2)的图象过点(0,3),即可求得a的值;(2)根据一次函数y=ax﹣(a﹣2)的图象经过一、二、四象限,可以得到,从而可以求得a的取值范围;(3)根据一次函数y=ax﹣(a﹣2)的图象不经过第四象限,可以得到,即可得到a 的取值范围.【答案】解:(1)∵一次函数y=ax﹣(a﹣2)的图象过点(0,3),∴3=﹣(a﹣2),解得a=﹣1;(2)∵一次函数y=ax﹣(a﹣2)的图象经过一、二、四象限,∴,解得a<0,即a的取值范围是a<0;(3)∵一次函数y=ax﹣(a﹣2)的图象不经过第四象限,∴,解得0<a≤2,即a的取值范围是0<a≤2.【点睛】本题考查一次函数的性质、一次函数的图象,解答本题的关键是明确题意,利用一次函数的性质解答.22.(2022•沂水县期末)已知,如图,一次函数的图象经过了点P(3,2)和B(0,﹣2),与x 轴交于点A.(1)求一次函数的解析式;(2)点M在y轴上,且△ABM的面积为,求点M的坐标.【思路点拨】(1)把P点和B点坐标代入y=kx+b得到关于k、b的方程组,然后解方程组求出k、b即可得到一次函数解析式;(2)利用x轴上点的坐标特征求出A点坐标,根据三角形面积公式列等式求解.【答案】解:(1)设一次函数的解析式为y=kx+b,把点P(3,2)和B(0,﹣2)代入y=kx+b得,解得,所以一次函数解析式为y=x﹣2;(2)当y=0时,x﹣2=0,解得x=,则A(,0),∵点M在y轴上,且△ABM的面积为,∴S△ABM=BM•x A=,即BM×=,∴BM=5,∵B(0,﹣2),∴M(0,3)或(0,﹣7).【点睛】本题考查待定系数法求一次函数解析式、三角形的面积,熟练掌握待定系数法是解题的关键.23.(2022•西湖区校级二模)一次函数y=ax﹣a+1(a为常数,且a<0).(1)若点(2,﹣3)在一次函数y=ax﹣a+1的图象上,求a的值;(2)当﹣1≤x≤2时,函数有最大值2,求a的值.【思路点拨】(1)根据一次函数图象上点的坐标特征把(2,﹣3)代入y=ax﹣a+1中可求出a的值;(2)a<0时,y随x的增大而减小,所以当x=﹣1时,y有最大值2,然后把x=﹣1代入函数关系式可计算对应a的值.【答案】解:(1)把(2,﹣3)代入y=ax﹣a+1得2a﹣a+1=﹣3,解得a=﹣4;(2)∵a<0时,y随x的增大而减小,则当x=﹣1时,y有最大值2,把x=﹣1代入函数关系式得2=﹣a﹣a+1,解得a=﹣,所以a=﹣.【点睛】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x 的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y 轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.24.(2021春•陇县期末)如图,直线l1:y=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线AB上一点,另一直线l2:y=kx+4经过点P.(1)求点A、B坐标;(2)求点P坐标和k的值;(3)若点C是直线l2与x轴的交点,点Q是x 轴上一点,当△CPQ的面积等于3时,求出点Q的坐标.【思路点拨】(1)令x=0,则y=2,令y=0,则x=2,即可求得点A、B的坐标分别为:(2,0)、(0,2);(2)点P(m,3)在直线AB上,则﹣m+2=3,解得:m=﹣1,故点P(﹣1,3);将点P的坐标代入y=kx+4,即可求得k的值;(3)求得C的坐标,然后根据三角形面积求得CQ,结合C的坐标即可求得点Q的坐标.【答案】解:(1)y=﹣x+2与x轴,y轴分别交于A,B两点,令x=0,则y=2,令y=0,则x=2,故点A、B的坐标分别为:(2,0)、(0,2);(2)点P(m,3)为直线AB上一点,则﹣m+2=3,解得:m=﹣1,故点P(﹣1,3);将点P的坐标代入y=kx+4得:3=﹣k+4,解得k=1;故点P的坐标为(﹣1,3),k=1;(3)∵直线y=x+4与x轴的交点为C,∴C(﹣4,0),∵P(﹣1,3),△CPQ的面积等于3,∴CQ•y P=3,即CQ×3=3,∴CQ=2,∴Q点的坐标为(﹣6,0)或(﹣2,0).【点睛】本题考查的是一次函数图象上点的坐标特征,一次函数的性质、面积的计算等,求得交点坐标是解题的关键。
(压轴题)初中数学八年级数学上册第四单元《一次函数》测试卷(包含答案解析)(3)
一、选择题1.一次函数y =2x +1的图像,可由函数y =2x 的图像( )A .向左平移1个单位长度而得到B .向右平移1个单位长度而得到C .向上平移1个单位长度而得到D .向下平移1个单位长度而得到 2.如果一条直线l 经过不同的三点(,)A a b ,(,)B b a ,(,)C a b b a --,那么直线l 经过( )A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限 3.在平面直角坐标系中,一次函数1y x =-的图象是( ) A . B . C . D . 4.如图,已知直线3:3l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ,…,按此作法继续下去,则点2020A 的坐标为( )A .()0,2020B .()0,4040C .()20200,2D .()20200,4 5.已知正比例函数y=kx ,且y 随x 的增大而减少,则直线y=2x+k 的图象是( ) A . B . C . D . 6.张师傅驾车从甲地到乙地、两地距500千米,汽车出发前油箱有25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶.已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图,以下四种说法:①加油前油箱中剩余油量y(升)与行驶时间t (小时)的外函数关系是825y t =-+;②途中加油21升;③汽车加油后还可行驶4小时;④汽车到达乙地时油箱中还余油6升.其中正确的个数是( )A .1个B .2个C .3个D .4个7.点(),P x y 在第一象限,且6x y +=,点A 的坐标为()4,0,设OPA ∆的面积为S ,则下列图像中,能反映S 与x 之间的函数关系式的是( )A .B .C .D .8.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A .①②B .①③C .②③D .①②③ 9.一次函数y=3x ﹣6的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 10.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .11.一蓄水池中有水350m ,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1 2 3 4 … 水池中水量/3m 48 46 44 42 … A .蓄水池每分钟放水32mB .放水18分钟后,水池中水量为314mC .蓄水池一共可以放水25分钟D .放水12分钟后,水池中水量为324m12.已知A 、B 两地相距810千米,甲车从A 地匀速前往B 地,到达B 地后停止.甲车出发1小时后,乙车从B 地沿同一公路匀速前往A 地,到达A 地后停止.设甲乙两车之间的距离为y(千米),甲车出发的时间为x (小时),y 与x 的关系如图所示,对于以下说法:①乙车的速度为90千米/时;②点F 的坐标为(9,540);③图中a 的值是13.5;④当甲乙两车相遇时,两车相遇地距A 地的距离为360千米.其中正确的结论是( )A .①②③B .①②④C .②③④D .①③④二、填空题13.若一次函数(1)2=-+-y m x m 的图象经过第二、三、四象限,则m 的取值范围是_______.14.在平面直角坐标系xOy 中,直线y =﹣34x +3分别与x 轴、y 轴交于点A 、B ,将△AOB 沿过点A 的直线折叠,使点B 落在x 轴的负半轴上,记作点C ,折痕与y 轴交于点D ,则直线AD 的解析式为_____.15.已知在平面直角坐标系xOy 中,点A 的坐标为(﹣1,2),点B 的坐标为(1,1),点C (t ,0)是x 轴上的一个动点,设三角形ABC 的面积为S .(1)当S =2时,点C 的坐标为_____;(2)若S 的最小值为2,最大值为3,请直接写出点C 的横坐标t 的取值范围_____. 16.若函数()224y m x m =-+-是关于x 的正比例函数,则常数m 的值是__________. 17.已知函数2(1)3k y k x =-+是一次函数,则k =_________.18.若式子23x x +-有意义,则x 的取值范围为______. 19.甲、乙两车分别从,A B 两地同时相向匀速行驶,当乙车到达A 地后,继续保持原速向远离B 地的方向行驶,而甲车到达B 地后立即掉头,并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地,设两车行驶的时间为()x h ,两车之间的距离为()y km ,y 与x 之间的函数关系如图所示,则,A C 两地相距________千米.20.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______.三、解答题21.在平面直角坐标系xOy 中,一次函数y =﹣x +6的图象分别交y 轴和x 轴于点A ,B ,交一次函数y =2x 的图象于点C .(1)求点C 的坐标;(2)求△OBC 的面积.22.一辆汽车的油箱中现有汽油60升,汽车行驶时正常的耗油量为0.1升/千米.油箱中的油量y (升)随行驶里程x (千米)的变化而变化.(假定该汽车不加油,能工作至油量为零)(1)求y 关于x 的函数表达式(2)利用图象说明,当行驶里程超过400千米后油箱内的汽油量23.在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第一象限,斜靠在两条坐标轴上,且点A (0,3),点C (1,0),BE ⊥x 轴于点E ,一次函数y x b =+经过点B ,交y 轴于点D .(1)求证△AOC ≌△CEB ;(2)求B 点坐标;(3)求ABD S ∆24.某地区的电力资源缺乏,未能得到较好的开发.该地区一家供电公司为了居民能节约用电,采用分段计费的方法来计算电费.月用电量x (度)与相应电费y (元)之间的函数图象如图所示.(1)月用电量为50度时,应交电费多少元?(2)当100x ≥时,求y 与x 之间的函数关系式;(3)月用电量为150度时,应交电费多少元?25.甲、乙两个探测气球分别从海拔5m 和15m 处同时出发,匀速上升60min .如图是甲、乙两个探测气球所在位置的海拔y (单位:m )与气球上升时间x (单位:min )的函数图象,已知甲气球的函数解析式为y=x+5(x≥0)(1)求乙气球在上升过程中y 关于x 的函数解析式;(2)当这两个气球的海拔高度相差15m 时,求上升的时间.26.剧院举行新年专场音乐会,成人票每张20元,学生票每张5元,剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款.某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x (人),付款总金额为y (元),分别表示这两种方案; (2)请计算并确定出最节省费用的购票方案.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据一次函数图象平移规律,直接判断即可.【详解】解:∵一次函数图象向上平移m (m>0)个单位,常数项增加m ,∴函数y =2x 的图像向上平移1个单位可以得到y =2x +1的图像,故选:C .【点睛】本题考查了一次函数图象平移的规律,解题关键是掌握一次函数图象平移的规律:上加下减常数项,左加右减自变量.2.A解析:A【分析】一条直线l 经过不同的三点,先设直线l 表达式为:y kx m =+,,把三点代入表达式,用a,b 表示k 、m ,再判断即可.【详解】设直线l 表达式为:y kx m =+,将(,)A a b ,(,)B b a ,(,)C a b b a --代入表达式中,得如下式子:(1)(2)()(3)b ka m a kb mb a k a b m =+⎧⎪=+⎨⎪-=-+⎩, 由(1)-(2)得:()b a ka m kb m k a b -=+--=-,得1k =-,()b a k a b -=-与(3)相减,得0m =,直线l 为:y x =-.故选:A .【点睛】本题考查直线经过象限问题,涉及待定系数法求解析式,解方程组等知识,关键是掌握点在直线上,点的坐标满足解析式,会解方程组.3.A解析:A【分析】先确定一次函数解析式中k 与b 的符号,然后再利用一次函数图象及性质即可解答.【详解】解:一次函数y=1-x其中k=-1,b=1其图象为:.故选:A .【点睛】本题考查了一次函数的图象,掌握一次函数的图象与性质是解答本题的关键. 4.D解析:D【分析】根据所给直线解析式可得l 与x 轴的夹角,进而根据所给条件依次得到点A 1,A 2的坐标,通过相应规律得到A 2020坐标即可.【详解】解:∵直线l 的解析式为y =, ∴直线l 与x 轴的夹角为30.∵AB x 轴,∴30ABO ∠=︒.∵1OA =,∴2OB =.∴1A B ⊥直线l ,130BAO ∠=︒, ∴124A O OB ==,∴()10,4A .同理可得()20,16A ,…∴2020A 的纵坐标为20204,∴()202020200,4A .故选D .【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A 、A 1、A 2、A 3…的点的坐标是解决本题的关键. 5.D解析:D【详解】∵正比例函数y kx =,且y 随x 的增大而减少,0k .∴< 在直线2y x k =+中,200k ><,,∴函数图象经过一、三、四象限.故选D .6.C解析:C【分析】根据题意首先利用待定系数法求出函数解析式,进而利用图象求出耗油量以及行驶时间进行分析判断即可.【详解】解:①由题意得,图象过(0,25)(2,9),设加油前油箱中剩余油量y (升)与行驶时间t (小时)的函数关系是:y=kt+b ,∴2529bk b⎧⎨⎩+==,解得825kb⎧⎨⎩-==,∴加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=-8t+25,故①正确;②途中加油30-9=21(升),故②正确;③∵汽车耗油量为:(25-9)÷2=8升/小时,∴30÷8=3.75,∴汽车加油后还可行驶3.75小时,故③错误;④∵从甲地到乙地,两地相距500千米,加油前、后汽车都以100千米/小时的速度匀速行驶,∴需要:500÷100=5(小时)到达,∴汽车到达乙地时油箱中还余油30-8×(5-2)=6(升),故④正确;综上①②④正确.故选:C.【点睛】本题主要考查一函数应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题的关键.7.B解析:B【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【详解】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6-x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=12×4×(6-x)=-2x+12(0<x<6),∴B符合.故选:B.【点睛】本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围.8.B解析:B【分析】由图象经过第一,二,三象限,可得k>0,b>0,可判断A①,根据增减性,可判断②,由图象可直接判断③【详解】解:∵图象过第一,第二,第三象限,∴k>0,b>0,∴0kb >,①正确, y 随x 增大而增大,∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数,∴这部分图像的纵坐标y>b ,③正确,故①③正确故选:B .【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.9.B解析:B【分析】分析:根据一次函数y=kx+b (k≠0,b 为常数)的性质可知,k>0时,y 随x 的增大而增大;b <0时,直线与y 轴相交于负半轴,据此即可判断一次函数所过象限.详解:∵一次函数y=3x−6中,3>0,−6<0,∴一次函数图象过一、三、四象限,故函数图象不过第二象限,故选B.点睛:此题考查一次函数的性质,直线y=kx+b (k≠0,b 为常数)图象时一条经过(-b k ,0)和(0,b )的直线.k 的正负决定直线的倾斜方向,k>0时,y 随x 的增大而增大,k<0时,y 随x 的增大而减小;b 的正负决定直线与y 轴交点的位置:b <0时,直线与y 轴相交于负半轴,b>0时,直线与y 轴相交于正半轴,b=0时,直线过原点.由此即可判断直线经过的象限,【详解】请在此输入详解!10.B解析:B【分析】根据一次函数的图像即可求解判断.【详解】由A,C 图像可得函数y=mx+n 过一,二,三象限,故m >0,n >0,故y=nx+m 也过一,二,三象限,故A,C 错误;由B,D 图像可得函数y=mx+n 过一三四象限,故m >0,n <0,故y=nx+m 过一,二,四象限,故B 正确,D 错误;故选B.此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II 卷(非选择题)请点击修改第II 卷的文字说明11.D解析:D【分析】根据题意可得蓄水量为502y t =-,从而进行判断即可; 【详解】设蓄水量为y 立方米,时间为t 分,则可得502y t =-, 蓄水池每分钟放水32m ,故A 不符合题意;放水18分钟后,水池中水量为35021814y m =-⨯=,故B 不符合题意; 蓄水池一共可以放水25分钟,故C 不符合题意;放水12分钟后,水池中水量为35021226y m =-⨯=,故D 符合题意;故答案选D .【点睛】本题主要考查了函数的表示方法,准确分析判断是解题的关键.12.D解析:D【分析】通过对运动过程及函数图象的分析可得:CD 段为甲车提前出发的1小时,即可求解甲车速度;DE 段为甲乙相向而行,在E 点时两车相遇,5小时的时间内共行驶750千米即可求出乙车速度,逐一判断即可求解.【详解】解:由图象可知CD 段为甲车提前出发的1小时,可得甲车速度为81075060km/h -=, DE 段为甲乙相向而行,在E 点时两车相遇,5小时的时间内共行驶750千米, ∴乙车的速度为7506090km/h 5-=,故①正确; 此时两车距A 地的距离为606360⨯=,故④正确; ∴甲车到达B 地时对应时间为810=13.5h 60, 乙车到达A 地时对应时间为81011090+=, ∴图中a 的值是13.5,故③正确;点F 的坐标为(10,600),故②错误;综上,正确的结论有①③④,故选:D .本题考查一次函数的应用,根据图象与题干分析出每一段的状态是解题的关键.二、填空题13.【分析】由一次函数经过第二三四象限可得:m -1<0m -2<0将两个不等式联立解不等式组即可【详解】由题意得:解得:m<1故答案为:m<1【点睛】本题主要考查不等式组的求解以及一次函数图像与系数的关系解析:1m <【分析】由一次函数经过第二、三、四象限可得:m -1<0,m -2<0,将两个不等式联立,解不等式组即可.【详解】由题意得:1020m m -<⎧⎨-<⎩, 解得:m <1.故答案为:m <1.【点睛】本题主要考查不等式组的求解以及一次函数图像与系数的关系,掌握不等式组的解法,熟记一次函数图像与系数的关系是解题关键.14.y =﹣【分析】分别将x=0y=0代入直线y=-x+3中求出与之对应的yx 值由此即可得出点BA 的坐标根据折叠的性质结合勾股定理可求出AC 的长度进而可得出点C 的坐标设OD=m 则CD=BD=3-m 在Rt △解析:y =﹣1433x +【分析】分别将x=0、y=0代入直线y=-34x+3中求出与之对应的y 、x 值,由此即可得出点B 、A 的坐标,根据折叠的性质结合勾股定理可求出AC 的长度,进而可得出点C 的坐标,设OD=m ,则CD=BD=3-m ,在Rt △COD 中利用勾股定理可求出m 的值,进而可得出点D 的坐标,则可求出答案.【详解】解:如图,当x =0时,y =﹣34x +3=3, ∴点B 的坐标为(0,3), 当y =0时,有﹣34x +3=0, 解得:x =4,∴点A 的坐标为(4,0).由折叠性质可知,△ABD ≌△ACD ,∴AC =AB ,BD =CD .在Rt △AOB 中,AB 22OA OB +5,∴AC =5,∴OC =AC ﹣OA =5﹣4=1,∴点C 的坐标为(﹣1,0).设OD =m ,则CD =BD =3﹣m ,在Rt △COD 中,OC 2+OD 2=CD 2,即12+m 2=(3﹣m )2,解得:m =43, ∴OD =43, ∴点D 的坐标为(0,43). 设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0)、D (0,43)代入y =kx +b , 4043k b b +=⎧⎪⎨=⎪⎩, 解得:1343k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AD 的解析式为y =1433x -+. 故答案为:y =1433x -+. 【点睛】 本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及翻折变换,解题的关键是熟练掌握折叠的性质.15.或或【分析】(1)利用待定系数法求得直线AB 的解析式然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值即可解决问题【详解】解:(1)设直线AB 的解析式为y =kx+b ∵点A解析:()7,0或()1,0- 79t ≤≤或31t -≤≤-【分析】(1)利用待定系数法求得直线AB 的解析式,然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值,即可解决问题.【详解】解:(1)设直线AB 的解析式为y =kx+b ,∵点A 的坐标为(﹣1,2),点B 的坐标为(1,1),∴-21k b k b +=⎧⎨+=⎩ , 解得1232k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为1322y x =-+, 令y =0,则x =3,∴直线AB 与x 轴的交点为(3,0),∵点C (t ,0)是x 轴上的一个动点,∴S △ABC =12|t ﹣3|×2﹣12|t ﹣3|×1=2, ∴|t ﹣3|=4,解得t =7或﹣1,∴C (7,0)或(﹣1,0),故答案为(7,0)或(﹣1,0);(2)若S 的最小值为2,最大值为3,解S =12|t ﹣3|×2﹣12|t ﹣3|×1=3,得t =9或﹣3,∵当S =2时,得t =7或﹣1,∴若S 的最小值为2,最大值为3,点C 的横坐标t 的取值范围为7≤t≤9或﹣3≤t≤﹣1; 故答案为:7≤t≤9或﹣3≤t≤﹣1.【点睛】本题考查了三角形的面积,一次函数的应用等知识,解题的关键是学会用方程的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.16.【分析】根据正比例函数的定义列出式子计算求出参数m 的值【详解】解:∵函数y=(m-2)x+4-m2是关于x 的正比例函数∴4-m2=0且m-2≠0解得m=-2或m=2(不符合题意舍去)故答案为:m=-解析:2m =-【分析】根据正比例函数的定义列出式子计算求出参数m 的值.【详解】解:∵函数y=(m-2)x+4-m 2是关于x 的正比例函数,∴4-m 2=0且m-2≠0,解得,m=-2或m=2(不符合题意,舍去).故答案为:m=-2.【点睛】本题考查的是正比例函数的定义,一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.17.-1【分析】根据一次函数的定义即可求出k 的值【详解】解:∵是一次函数∴解得:;故答案为:【点睛】本题考查了一次函数的定义解题的关键是熟练掌握一次函数的定义进行解题解析:-1【分析】根据一次函数的定义,即可求出k 的值.【详解】解:∵2(1)3k y k x =-+是一次函数, ∴2110k k ⎧=⎨-≠⎩, 解得:1k =-;故答案为:1-.【点睛】本题考查了一次函数的定义,解题的关键是熟练掌握一次函数的定义进行解题. 18.x >-2且x≠3【分析】根据二次根式有意义的条件可得x+2≥0根据分式有意义的条件可得x -3≠0再解即可【详解】由题意得:x+2≥0且x -3≠0解得:x >-2且x≠3故答案为:x>-2且x≠3【点睛解析:x>-2,且x≠3.【分析】根据二次根式有意义的条件可得x+2≥0,根据分式有意义的条件可得x-3≠0,再解即可.【详解】由题意得:x+2≥0,且x-3≠0,解得:x>-2,且x≠3故答案为:x>-2,且x≠3.【点睛】本题考查了二次根式的性质和分式的意义,掌握二次根式及分式有意义的条件是解题的关键.19.300【分析】当x=0时y=300故此可得到AB两地的距离为3003小时后两车相遇从而可求得两车的速度之和然后依据5小时后两车的距离最大可知甲车到达B地用5小时从而可乙车的速度设甲乙两车出发后经过t解析:300【分析】当x=0时,y=300,故此可得到AB两地的距离为300,3小时后两车相遇,从而可求得两车的速度之和,然后依据5小时后两车的距离最大,可知甲车到达B地用5小时,从而可乙车的速度,设甲、乙两车出发后经过t小时同时到达C地,根据甲乙两车的路程相差300千米,列方程可求得t的值,最后根据乙的路程得到B、C之间的距离,则可得出A、C之间的距离.【详解】解:由图象可得:当x=0时,y=300,∴AB=300千米.∴甲车的速度=300÷5=60千米/小时,又∵300÷3=100千米/小时,∴乙车的速度=100-60=40千米/小时,设甲、乙两车出发后经过t小时同时到达C地,依题意可得60t-40t=300,解得t=15,∴B,C两地的距离=40×15=600千米,∴A,C两地的距离=600-300=300千米.故答案为:300.【点睛】本题以行程问题为背景,主要考查了一次函数的应用,解决问题的关键是根据函数图象理解题意,求得两车的速度,并根据两车行驶路程的数量关系列出方程.20.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x的图象经过第一三象限可得:k-1>0则k>1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.三、解答题21.(1)()2,4;(2)12【分析】(1)根据题意,将两个一次函数联立方程组,求出x 、y 的值,即可得到点C 的坐标; (2)根据一次函数可以得到点B 的坐标,再根据点C 的坐标,即可求得OBC ∆的面积.【详解】解:(1)由题意可得,26y x y x =⎧⎨=-+⎩, 解得24x y =⎧⎨=⎩, 一次函数6y x =-+的图象交一次函数2y x =的图象于点C ,∴点C 的坐标为(2,4);(2)一次函数6y x =-+的图象分别交y 轴和x 轴于点A ,B ,∴当0y =时,6x =,∴点B 的坐标为(6,0),6OB ∴=,点(2,4)C ,OBC ∴∆的面积是:64122⨯=, 即OBC ∆的面积是12.【点睛】本题考查的是一次函数的图像和性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)16010=-+y x(2)小于20升【分析】(1)根据题意,可以写出y与x的函数关系式,并写出x的取值范围;(2)根据(1)中的函数解析式和画函数图象的方法,可以画出相应的函数图象,结合图象进行解答即可.【详解】解:(1)由题意可得,y=60-0.1x,当y=0时,0=60-0.1x,得x=600,即y与x的函数关系式为y=60-0.1x(0≤x≤600);(2)y=60-0.1x,列表:x0600y600所以,当行驶里程超过400千米后油箱内的汽油量小于20升.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(1)见解析;(2)B(4,1);(3)12【分析】(1)根据等腰直角三角形的性质,可得AC=BC,∠ACB=90°,根据余角的性质,可得∠OAC=∠BCE,根据AAS,可得答案;(2)根据全等三角形的性质,可得B点坐标;(3)先求得b的值,再根据三角形的面积公式,可得答案.【详解】(1)(1)证明:∵BE⊥CE∴∠BEC=90°∵△ABC是等腰直角三角形∴AC=BC,∠ACB=90°∴∠AOC=∠BEC=90°∵∠OAC + ∠ACO = 90°,∠ACO +∠BCE =90°,∴∠OAC =∠BCE .在Rt △AOC 和Rt △CEB 中,∠AOC =∠CEB∠OAC =∠BCEAC =BC∴△AOC ≌△CEB (AAS ).(2)∵△AOC ≌△CEB∴CE =AO =3,EB =OC =1∴B 点坐标(4,1)(3)将B 点坐标代入y =x +b 中可求b =-3∴D (0,-3)∴AD =6∴S △ABD =12AD•B x =12×6×4=12 【点睛】本题考查了一次函数综合题,利用余角的性质得出∠OAC=∠BCE 以及利用待定系数法求出b 值是解答本题的关键.24.(1)30元;(2) 1.480y x =-;(3)130元【分析】(1)求出0100x <≤时一次函数的解析式,即可求解;(2)当100x ≥时, y 与x 之间的函数关系式为y kx b =+,把点()()100,60,200,200代入求解即可;(3)把150x =代入解析式即可得到答案;【详解】 解:()10100x <≤时,35y x =月用电量为50度时,应交电费30元; ()2当100x ≥时,设y 与x 之间的函数关系式为y kx b =+,点()()100,60,200,200在函数y kx b =+的图象上,10060200200k b k b +=⎧∴⎨+=⎩解得 1.480k b =⎧⎨=-⎩, 即当100x ≥时,y 与x 之间的函数关系式为 1.480y x =-;()3当150x =时, 1.415080130y =⨯-=,即月用电量为150时,应交电费130元.【点睛】本题主要考查了一次函数的图象应用,准确分析计算是解题的关键.25.(1)y =12x+15(x≥0);(2)50min . 【分析】(1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,从而列方程求解【详解】解:(1)设乙气球的函数解析式为:y =k x+b ,分别将(0,15),(20,25)代入, 152520b k b =⎧⎨=+⎩, 解得:1215k b ⎧=⎪⎨⎪=⎩,∴乙气球的函数解析式为:y =12x+15(x≥0); (2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m ,且此时甲气球海拔更高,甲气球的函数解析式为:y =x+5∴x+5﹣(12x+15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【点睛】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象. 26.(1)y 1=5x +60;y 2=4.5x +72;(2)当购买24张票时,两种优惠方案付款一样多;4≤x <24时,优惠方案1付款较少;x >24时,优惠方案2付款较少【分析】(1)首先根据优惠方案①:付款总金额=购买成人票金额+除去4人后的学生票金额; 优惠方案②:付款总金额=(购买成人票金额+购买学生票金额)×打折率,列出y 关于x 的函数关系式,(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数.再就三种情况讨论.【详解】(1)按优惠方案1可得:y 1=20×4+(x -4)×5=5x +60,按优惠方案2可得:y 2=(5x +20×4)×90%=4.5x +72,(2)y1-y2=0.5x-12(x≥4),①当y1-y2=0时,得0.5x-12=0,解得x=24,∴当购买24张票时,两种优惠方案付款一样多;②当y1-y2<0时,得0.5x-12<0,解得x<24,∴4≤x<24时,y1<y2,优惠方案1付款较少.③当y1-y2>0时,得0.5x-12>0,解得x>24,∴当x>24时,y1>y2,优惠方案2付款较少.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.。
一次函数图像练习题及答案
一次函数图像练习题及答案【篇一:一次函数习题集锦(含答案)】txt>一、试试你的身手(每小题3分,共24分)1.正比例函数y?? 21x中,y值随x的增大而 22.已知y=(k-1)x+k-1是正比例函数,则k=.3.若y+3与x成正比例,且x=2时,y=5,则x=5时,y= . 4.直线y=7x+5,过点(,0),(0,).5.已知直线y=ax-2经过点(-3,-8)和?,b?两点,那么a= ,b= . 6.写出经过点(1,2)的一次函数的解析式为(写出一个即可). 7.在同一坐标系内函数y?12111x?1,y?x?1,y?x的图象有什么特222点.8.下表中,y是x二、相信你的选择(每小题3分,共24分)1.下列函数中是正比例函数的是() a.y?8xb.y?82c.y?2(x?1) d.y?1)x32.下列说法中的两个变量成正比例的是() a.少年儿童的身高与年龄 b.圆柱体的体积与它的高c.长方形的面积一定时,它的长与宽 d.圆的周长c与它的半径r 3.下列说法中错误的是() a.一次函数是正比例函数 b.正比例函数是一次函数c.函数y=|x|+3不是一次函数d.在y=kx+b(k、b都是不为零的常数)中, y-b与x成正比例4.一次函数y=-x-1的图象不经过()a.第一象限 b.第二象限 c.第三象限 d.第四象限 5.函数y=kx-2中,y随x的增大而减小,则它的图象可以是()6.如图1,一次函数的图象经过a、b两点,则这个一次函数的解析式为() a.y?3x?2 2b.y?1x?2 2c.y?1x?2 2d.y?3x?2 27.若函数y=kx+b(k、b都是不为零的常数)的图象如图2所示,那么当y>0时,x的取值范围为()a.x>1 b.x>2 c.x<1 d.x<28.已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图象经过() a.第一、二、三象限b.第一、二、四象限 c.第二、三、四象限d.第一、三、四象限三、挑战你的技能(共30分)1.(10分)某函数具有下列两条性质:(1) 它的图象是经过原点(0,0)的一条直线; (2) y的值随x的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10分)已知一次函数y=kx+b的图象经过a(2,4)、b(0,2)两点,且与x轴相交于c点.(1)求直线的解析式.(2)求△aoc的面积.3.(10分)已知一个正比例函数和一个一次函数的图象交于点p (-2,2),且一次函数的图象与y轴相交于点q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△poq的面积.四、拓广探索(共22分)1.(11分)如图3,在边长为2的正方形abcd的一边bc上的点p从b点运动到c点,设pb=x,梯形apcd的面积为s.(1)写出s与x的函数关系式;(2)求自变量x的取值范围;(3)画出函数图象.2.(11分)小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式. (2)小明从批发市场共购进多少千克西瓜? (3)小明这次卖瓜赚了多少钱?参考答案一、1.减小2.?13.174.?5,5 75.2,?16.略(答案不惟一) 7.三条直线互相平行8.y?2x?2,表格从左到右依次填?2,0,4 二、1.d 2.d 3.a 4.a 三、1.y??x(答案不惟一) 2.(1)y?x?2 (2)43.(1)正比例函数的解析式为y??x.一次函数的解析式为y?x?4 (2)图略;(3)4四、1.(1)s?4?x;(2)0?x?2;(3)图略 2.(1)y?5.d6.a7.d8.b8x(0≤x≤40); 5(2)50千克;(3)36元一次函数测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。
2019—2020年最新浙教版数学八年级上册5.4《一次函数的图象和性质》练习题【精心整理测试卷】.doc
5.4一次函数的图象和性质一、选择题1.已知一次函数y kx k=-,若y随着x的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。
那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为1R和2R的两个电阻,其两端电压U关于电流强度I的函数图象如图,则阻值(A)1R>2R(B)1R<2R(C)1R=2R(D)以上均有可能4.若函数bkxy+=(b k,为常数)>y时,x 的取值范围是A 、1>xB 、2>xC 、1<xD 、2<x 5.下列函数中,一次函数是(). (A)(B )(C )(D )6.一次函数y=x+1的图象在().(A )第一、二、三象限(B )第一、三、四象限 (C )第一、二、四象限(D )第二、三、四象限 7.将直线y=2x 向上平移两个单位,所得的直线是A .y=2x+2B .y=2x-2C .y=2(x-2)D .y=2(x+2) 8.如图,已知点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为 A.(0,0)B.11(,)22-C.22-D.11(,)22- 9.如图,把直线l沿x 轴正方向向右平移2个单位得到直线l′,则直线l /的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-2 10.直线y=kx+1一定经过点()A .(1,0)B .(1,k)C .(0,k)D .(0,1)11.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C ,yxE DCA且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y=45xC.y=54xD.y=920x12.下列函数中,是正比例函数的为A.y=12x B.y=4xC.y=5x-3D.y=6x2-2x-1二、填空题1.若正比例函数y=mx(m≠0)和反比例函数y=nx(n≠0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数()1f x x=+,那么()1f=3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程y与经过的时间x之间的函数关系.请根据图象填空:____出发的早,早了____小时,先到达,先到_____小时,电动自行车的速度为____km/h,汽车的速度为____km/h.h )第16题图6.某电信公司推出手机两种收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差 元.7.若一次函数y=ax+1―a 中,y 随x 的增大而增大,且它的图像与y 轴交于正半轴,则|a ―= 。
(常考题)人教版初中数学八年级数学下册第四单元《一次函数》测试题(包含答案解析)(4)
一、选择题1.如图,平面直角坐标系中,一次函数333=-+y x 分别交x 轴、y 轴于A 、B 两点.若C 是x 轴上的动点,则2BC AC +的最小值( )A .236+B .6C .33+D .42.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D . 3.如图,在平面直角坐标系中,点A 的坐标为(﹣2,3),AB ⊥x 轴,AC ⊥y 轴,D 是OB 的中点.E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43)B .(0,1)C .(0,103)D .(0,2) 4.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+ 5.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,46.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .7.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( ) A .2B .3C .4D .5 8.若点(-2,y 1),(3,y 2)都在函数y =-2x +b 的图像上,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定 9.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( ) A . B . C . D . 10.下表反映的是某地区用电量x (千瓦时)与应交电费y (元)之间的关系: 用电量x (千瓦时)1 2 3 4 ······ 应交电费y (元) 0.55 1.1 1.65 2.2 ······下列说法:①x 与y 都是变量,且x 是自变量,y 是x 的函数;②用电量每增加1千瓦时,应交电费增加0.55元;③若用电量为8千瓦时,则应交电费4.4元;④若所交电费为2.75元,则用电量为6千瓦时,其中正确的有( )A .4个B .3个C .2个D .1个 11.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( )A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量D .2是常量,C 、r 是变量 12.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-二、填空题13.如图,直线1:22l y x =-+交x 轴于点A ,交y 轴于点B ,直线21:12y l x =+交x 轴于点D ,交y 轴于点C ,直线1l 、2l 交于点M .(1)点M 坐标为________;(2)若点E 在y 轴上,且BME 是以BM 为一腰的等腰三角形,则E 点坐标为________.14.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)15.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…,按如图所示的方式放置.点A 1、A 2、A 3、…,和点C 1、C 2、C 3,…,分别在直线y =kx +b (k>0)和x 轴上,已知点B 1(1,1),B 2(3,2),则点B 2021的坐标是_________________.16.如图,在平面直角坐标系中,点A 、C 分别在x 轴、y 轴上,四边形ABCO 是边长为2的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP 、AP ,当点P 满足DP AP +的值最小时,则点P 的坐标为______.17.直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3,则m =_____. 18.如图,直线(0)y kx b k =+≠经过(1,2)A --和(3,0)B -两点,则关于x 的不等式组10x kx b +<+<的解是____________.19.已知一次函数12y kx k =-(k 是常数)和21y x =-+.(1)无论k 取何值,12y kx k =-(k 是常数)的图像都经过同一个点,则这个点的坐标是_______;(2)若无论x 取何值,12y y >,则k 的值是_______.20.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.三、解答题21.如图,顶点M 在y 轴上的抛物线2=y ax c +与直线1y x =+相交于,A B 两点,且点A 在x 轴上,点B 的横坐标为2,连接,AM BM ,(1)求抛物线对应的函数表达式;(2)判断ABM ⊿的形状,并说明理由;(3)若将(1)中的抛物线沿y 轴上下平移,则如何平移才能使平移后的抛物线过点(2,3)--?22.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 23.已知点(2,﹣4)在正比例函数y =kx 的图象上.(1)求k 的值;(2)若点(﹣1,m )也在此函数y =kx 的图象上,试求m 的值.24.已知1y +与3x -成正比例,且5x =时,8y =,(1)求y 与x 之间的函数解析式;(2)当6y =-时,求x 的值.25.某商品经销店欲购进A 、B 两种纪念品,用160元购进的A 种纪念品与用240元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少元?(2)若这两种纪念品共购进1000件,由于A 种纪念品销量较好,进购时A 不少于B 种纪念品的数量,且不超过B 种纪念品的1.5倍,问共有多少种进购方案?(3)该商店A 种纪念品每件售价24元,B 种纪念品每件售价35元,在(2)的条件下求出哪种方案获利最多,并求出最大利润.26.某水果生产基地销售苹果,提供以下两种购买方式供客户选择:方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克. 方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x (千克),所需费用为y (元)﹒(1)若客户按方式1购买,请写出y (元)与x (千克)之间的函数表达式.(备注:按方式1购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】作直线AB 关于x 轴的对称直线AP ,过点C 作CD AP ⊥于点D ,过点B 作BE AP ⊥于点E ,在Rt ACD △中,30CAD ∠=︒,2AC CD =,所以()22BC AC BC CD +=+,因为BC CD BE +≥,求出BE 的长可求出2BC AC +的最小值.【详解】解:∵一次函数=y x 分别交x 轴、y 轴于A 、B 两点,∴()3,0A ,(B ,3,OA OB ∴==∴AB ==, ∵在Rt AOB 中,12OB AB =, 30BAO ∴∠=︒,作直线AB 关于x 轴的对称直线AP ,过点C 作CD AP ⊥于点D ,过点B 作BE AP ⊥于点E ,30PAO ∴∠=︒ ,60BAE BAO PAO ∴∠=∠+∠=︒ ,∴在Rt ABE △中,30ABE ∠=︒,1122AE AB ∴==⨯=3BE ∴===又∵在Rt ACD △中,2AC CD =,∴ ()22BC AC BC CD +=+,BC CD BE +≥,∴2BC AC +=()226BC CD BE =+≥=,故选:B .【点睛】本题是一次函数的综合题,考查了一次函数与坐标轴的交点,垂线的性质,直角三角形的性质,轴对称等知识,利用垂线段最短是解本题的关键.2.B解析:B【分析】根据函数y kx b =+在坐标系中得位置可知0,0k b >>,然后根据系数的正负即可判断函数y bx k =-的位置.【详解】函数y kx b =+的图像经过一、二、三象限,0,0k b ∴>>,0k -<∴∴函数y bx k =-的图像经过一、三、四象限,故选:B .【点睛】本题考查了一次函数与系数的关系,根据函数在坐标系中的位置得出系数的正负是解题关键.3.B解析:B【分析】作点A 关于y 轴的对称点A',连接A'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A ',连接A 'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD +DA '的长;∵A 的坐标为(﹣2,3),AB ⊥x 轴,B 点坐标为(-2,0), D 是OB 的中点,∴D 点坐标为:(﹣1,0),A 关于y 轴的对称点A',可知A '(2,3),设A 'D 的直线解析式为y =kx +b ,则:230k b k b +=⎧⎨-+=⎩, 解得:11k b =⎧⎨=⎩, ∴A 'D 的直线解析式为y =x +1,当x =0时,y =1∴E (0,1).故选:B .【点睛】本题考查了待定系数法求解析式和求一次函数图象与坐标轴交点坐标,能够利用轴对称求线段的最短距离,将AE +DE 的最短距离转化为两点之间,线段最短,并能利用一次函数求出点的坐标是解题的关键.4.C解析:C【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式.【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得:227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7,∴c=-7,∴直线l 的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.5.A解析:A【分析】根据函数解析式知函数图象过点(0,2),由一次函数y 随x 的增大而减小,得到函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,即可得到答案.【详解】∵一次函数2y kx =+,当x=0时y=2,∴函数图象过点(0,2),∵一次函数y 随x 的增大而减小,∴函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,故选:A .【点睛】此题考查一次函数的性质,熟记一次函数的性质并熟练解决问题是解题的关键. 6.D解析:D【分析】分k >0、k <0两种情况找出函数y=kx 及函数y=kx+x-k 的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l 1:y=kx ,另一条为l 2:y=kx+x-k ,当k <0时,-k >0,|k|>|k+1|,l 1的图象比l 2的图象陡,当k <0,k+1>0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、三象限,故选项A 正确,不符合题意;当k <0,k+1<0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、四象限,故选项B 正确,不符合题意;当k >0,k+1>0,-k <0时,l 1:y kx =的图象经过一、三象限,l 2:y=kx+x-k 的图象经过一、三、四象限,l 1的图象比l 2的图象缓,故选项C 正确,不符合题意;而选项D 中,,l 1的图象比l 2的图象陡,故选项D 错误,符合题意;故选:D【点睛】本题考查了正比例函数的图象及一次函数的图象,分k >0、k <0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.7.C解析:C【分析】由题意,先求出二元一次方程组的解,结合解为非负数得到a 的取值范围,再根据一次函数的性质,即可得到答案.【详解】 解:42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩解方程组,得:521322x a y a ⎧=+⎪⎪⎨⎪=-+⎪⎩, ∵方程的解是非负数, ∴50213022a a ⎧+≥⎪⎪⎨⎪-+≥⎪⎩, 解得:532a -≤≤, ∵一次函数(1)3y a x a =++-图象不过第四象限,∴1030a a +>⎧⎨-≥⎩, ∴13a -<≤,∴a 的取值范围是13a -<≤,∴所有符合条件的整数a 有:0,1,2,3,共4个;故选:C .【点睛】本题考查了一次函数的性质,解二元一次方程组,解不等式组,解题的关键是掌握运算法则,正确求出a 的取值范围.8.A解析:A【分析】根据一次函数的性质得出y 随x 的增大而减小,进而求解.【详解】由一次函数y=-2x+b 可知,k=-2<0,y 随x 的增大而减小,∵-2<3,∴12y y >,故选:A .【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b (k≠0),当k <0时,y 随x 的增大而减小是解题的关键.9.D解析:D【分析】先根据直线y kx b =+经过一、三、四象限判断出k 和b 的正负,从而得到直线y bx k =-的图象经过的象限.【详解】解:∵直线y kx b =+经过第一、三、四象限,∴0k >,0b <,∴0k -<,∴直线y bx k =-经过第二、三、四象限.故选:D .【点睛】本题考查一次函数的图象和性质,解题的关键是掌握根据系数的正负判断函数图象经过的象限的方法.10.B解析:B【分析】根据一次函数的定义,由自变量的值求因变量的值,以及由因变量的值求自变量的值,判断出选项的正确性.【详解】解:通过观察表格发现:每当用电量增加1千瓦时,电费就增加0.55,∴y 是x 的一次函数,故①正确,②正确,设y kx b =+,根据表格,当1x =时,0.55y =,当2x =时, 1.1y =,0.552 1.1k b k b +=⎧⎨+=⎩,解得0.550k b =⎧⎨=⎩, ∴0.55y x =,当8x =时,0.558 4.4y =⨯=,故③正确,当 2.75y =时,0.55 2.75x =,解得5x =,故④错误.故选:B .【点睛】本题考查一次函数的应用,解题的关键是掌握一次函数的实际意义和对应函数值的求解. 11.B解析:B【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【详解】解:圆的周长计算公式是c=2πr ,C 和r 是变量,2、π是常量,故选:B .【点睛】本题主要考查了常量,变量的定义,识记的内容是解题的关键.12.C解析:C【分析】根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.二、填空题13.()()或()或()【分析】(1)联立两个方程组求解即可(2)根据题意有以M 为顶点和以B 为顶点两种情况分别求解即可【详解】解:(1)联立两个方程组得将①代入②得:解得:将代入①得:∴点坐标为()故答解析:(25,65) (0,25)或(0,2-或(0,2+ 【分析】(1)联立两个方程组求解即可(2)根据题意有以M 为顶点和以B 为顶点两种情况,分别求解即可【详解】解:(1)联立两个方程组得22112y x y x =-+⎧⎪⎨=+⎪⎩①② 将①代入②得:22=112x x -++ 解得:2=5x 将2=5x 代入①得:5=6y ∴点M 坐标为(25,65)故答案为:(25,65) (2)由22y x =-+得 当x=0时,y=2故B(0,2)以BM 为一腰时,有两种情况当BME 以M 为顶点时,设E 点坐标为(0,y ) 则66255y -=- 解得:25y = 故E 点坐标为(0,25) 当BME 以B 为顶点时,设E 点坐标为(0,y )∵5= 若E 在B 下方则y=25- 若E 在B 上方则y=2故E 点坐标为(0,25-)或(0,25+)故答案为:(0,25)或(0,25-)或(0,25+) 【点睛】 本题考查两直线相交问题及等腰三角形的性质,熟练掌握等要三角形的定义及性质是解本题的关键14.①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤【分析】根据一次函数的定义进行一一判断.【详解】①3x y =是一次函数;②y =是一次函数,③1y x =不是一次函数,④23y x =-是一次函数,⑤()222121y x x x x =--+=+是一次函数.故答案为:①②④⑤.【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数. 15.(22021-122020)【分析】首先利用待定系数法求得直线的解析式然后分别求得B1B2B3…的坐标可以得到规律:Bn (2n-12n-1)据此即可求解【详解】解:∵B1的坐标为(11)点B2的坐标解析:(22021-1,22020)【分析】首先利用待定系数法求得直线的解析式,然后分别求得B 1,B 2,B 3…的坐标,可以得到规律:B n (2n -1,2n-1),据此即可求解.【详解】解:∵B 1的坐标为(1,1),点B 2的坐标为(3,2),∴正方形A 1B 1C 1O 1边长为1,正方形A 2B 2C 2C 1边长为2,∴A 1的坐标是(0,1),A 2的坐标是:(1,2),代入y=kx+b 得:12b k b ⎧⎨+⎩==, 解得:11k b ⎧⎨⎩==, 则直线的解析式是:y=x+1.∵A 1B 1=1,点B 2的坐标为(3,2),∴点A 3的坐标为(3,4),∴A 3C 2=A 3B 3=B 3C 3=4,∴点B 3的坐标为(7,4),∴B 1的纵坐标是:1=20,B 1的横坐标是:1=21-1,∴B 2的纵坐标是:2=21,B 2的横坐标是:3=22-1,∴B 3的纵坐标是:4=22,B 3的横坐标是:7=23-1,∴B n 的纵坐标是:2n-1,横坐标是:2n -1,则B n (2n -1,2n-1).∴B 2021的坐标是:(22021-1,22020),故答案为:(22021-1,22020).【点睛】此题主要考查了待定系数法求函数解析式和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题的关键.16.【分析】根据正方形的性质得到点AC 关于直线OB 对称连接CD 交OB 于P连接PAPD则此时PD+AP的值最小求得直线CD的解析式为y=-x+2由于直线OB 的解析式为y=x解方程组得到P()即可【详解】解解析:44 , 33⎛⎫⎪⎝⎭【分析】根据正方形的性质得到点A,C关于直线OB对称,连接CD交OB于P,连接PA,PD,则此时,PD+AP的值最小,求得直线CD的解析式为y=-12x+2,由于直线OB的解析式为y=x,解方程组得到P(43,43)即可.【详解】解:∵四边形ABCO是正方形,∴点A,C关于直线OB对称,连接CD交OB于P,连接PA,PD,则此时,PD+AP的值最小,∵OC=OA=AB=2,∴C(0,2),A(2,0),∵D为AB的中点,∴AD=12AB=1,∴D(2,1),设直线CD的解析式为:y=kx+b,∴212k bb+⎧⎨⎩==,∴122kb⎧=-⎪⎨⎪=⎩,∴直线CD的解析式为:y=-12x+2,∵直线OB的解析式为y=x,∴122y xy x⎧-+⎪⎨⎪⎩==,解得:x=y=43, ∴P (43,43), 故答案为:(43,43). 【点睛】 本题考查了正方形的性质,轴对称-最短路线问题,待定系数法求一次函数的解析式,正确求出直线CD 的解析式是解题的关键.17.4【分析】首先求出直线y =x ﹣1向上平移m 个单位长度得到y =﹣1+m 结合y =x+3即可求得m 的值【详解】解:直线y =x ﹣1向上平移m 个单位长度得到直线y =x+3∴﹣1+m =3解得m =4故答案为4【点解析:4【分析】首先求出直线y =12x ﹣1向上平移m 个单位长度得到y =12x ﹣1+m ,结合y =12x+3,即可求得m 的值.【详解】解:直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3, ∴﹣1+m =3,解得m =4,故答案为4.【点睛】此题主要考查了一次函数图象与几何变换,关键是掌握直线y=kx+b 向上平移a 个单位,则解析式为y=kx+b+a ,向下平移a 个单位,则解析式为y=kx+b-a .18.【分析】用待定系数法求出kb 的值然后将它们代入不等式组中进行求解即可【详解】解:将A(−1-2)和B(−30)代入y=kx+b 中得:解得:∴y=-x-3则x+1<-x-3<0解得:−3<x<−2故答解析:32x -<<-【分析】用待定系数法求出k 、b 的值,然后将它们代入不等式组中进行求解即可.【详解】解:将 A(− 1,-2) 和 B(− 3,0) 代入 y=kx+b 中得:230k b k b -+=-⎧⎨-+=⎩解得:13k b =-⎧⎨=-⎩,∴y=-x-3,则 x+1<-x-3<0 ,解得: −3<x<−2,故答案为:−3<x<−2【点睛】本题考查了待定系数法求一次函数解析式以及不等式的解法,难度不大.19.(20)-1【分析】(1)解析式变形为y =k (x ﹣2)即可得到无论k 取何值y1=kx ﹣2k (k 是常数)的图象都经过点(20);(2)由题意可知y1的图象始终在y2上方得到两函数不相交平行即可得出k =解析:(2,0) -1【分析】(1)解析式变形为y =k (x ﹣2),即可得到无论k 取何值,y 1=kx ﹣2k (k 是常数)的图象都经过点(2,0);(2)由题意可知,y 1的图象始终在y 2上方,得到两函数不相交,平行,即可得出k =﹣1.【详解】解:(1)∵y =kx ﹣2k =k (x ﹣2),∴当x =2时,y =0,∴这个点的坐标是(2,0),故答案为(2,0);(2)∵无论x 取何值,y 1>y 2,∴y 1的图象始终在y 2上方,∴两个函数平行,∴k =﹣1,故答案为﹣1.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,难度适中.20.【分析】根据一次函数的图象当时y 随着x 的增大而减小分析即可【详解】解:因为A (x1y1)B (x2y2)是一次函数图象上的不同的两个点当x1>x2时y1<y2可得:解得:a <1故答案为:【点睛】本题考解析:1a <【分析】根据一次函数的图象(1)2y a x =-+,当10a -<时,y 随着x 的增大而减小分析即可.【详解】解:因为A (x 1,y 1)、B (x 2,y 2)是一次函数(1)2y a x =-+图象上的不同的两个点, 当x 1>x 2时,y 1<y 2,可得:10a -<,解得:a <1.故答案为:1a <.【点睛】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b 的性质:当k <0时,y 随着x 的增大而减小;k >0时,y 随着x 的增大而增大;k=0时,y 的值=b ,与x 没关系.三、解答题21.(1)21y x =-;(2)△ABM 为直角三角形,见解析;(3)向下平移6个单位过点(-2,-3)【分析】(1)将y=0,x=2,分别代入直线解析式求出x 、y 的值,即求得点A 、B 的坐标,再利用待定系数法即可求解抛物线解析式;(2)令x=0,代入抛物线解析式求得M 坐标,利用两点间的距离公式求得AB 、AM 、BM ,再利用勾股定理的逆定理即可判定△ABM 为直角三角形;(3)设抛物线2=1y x -平移后的解析式为y=x 2-1+m ,将点(-2,-3)代入上式,得到关于m 的方程,解方程即可得出结论.【详解】(1)当y=0时,有x+1=0,则x=-1.∴A (-1,0),当x=2时,y=2+1=3,∴B (2,3),将A ,B 两点代入2=y ax c +中, 得0=34a c a c +⎧⎨=+⎩,解得=11a c ⎧⎨=-⎩, ∴抛物线的解析式为2=1y x -.(2)三角形ABM 为直角三角形,理由如下:在抛物线中,当x=0时,y=-1,∴M (0,-1),又∵A (-1,0),B (2,3), ∴AB AM BM又∵22220AM AB BM +==,∴三角形ABM 为直角三角形.(3)设抛物线2=1y x -沿y 轴平移后的解析式为2=1y x m -+,将点(-2,-3)代入上式,得m=-6,则向下平移6个单位过点(-2,-3).【点睛】本题考查待定系数法求解析式,一次函数图象上的坐标特征、两点间的距离公式及勾股定理的逆定理,解题的关键是(1)求出A 、B 的坐标,(2)求出求得AB 、AM 、BM 的长,(3)正确写出平移后的抛物线解析式,难度适中.22.22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .23.(1)-2;(2)2【分析】(1)结合点(2,-4)在正比例函数y =kx 的图象上,根据正比例函数的性质,列方程并求解,即可得到答案;(2)根据(1)的结论,得到正比例函数的解析式;结合题意,通过计算即可得到答案.【详解】(1)∵点(2,-4)在正比例函数y =kx 的图象上∴-4=2k解得:k =-2;(2)结合(1)的结论得:正比例函数的解析式为y =-2x∵点(-1,m )在函数y =-2x 的图象上∴当x =-1时,m =-2×(-1)=2.【点睛】本题考查了正比例函数的知识;解题的关键是熟练掌握正比例函数、坐标的性质,从而完成求解.24.(1)92922y x =-;(2)179 【分析】(1)设1(3)(0)y k x k +=-≠,利用待定系数法求k ,从而确定函数关系式; (2)将y=-6代入解析式求x 的值.【详解】解设1(3)(0)y k x k +=-≠(1)将58x y =⎧⎨=⎩代入,得 81(53)k +=- 即92=k ∴92922y x =- (2)当6y =-时929622x -=- 179x = 【点睛】本题考查待定系数法求函数解析式,掌握待定系数法计算步骤,正确计算是解题关键. 25.(1)A 、B 两种纪念品每件进价分别为20元、30元;(2)101种;(3)A 种500件,B 种中500件时,最大利润为4500元【分析】(1) 设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元,根据题意列方程求解即可;(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,依据题意列不等式组,求出y 的整数取值范围,即可得出进购方案;(3)根据题意得出利润的关系式,再结合第二问y 的取值范围求出最大利润.【详解】解:(1)设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元. 根据题意得16024010x x =+,去分母, 得:160(10)240x x +=,解得:20x , 经检验,20x 是原方程的解,1030x +=(元),∴A 种纪念品每件进价20元,B 种纪念品每件进价30元.(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,根据题意得:10001.5(1000)y y y y ≥-⎧⎨≤-⎩,解得:500600y ≤≤. 又y 只能取整数,500y ∴=,501, (600)则共有101种购进方案.(3)由题意得,最大利润为:(2420)(3530)(1000)5000W y y y =-+--=-+,在500600y ≤≤时,当500y =时,max 4500W =(元),∴当A 种购进500件,B 种购进500件时,利润最大为4500元.【点睛】本题考查分式方程、一元一次不等式组及一次函数的综合应用,解题关键在于充分理解题意,根据题意列出相关关系式进行求解.26.(1)12003y x =+;(2)当15002400x <<时,选择方案二省钱;当 2400x =时,两种方案费用一样;当2400x >时,选择方案一省钱.【分析】(1)根据题意即可得出y (元)与x (千克)之间的函数表达式;(2)设方式2购买时所需费用记作y 2元,求出y 2与x (千克)之间的函数表达式,结合(1)的结论解答即可;【详解】解:(1)根据题意得:12003y x =+.(2)方案一:112003y x =+,方案二:2 3.5y x =,当12y y >,12003 3.5,x x +>2400,x <当12,12003 3.5y y x x =+=,2400,x =当12,12003 3.5y y x x <+>2400,x >∴当15002400x <<时,选择方案二省钱;当2400x =时,两种方案费用一样;当2400x >时,选择方案一省钱.【点睛】此题主要考查一次函数的应用;得到两种方案总付费的等量关系是解决本题的关键.。
一次函数(二)初中数学试卷(14)
一次函数的图像和性质测试题一.选择题(共16小题)1.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.42.一次函数y=x+2的图象大致是()A.B.C.D.3.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A.B.C.D.4.直线y=x﹣1的图象经过的象限是()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限5.下列函数中,其图象同时满足两个条件①y随着x的增大而增大②y与x轴的正半轴相交.则它的解析式为()A.y=﹣2x﹣1 B.у=﹣2x+1 C.у=2x﹣1 D.у=2x+16.已知一次函数y=kx﹣k,若y随x的增大而减小,则该函数的图象经过()A.第一,二,三象限 B.第一,二,四象限 C.第二,三,四象限 D.第一,三,四象限7.一次函数y=(k﹣2)x+3的图象如图所示,则k的取值范围是()A.k>2 B.k<2 C.k>3 D.k<38.已知一次函数y=﹣x+b的图象经过第一、二、四象限,则b的值可以是()A.﹣2 B.﹣1 C.0 D.29.下列四个点,在正比例函数的图象上的点是()A.(2,5)B.(5,2)C.(2,﹣5)D.(5,﹣210.直线y=kx﹣1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,﹣1)11.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<212.如图,直线y=kx+b交坐标轴于A(﹣3,0)、B(0,5)两点,则不等式﹣kx﹣b<0的解集为()A.x>﹣3 B.x<﹣3 C.x>3 D.x<313.两条直线y=k1x+b1和y=k2x+b2相交于点A(﹣2,3),则方程组的解是()A. B.C.D.14.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.15.两直线l1:y=2x﹣1,l2:y=x+1的交点坐标为()A.(﹣2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(2,3)16.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=﹣x﹣2 B.y=﹣x﹣6 C.y=﹣x+10 D.y=﹣x﹣1二.填空题(共2小题)17.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程是2x+b=0的解是x=_________.18.一元一次方程3x﹣1=5的解就是一次函数_________与x轴的交点横坐标.三.解答题(共6小题)19.已知:一次函数y=kx+b的图象经过M(0,2),(1,3)两点.(1)求k,b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.20.在直角坐标系xOy中,直线l过(1,3)和(3,1)两点,且与x轴,y轴分别交于A,B两点.(1)求直线l的函数关系式;(2)求△AOB的面积.21.如图,直线l是一次函数y=kx+b的图象,点A、B在直线l上.根据图象回答下列问题:(1)写出方程kx+b=0的解;(2)写出不等式kx+b>1的解集;(3)若直线l上的点P(a,b)在线段AB上移动,则a、b应如何取值.22.某汽车加油站储油45000升,每天给汽车加油1500升,那么储油量y(升)与加油x(天)之间的关系式是什么?并指出自变量的取值范围.23.用解析式表示下列函数关系.(1)某种苹果的单价是1.6元/kg,当购买x(kg)苹果时,花费y(元),y(元)与x(kg)之间的函数关系._________;(2)汽车的速度为20km/h,汽车所走的路程s(km)和时间t(h)之间的关系._________.24.甲、乙两地相距520km,一辆汽车以80km/h的速度从甲地开往乙地,行驶t(h)后停车在途中加水.(1)写出汽车距乙地路程s(km)与行驶时间t(h)之间的函数关系式_________;(2)请写出自变量t的取值范围_________.答案与评分标准一.选择题(共16小题)1.(2006•武汉)下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.4考点:一次函数的定义。
新-41.一次函数定义、图象与性质
一、 一次函数的定义 二、 一次函数的图象 三、 一次函数的性质
1.经过象限 2.一次函数单调性 3.一次函数性质综合
四、 一次函数与点的坐标
一、 一次函数的定义
1.判断
1. 【易】(初一数学下期末复习)下列一次函数的个数是( )
① y = 5 − x ② y = x + 1 ③ y = 1 ④ y = − 1 x ⑤ y = π (x + 1)
【答案】B
6. 【易】(理工附 2011 学年度期末考试)在函数 y = − x + 2 , y = x2 + 2 , y = x + 1 , 3
y = x + 8 中,一次函数有( )
A.1 个
B.2 个
C.3 个
D.4 个
【答案】B
( ) 7. 【易】下列函数① y = 2x2 + x + 1② y = 2π r ③ y = 1 ④ y = 2 −1 x ⑤ y = − (a + x)( a 是 x
y
y
y
y
O
x
A.
O
x
O
x
B.
C.
6 / 41
O
x
D.
PDF pdfFactory Pro
【答案】C
38. 【中】(2011 深圳外国语分校初二上期末)一次函数 y = ax − a (a ≠ 0) 的大致图像是( )
y
y
y
y
O
x
O
x
O
x
O
x
A.
B.
C.
D.
【答案】B
二、 一次函数的图象
一次函数的图像与性质
课后巩固 拓展升华
1、如图,将矩形ABCD置于平面直角坐标系中,其中AD边在x轴上, AB=2,直线MN:y=x−4沿x轴的负方向以每秒1个单位的长度平移,设在平 移过程中该直线被矩形ABCD的边截得的线段长度为m,平移时间为t,m 与t的函数图象如图2所示。 (1)请解释图中E、F、G、H分别表示直线MN运动到矩形ABCD的哪一 个顶点处? (2)点A的坐标为___,矩形ABCD的面积为___; (3)求a,b的值; (4)在平移过程中,求直线MN 扫过矩形ABCD的面积S与t的函数 关系式,并写出自变量t的取值范围。(本小题选做)
课后巩固 拓展升华
2、从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出 发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车 在平路、上坡、下坡时分别保持匀速前进。已知小明骑车上坡的速度比在 平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设 小明出发xh后,到达离甲地ykm的地方,图中的折线OABCDE表示y与x之间 的函数关系。 (1)小明骑车在平路上的速度为___km/h; 他途中休息了___h; (2)求线段AB、BC所表示的y与x之间的函 数关系式; (3)如果小明两次经过途中某一地点的时间 间隔为0.15h,那么该地点离甲地多远?
2017中考数学专题复习
——从一次函数图象中获取信息
例题展示
例1 (1)小明为准备体育测试, 每天早晨坚持锻炼,某天他慢跑 到河边,休息一会儿后快跑回家, 如图,能大致反映小明行驶的路 程y与时间x的函数关系图象是 ()
例1 (2)小明为准备体育测试,每天早晨坚持锻炼,某天 他慢跑到河边,休息一会儿后快跑回家,如图,能大致反 映小明离家的距离y与时间x的函数关系图象是( )
北师大版《一次函数》测试题
1.已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。
2.若函数y= -2x m+2是正比例函数,则m的值是。
3.已知一次函数y=kx+5的图象经过点(-1,2),则k= 。
4.已知y与x成正比例,且当x=1时,y=2,则当x=3时,y=____ 。
5.点P(a,b)在第二象限,则直线y=ax+b不经过第象限。
6.已知一次函数y=kx-k+4的图象与y轴的交点坐标是(0,-2),那么这个一次函数的表达式是________。
7.已知点A(-1,a), B(2,b)在函数y=-3x+4的象上,则a与b的大小关系是____ 。
二.解答题8.已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x轴交于点B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;9.已知y-2与x成正比,且当x=1时,y= -6(1)求y与x之间的函数关系式。
(2)若点(a,2)在这个函数图象上,求a的值10.已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= 12x的图象相交于点(2,a),求(1)a的值,(2)k,b的值, (3)这两个函数图象与x轴所围成的三角形的面积。
1.地面气温20℃,如果每升高1000m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是______2.一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: 。
3.写出同时具备下列两个条件的一次函数表达式(写出一个即可) 。
(1)y 随着x 的增大而减小, (2)图象经过点(1,-3)。
4.把直线y =23x +1向上平移3个单位所得到的解析式为______________。
5.已知y 与x 成正比例,且当x =1时,y =2,那么当x =3时,y =_______。
二.解答题6. 某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费1.8元,超计划部分每吨按2.0元收费。
一次函数的图像和性质及答案
一次函数的图像和性质 进门测1.一次函数的图象不经过(B ) A .第一象限 B .第二象限C .第三象限D .第四象限2.下表给出的是关于一次函数y =kx +b 的自变量x 及其对应的函数值y 的若干信息:则根据表格中的相关数据可以计算得到m 的值是( C ) A .0 B .1 C .2D .33. 对于函数x y 21-=,下列说法不正确的是( D ) A .其图象经过点(0,0) B. 其图象经过点(-1,21)C. 其图象经过第二、四象限D. y 随x 的增大而增大 4.已知点A (x l ,y 1)、B (x 2,y 2)在直线y =-2x +3上,当x 1<x 2则y 1与y 2的大小关系是( A )A. y 1>y 2 B .y 1<y 2 C .y l = y 2 D .y 1与y 2的大小关系不定5. 一次函数的图象如图所示,则不等式50<+≤b kx 的解集为 20≤<x .例题解析学习目标:熟练掌握k 、b 与象限判断 教学过程:例1.已知:一次函数y =(a -1)x +b 的图象如图所示,那么a 的取值范围是( A )A .a >1B .a <1C .a >0D .a <0学习目标:熟练掌握一次函数的增减性判断 教学过程:例2.若点A (-3,y 1),B (2,y 2),C (4,y 3)是函数2(0)y kx k =+<图像上的点,则( B )34y x =-b kx y +=A .321y y y <<B .321y y y >>C .231y y y <<D .132y y y >>学习目标:熟练掌握直线的平移与平行 教学过程:例3.函数y =kx +b (k ≠0)的图象平行于直线y =2x +3,且交y 轴于点(0,-1),则其函数表达式是______12-=x y ________.学习目标:熟练掌握一次函数与不等式综合 教学过程:例4.一次函数的图像经过点(1,-2).(1)判断:点(2,-1)是否在此函数的图像上?说明理由; 在 (2)当为何值时,≤0? 3≤x学习目标:熟练掌握一次函数与等腰三角形综合 教学过程:例5.在直角坐标平面内,O 为原点,点A 的坐标为(1,0),点C 的坐标为(0,4),直线CM ∥x 轴(如图所示),点B 与点A 关于原点对称,直线y =x +b (b 为常数)经过点B ,且与直线CM 相交点D ,连接OD ,设P 在x 轴的正半轴上,若△POD 为等腰三角形,则点P 的坐标为:____()()⎪⎭⎫⎝⎛06250,60,5,或或____.同步练习1.一次函数y =kx +b ,y 随x 的增大而减小,且kb >0,则在直角坐标系内它的大致图象是( C )A .B .C .D .2.如图,函数2y x =-和y kx b =+的图像相交于点(,3)A m ,则关于x 的不等式20kx b x -+>的解集为____23>x _______.3-=kx y x y3.如图,有一种动画程序,屏幕上正方形区域ABCD 表示黑色物体甲.已知A (2,2),B (4,2),C (4,4),D (2,4),用信号枪沿直线2y x b =-+发射信号,当信号遇到区域甲(正方形ABCD )时,甲由黑变白.则b 的取值范围为 126≤≤b 时,甲能由黑变白.4. 已知:y +2与3x 成正比例,且当x =1时,y 的值为4. (1)求y 与x 之间的函数关系式; 26-=x y(2)若点(-1,a )、点(2,b )是该函数图象上的两点,试比较a 、b 的大小,并说明理由. b a <拓展延伸1.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为( D ) A . x y -= B .x y 43-= C .x y 53-= D .x y 109-=2. 如图,∠AOB =45°,在OA 上截取OA 1=1,OA 2=3,OA 3=5,OA 4=7,OA 5=9,…,过点A 1、A 2、A 3、A 4、A 5分别作OA 的垂线与OB 相交,得到并标出一组阴影部分,它们的面积分别为S 1,S 2,S 3,….观察图中的规律,第n 个阴影部分的面积Sn 为( A )A .8n -4B .4nC .8n+4D .3n+23. 已知一次函数28y mx m =++与x 轴、y 轴交于点A 、B ,若图象经过点C (2,4).过点C 作x 轴的平行线,交y 轴于点D ,在∠OAB 的直角边上找一点E ,使得∠DCE 构成等腰三角形,则点E 的坐标为()()()()()()242224225,10,12,06,0-++-,或,或或或或 .4. 如图,在平面直角坐标系中,直线AB 交x 轴于点A (-4,0),交y 轴于点B (0,2),P 为线段OA 上一个动点,Q PQ =P A ,OQ =OB . (1)求直线AB 的函数关系式; 221+=x y (2)若 ∠OPQ Q 是否在直线AB 上.(2)①当︒=∠90Q 时,⎪⎭⎫ ⎝⎛-0,25P ,⎪⎭⎫⎝⎛-56,58Q 在直线AB 上;②当︒=∠90P 时,不符合题意,舍出门测试1. 如图,把Rt ∠ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、 (4,0).将∠ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( C )A .4B .8C .16D .822. 如图,已知函数y 1=2x -1和y 2=x -3的图像交于点P (-2,-5),则根据图像可得不等式y 1>y 2的解集是_______2->x _______ .3. 已知一次函数y =(3m -7)x +m -1 (1)当m 为何值时,函数图象经过原点? 1=m (2)若图象不经过三象限,求m 的取值范围. 371<≤m (3)图象与y 轴交点在x 轴的上方,且y 随x 的增大而减小,求整数m 的值. 2=m4. 如图,一次函数y = 12x +2的图象分别与x 轴、y 轴交于点A 、B ,以线段AB 为边在第二象限内作等腰直角∠ABC ,∠BAC = 90º(1)求点A 、B 的坐标; ()0,4-A ,()2,0B(2)求点C 的坐标; ()4,6-C(3)你能否在x 轴上找一点M ,使∠MCB 的周长最小?如果能,请求出点M 的坐标;如果不能,说明理由. 能,()0,2-M课后练习11.点A (a ,y 1)、B (a +1,y 2)都在一次函数y =−2x +3的图象上,则y 1、y 2的大小关系是( C )A .y 1>y 2B .y 1=y 2C .y 1 <y 2D .不能确定 2. 正比例函数y kx =(0k ≠)的函数值y 随x 的增大而减小,则一次函数k kx y +-=的图象大致是( B )3.正方形11122213332,,A B C O A B C C A B C C ,按如图所示的方式放置,点.....,,321A A A 在直线(0)y kx b k =+>,点.....,,321C C C 在x 轴上,已知点1(1,1)B ,2(3,2)B ,则5B 的坐标是( D ) A .(33,32) B .(31,32) C .(33,16) D .(31,16)4. 已知正比例函数y 1=k 1x 的图像与一次函数y 2=k 2x -9的图像交于点P (3,-6). (1)求k 1、k 2的值; 1,221=-=k k(2)在同一直角坐标系中画出y 1。
热点10.一次函数的图像和性质
热点10 一次函数的图像与性质一、选择题1.(2001黄冈)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1 的图像不经过().A.第一象限B.第二象限C.第三象限D.第四象限2.(2001黄冈)某工厂去年积压产品a件(a>0),今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,如果产品积压量y(件)是今年开工时间t(月)的函数,则其图像只有是().3.(2015黄冈)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180 千米,货车的速度为60 千米/小时,小汽车的速度为90 千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是( )4.(2013黄冈) .一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是()5.(2012黄冈)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45 分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60 千米/ 时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4 个结论:①快递车从甲地到乙地的速度为100 千米/时;②甲、乙两地之间的距离为120 千米; ③图中点B 的坐标为(3,75);④快递车从乙地返回时的速度为90 千米/时. 以上4 个结论中正确的是____________(填序号)6.(2011黄冈)如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .16 D.7.(2010黄冈)已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是12,则k 的值为( )A .1或-2B .2或-1C .3D .4 8.(2009黄冈)小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A .12分钟B .15分钟C .25分钟D .27分钟B 9.(2002黄冈)无论m 为何实数,直线m x y 2+=与4+-=x y 的交点不可能在( )(A ) 第一象限(B )第二象限(C )第三象限(D )第四象限10.(2003黄冈)某公司员工分别住在A ,B ,C 三个住宅区,A 区有30人,B 区有15人,C 区有10人.三个区在同一条直线上,位置如图所示.该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在( ).A .A 区B .B 区C .C 区D .A 、B 两区之间11.(2004•黄冈)某班同学在探究弹簧的长度跟外力的变化关系时,实验记录得到的相应数据如下表,则y 关于x 的函数图象是( )A 、B 、C 、D 、12.(2006黄冈)如图,在光明中学学生耐力测试比赛中,甲、乙两学生测试的路程S(米)与时间t(秒)之间的函数关系图像分别为折线OABC 和线段OD ,下列说法正确的是( )A 、乙比甲先到达终点B 、乙测试的速度随时间增加而增大C 、比赛进行到29.4秒时,两人出发后第一次相遇D 、比赛全程甲的测试速度始终比乙的测试速度快。
专题01 一次函数的概念与图像(真题测试)(解析版)
专题01 一次函数的概念与图像【真题测试】 一、选择题1.(松江2018期中13)下列函数中,是一次函数的是( ) A.11y x=+; B.2y x =-; C.()y kx b k b =+、是常数; D.22y x =+. 【答案】B ;【解析】A 、右边是分式,故A 不是一次函数;B 、根据一次函数定义可知:B 为一次函数;C 、当k=0时,y kx b =+就不是一次函数,故C 错误;D 、是二次函数;故此题答案案选B.2.(奉贤2018期末1)下列函数中,一次函数是( )A.B.C.11y x=+ D.22y x =-【答案】A ;【解析】解:A 、y=x 属于一次函数,故此选项正确;B 、y=kx (k≠0),故此选项错误;C 、11y x=+,不符合一次函数的定义,故此选项错误;D 、22y x =-,不符合一次函数的定义,故此选项错误;故选:A . 3.(浦东四署2018期中1)下列函数中,是一次函数的是( ) (A )21+=xy ; (B )2+=x y ; (C )22y x =+; (D )y kx b =+ 【答案】B ; 【解析】A 、因为12x+是分式,故A 不是一次函数;B 、2y x =+是一次函数,故B 正确;C 、22y x =+是二次函数,故C 错误;D 、当0k =时,y kx b =+是常数函数,故D 错误;因此答案选B. 4.(长宁2018期末1)函数y =(k -2)x +3是一次函数,则k 的取值范围是( )A. B. C. D.【答案】D ;【解析】解:由题意得:k-2≠0, 解得:k≠2, 故选:D .5.(松江2018期中14)如图,一次函数y kx b =+的图像经过(1,3),(2,0)两点,那么当3y >时,x 的取值范围是( )A.0x <;B.2x <;C.1x >;D.1x <.2yxOP (1,3)【答案】D ;【解析】数形结合法;当3y >时,对应的图像是点P 以上的部分,故1x <,答案选D. 6. (长宁2018期末2)函数y =2x -1的图象经过( )A. 一、二、三象限;B. 二、三、四象限;C. 一、三、四象限;D. 一、二、四象限;【答案】C ;【解析】解:∵2>0, ∴一次函数y=-x+2的图象一定经过第一、三象限; 又∵-1<0, ∴一次函数y=2x-1的图象与y 轴交于负半轴, ∴一次函数y=2x-1的图象经过第一、三、四象限; 故选:C . 7. (松江2019期中2)一次函数y=﹣2x+1的图象不经过下列哪个象限( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵20,10k b =>=>,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,故选D .8.(闵行2018期末1)一次函数y =3x ﹣2的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B ;【解析】解:∵一次函数y =3x ﹣2中,k =3>0,b =﹣2<0,∴此函数的图象经过一三四象限,不经过第二象限.故选:B .9.(嘉定2019期末1)直线23y x =-的截距是( ) A. – 3; B. – 2; C. 2; D. 3. 【答案】A ;【解析】令0x =,得3y =-,故直线23y x =-的截距是-3. 故选A. 10. (松江2019期中5)一次函数的图像大致是( )A. B. C. D.【答案】B【解析】解:∵k <0,∴﹣k >0,则一次函数的图象为,y 随自变量x 的增大而减小,图象与y 轴的正半轴相交.故选B.11.(松江2018期中17)一次函数12y ax b y bx a =+=+与在同一坐标系中的图像可能是( )CDOx y yxO Ox y yx O BA【答案】C ;【解析】A 、若经过一、二、三象限的直线为1y ax b =+,则0,0a b >>,所以2y bx a =+经过一、二、三象限,矛盾,故A 错误;B 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,矛盾,故B 错误;C 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,故C 正确;D 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,矛盾,故D 错误;因此答案选C.12.(浦东四署2018期中6)如图,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把AOB △绕点A 顺时针旋转90°后得到AO B ''△,则点B '的坐标是 ( ) (A )(3,4) (B )(4,5) (C )(7,4) (D )(7,3)【解析】依题可知:A (3,0)、B (0,4),故OA=3,OB=4;将AOB △绕点A 顺时针旋转90°后得到AO B ''△,OA='O A =3,''4OB O B ==,且'O A x ⊥轴,''O B //x 轴,故'B 点的横坐标为3+4=7,纵坐标为3,即'(7,3)B ,因此答案选D.二、填空题13. (长宁2018期末7)已知函数f (x )=+1,则f ()=______.【答案】3; 【解析】解:f (x )=+1,则f ()=×+1=2+1=3,故答案为:3.14.(长宁2019期末6)已知函数224(5)1m y m x m -=-++,若它是一次函数,则m = .【答案】﹣5;【解析】解:由224(5)1my m x m -=-++是一次函数,得m 2﹣24=1且m ﹣5≠0,解得m =﹣5.15.(普陀2018期中7)函数y =-2x +3在y 轴上的截距为______. 【答案】3;【解析】∵函数y=-2x+3,则b=3,∴根据截距的定义,得在y 轴上的截距为3,故答案为3. 16.(崇明2018期中6)一次函数26y x =-在y 轴上的截距是 . 【答案】- 6;【解析】一次函数26y x =-在y 轴上的截距是 – 6. 17.(松江2019期中8)一次函数的图像在y 轴上的截距是_____________.【答案】-2【解析】解:令x=0,得y=﹣2,则一次函数图象在y 轴上的截距是﹣2.故答案为:﹣2.18.(闵行2018期末7)已知一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5,那么b = . 【答案】9;【解析】解:∵y =2(x ﹣2)+b =2x +b ﹣4,且一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5, ∴b ﹣4=5,解得:b =9.故答案为:9.19.(黄浦2018期中15)如果一次函数y =-3x +m -1的图象不经过第一象限,那么m 的取值范围是______ 【答案】m≤1;【解析】解:∵一次函数y=-3x+m-1的图象不经过第一象限, ∴m-1≤0, 解得 m≤1. 故答案是:m≤1. 20. (奉贤2018期末9)一次函数y =kx +3的图象不经过第3象限,那么k 的取值范围是______【解析】解:∵一次函数y=kx+3的图象不经过第3象限, 一次函数y=kx+3的图象即经过第一、二、四象限, ∴k <0. 故答案为:k <0,21.(金山2018期中9)将直线21y x =--向上平移4个单位,所得直线的表达式是 . 【答案】23y x =-+【解析】将直线21y x =--向上平移4个单位,则得21423y x y x =--+=-+即.22.(浦东四署2019期中11)将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为 . 【答案】34y x =--【解析】 将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为313y x =---,即34y x =--. 23.(普陀2018期末10)将直线y =﹣2x ﹣2向上平移5个单位后,得到的直线为 . 【答案】y =﹣2x +3;【解析】解:将直线y =﹣2x ﹣2向上平移5个单位,得到直线y =﹣2x ﹣2+5,即y =﹣2x +3;24.(青浦2018期末8)把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为 . 【答案】y =2(x ﹣1);【解析】解:把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为y =2(x ﹣1). 25.(浦东四署2019期末11)如果将直线112y x =+平移,使其经过点(0,2),那么平移后所得直线的表达式是 . 【答案】122y x =+; 【解析】设平移后所得的直线表达式是12y x b =+,点(0,2)代入得2b =,故表达式为122y x =+.26. (杨浦2019期中3)直线b kx y +=与15+-=x y 平行,且经过点(2,1),则k= b= . 【答案】-5、11; 【解析】依题,得521k k b =-⎧⎨+=⎩,解得511k b =-⎧⎨=⎩.27. (普陀2018期中10)已知直线y =kx +b 如图所示,当y <0时,x 的取值范围是______.【答案】x <2【解析】解: ∵A 点横坐标为2,∴当y <0时,x <2,故答案为:x <2.28. (杨浦2019期中4)已知,一次函数b kx y +=的图像经过点A (2,1)(如下图所示),当1y ≥时,x 的取值范围是 .21OA (2,1)XY【答案】2x ≤;【解析】由“数形结合”法可知,当1y ≥时,是指直线上点A 左边的部分射线,所以它对应的x 的取值范围是2x ≤.29.(嘉定2019期末8)已知函数37y x =-+,当2x >时,函数值y 的取值范围是 . 【答案】1y <;【解析】由37y x =-+可得73y x -=-,因为2x >,故723y ->-,解得1y <. 30.(杨浦2019期中1)一次函数72--=x y 与x 轴的交点是 . 【答案】7,02⎛⎫-⎪⎝⎭; 【解析】令0y =,得027x =--,72x =-,所以与x 轴交点坐标为7,02⎛⎫- ⎪⎝⎭. 31.(崇明2018期中10)直线334y x =-与x 轴和y 轴的交点分别为A 、B ,那么线段AB 的长为 . 【答案】5; 【解析】因为直线334y x =-与x 轴和y 轴的交点分别为A 、B ,所以A (4,0)、B (0,-3),故OA=4,OB=3,所以AB=5.32.(浦东四署2018期中9一次函数的图像经过点(0,2)、(–2,0),这个一次函数的解析式是 . 【答案】y kx b =+;【解析】设一次函数解析式为y kx b =+,点(0,2)、(–2,0)代入得220b k b =⎧⎨-+=⎩,解得12k b =⎧⎨=⎩,故一次函数解析式为:2y x =+.33. (松江2019期中16)函数y kx b =+(k 、b 为常数)的图象如图所示,则关于x 的不等式0kx b +>的解集是_________.【答案】x<2.【解析】函数y kx b =+(k 、b 为常数)的图象经过(2,0),并且函数值y 随x 的增大而减小,所以x<2时,函数值小于0,即关于x 的不等式0kx b +>>0的解集是x<2.34. (长宁2018期末10)如图,一次函数y =kx +b (k ≠0)的图象经过点(2,0),则关于x 的不等式kx +b >0的解集是______.【答案】x <2;【解析】解:由图象可得:当x <2时,kx+b >0, 所以关于x 的不等式kx+b >0的解集是x <2.35. (普陀2018期中17)如图,在直角坐标系xOy 中,点A 的坐标是(2,0)、点B 的坐标是(0,2)、点C 的坐标是(0,3),若直线CD 的解析式为y =-x +3,则S △ABD 为______.【答案】1【解析】解:∵点A 的坐标是(2,0)、点B 的坐标是(0,2),∠AOB=90°,∴OA=2,OB=2,∴AB=22,∠ABO=45°,设过点A 和点B 的直线解析式为y=kx+b ,202k b b +=⎧⎨=⎩,得12k b =-⎧⎨=⎩,∴过点A 和点B 的直线解析式为y=-x+2,∵点C 的坐标是(0,3),直线CD 的解析式为y=-x+3,∴BC=1,AB ∥CD ,∴∠OCD=∠OBA=45°,∴点B到直线CD 的距离是:BC•sin45°=21⨯=2,∴点D 到AB 的距离是:2,∴S △ABD=22222⨯=1.三、解答题36.(闵行2018期末22)已知直线y =kx +b 经过点A (﹣20,5)、B (10,20)两点. (1)求直线y =kx +b 的表达式; (2)当x 取何值时,y >5. 【答案】(1)y =12x +15;(2)x >﹣20; 【解析】解:(1)根据题意得2051020k b k b -+=⎧⎨+=⎩,解得1215k b ⎧=⎪⎨⎪=⎩,所以直线解析式为y =12x +15; (2)解不等式12x +15>5得x >﹣20,即x >﹣20时,y >5. 37. (松江2019期中23)已知一次函数y=kx+b (k 、b 是常数)的图像平行于直线3y x =-,且经过点(2,-3).(1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积. 【答案】(1) y=-3x+3;(2)32. 【解析】解:(1)∵y=kx+b 平行于直线3y x =-,∴k=-3,∵一次函数经过点(2,-3),∴代入得b=3, ∴y=-3x+3;(2)一次函数与x 轴交于点(1,0),与y 轴交于点(0,3),∴面积133122S ∆=⨯⨯=. 38. (浦东2018期末21)已知直线y =kx +b 与直线13y x k =-+都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积.【答案】2;【解析】解:∵直线y =kx +b 与直线y =-x +k 都经过点A (6,-1),∴,解得,∴两条直线的解析式分别为y =x -7和y =-x +1,∴直线y =x -7与x 轴交于点B (7,0),直线y =-x +1与x 轴交于点C (3,0),∴S △ABC =×4×1=2,即这两条直线与x 轴所围成的三角形面积为2.39.(金山2018期中23)已知一次函数的图像经过点A (-3,2),且平行于直线41y x =+. (1)求这个函数解析式;(2)求该一次函数的图像与坐标轴围成的图形面积. 【答案】(1)414y x =+;(2)492; 【解析】解:(1)因为一次函数图像与直线41y x =+平行,所以设一次函数4y x b =+,把(3,2)A -代入得122b -+=,得14b =,所以414y x =+;(2)设直线414y x =+与x 轴交于A ,与y 轴交于B ,当x=0时,y=14,故B (0,14);当y=0时,x=72-,故7(,0)2A -, 所以7,142OA OB ==,所以11749142222AOBS OA OB ∆=⨯⨯=⨯⨯=. 40.(崇明2018期中28)已知:如图,在直角坐标平面中,点A 在x轴的负半轴上,直线y kx =+点A ,与y 轴相交于点M ,点B 是点A 关于原点的对称点,过点B 的直线BC x ⊥轴,交直线y kx =+于点C ,如果60MAO ∠=︒. (1)求直线AC 的表达式;(2)如果点D 在直线AC 上,且ABD ∆是等腰三角形,请求出点D 的坐标.【答案】(1)y =(2)(2,D -或;【解析】解:(1)由题意,得点M的坐标为,即OM =,60CAB ∠=︒Q ,所以AO =1,即点A 的坐标为(-1,0);因为直线y kx =+经过点A,0k ∴=-+k =所以这条直线的表达式为y =+ (2)由题意,得点B (1,0).设直线AC 上的点D的坐标为(m +,因为ABD ∆是等腰三角形,所以:当AB=AD 时,点D坐标为(2,D -或;当AB=BD 时,点D坐标为D 、(-1,0)(与点A 重合,舍去);当BD=AD 时,点D 的坐标为(0,3).综上所述,点D的坐标为(0,3)(2,3)D --或.41.(松江2018期中27)如图,直线343y x =-+与x 轴相交于点A ,与直线3y x =相交于点P. (1)求点P 的坐标;(2)请判断OPA ∆的形状并说明理由;(3)动点E 从原点O 出发,以每秒1个单位的速度沿着O P A →→的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF x ⊥轴于F ,EB y ⊥轴于B ,设运动t 秒时,矩形EBOF 与OPA ∆重叠部分的面积为S ,求S 与t 之间的函数关系式.【答案】(1)(2,3);(2)OPA ∆是等边三角形;(3)223(02)334383(24)t S t t ⎧<≤⎪=⎨⎪+-<<⎪⎩【解析】解:(1)由3433y x y x ⎧=-+⎪⎨=⎪⎩得223x y =⎧⎪⎨=⎪⎩P 的坐标为(2,23);(2)OPA ∆是等边三角形. 证明:当y=0时,x=4,所以A (4,0);222(23)4OP +=Q ,22(24)(230)4PA =-+-=,所以OA=OP=PA ,所以OPA ∆是等边三角形.(3)当02t <≤时,21133222t t S OF EF ==⨯=g ;当24t <<时,21334344383222t t S t t ⎛⎫⎫=⨯-+-=+- ⎪⎪⎝⎭⎭故223(02)334383(24)t S t t ⎧<≤⎪=⎨⎪+-<<⎪⎩.42.(浦东四署2018期中26)将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y =kx -7的图像与x 、y 轴分别交于点A 、B ,那么△ABO 为此一次函数的坐标三角形(也称为直线AB 的坐标三角形).(1)如果点C 在x 轴上,将△ABC 沿着直线AB 翻折,使点C 落在点D (0,18)上, 求直线BC 的坐标三角形的面积;(2)如果一次函数y =kx -7的坐标三角形的周长是21,求k 值;(3)在(1)(2)条件下,如果点E 的坐标是(0,8),直线AB 上有一点P ,使得△PDE 周长最小,且点P 正好落在某一个反比例函数的图像上,求这个反比例函数的解析式.【答案】(1)84;(2)43k =-;(3)45y x=-; 【解析】解:(1)∵翻折,∴BC =BD .∵点B (0,-7)、D (0,18),∴BC =25,OB =7, ∵OC 2+OB 2=BC 2,∴OC 2+72=252,∴OC =24, ∴直线BC 的坐标三角形的面积=12×7×24=84. (2)设点A 的坐标为(m ,0),(m <0).∵点B (0,-7),∴OA =-m ,OB =7,AB =227m +.∵△ABO的周长为21∴-m +7227m +21227m +m +14,平方,得28m =-147,∴m =214-,∴点A (214-,0).将点A (214-,0)的坐标代入y =kx -7,得43k =-; (3)联结CE 交AB 于点P ,联结DP .∵PC =PD ,点P 与C 、E 在一条直线上,∴PE +PD =PE +PC =CE ,∵CE 为定长,∴△PDE 的周长最小. ∵点C (-24,0)、E (0,8),∴直线CE 的解析式为y =13x +8. ∵直线AB的解析式为y=4 3 -x-7,∴联立183473y xy x⎧⎪⎪⎨⎪=--⎪⎩=+,解得95xy=⎧⎨=⎩∴点P的坐标为(-9,5 ),∴反比例函数的解析式为45yx=-.。
苏教版八年级数学上册单元测试《第6章 一次函数》(含答案)
《第6章一次函数》一、填空1.已知函数y=x﹣2,则当x=3时,y= .2.若函数y=(m﹣2)x+5﹣m是x的正比例函数,则m= .3.函数y=x+3的图象与x轴的交点坐标为.4.一次函数y=kx+b的图象是由函数y=3x的图象向上平移2个单位而得到的,则该一次函数的解析式为.5.已知函数y=(m﹣3)x﹣4中,y值随x的增加而减小,则m的取值范围为.6.已知一次函数的图象与坐标轴的交点为(﹣2,0)、(0,2),则一次函数的解析式为.7.已知点P既在直线y=﹣3x﹣2上,又在直线y=2x+8上,则P点的坐标为.8.某一次函数的图象经过点(﹣1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:.二、选择题9.一次函数y=﹣3x+1的图象一定经过点()A.(2,﹣5)B.(1,0) C.(﹣2,3)D.(0,﹣1)10.函数y=中自变量x的取值范围()A.x≤B.x≥C.x>D.x<11.已知函数y=x+m与y=mx﹣1,当x=3时,y值相等,那么m的值是()A.1 B.2 C.3 D.412.一次函数y=x+3的图象与两坐标轴所围成的三角形面积为()A.6 B.3 C.9 D.4.513.当k>0,b<0时,函数y=kx+b的图象大致是()A.B.C.D.14.把函数y=3x+2的图象沿着y轴向下平移一个单位,得到的函数关系式是()A.y=3x+1 B.y=3x﹣1 C.y=3x+3 D.y=3x+515.已知点A (﹣5,y 1)和点B (﹣4,y 2)都在直线y=﹣7x+b 上,则y 1与y 2的大小关系为( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定16.邮购一种图书,每册定价20元,另加书价的5%作邮资,购书x 册,需付款y (元)与x 的函数解析式为( )A .y=20x+5%xB .y=20.05xC .y=20(1+5%)xD .y=19.95x17.如图,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是( )A .甲比乙快B .乙比甲快C .甲、乙同速D .不一定18.在y=kx 中,当x=2时,y=﹣1,则当x=﹣1时,y=( )A .﹣2B .C .D .2三、解答题19.拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q (升)与工作时间t (时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量20.已知一次函数y=x+6﹣m ,求:(1)m 为何值时,函数图象交y 轴于正半轴?(2)m 为何值时,函数图象与y 轴的交点在x 轴的下方?(3)m 为何值时,图象经过原点?21.用图象法求下面二元一次方程组的近似解.22.已知一次函数的图象经过A(2,4),B(0,2)两点,且与x轴交于点C,求:(1)一次函数的解析式;(2)△AOC的面积.《第6章一次函数》参考答案与试题解析一、填空1.已知函数y=x﹣2,则当x=3时,y= 1 .【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把x=3代入方程,即可求得y的坐标.【解答】解:根据题意,把x=3代入方程,可得y=3﹣2=1.故填1.【点评】本题考查了一次函数图象上点的坐标特征,是基础题型.2.若函数y=(m﹣2)x+5﹣m是x的正比例函数,则m= 5 .【考点】正比例函数的定义.【分析】根据正比例函数的定义列出关于m的方程组,求出m的值即可.【解答】解:∵函数y=(m﹣2)x+5﹣m是x的正比例函数,∴,解得m=5.故答案为:5.【点评】本题考查的是正比例函数的定义,即一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数.3.函数y=x+3的图象与x轴的交点坐标为(﹣3,0).【考点】一次函数图象上点的坐标特征.【分析】令y=0,即可得函数与x轴交点坐标.【解答】解:根据题意,把y=0代入y=x+3得:0=x+3,解得x=﹣3,∴图象与x轴的交点坐标为(﹣3,0).【点评】本题考查了一次函数图象上点的坐标特征,是基础题型.4.一次函数y=kx+b的图象是由函数y=3x的图象向上平移2个单位而得到的,则该一次函数的解析式为y=3x+2 .【考点】一次函数图象与几何变换.【分析】由题意得y=3x过点(0,0),故平移过后一次函数过点(0,2),再根据平移之后k值不变,故可得出该一次函数解析式.【解答】解:由题意得:∵y=3x过点(0,0)∴y=3x平移过后过点(0,2)又∵平移不影响k的值,故可得出y=3x+b过点(0,2)代入得:2=b∴可得出该一次函数解析式为:y=3x+2.【点评】本题考查待定系数法求一次函数解析式,注意平移不影响k的值是关键.5.已知函数y=(m﹣3)x﹣4中,y值随x的增加而减小,则m的取值范围为m<3 .【考点】一次函数图象与系数的关系.【专题】计算题.【分析】利用一次函数的性质得到关于m的不等式.【解答】解:∵y值随x的增加而减小∴m﹣3<0,即m<3.故填m<3.【点评】熟练掌握一次函数y=kx+b的性质.当k>0,y随x的增大而增大;当k<0,y值随x的增加而减小.6.已知一次函数的图象与坐标轴的交点为(﹣2,0)、(0,2),则一次函数的解析式为y=x+2 .【考点】待定系数法求一次函数解析式.【专题】计算题.【分析】先设一次函数的解析式为y=kx+b,然后把两个点的坐标代入得到关于k、b的方程组,然后解方程组即可.【解答】解:设一次函数的解析式为y=kx+b,把(﹣2,0)、(0,2)代入得,解得,所以一次函数的解析式为y=x+2.故答案为y=x+2.【点评】本题考查了待定系数法求一次函数解析式:设一次函数的解析式为y=kx+b,再把直线上两个点的坐标代入得到关于k、b的方程组,然后解方程组求出k与b的值即可.7.已知点P既在直线y=﹣3x﹣2上,又在直线y=2x+8上,则P点的坐标为(﹣2,4).【考点】两条直线相交或平行问题.【专题】计算题.【分析】可设此点的坐标为(a,b)分别代入解析式求解方程组即可.【解答】解:根据题意,设点P的坐标为(a,b),代入两个解析式可得,b=﹣3a﹣2①,b=2a+8②,由①②可解得:a=﹣2,b=4,∴P点的坐标为(﹣2,4).【点评】本题考查了一次函数图象上的点的坐标特征,是基础题型.8.某一次函数的图象经过点(﹣1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:y=﹣x+1(答案不唯一).【考点】一次函数的性质.【专题】开放型.【分析】设一次函数的解释为y=kx+b(k<0),再把点(﹣1,2)代入得出k、b的关系,找出符合条件的k、b的值即可.【解答】解:∵一次函数y的值随x的增大而减小,∴设一次函数的解释为y=kx+b(k<0),∵函数的图象经过点(﹣1,2),∴﹣k+b=2,∴当k=﹣1时,b=1,∴符合条件的函数解析式可以为:y=﹣x+1.故答案为:y=﹣x+1(答案不唯一).【点评】本题考查的是一次函数的性质,此题属开放性题目,答案不唯一.二、选择题9.一次函数y=﹣3x+1的图象一定经过点()A.(2,﹣5)B.(1,0) C.(﹣2,3)D.(0,﹣1)【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把四个点的坐标分别代入y=﹣3x+1,若满足解析式,则可判断此点在直线y=﹣3x+1上.【解答】解:A、当x=2时,y=﹣3×2+1=﹣5,则点(2,﹣5)在直线y=﹣3x+1上,所以A选项正确;B、当x=1时,y=﹣3×1+1=﹣2,则点(1,0)不在直线y=﹣3x+1上,所以B选项错误;C、当x=﹣2时,y=﹣3×(﹣2)+1=7,则点(﹣2,3)不在直线y=﹣3x+1上,所以C选项错误;D、当x=0时,y=﹣3×0+1=1,则点(0,﹣1)不在直线y=﹣3x+1上,所以D选项错误.故选A.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线;直线上任意一点的坐标都满足函数关系式y=kx+b.10.函数y=中自变量x的取值范围()A.x≤B.x≥C.x>D.x<【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式进行计算即可得解.【解答】解:根据题意得,2x﹣5≥0,解得x≥.故选B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.11.已知函数y=x+m与y=mx﹣1,当x=3时,y值相等,那么m的值是()A.1 B.2 C.3 D.4【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】根据当x=3时,两个函数的函数值相等,将x=3代入两个函数中,令其相等,即可解得m 的值.【解答】解:∵当x=3时,两个函数的y值相等,即:3+m=3m﹣1解得:m=2故选B.【点评】本题比较简单,直接代入x=3的值,就可得出结果.12.一次函数y=x+3的图象与两坐标轴所围成的三角形面积为()A.6 B.3 C.9 D.4.5【考点】一次函数图象上点的坐标特征.【分析】先令x=0求出y的值,再令y=0求出x的值,根据三角形的面积公式求解即可.【解答】解:∵令x=0,y=3,令y=0,则x=﹣3,∴此函数与y轴的交点为(0,3),与x轴的交点为(﹣3,0),∴一次函数y=x+3的图象与两坐标轴所围成的三角形面积=×3×3=4.5.故选D.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数与坐标轴的交点特点是解答此题的关键.13.当k>0,b<0时,函数y=kx+b的图象大致是()A.B.C.D.【考点】一次函数图象与系数的关系.【分析】根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【解答】解:由一次函数图象与系数的关系可得,当k>0,b<0时,函数y=kx+b的图象经过一三四象限.故选D .【点评】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限;k <0时,直线必经过二、四象限;b >0时,直线与y 轴正半轴相交;b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.14.把函数y=3x+2的图象沿着y 轴向下平移一个单位,得到的函数关系式是( )A .y=3x+1B .y=3x ﹣1C .y=3x+3D .y=3x+5【考点】一次函数图象与几何变换.【分析】原来函数过点(0,2),现在沿着y 轴向下平移一个单位,可知现在函数过(0,1)且斜率不变,即可得平移后的函数解析式.【解答】解:根据题意,可设平移后的直线的解析式为:y=3x+b ,而函数y=3x+2的图象过点(0,2),∴沿着y 轴向下平移一个单位可得点为(0,1),即点(0,1)在平移后的函数上,代入得:b=1, ∴函数关系式为:y=3x+1,故选A .【点评】本题考查了一次函数图象与几何变换,是基础题型.15.已知点A (﹣5,y 1)和点B (﹣4,y 2)都在直线y=﹣7x+b 上,则y 1与y 2的大小关系为( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定【考点】一次函数图象上点的坐标特征.【分析】分别把点代入解析式求坐标值比较或是根据﹣5<﹣4及函数递减性质直接判断.【解答】解:由直线y=﹣7x+b 可得,k=﹣7<0,∴函数图象上y 随x 的增大而减小,又∵﹣5<﹣4,∴y 1>y 2.故选A .【点评】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b :当k >0时,y 随x 的增大而增大;当k<0时,y随x的增大而减小.16.邮购一种图书,每册定价20元,另加书价的5%作邮资,购书x册,需付款y(元)与x的函数解析式为()A.y=20x+5%x B.y=20.05x C.y=20(1+5%)x D.y=19.95x【考点】根据实际问题列一次函数关系式.【专题】应用题.【分析】根据题意可得购买一册书需要花费(20+20×5%)元,根据此关系式可得出购书x册与需付款y(元)与x的函数解析式.【解答】解:由题意得;购买一册书需要花费(20+20×5%)元∴购买x册数需花费x(20+20×5%)元即:y=x(20+20×5%)=20(1+5%)x故选C.【点评】本题考查根据题意列方程的知识,要先表示出买一册书的花费,这样问题就迎刃而解了.17.如图,射线l甲、l乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是()A.甲比乙快 B.乙比甲快 C.甲、乙同速D.不一定【考点】函数的图象.【分析】因为s=vt,同一时刻,s越大,v越大,图象表现为越陡峭,可以比较甲、乙的速度.【解答】解:根据图象越陡峭,速度越快;可得甲比乙快.故选:A.【点评】此题主要考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.18.在y=kx中,当x=2时,y=﹣1,则当x=﹣1时,y=()A.﹣2 B.C.D.2【考点】待定系数法求正比例函数解析式.【专题】计算题.【分析】先根据所给自变量和函数的对应值,确定正比例函数的解析式,然后再将x=﹣1代入解析式,求出y的值.【解答】解:把x=2时,y=﹣1代入y=kx中,得2k=﹣1,解得,k=,所以y=x,当x=﹣1时,y=﹣×(﹣1)=.故选C.【点评】本题要首先利用待定系数法确定出正比例函数的解析式,当函数解析式确定后,已知x或y的任意一个值,都可以求出另一个值.三、解答题19.拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q(升)与工作时间t(时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量【考点】根据实际问题列一次函数关系式.【专题】应用题.【分析】(1)由油箱中的余油量=原有油量﹣耗油量可求得函数解析式;(2)把自变量的值代入函数解析式求得相对应的函数值.【解答】解:(1)由题意可知:Q=40﹣4t(0≤t≤10);(2)把t=5时代入Q=40﹣4t得:油箱的余油量Q=20升.【点评】此题由数量关系列出函数解析式,再把自变量的值代入函数解析式求得相对应的函数值,问题解决.20.已知一次函数y=x+6﹣m,求:(1)m为何值时,函数图象交y轴于正半轴?(2)m为何值时,函数图象与y轴的交点在x轴的下方?(3)m为何值时,图象经过原点?【考点】一次函数图象与系数的关系.【专题】计算题.【分析】(1)要使函数图象交y轴于正半轴,y=kx+b中b的值需大于0,即6﹣m>0,解不等式即可.(2)要使函数图象与y轴的交点在x轴的下方,y=kx+b中b的值需小于0,即6﹣m<0,解不等式即可.(3)图象经过原点,即6﹣m=0.【解答】解:(1)由题意得,6﹣m>0,解得,m<6;(2)由题意得,6﹣m<0,解得,m>6;(3)由题意得,6﹣m=0,解得,m=6.【点评】对于直线y=kx+b,当b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.21.用图象法求下面二元一次方程组的近似解.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】由题意求方程的近似解,画出函数y=﹣+2与函数y=3x﹣4的图象,两函数的图象即为所求的方程组的解.【解答】解:由题意可知函数y=﹣+2与函数y=3x﹣4的交点即为方程组的解,如下图,由上图可知,交点近似为(1.8,1.3),∴二元一次方程组的近似解为.【点评】此题主要考查一次函数的性质及其图象,把二元一次方程同一次函数联系起来,利用函数的图象来解二元一次方程,是一道不错的题型.22.(2014秋•四川校级期末)已知一次函数的图象经过A(2,4),B(0,2)两点,且与x轴交于点C,求:(1)一次函数的解析式;(2)△AOC的面积.【考点】待定系数法求一次函数解析式.【专题】待定系数法.【分析】(1)设一次函数解析式为y=kx+b,把两个点的坐标代入函数解析式求解即可;(2)△AOC的边OC的长度为2,OC边上的高等于点A的纵坐标的长度,代入三角形的面积公式计算即可.【解答】解:(1)设一次函数解析式为y=kx+b,∵图象经过A(2,4),B(0,2)两点,∴,解得,∴一次函数解析式为y=x+2;(2)=×OC×AC=×2×4=4,S△AOC∴△AOC的面积为4.【点评】本题主要考查待定系数法求函数解析式,待定系数法是求函数解析式常用的方法,也是中考的热点之一.。
新初中数学一次函数经典测试题含答案解析(1)
新初中数学一次函数经典测试题含答案解析 〔1〕一、选择题1.如图,一次函数 y kx 2的图象与x轴,y 轴分别交于点A, B,与正比例函数1y -x 父于点C ,点C 的横坐标为2,以下结论: 3把正比例函数与一次函数的交点坐标求出,根据正比例函数与一次函数的交点先把一次函1kx 1 2 3与正比例函数y - x 交于点C ,且C 的横坐标为2,3kx 2… 2 ,直线y 一x 2, 3122 -,3 3数的解析式求解出来, 【详解】再分别验证即可得到答案••・把C 点左边代入一次函数得到: 2 k 2 2, 3..k 2 32,1 ①关于X 的方程kx 2 0的解为 x 3 ;②对于直线y kx 3 时,y 0;③直线y kx 2中,k 2;3y x 0④方程组的解为y kx 2其中正确的有〔B. 2C. 3D. 4解:,•,一次函数A. 1【答案】 【解析】【分析】当x 3时,y 0,故正确;22中,k —,故错误;32,'3x 2解得 2,故正确;y3故有①②④三个正确; 故答案为C. 【点睛】此题主要考查了一次函数与正比例函数的综合应用,能正确用待定系数法求解未知量是解 题的关键,再解题的过程中,要利用好信息,比方函数图像,很多时候都可以方便解 题;根据k 、b 的符号来求确定一次函数 y=kx+b 的图象所经过的象限. 【详解】k<0,・•・一次函数y=kx+b 的图象经过第二、四象限. 又b>0 时,,一次函数y=kx+b 的图象与y 轴交与正半轴. 综上所述,该一次函数图象经过第一象限. 故答案为:C.③直线y kx3y x 0④2y x 【答案】C【点睛】考查一次函数图象在坐标平面内的位置与所在的位置与k、b的符号有直接的关系. 线必经过二、四象限.b>0时,直线与直线与y轴负半轴相交.3. 一次函数y x 1的图象不经过的象限是〔〕A.第一象限【答案】C【解析】【分析】先根据一次函数y 论. 【详解】解:Q 一次函数yB.第二象限C.第三象限D.第四象限1, b 1判断出函数图象经过的象限,进而可得出结x 1 中k 1 0, b 1 0,此函数的图象经过一、二、四象限,不经过第三象限.故答案选:C.此题考查的是一次函数的性质,即一次函数y kx b k 0中,当k 0, b 0时,函数图象经过一、二、四象限.4.如图,四边形ABCD的顶点坐标分别为A 4,0 ,B 2, 1 ,C 3,0 , D 0,3 ,当过点B的直线l将四边形ABCD分成面积相等的两局部时,直线l所表示的函数表达式为B. yC. y x 1【答案】D【解析】【分析】由点可求四边形ABCD分成面积D. yAC y B 八1 .3 — 74 14 ;求出CD的直k、b的关系.解答此题注意理解:直线y=kx+b k>0时,直线必经过一、三象限. kv 0时,直y轴正半轴相交.b=0时,直线过原点;bv 0时,线解析式为y=-x+3,设过B 的直线1为丫=h+3并求出两条直线的交点,直线 l 与x 轴的交1 1 2k 5k 1点坐标,根据面积有 7-3 ------------------------ ------------ 1 ,即可求k o2 k k 1【详解】解:由 A 4,0 ,B 2, 1 ,C 3,0 , D 0,3 ,・•. AC 7, DO 3 ,…_ __ ___ __ 11••・四边形ABCD 分成面积 一AC y B 3— 7 4 14 , 2可求CD 的直线解析式为y x 设过B 的直线1为y kx b , 将点B 代入解析式得y kx 2k. .. ........ 一4・•・直线CD 与该直线的交点为-k 1 k 1.. ................................ 1 2k直线y kx 2k 1与x 轴的交点为二上,0 k一 012k732 k••• k・•.直线解析式为y 5x 3;42应选:D.此题考查一次函数的解析式求法;掌握平面内点的坐标与四边形面积的关系,熟练待定系 数法求函数解析式的方法是解题的关键.5.假设一个正比例函数的图象经过 A (3, - 6) , B (m, - 4)两点,那么 m 的值为()A. 2B. 8C. - 2D. - 8【答案】A 【解析】试题分析:设正比例函数解析式为:y=kx,将点A (3, -6)代入可得:3k=-6,解得:k=-2,函数解析式为:y=-2x,将B (m, -4)代入可得:-2m=-4,解得m=2 ,故 选A.考点:一次函数图象上点的坐标特征.6 .甲、乙两人一起步行到火车站,途中发现忘带火车票了,于是甲马上原速返回,乙继续23, 1, 2k 5k 1以原速步行前往火车站,甲取完火车票后乘出租车赶往火车站,途中与乙相遇,带上乙一同前往,结果比预计早到3分钟,他们与公司的路程y 〔米〕与时间t 〔分〕的函数关系如下图,那么以下结论错误的选项是〔1600 米;C.公司与火车站的距离为【答案】D【解析】【分析】B.出租车的速度为每分320米;D.出租车与乙相遇时距车站400米.根据图中一条函数的折返点的纵坐标是票的,然后根据返回公司用时12分钟, 480,我们可得知,甲走了480米后才发现了没带速度不变,可以得出他的速度是80米/分钟,甲乙再次相遇时是16分钟,那么可以得出相遇时,距离公司的距离是1280米,再根据比预计早到3分钟,即可求出各项数据,然后判别即可.【详解】解:根据题意,由图可知,甲走了480米后才发现了没带票,返回公司用时12分钟,行进过程中速度不变,即:甲步行的速度为每分钟竺0=80米,乙步行的速度也为每分钟80米,6故A正确;又•••甲乙再次相遇时是16分钟,・•.16 分乙共走了80? 16 1280米,由图可知,出租车的用时为16-12=4分钟,,出租车的速度为每分1280? 4 320米,故B正确;又•.•相遇后,坐出租车去火车站比预计早到3分钟,设公司与火车站的距离为x米,x x依题思得:一= ----------- + 12+ 3 解之得:80 320x 1600,・♦•公司与火车站的距离为故C正确,D不正确. 应选:D.【点睛】1600米,出租车与乙相遇时距车站1600-1280=320米.此题通过考查一次函数的应用来考查从图象上获取信息的水平.要注意题中分段函数的意义.7 .如图,直线y=kx+b 〔kwq 经过点A 〔-2, 4〕,那么不等式 kx+b>4的解集为〔〕/产云-8A. x>- 2B. xv-2C. x> 4D. x< 4【答案】A 【解析】【分析】求不等式 kx+b>4的解集就是求函数值大于 4时,自变量的取值范围,观察图象 即可得. 【详解】由图象可以看出,直线 y=4上方函数图象所对应自变量的取值为 x>-2,,不等式kx+b>4的解集是x>-2, 应选A.【点睛】此题考查了一次函数与一元一次不等式;观察函数图象,比拟函数图象的上下 〔即比拟函数值的大小〕,确定对应的自变量的取值范围.也考查了数形结合的思想.8.某班同学从学校出发去太阳岛春游,大局部同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候 5分钟,小轿车赶上来之后, 大客车以原速度的 2继续行驶,小轿车保持速度不变.两车距学校的路程S 〔单位:km 〕7和大客车行驶的时间t 〔单位:min 〕之间的函数关系如下图.以下说法中正确的个数是 〔 〕① 学校到景点的路程为 40 km; ② 小轿车的速度是1km/min ; ③ a= 15;10分钟才能到达景点入口.C. 3个 【答案】DD. 4个④当小轿车驶到景点入口时,大客车还需要A. 1个B. 2个【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,此题得以解决.【详解】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40+ (60- 20) = 1km/min,故② 正确,a=1 X (35- 20) = 15,故③正确,大客车的速度为:15+30= 0.5km/min ,10当小轿车驶到景点入口时,大客车还需要:( 40-15)汽0.5 -y) - (40-15) 10分钟才能到达景点入口,故④正确,应选D.【点睛】此题考查一次函数的应用,解答此题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.9 .如图,一次函数y x 2J2的图象与坐标轴分别交于A、B两点,O O的半径为1, P是线段AB上的一个点,过点P作.O的切线PM,切点为M,那么PM的最小值为()A. 2 0B.近 C 后 D. 73【答案】D【解析】【分析】【详解】解:连结OM、OP,彳OH± AB于H,如图,先利用坐标轴上点的坐标特征:当x=0 时,y=- x+2 近=2 72,贝U A (0, 2 亚),当y=0时,-x+2五=0,解得x=2五,那么B (2衣,0),1所以AOAB为等腰直角二角形,那么AB=72 OA=4, OH=- AB=2,根据切线的性质由 PM 为切线,得到 OMLPM,利用勾股定理得到PM= JOP 2 OM 2 = JOP 2 1,当OP 的长最小时,PM 的长最小,而 OP=OH=2时,OP 的长最小,所以 PM 的最小值为衣1点【点睛】此题考查切线的性质;一次函数图象上点的坐标特征.10 .如图,在平面直角坐标系中,函数 丫=2*和y= - x 的图象分别为直线l i, 12,过点 (1,0)作x 轴的垂线交l i 于点A i,过点A i 作y 轴的垂线交12于点A 2,过点A 2作x 轴的垂线交l i 于点A 3,过点A 3作y 轴的垂线交12于点A 4,…,依次进行下去,那么点 A 2021的坐 B.(- 21009, 21010)C. ( 21009, - 21010)【答案】D写出一局部点的坐标,探索得到规律 A 2n+i [ (-2) n , 2X( - 2) n ] (n 是自然数),即可求解; 【详解】A i (1, 2) , A 2( -2, 2) , A 3 ( - 2, - 4) , A 4 (4, - 4) , A (4, 8),由此发现规律:A 2n+i [ ( - 2) n , 2X(-2) n ] (n 是自然数), 2021 = 2 X 1009+1. A2021[ (- 2) 1009, 2X(- 2) 1009], ••.A 2021 (- 21009, - 21010),D. (- 21009,21010)应选D.标为()A.( 21009, 21010)应选D.【点睛】此题考查一次函数图象上点的特点;能够根据作图特点,发现坐标的规律是解题的关键.11 .以下各点在一次函数y=2x-3的图象上的是( )A. ( 2, 3) B, (2, 1) C. (0, 3) D. (3, 0【答案】B【解析】【分析】把各点分别代入一次函数y=2x - 3进行检验即可.【详解】A、2X2- 3=1 w.原式不成立,故本选项错误;B、2X2- 3=1,原式成立,故本选项正确;C、2XX 3=-3W含原式不成立,故本选项错误;D、2X3- 3=3 WQ原式不成立,故本选项错误,应选B.【点睛】此题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标满足一次函数的解析式是解题的关键.解答时只要把四个选项一一代入进行检验即可.12 .假设正比例函数y=kx的图象经过第二、四象限,且过点A(2m, 1)和B(2, m),那么k的值为( )A. - 1B, - 2 C, - 1 D. 12【答案】A【解析】【分析】根据函数图象经过第二、四象限,可得k<0,再根据待定系数法求出k的值即可. 【详解】解:•••正比例函数y=kx的图象经过第二、四象限,k<0.,「正比例函数y=kx的图象过点A(2m , 1)和B(2, m),2km 12k mm 1 m 1解得:1或 1 (舍去).k 一k2 2应选:A.【点睛】此题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.313.在平面直角坐标系中,直线+ 3与崖轴、y轴分别交于月卜8两点,点C是y4轴上一动点,要使点日关于直线的对称点刚好落在归轴上,那么此时点C的坐标是〔〕A.〔.2B. I:.[ C g3〕 D. |〔04〕【答案】B【解析】【分析】过C作CD,AB于D,先求出A, B的坐标,分别为〔4, 0〕 , 〔 0, 3〕,得到AB的长, 再根据折叠的性质得到AC平分/ OAB,得到CD=CO=n DA=OA=4,那么DB=5-4=1, BC=3-n, 在Rt^BCD中,利用勾股定理得到n 的方程,解方程求出n即可.【详解】当x=0,得y=3;当y=0, x=4,• .A (4, 0) , B (0, 3),即OA=4, OB=3, .•.AB=5,又•••坐标平面沿直线AC折叠,使点B刚好落在x轴上, • ・AC平分/ OAB, .-.CD=CO=n,贝U BC=3-n, DA=OA=4, • . DB=5-4=1, 在Rt^BCD中,DC2+BD2=BC?,4••n2+i2=(3-n) 2,解得n=-,,…,,一, _ 4.••点C的坐标为〔0, _〕.3应选B.【点睛】此题考查了一次函数图象与几何变换:直线y=kx+b, 〔kwQ且k, b为常数〕,关于x轴对称,横坐标不变,纵坐标是原来的相反数;关于y轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.14 .函数y 3m 1 x 2中,y随x的增大而增大,那么直线y m 1 x 2经过〔A.第一、三、四象限B.第二、三、四象限C.第一、二、四象限D.第一、二、三象限【答案】B【解析】【分析】根据一次函数的增减性,可得3m 1 0;从而可得m 1 0,据此判断直线y m 1 x 2经过的象限.【详解】解:Q函数y 3m 1 x 2中,y随x的增大而增大,13m 1 0,那么m -3m 1 0,直线y m 1 x 2经过第二、三、四象限.应选:B.【点睛】此题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b 〔kw.中,当k>0时,y随x的增大而增大,图象经过一、三象限;当k< 0时,y随x的增大而减小,图象经过二、四象限;当b>0时,此函数图象交y轴于正半轴;当b<0时,此函数图象交y轴于负半轴.15 .函数y1 2x与y2 ax 3的图像相交于点A m,2 ,那么〔〕A. a 1B. a 2C. a 1D. a 2【答案】A【解析】【分析】将点A m,2代入y 2x,求出m,得到A点坐标,再把A点坐标代入、2 ax 3 ,即可求出a的值.【详解】解:Q函数y i 2x过点A m,22m 2,解得:m 1,A 1.2 ,Q函数y2 ax 3的图象过点A,a 3 2,解得:a 1 .应选:A.【点睛】此题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.16 .一次函数y 2x 1,当x 0时,y的取值范围为〔〕A. y 1B. y > 0C. y 0D. y 1【答案】D【解析】【分析】根据不等式的性质进行计算可以求得y的取值范围.【详解】解:: x 0••• 2x 02x 1 1应选:D.【点睛】此题主要考查一次函数的图象与性质,既可以根据函数的图象与性质,也可以根据不等式的性质求解,灵活选择简便方法是解题关键.17.直线11: y k〔x b与直线I2: y k?x在同一平面直角坐标系中的图象如下图, 那么关于不等式k1x b k2x 的解集为〔〕y A/i/fXy= kr bA. x 1B. x 1C. x 2D. x 0【答案】A【解析】【分析】根据函数图象可知直线l i : y=k i x+b与直线12: y=k2x的交点是〔1,2〕,从而可以求得不等式k〔x b k?x 的解集.【详解】由图象可得,k i x b k?x的解集为xv 1,应选:A.【点睛】此题考查一次函数与一元一次不等式的关系,解题的关键是明确题意,利用数形结合的思想解答问题.z _ 418 .以下函数:①y x;②y —;③y —,④y 2x 1其中一次函数的个数是4 x〔〕A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据一次函数的定义条件进行逐一分析即可.【详解】①y=x是一次函数,故①符合题意;②y z是一次函数,故② 符合题意;4… 4 .. .. . ....................... I , 一,, 一-③y x■自变量次数不为1,故不是一次函数,故③不符合题意;④y=2x+1是一次函数,故④ 符合题意.综上所述,是一次函数的个数有3个,应选:C.【点睛】此题考查了一次函数的定义,解题关键在于掌握一次函数y=kx+b的定义条件是:k、b为常数,kwQ自变量次数为1.19 .以下命题中哪一个是假命题〔〕A. 8的立方根是2B.在函数y=3x的图象中,y随x增大而增大C.菱形的对角线相等且平分D.在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确 的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数y 3x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,应选C.【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周 角定理等知识是解题关键. 20.如图,直线y=-x+m 与直线y=nx+5n (nwQ 的交点的横坐标为-2,那么关于x 的不等式-【分析】根据一次函数图像与不等式的性质即可求解 直线 y=nx+5n 中,令 y=0,得 x=-5•••两函数的交点横坐标为-2,,关于x 的不等式-x+m >nx+5n>0的解集为-5<x<-2故整数解为-4,-3,应选B.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质 C. -4, -3, -2 D. -3, -2【解析】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数的图像和性质测试题
一、选择题(每小题3分,共30分) 1.下列各有序实数对表示的点不在函数图象上的是( ) A.(0,1) B.(1,-1) C.
D.(-1,3)
2.已知一次函数,当增加3时,减少2,则的值是( )
A.3
2
-
B.2
3
-
C.3
2
D.2
3
3.已知一次函数
随着的增大而减小,且
,则在直角坐标系内
它的大致图象是( )
4.已知正比例函数的图象过点(,5),则的值为( )
A.9
5
-
B.37
C.35
D.32
5.若一次函数的图象交轴于正半轴,且的值随值的增大而减小,则
( ) A. B.
C. D.
6.若函数是一次函数,则
应满足的条件是( ) A.且 B.且 C.
且
D.
且
7.一次函数的图象交轴于(2,0),交轴于(0,3),当函数值大于0时,的
y
x
O
y
x
O y
x
O y
x
O C
取值范围是( ) A.
B.
C.
D.
8.已知正比例函数的图象上两点
,当
时,
有,那么的取值范围是( )
A.
2
1
B.2
1
C. D.
9.若函数和
有相等的函数值,则的值为( )
A.
21 B.25 C.1 D.2
5 10.某一次函数的图象经过点(
,2),且函数的值随自变量的增大而减小,
则下列函数符合条件的是( ) A.
B.
C.
D.
二、填空题(每小题3分,共24分) 11.如图,直线为一次函数
的图象,则
,
.
12.一次函数的图象与轴的交点坐标是 ,与轴的交点坐标
是 .
13.已知地在地正南方3千米处,甲乙两人同时分别从、两地向正北方向匀速直行,他们与地的距离(千米)与所行的时间(时)之间的函数图象如图所示,当行走3时后,他们之间的距离为 千米.
S t
O 4
2
B A C
14.若一次函数与一次函数的图象的交点坐标为(,8),则
_________.
15.已知点都在一次函数为常数)的图象上,则与的大小关系是________;若,则___________.
16.已知点(,4)在连接点(0,8)和点(,0)的线段上,则______.
17.已知一次函数与的图象交于轴上原点外的一点,则
a________.
=
a
+b
18.已知一次函数与两个坐标轴围成的三角形面积为4,则________.
三、解答题
19.已知一次函数的图象经过点(,),且与正比例函数的图象相交于点(4,),
求:(1)的值;(2)、的值;
(3)求出这两个函数的图象与轴相交得到的三角形的面积.
20、若一次函数的图象与轴交点的纵坐标为-2,且与两坐标轴围成
的直角三角形面积为1,试确定此一次函数的表达式.
21、为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为 cm ,椅子的高度为 cm ,则应是的一次函数,下表列出两套符合条件的课桌椅的高度: (1)请确定与的函数关系式.
(2)现有一把高39 cm 的椅子和一张高78.2 cm 的课桌,它们是否配套?为什么?
22、某车间有甲、乙两条生产线.在甲生产线已生产了200吨成品后,乙生产
第一套 第二套 椅子高度(cm ) 40 37 课桌高度(cm )
75
70
线开始投入生产,甲、乙两条生产线每天分别生产20吨和30吨成品.(1)分别求出甲、乙两条生产线各自总产量(吨)与从乙开始投产以来所用时间(天)之间的函数关系式.
(2)作出上述两个函数在如图所示的直角坐标系中的图象,观察图象,分别指出第10天和第30天结束时,哪条生产线的总产量高?
THANKS
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。