1-9 离心泵的装置特性与工况调节
第四讲_离心式压缩机_第9节_与管路联合工作及工况调节
第九节 与管路联合工作及工况调节
与管路联合工作及工况调节
4.9.1 离心压缩机装置特性 4.9.2 离心压缩机的串并联 4.9.3 离心压缩机的工况调节
离心压缩机装置特性
和离心泵相同
•通过压缩机的气体流量=管道气体流量 •压缩机增压ΔP=管路阻力降 •工作点:压缩机性能与管路特性 •工作点变化:节流、旁路、切割叶轮、
END
能曲线 优点:操作方法简单
方便,最经济
离心压缩机的工况调节
⑷ 转动进口导叶(进气预旋调的工况调节
离心压缩机的工况调节
⑸ 转动扩压器叶片 原理:改变扩压器叶片角减小冲击损失 目的:改变机器喘振点,扩大压缩机稳定工况范围 优点:操作方法简单 缺点:经济性差
➢ 阀全开时:
ps pa ps Qs曲线1
➢关小调节阀:
ps 、pd 进气压力曲线2 曲线向左下方移动,ps Qs曲线3
➢进一步关小:
ps 、pd 进气压力曲线4 曲线向左下方移动,ps Qs曲线5
进口就节流调节实际上是改变了压缩 机的性能曲线。
离心压缩机的工况调节
⑶ 改变转速调节 原理:改变压缩机性
离心压缩机的串并联
⑵ 离心压缩机的并联
应用场合: ① 增加供气量; ② 气量很大,一台困难 ③ 用气量变动,利用台数控制
并联特性: ①总流量增加,但单台流量…… ②若并联后管路阻力系数增大……
离心压缩机的工况调节
合理选择压缩机,应该使压缩机能在设计工况附近操作, 因为这时压缩机的效率最高。但由于生产上工艺参数不可避免 的会有变化,所以经常需要对压缩机进行手动或自动调节,使 压缩机能适应生产要求,改变工况点,以保持生产系统稳定。
变转速等
离心泵的性能参数与特性曲线
离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。
离心泵的主要性能参数有流量、压头、效率、轴功率等。
它们之间的关系常用特性曲线来表示。
特性曲线是在一定转速下,用20℃清水在常压下实验测得的。
(一)离心泵的性能参数1、流量离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。
离心泵的流量与泵的结构、尺寸和转速有关。
2、压头(扬程)离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。
压头的影响因素在前节已作过介绍。
3、效率离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。
反映能量损失大小的参数称为效率。
离心泵的能量损失包括以下三项,即(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。
闭式叶轮的容积效率值在0.85~0.95。
(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。
这种损失可用水力效率ηh来反映。
额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。
(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。
机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。
离心泵的总效率由上述三部分构成,即η=ηvηhηm(2-14)离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。
通常,小泵效率为50~70%,而大型泵可达90%。
4、轴功率N由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。
离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有Ne = HgQρ(2-15)式中Ne------离心泵的有效功率,W;Q--------离心泵的实际流量,m3/s;H--------离心泵的有效压头,m。
水泵运行工况及工况调节
泵的出水量。
举例: 如图所示为五台泵并联工作的情况。
H
1
2
34
1台 2台
3台
5 4台
管道特性曲线 5台
O
Q1
Q2
Q3 Q4
Q5
Q
100
190
251 284 300
注意:在泵站设计中,如果所选水泵是以经常单独运行 为主的,并联工作时,要考虑到各单泵的流量会减少的,扬 程是会提高的。如果选泵时是着眼于各泵经常并联运行的, 各单泵单独运行时,相应的流量将会增大,轴功率也会增 大。
(2)绘制需能曲线
H=HST+SDFQI2+SFGQ =HST+SDF(Q/2)2+SFGQ2 =HST+(1/4SDF+SFG)Q2
点绘 DFG 管(或EFG )管道的特性曲线。
(3)求工况点
(Q-H)1+2与H=HsT+(1/4)SDF+SFG)Q2的交点E, 即为并 联工作的工况点,过E点作Q轴的平行线,与单泵性能曲线的
η = 1+2
QH QH
P1 P2
管道布置是否对称的工程处理: (1)从工程实际看,只有两泵离汇流点的距离相差较
大,而又并联工作时,才作不对称处理。 (2)北方井群系统,从水泵工况来说:相当于几台水
泵在管道不对称的情况下并联工作,应作不对称处理。一 般来说是各井间的吸水动水位不同,可以选取一个共同的 基准面,在静扬程计算时,做相应的修正 。
(Q-H)’’ ;
2) EG管道系统特性曲线可用H=ZG-SEGQ2 计算, 即Q-∑hEG
3)工况点:M为工况点:
水泵工况:Q=Qp , H=H’p F池工况: Q=Qk G池工况:Q=Qp+Qk=QM
采油机械复习题
采油机械复习题一、单项选择题1、离心泵的N—Q曲线是(B选择驱动机的依据和C启动泵的依据)2、锥形管式吸入室适用于(小型单级单吸悬臂式)离心泵。
3、离心泵的主要工作参数是(A 流量B扬程C功率和效率)4、适用于高扬程、液体较洁净场合的离心泵叶轮是(闭式叶轮)5、离心泵采用的平衡措施中,适用于多级泵的是(叶轮对称布置)6、能够完全平衡掉轴向力的措施是(自动平衡盘)7、离心泵的H—Q曲线是(选泵和操作使用泵的依据)8、离心泵的ŋ—Q曲线是(检查泵经济性的依据)9、离心泵的操作包括(A 启动、运行B倒泵、停泵)10、往复泵适用于输送(A 高压B小流量C高粘度)的液体11、离心泵的主要零部件中,(叶轮)是转动件12、离心泵中给液体增加能量的零部件是(叶轮)13、不是离心泵用途的是(做钻井泵)14、不是离心泵操作内容的是(保养)15、不是离心泵泵轴校正的常用方法是(化学校直法)16、两台离心泵相似的条件是(A几何相似B运动相似)17、离心泵的相似特性里给出了三个定律,下面(能量守恒定律)不是。
18、防止离心泵发生汽蚀的措施是(降低泵的安装高度)19、离心泵泄露严重,下面(液体在泵内汽化)不是造成这个故障的原因。
20、离心泵灌泵的目的是(A排净泵内空气C启动后在泵吸入口产生真空)21、离心泵的理论扬程与输送液体的(性质无关)22、离心泵工况调节中改变管路特性的调节方法是(出口节流调节)23、螺旋形吸入室适用于(A 单级双吸式B水平中开式多级)离心泵。
24、圆环形吸入室适用于(单吸分段式多级)离心泵。
25、离心泵工况调节中改变泵特性的调节方法是(A改变泵的转速B切割叶轮)26、适用于流量较大场合的叶轮是(双吸叶轮)27、分段式多级离心泵中正向导叶的作用是(A收集叶轮排出的液体B转变大部分动能为压能)28、往复泵中,(泵阀)是控制液体单向流动的液压闭锁机构,是泵的心脏部分。
29、为了保证往复泵在高压下能够安全工作,需要在出口处安装(安全阀)30、往复泵的输出压力与(负载)有关。
离心泵的性能参数与特性曲线
离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。
离心泵的主要性能参数有流量、压头、效率、轴功率等。
它们之间的关系常用特性曲线来表示。
特性曲线是在一定转速下,用20℃清水在常压下实验测得的。
(一)离心泵的性能参数1、流量离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。
离心泵的流量与泵的结构、尺寸和转速有关。
2、压头(扬程)离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。
压头的影响因素在前节已作过介绍。
3、效率离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。
反映能量损失大小的参数称为效率。
离心泵的能量损失包括以下三项,即(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。
闭式叶轮的容积效率值在0.85~0.95。
(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。
这种损失可用水力效率ηh来反映。
额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。
(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。
机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。
离心泵的总效率由上述三部分构成,即η=ηvηhηm(2-14)离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。
通常,小泵效率为50~70%,而大型泵可达90%。
4、轴功率N由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。
离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有Ne = HgQρ(2-15)式中Ne------离心泵的有效功率,W;Q--------离心泵的实际流量,m3/s;H--------离心泵的有效压头,m。
简述离心泵流量调节方法及各自特点
离心泵是一种常见的流体输送设备,广泛应用于工业生产和民用领域。
在使用离心泵时,往往需要对其流量进行调节,以满足不同的工艺要求或使用场合。
流量调节的方法有很多种,每种方法都有其特点和适用范围。
本文将简要介绍离心泵流量调节的方法及各自特点。
一、调节叶片角度离心泵的叶轮是在泵内旋转,它的叶片角度的改变可以改变泵的性能,从而达到调节流量的目的。
这种方法通过调节叶轮的转速和叶片的角度来改变流道的截面积,从而改变流体通过泵的流量。
这种方法的特点是调节范围大,可以在一定范围内实现较大的流量调节,但是调节复杂,需要专业的技术人员进行操作。
二、改变泵的入口和出口阀门的开度通过改变泵的入口和出口阀门的开度来调节流量。
当阀门开度越大,流量越大,反之,阀门开度越小,流量越小。
这种方法的特点是调节简单,操作方便,但是调节范围较小,且对阀门的严密性要求较高,如果阀门密封不严,会影响泵的工作效率。
三、改变泵的转速通过改变泵的电机转速来调节泵的流量。
当转速增大时,流量增大,反之,流量减小。
这种方法的特点是调节范围大,操作方便,但是需要有专业的设备来实现转速调节,且不同泵的转速范围不同,有些泵转速调节范围较小。
四、安装变频器控制器通过安装变频器控制器来实现调节泵的流量。
变频器控制器可以精细调节泵的转速,从而实现流量的精确控制。
这种方法的特点是调节精度高,范围大,可实现连续无级调节,但是安装成本较高,需要有专业的技术人员进行操作。
五、改变泵的叶轮直径通过更换不同直径的叶轮来实现流量的调节。
更换大直径的叶轮可以增大泵的流量,更换小直径的叶轮可以减小泵的流量。
这种方法的特点是操作简单,不需要专业的技术人员进行操作,但是更换叶轮需要停机维护,对生产有一定的影响。
总结起来,离心泵的流量调节方法有很多种,每种方法都有其特点和适用范围。
在实际应用中,选择合适的调节方法需综合考虑系统的要求、设备的性能和经济成本等因素,综合分析,选择最合适的流量调节方法才能更好地满足工业生产和民用需求。
离心泵串并联及工况调节综合实验
离心泵串并联及工况调节综合实验
一、实验目的
1.绘制两台离心泵串联运行工况调节图;
2.绘制两台离心泵并联运行工况调节图(共用管路节流调节方式):
二.实验装置
1.离心泵、电动机、管路系统(包括管路、阀门、水箱等);
2.真空表、压力表;玻璃转子流量计
三.实验原理
离心泵实验系统布置图如下图
图1 离心泵实验系统布置图
1—电动机;2—离心式水泵;3—压力表;4—转子流量计;5—2”弯头;6—真空表
7—三通;8—闸阀;9—水箱;;10—逆止阀
四.实验步骤
1.检查管路是否接好,流量计中水是否充满。
2.离心泵阀门全开,联好线路,打开电源开关。
3.将管路调制离心泵串联运行,稳定后,从小到大调节阀门开度,观察记录压力表,真空表和流量计的读数,流量每次增加3~5格,共做十一次。
4.将管路调制离心泵并联运行,稳定后,从小到大调节共用管路阀门开度,观察记录压力表,真空表和流量计的读数,流量每次增加3~5格,共做十一次。
五.实验数据记录与处理
1.原始数据
当地重力加速度:g= m/s2;水池距离地面高度: cm;
测试水温:t= ℃;该温度下水的密度:ρ= kg/m3(查表);
1#离心泵出口截面中心与进口截面中心的高度差∆z= m;
2#离心泵出口截面中心与进口截面中心的高度差∆z= m;
2实验数据记录与处理
表2
3.两台离心泵串联运行工况调节图
4.两台离心泵并联运行工况调节图(共用管路节流调节)
六、注意事项
1.实验过程中,禁止沙粒抽进泵体。
2.长期停用时,开启前请先拨动叶片,确定转动灵活再接电源。
3.越冬前,请排净泵内积水一方冻裂。
离心泵4-离心泵的装置特性及工况调节
离心泵4-离心泵的装置特性及工况调节离心泵是一种常见的水泵类型,它利用离心力将液体从低压区域输送到高压区域。
离心泵通常由泵体、叶轮、轴和密封装置等部件组成。
离心泵的装置特性主要包括流量特性、扬程特性和效率特性,工况调节主要包括调节叶轮直径、调节叶轮叶数和调节转速。
首先,流量特性是离心泵的工作性能之一、流量特性描述了离心泵在不同流量下的性能参数。
一般情况下,离心泵的流量特性为正向线性关系,即流量与扬程成正比。
在流量小于额定流量时,离心泵的流量特性基本上是线性的。
但是在超过额定流量时,流量特性会出现下降趋势,这是由于泵体结构和叶轮设计的限制所致。
其次,扬程特性是离心泵的另一个重要性能参数。
扬程特性描述了离心泵在不同扬程下的性能表现。
扬程特性通常为反向线性关系,即扬程与流量成反比。
当流量增加时,泵的扬程会逐渐下降。
这是因为在较大流量下,液体在泵体内部流动速度较快,由于摩擦和阻力损失会导致扬程下降。
再次,效率特性是评价离心泵工作效率的指标。
效率特性描述了离心泵在不同流量和扬程下的能量转换效率。
离心泵的效率通常在额定流量和额定扬程下最高,并随着流量和扬程的偏离而下降。
较低的效率意味着泵的能源消耗更大,泵的工作效率也较低。
工况调节是指通过调整离心泵的设计参数来适应不同的工况需求。
主要的工况调节方法包括调节叶轮直径、调节叶轮叶数和调节转速。
调节叶轮直径是通过更换不同直径的叶轮来实现的。
当需要改变流量时,可以选择更换具有不同叶轮直径的离心泵。
较大的叶轮直径可以提供更大的流量,而较小的叶轮直径则可以提供较小的流量。
调节叶轮叶数是通过更换具有不同叶数的叶轮来实现的。
叶轮的叶数越多,泵的流量越大,扬程越小;叶数越少,泵的流量越小,扬程越大。
调节转速是通过更改驱动泵的电机的转速来实现的。
调节转速可以在一定程度上改变泵的流量和扬程。
当需要改变流量和扬程时,可以通过改变电机的转速来实现。
综上所述,离心泵的装置特性包括流量特性、扬程特性和效率特性。
离心泵的调节
离心泵出厂时均附有泵的性能曲线,在它上面标有此泵合理的运行工作范围.用户在使用此泵时,应实行调节,使它尽可能在合理的范围内运行.调节离心泉运行工况有两种方法:改变装笆性能曲线和改变泉的性能曲线。
(1)改变装置性能曲线离心泵的运行工况点是由离心泵的性能曲线和装置特性曲线的交点决定的.如果二曲线之一发生变化,那么,该交点也就相应地移动,即泉的运行工况点发生变化.当管路装者已定时.打开或关小吐出管路上的调节阀就是增大或减少管路中的阻力损失,装首特性曲线也随之变化.所以通过调节吐出管路上的闸淘,可以很方便地调节离心泵的运行工况.(2)改变泉性能曲线1)改变转速:具体方法见比例定律一节。
2)减少多级泵叶轮个数或车削叶轮外径.在运行中经常遇到有些商心泵的流量和扬程超过实际需要,为了使此泵能经济合理的运行,并保证一定的备用扬程条件下,设法消除多余扬程.范心泵的多余扬程不能简单以单台离心泵的额定扬程减去实际需要扬程.还必须考虑到泵零件磨损后的性能下降,电网频率改变时所引起的转速降低等因素的影响.消除多余扬程可以采用以下两种方法:对多级泉可以拆除叶轮,拆除叶轮应在吐出端进行。
如在吸入端拆除叶轮,能使吸入侧阻力增加出现汽蚀现象.分段式多级泵可以拆除中段.但此时必须换轴。
也可以只拆除多级泉叶轮而保留中段就可以不换轴,只是增加一些扬程损失.对多余扬程不只拆除一级叶轮的多级泵和一般单级泵,常采用车削叶轮外径来消除多余扬程.具体方法如下.叶轮的切割员和切割后的性能变化关系如下:(切割后的参数用角标-表示)Q7Q=D2'∕D2即D√=DXQ7Q)H'∕H=(D2'∕D2)2即D2=D2(H,∕H)V2.P7P=(D2'∕D2)3即D2'=D2(P7P)1∕∖可用上述公式来初步确定叶轮切割量,但具体切割量还应参考性能曲线和切割后的性能变化来确定一般情况下要分几次进行切割,而并不是一次切割到位,这样则可以避免切割后扬程不足.例:EAPI00-250工作参数QN=220r∩7h H N=7011I选用直径为250mm的叶轮,由曲线可知当流H Q=220mVh时,扬程H=73m4此时叶轮需要要进行切割,切割后叶轮直径用上式计算可得:D2-=D2(H7H N)V2=250(70∕73)1∕2=244.8mm如将百径切割到244.8mm性能曲线将发生变化如下图。
单台离心泵工况调节方式分析
通 常 ,在 工艺 设计 和生 产实 践 中 ,离心 泵
的 流 量和 扬 程 可 能 会 比管 路 中要 求 的偏 大 ,或 者 由于生产任务 、工艺要求发生变化 ,需对泵 的运
时流量连续,可 以在某一最大流量与零 之间随意
调 节 ,且 无 需额 外 投 资 。但节 流 调节 是 人 为 增 加 阻力 ,造成扬程损失 ,能量利 用率差 ,泵 的效率
. 5 3 .
1 . 2旁 路 调节
H / m
旁 路 调 节 是 将 泵 排 出 的液 体 , 一 部 分 通 过 旁 路 引入 到 其 它 装 置 或 重 新 引 回吸 液 池 ,从 而 使 泵 输 送 到装 置 的 流 量 得 到 调 节 的方 法 。旁 路 调 节 实
质上是通过 改变管路特性 曲线的位置来改变泵 的 工作点。如图2 所示 ,设主管路、旁路 的管路特性 分别为 ( Q~h ) 、 ( Q~h ): ,则 并 联 后 的管 路 特 性 为 O~h 。 当 旁 路 调 节 阀 完 全 关 闭时 ,Q~ H 曲线与 ( Q~h )。 曲线 的交 点 为M ;旁 路 调 节 阀 打开 时 ,Q~ H曲线 与 Q~h 曲线 的交 点为 M。按 分 支 管 路 中求 各 管 路 流 量 的方 法 ,过 M点 做 水 平 线 交 ( Q~h ) 于A 。 点,交 ( Q ~h ): 于A : 点 ,则通 过 主管路、旁路 中的流量分别为Q 、Q 主管 路 中 的 流 量 比关 闭旁 路 阀 时 主 管 路 中的 流 量 小 , 所 以 ,流 量 得 到 了调 节 。 这 种 调 节 方法 虽 然 操 作 中较 为 简 单 方 便 ,但 旁 路 中 的 流 量 仍 需 要 消 耗 泵 功 ,经 济 性 较 差 。仅 适 宜 比转 数 较 大 、 扬 程 流 量 曲线较 陡的情况 采 用 。
离心泵的工作特性和工况调节
② 切割叶轮外径:没有附加能量损失;只能作计算后长期调节,切割 后不能复原,可变泵的特性工况调节
③ 泵的串并联:流量和扬程调节范围宽,操作灵活。
六 离心泵的不稳定工作
低ns的离心泵H-Q特性呈驼峰状,这种特性曲线与管 路特性可能有两个交点M、M1,理论上都是工作点。
3、管路特性 h = hp + kQ2
4、工作点及其调节
• 管路特性调节:包括管路节流调节、旁路调节; • 泵的特性调节:包括改变工作转速、切割叶轮和串并联
等。
五 离心泵运转工况的调节
1 管路特性调节
③ 静液面变化调节:管路特性上下移动,也可达到调节目的,吸排液 罐中压力及液位变化。
五 离心泵运转工况的调节
2 改变泵的特性工况调节
① 改变工作转速:此法没有节流引起的附加损失,比较经济;取决于 原动机能否变转速,汽轮机、燃气轮机和电机变频等应用。
五 离心泵运转工况的调节
第六节 离心泵的工作特性和工况调节
在泵的实际运行中,泵和管路一起组成系统,系 统遵循质量守恒和能量守恒两个定律。泵和管路任一 方变化,均会引起系统工作参数变化。
一 离心泵的工作特性
1 固定转速泵的工作特性
H = a − bQ2−m
2 叶轮直径变化后泵的工作特性
H
=
a
D D0
−
b
D D0
m Q2−m
四 顺序输送时泵的特性
• 同一管道按顺序输送两种不同的油品; • 两种油品的粘性和密度都不同,设定ρB>ρA; • A和B油品的管路特性曲线分布为I和Ⅱ,泵所需
的能头不同。
五 离心泵运转工况的调节
改变运转泵的工作点称为工况调节。工作点是与管路特性的 交点,任何一曲线变化,工作点随之变化。
离心泵常用调节方式
离心泵常用调节方式离心泵在水利、化工等行业应用十分广泛,对其工况点的选择和能耗的分析也日益受到重视。
所谓工况点,是指水泵装置在某瞬时的实际出水量、扬程、轴功率、效率以及吸上真空高度等,它表示了水泵的工作能力。
通常,离心泵的流量、压头可能会与管路系统不一致,或由于生产任务、工艺要求发生变化,需要对泵的流量进行调节,其实质是改变离心泵的工况点。
除了工程设计阶段离心泵选型的正确与否以外,离心泵实际使用中工况点的选择也将直接影响到用户的能耗和成本费用。
因此,如何合理地改变离心泵的工况点就显得尤为重要。
油桶泵离心泵的工作原理是把电动机高速旋转的机械能转化为被提升液体的动能和势能,是一个能量传递和转化的过程。
根据这一特点可知,离心泵的工况点是建立在水泵和管道系统能量供求关系的平衡上的,只要两者之一的情况发生变化,其工况点就会转移。
工况点的改变由两方面引起:一.管道系统特性曲线改变,如阀门节流;二.水泵本身的特性曲线改变,如变频调速、切削叶轮、水泵串联或并联。
下面就这几种方式进行分析和比较:一、阀门节流改变离心泵流量最简单的方法就是调节泵出口阀门的开度,而水泵转速保持不变(一般为额定转速),其实质是改变管路特性曲线的位置来改变泵的工况点。
如图1所示,水泵特性曲线Q-H与管路特性曲线Q-∑h的交点A为阀门全开时水泵的极限工况点。
关小阀门时,管道局部阻力增加,水泵工况点向左移至B点,相应流量减少。
阀门全关时,相当于阻力无限大,流量为零,此时管路特性曲线与纵坐标重合。
从图1可看出,以关小阀门来控制流量时,水泵本身的供水能力不变,扬程特性不变,管阻特性将随阀门开度的改变而改变。
这种方法操作简便、流量连续,可以在某一最大流量与零之间随意调节,且无需额外投资,适用场合很广。
但节流调节是以消耗离心泵的多余能量(图中阴影部分)来维持一定的供给量,离心泵的效率也将随之下降,经济上不太合理。
二、变频调速工况点偏离高效区是水泵需要调速的基本条件。
离心泵的工作特性
按设计泵和模型泵的参数Q、H、n计算所方比例i1。
1 1 DM H M 2 n sh DM QM n sh 3 i1 ( ) i1 ( ) D H nM Dsh Qsh n M sh sh 按照Dsh=DM/i1计算设计泵的各尺寸。算得的i1是不同的,一般选用 其中较大的值。
有了设计泵的各尺寸,即可绘制设计图,并根据模型泵的性能曲线 换算成设计泵的性能曲线。
改变装置特性曲线的调节
闸阀调节
液位调节
旁路分流调节
菜单
改变泵特性曲线的调节 a.转速调节 b.切割叶轮外径调节
c.改变前置导叶叶片角度的调节
d.改变半开式叶轮叶片端部间隙的调节
e.泵的串联或并联调节
改变装置特性曲线的调节
改变管路特性曲线的调节
a.闸阀调节
b.液位调节
c.旁路分流调节
2 离心泵的启动与运行
启动前的准备工作
启动前检查
润滑油的名称、型号、主要功能和加注数量是否符合技术文件 规定的要求; 轴承润滑系统、密封系统和冷却系统是否完好,轴承的油路、 水路是否畅通; 盘动泵的转子1~2转,检查转子是否有摩擦或卡住现象; 在联轴器附近或皮带防护装置处,是否有妨碍转动的杂物; 泵、轴承座、电动机的基础地脚螺栓是否松动; 泵工作系统的阀门或辅助装置均应处于泵运转时负荷最小的位 置,应关闭出口调节阀; 点动泵,看其叶轮转向是否与设计转向一致,若不一致,必需 使叶轮完全停止转动后,调整电动机接线后,方可再启动。
菜单
启动程序
离心泵泵腔和吸水管内全部充满水并无空气,出口阀关 闭。给水泵暖泵完毕。 对于强制润滑的泵,启动油泵向各轴承供油。
离心泵实际工况调节的研究
在转速一定时 , 征泵的扬程 H、 表 轴功 率 N、 效率 1和允 1
许吸上真空高度 H 与排量 Q之 间的关 系曲线称为定速特性
曲线 。图 1 所示为船用 2 5 L一 . C 4型离心泵 在 20  ̄m n下 90 i 的定速特性曲线。
在 Q—H特 性 曲线 上 , 应 于 任 一 排量 Q, 可 以 找 出 与 对 都
21 0 0年第 4期 安徽 电子 信息 职业技 术学 院学 报 N . 2 1 o4 00 第 9卷 ( 总第 4 9期 ) J RAOAHIOAOA L CO Er NS IOM ̄NEHOOY G nr N .9V 19 O NLFNUVCTNLOL E FL R C&N RA0 CNLG ee U I C E EC O F T  ̄ o4 o .
右愈 平 缓 , 的 适 宜 工 况 区 就 愈 宽 。 泵 2管 路 特性 曲 线
之相应的 H、 1 和 H 值 。通常 , Q—H 曲线 上 的点 , N、1 把 称 为工况点。可见 , Q—H 曲线 是许 许 多多 的工 况点 的集 合 。
从 图 中 可见 , 着 程 的 升 高 , 的排 量 是 减 小 的 。对 应 于 随 泵
为: H h _( : H 一H1 + ) + Q K () 2
运行 。若瞬间泵的工 况点从 M点 偏离至 A点 , 泵 的扬 程 则
H 不能满足液体 以较 大排 量流过 该管 路所 需的扬 程 H , 管路 中的液体流量将被 迫减 少 , 的扬程 升高 , 泵 直至泵 给出
2 1. 82 _ 00 0 .0
} D 示 :
h :K Q
王 悦— 心 实工 调 的 究 长— 离泵 际况 节 研
第期 4
离心泵运行工况的优化与调节
离心泵运行工况的优化与调节在工农业生产的各行各业和人们的日常生活中,离心泵发挥着不可替代的重要作用,是实现液体输送的主要设备之一。
但是,离心泵的实际运行工况的效率却是偏低,而且能耗过大,造成费用的增多和浪费,不利于企业的发展和盈利。
为此,就需要对离心泵运行的工况进行优化与调节,以减少损失,提高效率。
一、离心泵运行效率低的原因分析1、离心泵的运行工况点偏离了设计工况造成效率低下设计离心泵时,根据给定的一组流量Q扬程H与转速n 值、按水力效率n最高的要求进行计,如果计算符合这一组参数的工作情况就称为水泵的设计工况点。
水泵铭牌中所列出的数值即为设计工况下的参数值,它是该水泵最经济工作的一个点。
但是在实际运行中,水泵的工作流量和扬程往往是在某一个区间内变化着的,流量和扬程均不同于设计值。
水泵装置在某瞬时的实际出水量、扬程、轴功率、效率以及允许吸上真空高度等称为水泵装置的实际工况点。
我们所说的求离心泵的工况点指的就是实际工况点,它表示了水泵装置的工作能力。
在选泵时及运行中,应使泵装置的实际工况点尽量接近水泵的设计工况点,落在高效段内。
2、离心泵内的各种损失造成离心泵运行效率下降液体流过叶轮的损失包括机械损失、流动损失和泄漏损失,与之相应的离心泵的效率分为机械效率、水力效率和容积效率。
机械损失包括叶轮的轮盖和轮盘外侧与液体之间摩擦而消耗的轮阻损失、轴承和填料函内的摩擦损失;泄漏损失包括由叶轮密封环处和级间以及轴向力平衡机构处的泄漏损失;流动损失由液体流过叶轮、蜗壳、扩压器产生的沿程摩擦损失以及流过上述各处的局部阻力损失包括流体流入叶道以及转能装置时产生的冲击损失,其损失的大部分转变为热量为流体所吸收。
3、管路效率低当被输送液体流量或扬程发生变化,经常见到的处理方法是调节阀门,这一方法虽然方便,但是也存在缺点,就是会造成管路阻力损失过大,使离心泵在低效率状态下运行。
4、离心泵自身效率低保证离心泵运行效率高首先应该选择高效离心泵, ,如分段式多级离心泵本身的效率较高,而IS 型单级单吸离心泵的效率则较低。
泵与压缩机课程教学(自学)基本要求.
《泵与压缩机》课程教学(自学)基本要求编者:王振波作业第一章作业题1-1.一台离心泵从开口水池内吸水,其装置如题1图所示,H g1=4.4m,吸入管直径d1=0.1m。
设泵的流量为34m3/h,吸入管内摩擦阻力系数为λ=0.02,吸入管总当量长度为18m。
试计算输水时,泵入口处真空表的读数为多少mmHg(1mmHg=133.322Pa)?其绝对压力为多少mmH2O(1mmH2O=9.80665Pa)?题1图1-3.设某离心水泵流量Q=0.025m3/s,排出管压力表读数为323730Pa,吸入管真空表读数为39240Pa,表为差为0.8m。
吸入管直径为100mm,排出管直径为75mm。
电动机功率表读数为12.5kW,电动机效率为0.93。
泵与电动机采用直联。
试计算离心泵的轴动率、有效功率和泵的总效率。
1-4.某输送油品德离心泵装置如题4图所示,试计算泵需要提供的实际扬程。
已知:油品密度为850kg/m3;罐Ⅰ内压力p1=196133Pa(绝);罐Ⅱ内压力p2=176479.7Pa(绝);H1=8m,H2=14m,H3=4m;吸入管内损失h s=1m,排出管损失h d=25m,经过加热炉时的压降Δp=1372930Pa;吸入管与排出管管径相同。
题4图1-14.有一离心水泵,当转速n=2900r/min时,流量Q=9.5m3/min,扬程H=120m。
另有一台与此泵相似的离心水泵,流量Q=38 m3/min,扬程H=80m,问叶轮的转速应为多少?1-17.已知离心水泵的性能参数如同题13,试分别计算:(1)转速n不变(2900r/min),将叶轮外径D2切割到208mm,求各对应点的参数并绘出性能曲线。
(2)若要求工作点为Q=40m3/h,H=50m,问此时泵的叶轮应切割到多少?是否在允许切割范围内?1-21.某离心油泵装置如题21图所示。
已知罐内油面压力p A与油品饱和蒸汽压力p v相等,该泵转速n=1450r/min,最小汽蚀余量Δh r=k0Q2,吸入管内流动阻力损失h f=k1Q2,试求:(1)当H g1=8m,Q=0.5m3/min时,泵的[Δh]=4.4m,吸入管路阻力损失h f=2m,此时泵能否正常吸入?(2)保持Q=0.5m3/min时,液面下降到什么位置泵开始发生汽蚀?(3)当H g1=4m时,若保证泵安全运转,泵的最大流量为多少?(设此时k0,k1不变)(4)若将泵的转速提高到nˊ=2900r/min,还能否正常吸入?题21图1-29.某水泵运行时的参数为:扬程H=35m,流量Q=10m3/h,转速n=1440r/min。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单泵串联前工况点:M1
两泵串联后工作点:M
H h ( H ) h H pot kQ2
Q
hw
特点:
HⅠⅡ HⅠ HⅡ 2H M1 QⅠⅡ QⅠ QⅡ QM1
1-9 离心泵的装置特性与工况调节
二、离心泵并联、串联工作的装置特性
注意
①若后一台泵压力高,应考虑后一台泵的强度及密封问题。
《泵与压缩机》
1-9 离心泵的装置特性与工况调节
培黎石油工程学院 李 鲤
1-9 离心泵的装置特性与工况调节
油气储运工程中,泵和管路一起组成一个系统, 系统遵循质量守恒与能量守恒两个定律,泵和管路任 意一个方发生变化,均会引起系统工作参数的变化。 本节分析装置特性及影响因素、工况调节。
1-9 离心泵的装置特性与工况调节
(2)不同性能泵的串联
泵串联,同一Q下的H相加 泵串联,管路特性(h-Q)未变
HⅠⅡ HⅠ HⅡ QⅠⅡ QⅠ QⅡ
泵工作点的确定:A1、A2
图1-63 不同性能泵串联工作
1-9 离心泵的装置特性与工况调节
二、离心泵并联、串联工作的装置特性
泵串联前:泵Ⅰ工作点在M1点, 泵Ⅱ工作点在M2点
稳定 工作 状态
质量守恒:泵排出流量=管路中输送流量 能量守恒:泵提供扬程H=管路所需能头h
泵扬程性能曲线H—Q 管路特性曲线h—Q
装置特性
1-9 离心泵的装置特性与工况调节
一、单根管路特性与工作点
工作点 (1)泵在M/点工作时
H ' h'
液体能头不足v↓,Q↓
M' M
1-9 离心泵的装置特性与工况调节
泵Ⅱ工作点在A2点
HⅠⅡ HⅠ HⅡ
QⅠⅡ QⅠ QⅡ
1-9 离心泵的装置特性与工况调节
二、离心泵并联、串联工作的装置特性
QM QA1 QA2 QM1 QM2
并联台数过多 并不经济
①管路特性越平坦,并联后QⅠ+Ⅱ愈接近QⅠ+QⅡ
②泵的特性愈陡峭,并联后QⅠ+Ⅱ愈接近QⅠ+QⅡ
二、离心泵并联、串联工作的装置特性
(2)不同性能泵的并联 泵并联,同一H下的Q相加 泵并联,管路特性(h-Q)未变
HⅠⅡ HⅠ HⅡ QⅠⅡ QⅠ QⅡ
1-9 离心泵的装置特性与工况调节
二、离心泵并联、串联工作的装置特性
泵并联前:泵Ⅰ工作点在M1点,
泵Ⅱ工作点在M2点
泵并联后:泵Ⅰ工作点在A1点,
③ 两台同性能但是相距很远的泵串联工作,在叠加泵性 能曲线之前,先将泵间管路AB对泵的影响考虑进去。
1-9 离心泵的装置特性与工况调节
三、离心泵在分支管路、交汇管路中工作的装置特性
1.在分支管路中工作的装置特性
1管特性(h-Q)1 2管特性(h-Q)2 3管特性(h-Q)3
管2、3是并联,同扬程 流量相加得(h-Q)2+3
QI =QI+Q
H H
1-9 离心泵的装置特性与工况调节
二、离心泵并联、串联工作的装置特性
⑴ 相同性能泵的并联 泵并联前:单泵工作点在M1 泵并联后:单泵工作点在A1 泵并联后:
M1 M
QM1 QM;QM QM1
HⅠⅡ hM hM1 H M1
QⅠⅡ 2QA1 2QM1 HⅠⅡ HⅠ HⅡ
②启动停车顺序:关闭两泵出口阀,先起第一台,开第一台 出口阀,再启动第二台,开第二台出口阀;停车时……。
③管路特性陡降,串联后增加的扬程多;泵特性平坦,串联 增加的扬程多。
④串联相当于多级泵,多级泵在结构上比串联更凑紧, 应选 用多级泵代替串联工作。
1-9 离心泵的装置特性与工况调节
二、离心泵并联、串联工作的装置特性
k
1 2f
2
l d
管路特性系数,与管路长度、流道 横截面积、各种阻力系数有关
1-9 离心泵的装置特性与工况调节
一、单根管路特性与工作点
H pot
PB
PA
gH A
HB
hw kQ2
h H pot kQ2
管路特性方程
1-9 离心泵的装置特性与工况调节
一、单根管路特性与工作点 2.装置特性一工作点
管1与管2+3串联,同流 量下扬程相加得h-Q特性。
1-9 离心泵的装置特性与工况调节
三、离心泵在分支管路、交汇管路中工作的装置特性
装置工作点:M
QM=Q1=Q2+Q3
1-9 离心泵的装置特性与工况调节
三、离心泵在分支管路、交汇管路中工作的装置特性
一、单根管路特性与工作点
1.单根管路特性
由伯努利方程,有
h
PB
PA
gH A
H B hw
J/kg
Const、与Q无关
静扬程:
H pot
PB
PA
gH A
HB
1-9 离心泵的装置特性与工况调节
一、单根管路特性与工作点
hw
l d
c2 2
c Q f
hw kQ2
hw
l d
Q2 2f 2
③并联后泵扬程大于单泵工作扬程。
两泵并联工作时,应选单泵性能曲线稍陡!
1-9 离心泵的装置特性与工况调节
二、离心泵并联、串联工作的装置特性
2.串联工作 ⑴ 相同性能泵的串联
泵串联,同一Q下的H相加。 泵串联,管路特性(h-Q)未变。
HⅠⅡ HⅠ HⅡ QⅠⅡ QⅠ QⅡ 确定工作点:M1
1-9 离心泵的装置特性与工况调节
1-9 离心泵的装置特性与工况调节
二、离心泵并联、串联工作的装置特性
QⅠⅡ 2QA1 2QM1
①管路特性越平坦,并联后QⅠ+Ⅱ愈接近2QM1 ②泵的特性愈陡峭,并联后QⅠ+Ⅱ愈接近2QM1 ③并联后泵扬程大于单泵工作扬程 两泵并联工作时,应选单泵性能曲线稍陡!
1-9 离心泵的装置特性与工况调节
一、单根管路特性与工作点
工作点 (1)泵在M//点工作时
H ' h'
液体能头不足v↑,Q↑
M M
工作点: 流量平衡、能量平衡的唯一点
1-9 离心泵的装置特性与工况调节
二、离心泵并联、串联工作的装置特性 1.并联工作 ⑴ 相同性能泵的并联 泵并联,同一H下的Q相加 泵并联,管路特性(h-Q)未变
泵串联后:泵Ⅰ工作点在A1点, 泵Ⅱ工作点在A2点
HⅠⅡ QⅠ QⅡ QM1、QM2
图1-63 不同性能泵串联工作
1-9 离心泵的装置特性与工况调节
二、离心泵并联、串联工作的装置特性
注意 ① 与交于C点时,第二台泵已不起作用,C点为极限;
使用其在后时,此台泵成为阻力。 ② C点后H、Q均小于只有第一台泵单独工作的流量和扬程。