基坑支护结构内力变形监测分析
基坑变形监测工程方案
基坑变形监测工程方案一、监测的内容基坑变形监测的内容主要包括基坑周边的地表沉降、基坑支护结构的变形、地下水位的变化和基坑周边建筑物的变形等。
在监测时需要对这些内容进行全面的监测,以及对监测数据进行分析和评估,发现问题及时采取应对措施。
1. 地表沉降监测地表沉降可以通过水准仪、全站仪或GPS进行监测。
监测站点应根据基坑的布置情况,合理设置在基坑周边并延伸至一定范围的地表上。
监测的频次应根据基坑施工工况和地质情况进行调整,以保证监测的准确性和及时性。
2. 基坑支护结构的变形监测基坑支护结构主要包括钢支撑、深基坑墙、桩墙等结构,在施工过程中容易发生变形。
可以通过支撑位移仪、变形测斜仪、钢筋应变计等仪器设备进行监测。
3. 地下水位的变化监测地下水位的变化会直接影响基坑的稳定性,因此需要对地下水位进行监测。
监测可以采用水位计、水压计等仪器设备,实时监测地下水位的变化情况。
4. 基坑周边建筑物的变形监测基坑施工可能会对周边建筑物造成影响,因此需要对周边建筑物的变形进行监测。
可以使用倾斜仪、位移计等仪器设备进行监测。
二、监测方法基坑变形监测的方法主要包括传统监测方法和新技术监测方法。
传统监测方法主要包括水准测量、测斜测量、倾斜测量、测量等方法;新技术监测方法主要包括全站仪测量、GPS 监测、激光扫描监测、遥感监测等方法。
在实际监测中需要根据基坑的特点和地质情况选择合适的监测方法。
三、监测仪器设备基坑变形监测需要使用一系列仪器设备进行监测,包括水准仪、全站仪、GPS、支撑位移仪、变形测斜仪、水位计、水压计、倾斜仪、位移计等仪器设备。
在选用仪器设备时需要考虑其精度、稳定性和可靠性,并且需要对仪器设备进行定期校准和维护。
四、监测周期基坑变形监测的周期需要根据基坑的施工工况和地质情况进行合理设置。
一般来说,基坑变形监测的周期应该是连续不断的,并且需要根据监测数据的变化情况进行调整监测周期。
五、实施方案基坑变形监测的实施方案主要包括监测方案的制定、监测点的设置、监测数据的处理和分析以及监测报告的编制等内容。
基坑变形监测的内容
基坑变形监测的内容基坑变形监测是指对工程基坑在施工和使用过程中产生的变形进行实时监测和分析的过程。
基坑变形监测的目的是为了确保工程的安全稳定,及时发现和解决可能出现的问题,保障施工进度和质量。
在基坑施工过程中,地面开挖和支护施工会引起周围土体的变形和移位。
这些变形和移位可能会导致地面沉陷、周围建筑物的倾斜甚至坍塌等严重后果。
因此,基坑变形监测必不可少。
基坑变形监测的常用方法包括测量法和监测仪器法。
测量法是指通过测量基坑周围建筑物、地面和地下水位等参数的变化来判断基坑的变形情况。
监测仪器法则是通过安装各种监测仪器,如倾斜仪、位移计、应变计等来实时监测基坑的变形情况。
基坑变形监测的内容主要包括基坑周围建筑物的倾斜监测、地面沉降监测、地下水位监测以及基坑支护结构的变形监测等。
这些监测内容可以通过测量法或监测仪器法进行实时监测和分析。
基坑周围建筑物的倾斜监测是基坑变形监测中的重要内容之一。
通过在建筑物上安装倾斜仪或激光测距仪等仪器,可以实时监测建筑物的倾斜情况。
如果发现建筑物倾斜超过安全范围,就需要采取相应措施,如加固建筑物或调整施工方案。
地面沉降监测是基坑变形监测的另一个重要内容。
地面沉降是指地面由于基坑开挖和土体变形等原因而发生的下沉现象。
通过在地面上设置沉降点,并使用沉降仪进行测量,可以实时监测地面沉降情况。
如果发现地面沉降过大,就需要及时采取补充土方案或加大支护措施。
地下水位监测是基坑变形监测中的重要环节。
地下水位的变化会直接影响到基坑周围土体的稳定性。
通过在基坑周围设置水位监测点,并使用水位计进行实时监测,可以及时掌握地下水位的变化情况。
如果发现地下水位过高或过低,就需要采取相应的排水或补水措施,以保证基坑的稳定施工。
基坑支护结构的变形监测也是基坑变形监测的重要内容。
基坑支护结构的变形情况直接关系到基坑的稳定性和安全性。
通过在支护结构上安装位移计、应变计等监测仪器,可以实时监测支护结构的变形情况。
深基坑围护结构位移变形及内外力监测技术
深基坑围护结构位移变形及内外力监测技术一、深基坑围护结构及其位移变形1.地铁深基坑特点地铁施工中,通常在地铁车站处采用明挖法进行,必然产生比较深的深基坑,对于有多条地铁线路相交的换乘枢纽站来说,其深度更大,。
相对于一般基础工程而言,地铁深基坑工程具有许多特点,概括起来主要有以下几个方面:(1)深度大。
通常在十米以上,对于有线路交叉的换乘车站其深度会更大开挖面积大,长度与宽度有的达数百米给支撑系统的设计、施工和安全保障带来较大的困难。
(2)地铁往往修建在大型城市,而我国绝大部分大型城市位于沿海或滨江地带,这些区域的工程水文地质条件很差,且施工期受地表交通影响非常严重,在软弱的地层、高水位及其它复杂场地条件下开挖深基坑,极有可能会产生土体滑移、深基坑失稳、桩体变位、坑底隆起、支挡结构严重漏水、流土以至破损等病害,对深基坑工程自身及周边建筑物、地卜构筑物、市政设施和地下管线的安全造成很大威胁。
(3)施工周期长,且场地受限制多。
地铁深基坑沿线往往有大量已建或正在建的高层建筑、市政管线等,进行深基坑施工时除保障其本身的工程安全外,还需严格控制变形值,保障周边建构筑物的安全。
(4)因地而异。
不同城市、不同地点的工程及水文地质条件存在较大差别,而且施工环境及气象也各不相同,这些都直接影响深基坑施工方案的选择及安全。
(5)技术要求高,涉及面广。
地铁深基坑工程牵涉到土力学、岩石力学、混凝土结构、钢结构等的设计及施工监测技术,必须选择合理的设计及施工参数、方法来组织施工及安全防护。
(6)施工与设计相互关联。
地铁深基坑工程对技术要求高,施工与设计必须相互协调,在设计时就要对施工工艺、支护方法、支护结构变形及受力情况进行充分考虑,以施工影响设计。
(7)对深基坑的支护技术要求高、方法多,深基坑支护的方法主要有、地下连续墙、预制桩、深层搅拌桩、钢木支撑、拉锚、抗滑桩、注浆、喷锚网支护法、人工挖孔桩、各种桩墙、板、管、撑同锚杆联合支护法和土钉墙法等,如何根据工程实际情况选择施工方法非常关键。
基坑支护结构内力变形监测分析
基坑支护结构内力变形监测分析摘要当前我国各地频繁出现深大基坑工程,为此我们要有效地控制基坑周围地层位移,同时基坑内力变形控制要求越来越严格。
本文首先概述了基坑支护结构内力变形监测要求,论述了基坑支护结构内力变形的控制措施,最后提出了相关配套措施,同时基坑工程的支护体系设计与施工和土方开挖都要因地制宜。
关键词基坑工程;支护结构;内力变形随着现代化城市进程的不断扩张,我国的基坑工作也在不断的增加,同时也伴随着风险和质量的不断增加。
而基坑工作是一项综合性很强的系统工程,它包括了基坑支护体系的设计施工和土方开挖,这就要求各个部门的技术人员之间要进行密切的配合。
同时基坑工程在每个地方表现出来的差异性也不一样,受到各个方面因素的影响,每个基坑的变形情况也不同,而其中一个很大的影响因素就是开挖地区的土体物理性状。
1 基坑支护结构内力变形监测要求基坑的变形现象主要体现在在3个方面,支护墙体的变形、基坑底部的突起以及地表不同程度的沉降。
其中对支护结构变形的预测是作为基坑变形的一项最常见的预测,因为基坑支护墙墙体的变形就会导致墙体的的外侧地面发生变化,促使基坑内的位移和底部土体的拱起。
由于受到地质水以及各方面的影响就使得我们在实验室内而得到的支护机构应力变形等数据域实际测量工作中得到的数据还是有很大的差距的。
为看了让实际检测的数据和实验得要的理论数据相一致,我们就可以从实际的检测到的数据用反分析的方法去修改计算机模型中的一些参数,再根据这些参数,运用正分析的方面从而计算出下一个施工阶段的数据。
2 基坑支护结构内力变形的控制措施2.1 控制要求基坑变形主要控制方法主要为加深、加刚、加固、降水、随挖随撑,增加维护结构和支撑的刚度,增加围护结构的入土深度,加固被动区土体,控制降水减少开挖时间,随挖随撑,缩短暴露。
2.2 控制措施2.2.1 冻结+排桩支护技术地基冻结排装桩伐法顾名思义就是将两种技术互相结合取长补短,是一种大胆的技术创新,将含有水的地基坑的封水结构,利用排桩和内部的支撑系统来作为受力层用来抵抗水土带来的压力。
深基坑工程施工变形的监测和分析
深基坑工程施工变形的监测和分析摘要:变形监测是利用专用的仪器和方法来持续观测变形结构的变形现象,对其变形状态进行分析,并预测其发展动态的各项工作。
实施变形监测的主要目的就是在各种荷载和外力作用下,明确变形体的形状、大小以及位置变化的空间状态以及时间特点。
在精密工程实际测量过程中,最常见的变形体有:深基坑、大坝、高层建筑物、隧道以及地铁等。
通过实施变形监测可以掌握和精准科学地分析变形体各部位的实际变形情况,进而做出提前预报,这对于整个工程质量控制和施工管理来讲,十分重要。
基于此,本文将对深基坑工程施工变形的监测进行分析。
关键词:深基坑工程;施工变形;变形监测1 基坑工程变形监测概述基坑工程变形监测首先应该确定监测对象及监测项目两部分,基坑工程结构不同、所处环境不同,变形监测的侧重点也不同。
确定合理有效的监测对象、监测项目,既能起到监测预警的作用,又能提高监测效率、节省监测成本,是基坑工程变形监测的关键控制点。
基坑工程变形监测对象一般包括基坑支护结构本身,基坑周边土体、地下水、地下管线以及基坑周边建(构)筑物、重要道路等等;监测项目一般包括位移监测(水平位移和竖向位移)、倾斜监测、土压力监测、地下水位监测、内力监测等等。
监测对象和监测项目的最终确定一般应遵循如下程序:首先根据基坑工程专项设计方案中对变形监测部分的设计要求,收集本项目相关地质、勘察、周边环境等资料,结合相关规范规定,初步确定监测对象及监测项目、并编制本项目基坑工程初步变形监测方案;然后组织专业技术人员现场实地踏勘,实地检核变形监测方案技术指标及条件因素,对于存在与现场条件不符、或有遗漏、有安全隐患部分等需进行基坑工程变形监测方案修编,做到监测方案与实际相符,真正起到基坑工程变形监测预警作用,保证监测成本合理高效;再将包含监测对象、监测项目在内的监测方案、监测成本预算提交建设单位,组织设计单位、专家等进行技术、成本等论证;最后根据论证意见再对包含监测对象、监测项目在内的监测方案进行修改审批,经审批的监测方案即可作为监测依据进行基坑工程监测工作。
基坑支护变形监测记录
基坑支护变形监测记录基坑支护变形监测是指在土木工程施工中对基坑支护体进行变形监测的过程。
基坑支护是为了保证土方开挖过程中土体的稳定性而进行的一系列工程措施。
基坑支护体变形监测是对这些措施的有效性进行评估的重要手段,有助于保障施工的安全和质量。
1.监测目的:需要明确该次监测的目的以及所要达到的效果。
例如,是否为了评估施工前后地下水位变化对支护体的影响,或者评估施工过程中支护体的变形情况等。
2.监测方法:记录使用的监测方法,包括监测设备、监测点布置和监测周期等。
常用的监测方法有测量孔法、全站仪法、倾斜仪法等。
3.监测过程:详细记录监测过程中的操作步骤、监测点的选择和布置情况、监测设备的使用情况等。
同时,还需记录监测过程中发现的问题和解决措施,如监测点测不出数据、设备故障等。
4.监测数据:将监测得到的原始数据进行整理和汇总,包括监测点的测量数据和变形量计算结果等。
对于监测点,需要记录测量时间、测量参数、测量值、测量精度等。
5.数据处理与分析:对监测数据进行处理与分析,包括数据的平滑处理、趋势分析、变形特征分析等。
根据分析结果,评估支护体的变形情况以及是否符合设计要求,进一步指导施工工艺的调整和优化。
6.结论与建议:根据监测数据的分析结果,给出本次监测的结论和建议。
结论应明确地评估支护体的安全性和稳定性,是否需要调整支护体结构或施工工艺等。
建议可以包括加强支护措施、改进施工方法或者增加监测频率等。
7.监测报告:将监测记录整理成监测报告,报告中应包含本次监测的目的、方法、过程、数据、分析结果、结论和建议等。
监测报告是对监测工作的总结和总结,并提供给相关人员进行参考。
基坑支护变形监测记录的重要性不可忽视。
通过监测记录,可以实时了解基坑支护体的变形情况,及时发现问题并采取措施,确保施工的安全性和质量。
基坑支护变形监测记录是施工单位与监理单位交流的重要依据之一,同时也为后续类似工程提供参考和经验。
因此,对基坑支护变形监测记录的编写和整理要严谨,尽量详细和准确,以便后续的分析和研究。
T0805_基坑支护变形监测报告
T0805_基坑支护变形监测报告一、引言基坑是建筑工程施工过程中常见的一项重要工程。
在基坑的施工中,为了保证工程的安全和质量,必须进行基坑支护结构的变形监测。
本报告旨在对工程基坑支护变形监测结果进行分析和总结,为施工过程中的管理和调整提供参考。
二、监测目的1.监测基坑支护结构的变形情况,及时发现变形异常,保证施工过程中的安全。
2.为后续的工程设计和调整提供数据依据。
3.对基坑支护工程的施工方案进行评估和验证。
三、监测方法与仪器1.监测方法采用常规的测量法和激光扫描技术相结合的方法。
对于测量法,采用水准仪和全站仪。
激光扫描技术采用三维激光扫描仪。
2.监测仪器包括水准仪、全站仪和三维激光扫描仪。
四、监测内容及结果分析1.监测内容1.1支护结构的竖向位移;1.2支护结构的水平位移;1.3支护结构的倾斜变形;1.4地下水位的变化。
2.监测结果分析2.1支护结构的竖向位移根据监测数据统计,支护结构的竖向位移以直线下降趋势为主,变形大小较小,且变化幅度稳定。
表明支护结构的稳定性良好。
2.2支护结构的水平位移支护结构的水平位移主要分为两个方向,即沿着基坑边坡方向和垂直边坡方向。
监测数据显示,沿着基坑边坡方向的位移较大,变形幅度较小,变形速度稳定;垂直边坡方向的位移变化较小,较为稳定,变形幅度较小。
整体上,支护结构的水平位移在可控范围内。
2.3支护结构的倾斜变形支护结构的倾斜变形主要体现在基坑边坡的倾斜度。
监测数据显示,基坑边坡的倾斜变形较小,且变形速度较慢。
说明支护结构的稳定性较好。
2.4地下水位的变化地下水位的变化是基坑支护变形监测的重要指标之一、监测数据显示,基坑施工过程中,地下水位的变化幅度较小,且变化趋势稳定。
表明基坑支护结构对地下水位变化的响应较好。
五、结论与建议1.结论通过对基坑支护变形监测数据的分析,可以得出以下结论:1.1支护结构的竖向位移变化较小,稳定性良好;1.2支护结构的水平位移在可控范围内,变形幅度小;1.3支护结构的倾斜变形较小,支护结构稳定性良好;1.4基坑施工过程中,地下水位变化幅度小,支护结构对地下水位变化的响应较好。
建筑工程深基坑监测常见问题分析及对策
建筑工程深基坑监测常见问题分析及对策摘要:随着我国经济的快速发展,对大型建筑工程的需求日益增加,而深基坑监测是高、超高层建筑施工过程中不可或缺的重要部分,只有保障深基坑的施工质量,才能使建筑工程结构物的后续施工得以顺利有序的进行,从而提升城市化建设效率,促进社会和谐稳定发展。
文章针对目前深基坑监测过程中常遇到的一些疑难问题予以分析,并提出切实有效的解决方法。
关键词:建筑工程;深基坑监测;分析;对策一、.建筑工程深基坑测量中存在的问题1.深基坑监测点埋设不合理问题对于监测点埋设不合理,主要就是因为在埋设之前没有做出正确的决策或者决策者考虑的不全面、不能符合实际,不能从实际出发,导致基准点不合理。
很多都是因为技术人员或者指导人员的知识不够全面、专业素质有待提高、考虑与分析问题不够透彻与全面。
对于整个团队来说,合作意识不强、不能做到互补优势、也不能发挥团队协作取长补短的优势、不能结合集体的不同思想做出改变。
对于员工或者领导来说。
可能存在不积极、或者带头作用不好的现象。
对于施工环境来说,可能选择的地理位置或者地质条件并不是非常简单,不容易完成监测。
政府的支持力度在资金方面可能比较少、技术也不能够完全支持。
或者计划赶不上变化,环境发生不可控的转化,都会导致深基坑监测点埋设不合理的问题。
2.埋设的检测点网络不健全建筑工程施工过程具有复杂性,而且分多个不同的环节进行施工,这些环节是一个相互依赖、缠绕、影响的整体,不是一个分散的环节,所以需要进行全方面的检测,尽可能的保证检测到每个环节,我们在上个问题中提到一个合理的检测点很重要,那么如果检测网络的不健全会带来怎样的问题呢?不健全的检测点网络虽然能对部分环节进行检测,可是细致程度不够,不能对每个方面的工程实施情况及时检测,从而无法做出相应对策,严重的话可能会危及生命,并且导致不必要的财产损失,最后需要在精确的位置埋设检测点,检测会受到位置及高度的影响。
3.建筑工程深基坑检测的技术不先进,设施不齐全人员的能力方面问题是深基坑检测技术的不先进的主要表现,无法对出现的棘手问题及时有效处理,设施不全体现在:没有先进的检测工具,没有一针见血的检测方法,没有到位的检测技术等等,自改革开放以来我国的技术水平不算太高,主要引进国外先进技术,并且进行不断学习,正如我们大多数听说的是中国制造而不是中国创造,因此我国在技术方面还需更加努力创新、学习及研究,实现发展的多元化。
深基坑支护体系的内力与变形监测结果分析
图 1 监测点平面布置图
3 监 测 结 果 分 析 3 1 锚 杆 预 应 力控 制 .
25 .m厚 的挡土墙壁 ; 基坑 围护 结构采 用直径为 10 mm 人工 20
挖孔桩 , 护壁厚 度 10 5mm, 桩间距 10 mm ̄ 50 在开挖深度范 围内设
锚杆在锁定 以后 , 用频率仪对土层锚杆进行应力监测 。从表 1 中所测数据 可以看 出, 6根锚 杆施加 的预应 力均有 不同程度 的 损失 , 号锚杆损失最大 , 5 . k 损失率为 5. , 6 为 4 7 N, 4 7 最小 的荷
水帷幕的水泥土搅 拌桩直径 50 0 mm, 间距 4 0 m, 5排。 0m 共
2 监 测点 设 置
() 1变形观测点设置于桩顶冠 梁上 , 同一基坑边 上的观 测点 应位于一条直线上 , J 光学经纬仪监测 。 用 2 () 2 钢支撑监测的时候 每层 选取 7 根钢管 , 最大 间距 3m, 0 最 小间距 1 .m, 0 5 每根 4 点 , DH3 1 个 用 8 9应变仪 和表 面应变计监
.● ,
一 ,
, ,弄
;
㈣
_ _
表 1 锚杆锁定后预应力损 失情况
维普资讯
总第 1 1 2 期
西 部 探 矿 工 程
WES T— CH I NA EXP LORATI ON NGI ERI E NE NG
s re . 2 e is No 1 1 M a. 0 6 y2 0
2 0 年第 5 06 期
文章编号 :0 4 5 1 ( 0 6 O 一 O 5 一O 1 0— 7 6 2 0 ) 5 2 1 2
摘
要: 在施 工过程 中, 监测 数据 结合基坑 工程 的 实际情 况进行 综合分析 , 用监测数据进 行反馈 设计和 分析 , 将 利 对后
基坑变形监测及变形规律的探讨
基坑变形监测及变形规律的探讨摘要:深基坑工程在中国城市建设中占有重要地位,而深基坑工程中,进行有效的变形监测及变形机理与规律分析对于对工程有着重大影响。
为了提高建筑安全水平,需要做好建筑基坑的变形监测工作,并对基坑的变形规律进行分析,为建筑的安全施工提供有力保障。
基于此,本文对基坑变形监测技术概述以及基坑变形监测及变形规律的措施进行了分析。
关键词:基坑;变形监测;变形规律1 基坑变形监测技术概述1.1监测特点基坑变形是基坑在荷载以及其他因素的作用下出现形状、大小、位置等方面的变化。
变形监测的目的在于得出变形的具体情况,与其它工程检测项目不同,变形监测具有以下几个特点:(1)变形监测是工程安全监测的一部分,具体包括内部监测与外部监测两个部分。
(2)为了提高建筑安全性,需要非常高的监测精度。
(3)监测周期较短,需要反复多次监测来得出多期有效数据。
1.2变形监测等级划分及精度要求变形监测划分了不同的精度等级,精度等级主要是根据观测点水平位移点位中误差、垂直位移高程中误差以及变形观测点高差中误差来进行划分。
精度的高低与观测工作复杂性、时间以及费用直接相关,然而为了减少误差,变形监测通常不允许低精度的情况发生。
1.3监测方法基坑变形监测经过了十几年的技术发展与创新,在水平与垂直位移的监测上,衍生出多种监测技术,如小角度法、投点法、视准线法、GPS测量法等。
2基坑监测工作的意义基于基坑工程施工技术尚未普及,地下地质水文环境相对复杂且地域性差异明显,所以对基坑安全设计的参数难以精准确定。
放大参数势必造成资源的浪费,过度收紧参数又会导致危险的发生。
所以结合理论设计、既往施工经验、实时动态监测三方面工作,对基坑进行综合安全分析是当下基坑施工过程中安全控制的常用手段。
对于某些创纪录工程,并无相似案列得以借鉴,而环境的不确定性导致了理论数值置信度降低,所以动态监测数据更加受到重视。
首先,于工程本身,基坑监测能及时发现险情以便提前采取安全措施,预防危险的发生。
基坑混合支护结构内力及变形监测分析
基坑混合支护结构内力及变形监测分析摘要:明挖基坑在富水砂层条件下,支护结构采用钻孔灌注桩、两排锚索及一排钢支撑的混合支护体系。
在施工工况变化因素下,监测基坑结构体系变形及受力变化。
分析了在正常开挖情况下及桩后土体不稳定情况下结构内力各自变化情况,为同类工程结构变形规律及风险研判提供参考。
关键词:明挖基坑;富水砂层;混合支护;基坑监测Abstract: The open-cut pit in the sand under the conditions of the water-rich, supporting structure using bored piles, two rows of anchor cable and a row of steel support mixed-supporting system. Construction condition variables, monitoring pit structure system deformation and stress changes. This paper analyzed the respective changes of the structural internal force in normal excavation and pile soil mass under unstable conditions, provides a reference for law and risk judged of similar projects in structural deformation.Key words: open-cut excavation; watery sand; mixed support; excavation monitoring0 引言随着城市经济发展,轨道交通工程建设步伐进一步加快,发展较快的城际轨道交通工程是促进城市区域经济协调发展的纽带。
深基坑支护工程变形监测及数据分析
深基坑支护工程变形监测及数据分析摘要:本文主要针对深基坑支护工程变形的监测及数据展开了分析,通过结合具体的工程实例,介绍了深基坑支护工程中的变形监测方案设计,并对变形监测的结果作了数据处理,以期能为有关方面的需要提供参考借鉴。
关键词:深基坑支护;变形监测;数据分析0 引言深基坑施工如今已在建筑工程中得到了普遍的应用,但由于其存在着变形的问题,还是需要我们重视深基坑工程的施工。
因此,我们需要对深基坑的变形进行监测,并采取有效的措施做好处理。
基于此,本文就深基坑支护工程变形的监测及数据进行了探讨,相信对有关方面的需要能有一定的帮助。
1 工程实例1.1工程概况某基坑支护工程位于城中区的城市主干道旁,基坑长233m,宽202m,设计深度9.5~11.5m,设计等级为Ⅰ级,采用“动态设计法”进行设计施工。
基坑南部有5栋高度在4~7层的民用建筑,距支护墙最近为3m,小于基坑深度2倍,必须提供合理、可靠的监测方案,定期对支护桩桩顶、基坑侧壁边坡顶、周边既有建筑物、地表和周边道路进行位移和沉降变化监测。
1.2 主要方案设计1.2.1 基准点布设在场地外围不受施工影响的稳固处,采用钻孔置入法埋设5个水平位移基准控制点K1~K5,在施工场地内安置3个工作基点K6~K8,制作成强制对中观测墩。
以基准点BM1,BM2及BM3三个基岩点作为沉降观测的基准点,如图1所示。
图1 基坑工程变形监测基准点布点略图1.2.2 监测点布设依据设计要求,在支护桩顶梁上和基坑坡顶共布设51个水平位移观测点,在一级平台上共布设25个水平位移观测点;在基坑南面5栋4~7层民用建筑布设11个水平位移观测点。
基坑南面建筑物群布设20个沉降观测点;路面布设12个沉降观测点。
1.2.3 观测方法(1)水平位移监测点观测。
每次分别在工作基点上设站,以K1,K2,K3,K4,K5作为控制,利用后方交会的方法检核工作基点的稳定性,若工作基点处于稳定状态则直接用极坐标法观测各监测点;若工作基点不稳定则利用实时交会的坐标作为新的测站坐标,利用极坐标法观测各监测点。
基坑变形监测的内容
基坑变形监测的内容基坑变形监测是指对基坑周边土体和基坑结构变形进行实时监测和分析的一项工作。
基坑变形监测的目的是为了确保基坑施工的安全性和稳定性,及时发现和预测基坑变形情况,采取相应的措施进行调整和修复,以保证施工的正常进行。
基坑变形监测通常包括以下几个方面的内容:一、地表沉降监测。
地表沉降是指基坑施工过程中地表下沉的现象。
地表沉降监测可以通过测量地表标志物的高程变化来进行。
常用的监测方法有水准测量和全站仪测量。
监测结果可以反映基坑施工对周边土体的影响程度,为后续施工提供参考。
二、地下水位监测。
地下水位的变化对基坑的稳定性有着重要的影响。
地下水位监测可以通过安装水位计或压力计等设备来实现。
监测结果可以帮助工程师及时调整基坑降水量,防止因地下水位过高而导致基坑失稳的风险。
三、周边建筑物变形监测。
基坑施工过程中,周边建筑物的变形情况需要密切关注。
通过安装倾斜仪、位移计等设备来对建筑物的变形进行监测。
监测结果可以反映基坑施工对周边建筑物的影响,及时采取措施避免建筑物产生过大的变形导致安全隐患。
四、支护结构变形监测。
基坑施工过程中,支护结构的变形情况直接关系到基坑的稳定性和施工的安全性。
通过安装应变计、位移计等设备来对支护结构的变形进行监测。
监测结果可以帮助工程师及时发现支护结构的变形情况,采取相应的加固措施,确保支护结构的稳定性。
五、地下管线变形监测。
基坑施工过程中,地下管线的变形情况也需要进行监测。
通过安装位移计、应变计等设备来对地下管线的变形进行监测。
监测结果可以帮助工程师及时发现地下管线的变形情况,避免施工对管线造成损害。
基坑变形监测是基坑施工中非常重要的一项工作,可以帮助工程师及时发现和预测基坑变形情况,采取相应的措施进行调整和修复,确保施工的安全性和稳定性。
通过地表沉降监测、地下水位监测、周边建筑物变形监测、支护结构变形监测和地下管线变形监测等内容的监测,可以全面了解基坑施工对周边环境的影响,并及时采取措施避免安全隐患的发生。
基坑工程内力监测方案
基坑工程内力监测方案一、基坑工程内力监测的意义在基坑工程施工过程中,由于土壤的支护结构和周围环境的影响,基坑工程的内力状况会发生变化,可能会出现土体变形、墙壁倾斜、水平位移等情况。
因此,基坑工程内力监测的意义在于及时发现基坑工程的内力变化趋势,为施工方提供及时的反馈信息,采取相应的措施,以保证基坑工程的稳定性和安全性。
二、基坑工程内力监测方案的内容1. 监测对象基坑工程内力监测的对象主要包括土体变形、墙壁倾斜、水平位移等情况。
其中,土体变形主要指土体的沉降、变形和收缩,墙壁倾斜主要是指各种支护结构的倾斜情况,水平位移主要是指基坑工程周围环境的水平位移情况。
2. 监测方法基坑工程内力监测的方法主要包括传统测量方法和现代监测技术两种。
传统测量方法主要包括测量孔、水准测量、定位测量等;现代监测技术主要包括全站仪监测、GPS监测、遥感监测等。
3. 监测频率基坑工程内力监测的频率主要根据基坑工程的施工进度和环境变化情况确定。
一般情况下,基坑工程内力监测的频率为每天一次或者每周一次。
4. 监测技术基坑工程内力监测的技术主要包括传感器技术、数据采集技术和数据处理技术。
其中,传感器技术主要是通过安装传感器来监测土体变形、墙壁倾斜、水平位移等情况;数据采集技术主要是通过数据采集设备来采集监测数据;数据处理技术主要是通过计算机软件来处理监测数据。
5. 监测报告基坑工程内力监测的报告主要包括监测数据、监测结果和监测建议三部分。
其中,监测数据主要是监测设备采集到的监测数据;监测结果主要是基于监测数据得出的基坑工程内力情况;监测建议主要是根据监测结果提出的相应建议。
三、基坑工程内力监测方案的实施步骤1. 制定监测计划首先,需要根据基坑工程的实际情况制定监测计划,确定监测的对象、方法、频率、技术和报告内容等。
2. 安装监测设备其次,需要安装监测设备,包括传感器、数据采集设备和数据处理设备等,确保监测设备的正常运行。
3. 进行监测然后,需要进行监测工作,采集监测数据,及时发现基坑工程的内力变化趋势。
某地下车库深基坑支护结构变形监测研究
中7 ∞mm, 计桩长 1 m, 设 5 间距为 9 0 0 mm。 采用 中心岛的方式
分 层 均 匀 、 称 地 进 行基 坑 开 挖。 坑 开 挖 分 三 次 进行 , ~ 次 对 基 第 土 方 开 挖 至 水 平 支 撑 环 梁 、 梁 底 部 标 高 处 ; 二 次 土 方 开 挖 帽 第
qu c y nd fe wa d sowl The aue f t ho z ntl i- ikl a at r rs l y. v l o he i r o a ds
p a e e ti eae O t urou i n r nm e .The p e s e lc m n sr lt d t he s r ndng e vio nt r sur
五. 结论
1 深基 坑 工 程 在 基 坑 开 挖 过 程 中 , 护 桩 的深 层 水 平 位 . 该 支
移 随开 挖 深 度 的加 大 而逐 渐 加 大 , 层 水 平 位 移 的增 加 速 率 是 深
先快后缓 , 且深层水平位移 的最大值 出现在整个支护桩 的约 中
间部 位 , 布 曲线 为抛 物 线 。 分 2墙 顶 的 水平 位 移 与 时 间关 系 呈 分段 直 线 规 律 变 化 , . 同时
de p f nd to t o he nd r r nd g rge i e s a l n e ou ai n pi ft u e g ou a a s r aon be a d
sf ae.
基坑变形监测及效果
基坑变形监测及效果一、基坑监测过程基坑支护结构及周边建筑环境的变形监测是支护工程设计和施工的重要组成部分。
通过监测可及时掌握基坑支护的安全程度、稳定状态和支护效果,为设计调整和施工开展提供信息,指导施工方案的调整实施。
本工程基坑安全等级为一级,结合本工程的特点,基坑围护监测的项目包括:(1)围护顶部及坡顶坡脚垂直、水平位移监测;(2)围护结构/土体侧向深层水平位移(测斜)监测;(3)坑外潜水水位观测。
现场检查监测点的数量、位置及测量方法符合方案和规范的要求。
本工程采用的监测点布置和数量分别如图3-63和表3-20所列。
各观测点根据施工进度及时设置,并及时测得初始值。
观测次数不少于3次,取连续3次观测值的平均值作为动态观测的初始测值。
图3-63 基坑代表性测点位置布置表3-20 工程监测点汇总(续表)检测单位应及时向监理提交各类监测报告,以便监理掌握基坑开挖对围护结构的影响,及时采取措施保证基坑围护安全。
若发现监测点数据超过报警阈值,应立即停止监测点所在区域的开挖施工,并会同勘察和设计单位提出围护加固方案。
施工单位在围护结构加固稳定后,经监测单位检测水平位移并确认其稳定后再开挖施工。
此外,还应注意对监测点的保护,以免遭受损坏,保证检测数据的准确性。
二、数据分析与结论监测数据包括三个方面:①围护墙顶垂直位移;②围护墙顶水平位移;③围护墙体深层水平位移(倾斜)。
其中,Q64~Q67围护墙顶垂直位移监测点历时曲线如图3-64所示。
可以看出,在开挖初期,围护因受土层变形摩擦,因此局部呈隆起状。
随着基坑内土方的大量卸载,土体压力的释放和土体应力场的改变,围护最终表现为明显的隆起趋势,待垫层与底板浇筑完成后逐步有沉降趋势。
围护墙顶垂直位移在结构施工阶段基本处于平稳状态。
图3-64 Q64~Q67测点围护墙顶垂直位移变化曲线围护墙顶水平位移监测点历时曲线如图3-65所示。
可以看出,在基坑降水、表层土开挖初期,围护墙顶水平位移向基坑内位移趋势明显。
深基坑工程变形监测实例分析
深基坑工程变形监测实例分析本文结合工程实例,在介绍深基坑变形监测的主要内容的基础上,从围护结构水平位移监测、周围建筑物沉降监测、锚索应用监测及周围环境监测等方面探讨了深基坑变形监测工作,为类似工程变形监测作参考。
标签:深基坑;变形监测;实例分析隨着我国城市进程的不断加快,建筑行业得到了进一步的发展,许多建筑空间逐渐向地下室发展,基坑的开挖深度越来越大,对深基坑工程的施工技术和施工质量要求也有所提高。
在深基坑工程施工中,由于受到地质条件、周边环境、降水不到位和施工环境等复杂因素的影响,基坑施工必然会影响到周围建筑物、地下设施和周围环境,因此,施工人员有必要加强深基坑工程变形监测工作,通过运行专业的仪器和各种方法对深基坑变形进行监测,能够准确掌握深基坑工程施工情况和预测基坑施工未来发展的趋势,对确保深基坑工程的质量安全具有重要的意义。
1基坑变形监测的内容深基坑监测的主要内容有围护结构的水平位移监测、沉降监测、应力监测,及地下水位监测、护坡监测和周围环境监测等,一般通过设定监测项目的报警值来保障基坑施工和周边环境的安全。
在监测过程中,不仅要提供精确的监测数据,还应加强对基坑水文地质的了解与分析、基坑与周边相邻建筑物关系的分析研究。
2.1围护结构的监测(1)水平位移监测围护结构顶部水平位移是围护结构变形最直观的体现,是整个监测过程的重点。
围护结构变形是由于水平方向上基坑内外土体的原始应力状态改变而引起的地层移动。
(2)沉降监测基坑围护结构的沉降多与地下水活动有关。
地下水位的升降使基底压力产生不同的变化,造成基底的突涌或下陷。
通常使用精密电子水准仪按水准测量方法对围护结构的关键部位进行沉降监测。
(3)应力监测基坑稳定状态下,侧壁受主动土压力,围护结构受被动土压力,主动土压力与被动土压力之间成动态平衡。
随着基坑的开挖,平衡被破坏,基坑将发生变形。
2.2周围环境监测(1)邻近建筑物沉降监测当软土地区开挖深基坑时,基坑周围土体塑性区比较大,土的塑性流动也比较大,土体从围护结构外侧向坑内和基底流动,因此地表产生沉降,这是沉降产生的主要原因。
高层建筑深大基坑支护变形监测规律分析
高层建筑深大基坑支护变形监测规律分析目录一、内容概览...............................................21.研究背景与意义..........................................22.国内外研究现状..........................................33.研究内容与方法..........................................4二、高层建筑深大基坑支护概述...............................51.基坑支护的形式与特点....................................62.支护结构的作用与要求....................................73.高层建筑深大基坑的复杂性分析............................8三、变形监测技术与方法.....................................91.监测技术种类及其原理...................................102.监测方法的选择与应用...................................123.监测数据处理与分析.....................................13四、高层建筑深大基坑支护变形监测规律分析..................14五、案例分析..............................................151.工程概况与特点.........................................162.监测实施过程...........................................173.监测结果分析...........................................184.案例分析总结...........................................19六、深大基坑支护变形监测中存在的问题与对策................211.监测技术方面的问题与对策...............................222.监测实施过程中的问题与对策.............................243.监测结果分析与应用的问题与对策.........................25七、结论与展望............................................261.研究结论...............................................272.研究创新点.............................................283.研究不足与展望.........................................29一、内容概览本文档旨在分析高层建筑深大基坑支护变形监测的规律,以下是本文内容的概览:1.引言:简述高层建筑深大基坑工程的重要性,以及支护结构变形监测的意义。
基坑监测方案基于水平位移监测技术的基坑支护结构变形监测与评估方法研究
基坑监测方案基于水平位移监测技术的基坑支护结构变形监测与评估方法研究随着城市建设的不断发展,基坑工程已成为城市建设中不可或缺的一环。
然而,由于基坑工程的特殊性与复杂性,往往存在许多安全隐患与风险。
为了确保基坑工程的安全运行,基坑监测方案成为了一项非常重要的任务。
本文将基于水平位移监测技术,探讨基坑支护结构变形的监测与评估方法,以提高基坑工程的安全性和可持续性发展。
一、水平位移监测技术简介水平位移监测技术主要用于监测基坑支护结构的变形情况,为基坑工程提供实时监测数据和安全预警。
目前常用的水平位移监测技术包括全站仪法、细微变形监测仪和数字测深仪。
这些技术都具有高精度、实时性强、操作简便等优点,适用于各种不同类型的基坑工程。
二、基坑支护结构变形监测方法的选择在基坑工程中,不同类型的基坑支护结构变形监测方法有不同的优劣势,需要根据具体情况选择合适的监测方法。
常用的监测方法包括测量法、数值模拟法和监测系统法。
1. 测量法:通过使用全站仪法等现场测量仪器对基坑支护结构进行定期测量,得到变形数据并进行分析。
这种方法具有操作简便、精度较高的优点,适用于大型基坑工程的变形监测。
2. 数值模拟法:通过建立数学模型对基坑支护结构进行仿真模拟,模拟出不同荷载条件下的变形情况。
这种方法可以预测变形趋势和变形量,并提供评估依据。
然而,数值模拟法需要建立准确的物理模型和输入参数,对操作者的要求较高。
3. 监测系统法:通过安装传感器和监测系统对基坑支护结构进行实时监测,获取变形数据。
这种方法能够实现连续监测和实时报警功能,对于对支护结构变形要求较高的工程较为适用。
三、基坑支护结构变形监测与评估方法的研究基坑支护结构变形监测与评估方法的研究主要包括监测数据的处理与分析以及结构稳定性评估。
1. 监测数据的处理与分析:对于得到的监测数据,需要进行有效的处理和分析。
处理方法可以采用平均值法、滑动平均法等,以去除异常值和噪声干扰,得到更准确的变形数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基坑支护结构内力变形监测分析
摘要当前我国各地频繁出现深大基坑工程,为此我们要有效地控制基坑周围地层位移,同时基坑内力变形控制要求越来越严格。
本文首先概述了基坑支护结构内力变形监测要求,论述了基坑支护结构内力变形的控制措施,最后提出了相关配套措施,同时基坑工程的支护体系设计与施工和土方开挖都要因地制宜。
关键词基坑工程;支护结构;内力变形
随着现代化城市进程的不断扩张,我国的基坑工作也在不断的增加,同时也伴随着风险和质量的不断增加。
而基坑工作是一项综合性很强的系统工程,它包括了基坑支护体系的设计施工和土方开挖,这就要求各个部门的技术人员之间要进行密切的配合。
同时基坑工程在每个地方表现出来的差异性也不一样,受到各个方面因素的影响,每个基坑的变形情况也不同,而其中一个很大的影响因素就是开挖地区的土体物理性状。
1 基坑支护结构内力变形监测要求
基坑的变形现象主要体现在在3个方面,支护墙体的变形、基坑底部的突起以及地表不同程度的沉降。
其中对支护结构变形的预测是作为基坑变形的一项最常见的预测,因为基坑支护墙墙体的变形就会导致墙体的的外侧地面发生变化,促使基坑内的位移和底部土体的拱起。
由于受到地质水以及各方面的影响就使得我们在实验室内而得到的支护机构应力变形等数据域实际测量工作中得到的数据还是有很大的差距的。
为看了让实际检测的数据和实验得要的理论数据相一致,我们就可以从实际的检测到的数据用反分析的方法去修改计算机模型中的一些参数,再根据这些参数,运用正分析的方面从而计算出下一个施工阶段的数据。
2 基坑支护结构内力变形的控制措施
2.1 控制要求
基坑变形主要控制方法主要为加深、加刚、加固、降水、随挖随撑,增加维护结构和支撑的刚度,增加围护结构的入土深度,加固被动区土体,控制降水减少开挖时间,随挖随撑,缩短暴露。
2.2 控制措施
2.2.1 冻结+排桩支护技术
地基冻结排装桩伐法顾名思义就是将两种技术互相结合取长补短,是一种大胆的技术创新,将含有水的地基坑的封水结构,利用排桩和内部的支撑系统来作为受力层用来抵抗水土带来的压力。
但是由于现在的岩土力学这方面的基本理论还不是很成熟,就使得运用这种技术所得到的力学数据与实际检测到的数据还是
有很大的出入,这就要求我们要多次的进行工程检测,将信息反复的比较及时的发现和解决问题,以保证工程的安全的进行。
冻结止水适用于各种不良地质,并且基坑越深,经济上、工期上的优势也就越大,特别是对地下水丰富的软土地层就更加具有优越性,适用于25 50米的大型和特大型基坑,矩形、圆形和其他几何形状的施工。
2.2.2 型钢+搅拌桩支护结构技术
型钢+水泥土复合搅拌桩支护结构的主要工程就是可以抵抗侧向水土的压力已经能够有效的驻足地下水渗漏,目前这种技术主要引用在深基坑支护。
目前主要是使用的是以下两种结构的形式:一种就是在水泥土墙中插入断面交大的H 型钢,主要是利用型钢能够承受的侧压力,基本上就是不考虑水泥土的承载能力,水泥土只是作为止水幕墙,而型钢一般也是不需要喷涂隔离剂,等到基坑工作结束以后再将型钢拔出,达到节省钢材的目的。
另一种方面就是在水泥墙内外两侧压力比较大的区域插入断面比较小的工字钢等,这种方面的原理就是利用水泥土和工字钢的共同作用来承受水土带来的巨大压力还可以有效的止水。
成墙厚度可低至550毫米,围护结构占地和施工占地大大减少。
废土外运量少,施工时无振动、无噪声、无泥浆污染。
工程造价较常用的钻孔灌注排桩方法可节省20% 30%。
该技术可在黏性土、粉土、砂砾土使用,目前在国内主要在软土地区都有成功应用。
这种技术目前可应用在开挖深度15米下的基坑围护工程。
3 基坑支护结构内力变形的控制辅助措施
3.1 严格分包管理
在基坑工程方面,一定要强调建设单位不得将基坑工程分为几个部分承包给不同的单位。
基坑环境包补等位二级以及以上的单位,在围护设计前必须要委托给有一定的资质的房屋检测单位,通过对周边建筑物的倾斜、差异以及沉降结构的接侧来确定其对基坑检测的影响,从而作为设计单位未来确定基坑变形控制标注的一个依据。
对于在基坑工程施工当中比较关键或危险性比较大的工段的时候,施工方必须要求设计人员应驻在现场,以防止不必要的危险发生。
而总到单位必须对基坑工程中的一切的质量安全问题负全责。
3.2 强调监理管理
在基坑工程开挖前进行严格验收是建设单位必须要的一项强制要求,只有拿到总监理工程师亲自签署的开挖令才可以实施。
对于以下行为建设单位不接受的,监理单位应当及时的上报给当地的建设行政管理部门,如出现质量、安全事故等隐患时,监理下达书面指令要求其整改或者暂停施工而拒绝实施的。
3.3 注重施工堆载管理
设计单位应明确堆载限值和基坑周边堆载范围。
由于临时需要在原定的堆载范围以外堆土的,施工单位必须要要经过明确的查验以后制定对应的方案,从而
来确定具体的堆载限制和范围,并且申报给总包单位等到验收以后才可以堆土的。
另外在已经建好的建筑物周边堆土或者是覆土的,也是要建设单位必须要跟原建筑物的设计单位之间进行协商和核算,由于地面堆载对周围建筑物地基造成的附加变形,经妥善协商处理好以后才能进行施工。
总之,在现代建筑施工中,我们要因地制宜地做好基坑支护结构的设计和施工,要密切监测在基坑开挖过程中所引起支护结构的内力变形,同时积极进行管理,确保每个基坑工程都能安全保质保量的完成。
参考文献
[1]单永新.新建地下车库深基坑工程监测控制难点与对策分析[J].中国医院建筑与装备,2012(4):70-73.
[2]曾彩华.深基坑支护工程的结构型式与工程实例[J].安全与健康(上半月版),2006(7):44-46.
[3]刘二栓.深基坑工程特点及存在的问题[J].有色金属设计[J],2004(1):45-47.
[4]齐干,陈学军,朱瑞钧.BP神经网络在深基坑工程中的应用[J].建筑技术开发,2004,31(5):22-26.
[5]刘兴远.神经网络理论在土木工程应用中的几点认识[J].岩土工程学报,2003,25(4):514-516.
[6]杨保全,周磊,吴伟.基于FLAC 3D的复合土钉在软土基坑中的应用[J].北华大学学报:自然科学版.。