第一章非线性动力学分析方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章非线性动力学分析方法(6学时)

一、教学目标

1、理解动力系统、相空间、稳定性的概念;

2、掌握线性稳定性的分析方法;

3、掌握奇点的分类及判别条件;

4、理解结构稳定性及分支现象;

5、能分析简单动力系统的奇点类型及分支现象。

二、教学重点

1、线性稳定性的分析方法;

2、奇点的判别。

三、教学难点

线性稳定性的分析方法

四、教学方法

讲授并适当运用课件辅助教学

五、教学建议

学习本章内容之前,学生要复习常微分方程的内容。

六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。

相空间和稳定性

一、动力系统

在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。

假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时

间t 的函数而且也是空间位置r

的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。

),,,(2111

n X X X f dt

dX ⋅⋅⋅=λ ),,,(2122

n X X X f dt

dX ⋅⋅⋅=λ (1.1.1)

),,,(21n n n

X X X f dt

dX ⋅⋅⋅=λ 其中λ代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是{}i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于{}i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若{}i f 明显地依赖时间t ,则称方程组为非自治动力系统。非自治动力系统可化为自治动力系统。

对于非自治动力系统,总可以化成自治动力系统。

例如:)cos(t A x x

ω=+ 令y x

= ,t z ω=,上式化为 ⎪⎩⎪

⎨⎧=+-==.

cos ,ωz

z A x y y x

上式则是一个三维自治动力系统。

又如:⎩

⎨⎧==).,,(),,,(t v u g v t v u f u

令t w =,则化为⎪⎩⎪

⎨⎧===.

1),,,(),,,(w w v u g v w v u f u

它就是三微自治动力系统.

对于常微分方程来说,只要给定初始条件方程就能求解。对于偏微分方程,不但要给定初始条件而且还要给定边界条件方程才能求解。

能严格求出解析解的非线性微分方程组是极少的,大多数只能求数值解或近似解析解。

二、相空间

由n 个状态变量{}i X =(X 1,X 2,…X n )描述的系统,可以用这n 个状态变量为坐标轴支起一个n 维空间,这个n 维空间就称为系统的相空间。在t 时刻,每个状态变量都有一个确定的值,这些值决定了相空间的一个点,这个点称为系统状态的代表点(相点),即它代表了系统t 时刻的状态。随着时间的流逝,代表点在相空间划出一条曲线,这样曲线称为相轨道或轨线。它代表了系统状态的演化过程。

三、稳定性

把方程组(1.1.1)简写如下

),,,(21n i i

X X X f dt

dX ⋅⋅⋅=λ, i =l ,2,…n (1.1.2) 设方程组(1.1.2)在初始条件00)(i i X t X =下的解为)(t X i ,如果用与原来略有差别的

初始条件i i i X t X η+='00)(,i η是一个小扰动,就会得到方程组的新解)(t X i '。如果对于任意给定的ε>0,存在δ>0,并且δη≤i ,当0t t ≥时也满足 ε<-')()(t X t X i i ,i =l ,2,…n

(1.1.3)

则称方程组(1.1.2)的解)(t X i 是稳定的,否则它就是不稳定的。这样定义的稳定性称为Lyapunov 稳定性。

如果)(t X i 是稳定的,并且满足极限条件 0)()(lim ='-∞

→t X t X i i t ,i =l ,2,…n

(1.1.4)

则称)(t X i 是惭近稳定的。

上述抽象的数学定义可以直观理解为:方程组对于不同的初始条件有不同的解,如果原初始条件)(0t X i 和受扰动后的初始条件)(0t X i '之差限定在一定的范围内,即

δ<-')()(00t X t X i i ,未扰动解)(t X i 和扰动解)(t X i '之差也不超出一定的范围,即ε<-')()(t X t X i i ,则末扰动解)(t X i 就是稳定的;如果)(t X i '渐渐趋近于)(t X i ,最终变得和)(t X i 一致,则称)(t X i 是渐近稳定的;如果)(t X i '与)(t X i 之差不存在一个有限范围,即)(t X i '远离)(t X i ,则称)(t X i 是不稳定的。

由上述Lyapunov 稳定性的定义可以看到,要对动力系统的解的稳定性做出判断,必须对动力学方程组求解,然而对于非线性动力系统是很难获得解析解的,即使获得近似解析解也是如此。那么,我们能否象最小熵产生原理那样,不用对方程组具体求解就能对系统的稳定性作出判断。Lyapunov 发展了这种判断方法,通常称为Lyapunov 第二方法。这种方法主要是寻找(或构造)一个Lyapunov 函数,利用这个函数的性质对系统的稳定性作出判断。

线性稳定性分析

通过上节对稳定性的定义我们知道,要对非线性微分方程组的解的稳定性作出判断,最好是求出它的解析解。然而,对于大多数非线性微分方程组很难得到它们的解析

相关文档
最新文档