陷波器设计

合集下载

基于lms的自适应陷波器的设计与实现

基于lms的自适应陷波器的设计与实现

基于lms的自适应陷波器的设计与实现下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!基于LMS的自适应陷波器的设计与实现1. 引言自适应信号处理技术在滤波器设计中具有重要应用,特别是在抑制干扰信号方面表现出色。

陷波器的设计和仿真

陷波器的设计和仿真

陷波器1、绪论:设计的目的与意义:由于我国采用的是50hz频率的交流电,所以在平时需要对信号进行采集处理和分析时,常会存在50hz的工频干扰,对我们的信号处理造成很大干扰,于是我们本次已滤除50hz工频产生的干扰为例,对陷波器进行电路设计,原理分析及multisim仿真。

2、设计原理:本次设计的陷波器主体包括三部分内容:选频部分、放大器部分、反馈部分。

设计时采用双T型带阻滤波器为基础并加入压控反馈得到.此陷波器具有良好的选频特性和比较高的Q值,电路原理图如图1所示:图1 双T型带阻滤波器电路原理图根据图1所示,对于A点求节点电流方程(1)有:()()()0200=-+-+-n U mU sC U U sC U U A A A i(1)同样,对于B 点求节点电流方程(2)有: ()()()000=-+-+-sC U mU n U U n U U B B B i(2)同样,对于C 点有节点电流方程(3): ()()00B 0A =-+-n U U sC U U(3) 式中212R R R m +=,R n 1=。

由上述的(1)、(2)、(3)式可以得到此电路的传输函数为()()C n s m s C n s snC m C s n C s n U U s G i -+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=-+++==14C n 14)(22222222220 此时令ωj =s 得ωωωωωωω0202202)1(4)(G m j j ----=其中RC 10=ω。

当0ωω=时)(ωj G =0,此时能滤除RCf π210=的频率,而对于其他频率,)(ωj G 约为1,能很好的使其他频率的信号通过。

令)(ωj G =0.707得到两个截止频率为: ()⎥⎦⎤⎢⎣⎡-+-+=)1(214120m m f f H ()⎥⎦⎤⎢⎣⎡---+=)1(214120L m m f f 此时可以得到陷波器的带宽BW 和其Q 值0)1(4BW f m f f L H -=-=)1(410m f f f Q L H -=-= 则只要我们取m 值接近1时,就能得到窄带滤波效果和高Q 值,使陷波器的性能达到最佳。

50Hz陷波器设计(matlab)

50Hz陷波器设计(matlab)

源代码:%陷波器的设计%陷波器的传输函数为% B(1/z) (z-exp(j*2*pi*f0))*(z-exp(-j*2*pi*f0))%H(z) = -------- = --------------------------------------------% A(1/z) (z-a*exp(j*2*pi*f0))*(z-a*exp(-j*2*pi*f0))%其中f0为陷波器要滤除信号的频率,a为与陷波器深度相关的参数,a越大,深度越深。

%%已知信号中50Hz工频干扰,信号为x=sin(2*pi*50*n*Ts)+sin(2*pi*125*n*Ts);%要求通过陷波器滤除50Hz干扰信号%参数设置:采样率Ts=0.001s,采样长度:512点clf;clear;%设置初值f0=50;Ts=0.001;fs=1/Ts;NLen=512;n=0:NLen-1;%陷波器的设计apha=-2*cos(2*pi*f0*Ts);beta=0.96;b=[1 apha 1];a=[1 apha*beta beta^2];figure(1);freqz(b,a,NLen,fs);%陷波器特性显示x=sin(2*pi*50*n*Ts)+sin(2*pi*125*n*Ts);%原信号y=dlsim(b,a,x);%陷波器滤波处理%对信号进行频域变换。

xfft=fft(x,NLen);xfft=xfft.*conj(xfft)/NLen;y1=fft(y,NLen);y2=y1.*conj(y1)/NLen;figure(2);%滤除前后的信号对比。

subplot(2,2,1);plot(n,x);grid;xlabel('Time (s)');ylabel('Amplitude');title('Input signal');subplot(2,2,3);plot(n,y);grid;xlabel('Time (s)');ylabel('Amplitude');title('Filter output');subplot(2,2,2);plot(n*fs/NLen,xfft);axis([0 fs/2 min(xfft) max(xfft)]);grid;xlabel('Frequency (Hz)');ylabel('Magnitude (dB)');title('Input signal');subplot(2,2,4);plot(n*fs/NLen,y2);axis([0 fs/2 min(y2) max(y2)]);grid;xlabel('Frequency (Hz)');ylabel('Magnitude (dB)');title('Filter output');100200300400500600-2-112Time (s)A m p l i t u d eInput signal100200300400500600-2-112Time (s)A m p l i t u d eFilter output010020406080100120M a g n i t u d e (d B )010020406080100120M a g n i t u d e (d B )。

陷波器设计

陷波器设计

陷波器设计陷波器是无限冲击响应(IIR)数字滤波器,该滤波器可以用以下常系数线性差分方程表示:∑∑==---=M i Ni i i i n y b i n x a n y 01)()()( (1)式中: x(n)和y(n)分别为输人和输出信号序列;i a 和i b 为滤波器系数。

对式(1)两边进行z 变换,得到数字滤波器的传递函数为:∏∏∑∑===-=---==N i i M i i N i i iM i ii p z z z z b z a z H 1100)()()( (2)式中:i z 和i p 分别为传递函数的零点和极点。

由传递函数的零点和极点可以大致绘出频率响应图。

在零点处,频率响应出现极小值;在极点处,频率响应出现极大值。

因此可以根据所需频率响应配置零点和极点,然后反向设计带陷数字滤波器。

考虑一种特殊情况,若零点i z 在第1象限单位圆上,极点i p 在单位圆内靠近零点的径向上。

为了防止滤波器系数出现复数,必须在z 平面第4象限对称位置配置相应的共轭零点*i z 、共轭极点*i p 。

这样零点、极点配置的滤波器称为单一频率陷波器,在频率ωo 处出现凹陷。

而把极点设置在零的的径向上距圆点的距离为l-μ处,陷波器的传递函数为:))1()()1(())(()(2121z z z z z z z z z H μμ------= (3) 式(3)中μ越小,极点越靠近单位圆,则频率响应曲线凹陷越深,凹陷的宽度也越窄。

当需要消除窄带干扰而不能对其他频率有衰减时,陷波器是一种去除窄带干扰的理想数字滤波器。

当要对几个频率同时进行带陷滤波时,可以按(2)式把几个单独频率的带陷滤波器(3)式串接在一起。

一个例子:设有一个输入,它由50Hz 信号和100Hz 信号组成。

50Hz 是一个干扰信号,要设计一个50 Hz 的带陷滤波器,采样频率为400Hz 。

4/400/5021ππω=⨯=因此z 平面上的零极点可设置为4/14/1999.0ππj j ep e z ±±== 展开式为70637064)707.0707.0(999.0)4sin 4(cos 999.0999.0707.0707.022224sin 4cos 4/14/1j j j e p j j j e z j j ±=±=±=±=±=±=±±ππππππ== 它的传递函数为2121221111999.04126.11414.11999.04126.11414.1)7063.07063.0)(7063.07063.0()707.0707.0)(707.0707.0())(())(()(----**+-+-=+-+-=+---+---=----=z z z z z z z z j z j z j z j z p z p z z z z z z H因此分子系数是[1 1.414 1];分母系数是[1 1.4126 0.999]。

陷波器

陷波器

四、实验步骤
(二)硬件电路实践 1. 首先将直流稳压电源接成正负电源形式,并调整电压旋钮 将输出电压调至±12v,关闭电源; 2. 实验板如图:将电源插在J9电源插座上,注意实验板上的 正负电源线的颜色,把对应的电源插头插到直流稳压电源 上,检查无误后,打开电源,实验板上两个指示灯亮,说 明连接正确,否则连接有误,请检查电源连接; 3. 调零:用示波器检查J6(Vout)电位,并调整RV1,使J6电 位为0V;
A U1_V+ B C D
R3
10k
R7
660
RV1 U1:A
4 4 3 1k 2 6 11 11 1 5 7 9 13 11 11
C2 U1:B
1uf
C3
4 1uf 10
Vout
U1:C
8 12 4
U1:D
14
R4
10k
LM324
R5
LM324 7k7
R6
7k7
LM324
R8
10k
LM324
R1
根据所的数据画出电路的幅频曲线(可以采用Matlab画 出); 6.分析指标,判断是否符合设计要求。
五.注意事项
1.在动手实验前,每位同学必须仔细阅读仪器使用说 明书,熟悉仪器操作规范; 2.在电路连接过程中,必须注意电源正负极的连接是 否有错误,检查无误后方可通电调试。 3.在电路调试过程中,需要拆卸元器件或连线时,必 须关闭电源后进行,防止损坏电路器件。 4.听从指导老师的指导,出现异常情况时,首先关闭 电源,并立即报告指导老师处理。
ωn
)2

A( jω ) = Avf [1 + ( jω ) ] ωn = jω jω 1 jω jω 1 + 2(− Avf ) + ( )2 1 + ⋅ + ( )2 ωn + (

全频喇叭陷波器参数设计

全频喇叭陷波器参数设计

全频喇叭陷波器参数设计
全频喇叭陷波器的参数设计需要考虑以下几个方面:
1. 中心频率:陷波器应该设置在干扰信号的中心频率上。

中心频率的选择需要根据实际情况进行调整,通常可以使用频谱分析仪来确定。

2. 带宽:陷波器的带宽越窄,抑制目标频率的效果越好。

但是带宽设置过窄会影响音频信号的传输,因此需要根据实际情况进行调整。

3. 阻尼系数:阻尼系数决定了陷波器的Q值(品质因数),Q 值越大,带宽越窄,但是对干扰信号的抑制效果也越好。

Q值的选择需要根据实际情况进行调整。

4. 补偿系数:在设计全频喇叭陷波器时,需要考虑到陷波器对音频信号的影响。

为了避免陷波器对音质的影响,需要对输出信号进行补偿处理。

补偿系数的选择需要根据实际情况进行调整。

5. 增益:陷波器的增益可以控制输出信号的音量,需要根据实际情况进行调整。

综上所述,全频喇叭陷波器的参数设计需要综合考虑上述方面,根据实际情况进行调整和优化,才能达到最优的抑制效果和音质表现。

陷波器参数计算

陷波器参数计算

陷波器参数计算引言:陷波器是一种用于抑制特定频率的滤波器,常用于电子通信中的频率选择性网络中。

陷波器的参数计算是设计陷波器的重要步骤之一,本文将介绍陷波器的参数计算方法及其应用。

一、陷波器的基本原理陷波器是一种带阻滤波器,其工作原理是在特定频率处引入一个零点或极点,将该频率信号进行衰减。

陷波器的频率响应呈现出一个深的谷,被抑制频率附近的信号将被滤除。

二、陷波器的参数设计陷波器需要确定以下几个参数:1. 中心频率(f0):陷波器需要抑制的特定频率。

2. 带宽(BW):陷波器在中心频率附近的频带范围。

3. 品质因数(Q):陷波器的频率选择性,Q值越大,陷波器的选择性越高。

4. 陷波器类型:常见的陷波器类型有带阻式和带通式。

三、陷波器参数计算方法1. 中心频率(f0)的确定:中心频率的选择通常基于实际需求,可以根据需要抑制的特定频率来确定。

在无源陷波器中,中心频率可通过电感和电容值的选择来实现。

2. 带宽(BW)的计算:带宽决定了陷波器在中心频率附近的抑制能力。

带宽的计算方法为BW = f0/Q,其中Q为品质因数。

3. 品质因数(Q)的选择:品质因数决定了陷波器的频率选择性能,Q值越大,选择性越高。

品质因数的计算方法为Q = f0/BW。

4. 陷波器类型的选择:根据实际需求,选择合适的陷波器类型。

带阻式陷波器适用于抑制单个频率,而带通式陷波器适用于同时抑制多个频率。

四、陷波器参数计算实例以设计一个带阻式陷波器来抑制50Hz频率为例进行参数计算。

1. 确定中心频率:假设需要抑制的频率为50Hz,则中心频率为50Hz。

2. 计算带宽:假设品质因数Q为10,则带宽为50Hz/10=5Hz。

3. 计算品质因数:假设带宽BW为5Hz,则品质因数为50Hz/5Hz=10。

4. 选择陷波器类型:根据实际需求,选择带阻式陷波器。

五、陷波器的应用陷波器广泛应用于电子通信领域,常见的应用包括:1. 消除干扰信号:在通信系统中,陷波器可以用于滤除特定频率的干扰信号,提高通信质量。

陷波器设计

陷波器设计

陷波器设计由传递函数的零点和极点可以大致绘出频率响应图。

在零点处,频率响应出 现极小值;在极点处,频率响应出现极大值。

因此可以根据所需频率响应配置零 点和极点,然后反向设计带陷数字滤波器。

考虑一种特殊情况,若零点 Z |在第1 象限单位圆上,极点P i 在单位圆内靠近零点的径向上。

为了防止滤波器系数出 现复数,必须在z 平面第4象限对称位置配置相应的共轭零点Z j 、共轭极点p i < 这样零点、极点配置的滤波器称为单一频率陷波器, 在频率①o 处出现凹陷 而把极点设置在零的的径向上距圆点的距离为1-卩处,陷波器的传递函数为:(Z Z 1)(Z Z 2) (z (1 )zj(z (1 )Z 2)式⑶ 中卩越小,极点越靠近单位圆,贝擞率响应曲线凹陷越深,凹陷的宽 度也越窄。

当需要消除窄带干扰而不能对其他频率有衰减时,陷波器是一种去除 窄带干扰的理想数字滤波器。

当要对几个频率同时进行带陷滤波时,可以按 (2)式把几个单独频率的带陷 滤波器(3)式串接在一起。

一个例子:设有一个输入,它由50Hz 信号和100Hz 信号组成。

50Hz 是一个干扰 信号,要设计一个50 Hz 的带陷滤波器,采样频率为400Hz=12 50/400/4因此z 平面上的零极点可设置为/4P 1 0.999ej /4=0.999(COS : j sin :) 0.999(0.707 j0.707) 7064 j7063它的传递函数为陷波器是无限冲击响应 差分方程表示: My(n) aX n式中:x(n)和y(n)分别为输人和输出信号序列;a :和b 为滤波器系数。

对式(1)两边进行z 变换,得到数字滤波器的传递函数为:Ma i z 1H(z) + b i z 1I 0式中:Z |和P i 分别为传递函数的零点和极点。

i)(IIR)数字滤波器,该滤波器可以用以下常系数线性by( n I) (1)I 1M(z Z |)■N ----------⑵(z P i ) I 1H(z)P 1 展开式为乙0.999e/4e j /4= cos_ 42 2j sin 40.707 j0.707(z Z i)(z Z1)(Z P i)(z p 1) (z 0.707 j0.707)(z 0.707 j 0.707)(z 0.7063 j0.7063)(z 0.7063 j0.7063)2z 1.414z 1 1 1.414z2z 1.4126z 0.999 1 1.4126z 0.999z因此分子系数是[1 1.414 1] 差分方程有y(n) a(2)y( n 1) a(3)y(n y(n) x(n) b(2)x( n 1) ;分母系数是[1 1.4126 0.999]。

陷波器设计

陷波器设计

陷波器设计陷波器是无限冲击响应(IIR)数字滤波器,该滤波器可以用以下常系数线性差分方程表示:∑∑==---=Mi Ni iii n y bi n x an y 01)()()( (1)式中: x(n)和y(n)分别为输人和输出信号序列;i a 和i b 为滤波器系数。

对式(1)两边进行z 变换,得到数字滤波器的传递函数为:∏∏∑∑===-=---==Ni i Mi iNi iiMi iip z zz zbz az H 1100)()()( (2)式中:i z 和i p 分别为传递函数的零点和极点。

由传递函数的零点和极点可以大致绘出频率响应图。

在零点处,频率响应出现极小值;在极点处,频率响应出现极大值。

因此可以根据所需频率响应配置零点和极点,然后反向设计带陷数字滤波器。

考虑一种特殊情况,若零点i z 在第1象限单位圆上,极点i p 在单位圆内靠近零点的径向上。

为了防止滤波器系数出现复数,必须在z 平面第4象限对称位置配置相应的共轭零点*i z 、共轭极点*i p 。

这样零点、极点配置的滤波器称为单一频率陷波器,在频率ωo 处出现凹陷。

而把极点设置在零的的径向上距圆点的距离为l-μ处,陷波器的传递函数为:))1()()1(())(()(2121z z z z z z z z z H μμ------=(3)式(3)中μ越小,极点越靠近单位圆,则频率响应曲线凹陷越深,凹陷的宽度也越窄。

当需要消除窄带干扰而不能对其他频率有衰减时,陷波器是一种去除窄带干扰的理想数字滤波器。

当要对几个频率同时进行带陷滤波时,可以按(2)式把几个单独频率的带陷滤波器(3)式串接在一起。

一个例子:设有一个输入,它由50Hz 信号和100Hz 信号组成。

50Hz 是一个干扰信号,要设计一个50 Hz 的带陷滤波器,采样频率为400Hz 。

4/400/5021ππω=⨯=因此z 平面上的零极点可设置为4/14/1999.0ππj j ep ez ±±==展开式为70637064)707.0707.0(999.0)4sin4(cos999.0999.0707.0707.022224sin4cos4/14/1j j j ep j jj ez j j ±=±=±=±=±=±=±±ππππππ==它的传递函数为2121221111999.04126.11414.11999.04126.11414.1)7063.07063.0)(7063.07063.0()707.0707.0)(707.0707.0())(())(()(----**+-+-=+-+-=+---+---=----=zzzz z z z z j z j z j z j z p z p z z z z z z H因此分子系数是[1 1.414 1];分母系数是[1 1.4126 0.999]。

陷波器的主要参数

陷波器的主要参数

陷波器的主要参数陷波器是一种用于滤除特定频率的信号的电子器件,它在电子通信和无线电频谱管理中起着重要作用。

陷波器的主要参数包括中心频率、带宽、衰减等级和损耗。

本文将对这些主要参数进行详细介绍。

一、中心频率中心频率是陷波器的工作频率,也是其设计的重要参数之一。

它决定了陷波器对特定频率的滤波效果。

中心频率是陷波器设计的关键,需要根据具体应用需求选择合适的频率。

二、带宽带宽是指陷波器在中心频率附近的频段范围。

带宽参数决定了陷波器对信号的滤波效果,带宽越宽,陷波器对周围频率的干扰信号的抑制能力越强。

带宽的选择应根据实际应用场景和需求来确定。

三、衰减等级衰减等级是指陷波器对信号在非中心频率处的衰减程度。

一般来说,衰减等级越高,陷波器对非中心频率的信号抑制效果越好。

衰减等级是陷波器设计的重要指标,可以通过选择合适的滤波结构和参数来实现。

四、损耗损耗是指陷波器在滤波过程中对信号的能量损失。

陷波器的损耗应尽可能小,以确保滤波后信号的准确性和完整性。

损耗主要来自于陷波器的电路结构和材料特性,设计者需要在满足滤波要求的前提下尽量降低损耗。

陷波器的主要参数对于滤波器的性能和应用具有重要影响。

中心频率、带宽、衰减等级和损耗的选择需要根据具体的应用场景和要求来确定。

在实际应用中,设计者需要综合考虑这些参数,选择合适的陷波器来实现所需的滤波效果。

除了上述主要参数,陷波器还有其他一些辅助参数,例如尺寸、重量、工作温度范围等。

这些参数虽然不直接影响陷波器的滤波性能,但在实际应用中也需要考虑。

设计者需要根据具体的应用环境,选择适合的陷波器。

陷波器是一种重要的电子器件,用于滤除特定频率的信号。

中心频率、带宽、衰减等级和损耗是陷波器的主要参数,设计者需要根据实际需求来选择合适的陷波器。

通过合理选择参数和优化设计,陷波器能够在无线通信和电子频谱管理等领域发挥重要作用。

matlab 陷波滤波器设计

matlab 陷波滤波器设计

Matlab 陷波滤波器设计在信号处理领域,滤波器是一种常用的工具,用于去除信号中的噪声或者特定频率成分。

陷波滤波器是一种特殊的滤波器,它可以将某一特定频率范围内的信号抑制,而不影响其他频率成分。

在Matlab中,设计陷波滤波器可以通过一系列函数和工具实现,本文将介绍在Matlab中设计陷波滤波器的基本原理和步骤。

1. 陷波滤波器的概念及应用陷波滤波器又称为带阻滤波器或带阻脉冲响应滤波器,其作用是在某一特定频率范围内对信号进行抑制,而对其他频率成分不产生影响。

这种滤波器常用于去除信号中的特定频率噪声或干扰,或者对特定频率信号进行分析和处理。

2. Matlab中的陷波滤波器设计函数在Matlab中,设计陷波滤波器可以使用Signal Processing Toolbox 提供的一系列函数和工具。

其中,最常用的函数包括:- ellip:使用椭圆函数设计数字滤波器- designfilt:设计各种类型的数字滤波器- fvtool:数字滤波器可视化工具- freqz:频率响应分析工具通过这些函数和工具,可以灵活地选择滤波器的类型、阶数、截止频率等参数,进行陷波滤波器的设计和分析。

3. 陷波滤波器设计的基本步骤使用Matlab设计陷波滤波器通常包括以下基本步骤:- 确定滤波器类型:根据具体应用需求,选择合适的陷波滤波器类型,如Chebyshev陷波滤波器、椭圆陷波滤波器等。

- 确定滤波器参数:确定滤波器的阶数、截止频率、通带波纹、阻带衰减等参数。

- 使用设计函数:调用designfilt或ellip函数,输入滤波器类型和参数,得到设计好的滤波器系数。

- 分析滤波器性能:使用fvtool或freqz函数,分析滤波器的频率响应、幅相特性等性能指标。

- 优化滤波器设计:根据分析结果,对滤波器参数进行调整和优化,直至满足设计要求。

4. 示例代码下面是一个简单的示例代码,演示了在Matlab中使用ellip函数设计Chebyshev陷波滤波器的过程:```matlab设计参数Rp = 1; 通带波纹Rs = 60; 阻带衰减Fp = 1000; 通带截止频率Fs = 1200; 阻带截止频率Fsampling = 4800; 采样频率使用ellip函数设计滤波器[n, Wn] = ellipord(Fp/(Fsampling/2), Fs/(Fsampling/2), Rp, Rs); [b, a] = ellip(n, Rp, Rs, Wn);滤波器频率响应分析fvtool(b, a);```5. 总结本文介绍了在Matlab中设计陷波滤波器的基本原理和步骤,以及常用的设计函数和工具。

IIR数字陷波器的设计及FPGA实现

IIR数字陷波器的设计及FPGA实现
本例设计一个数字陷波器,其技 术指标为:抽样频率 Fs=1000Hz ,噪 声干扰频率 100Hz,3dB 带边频率为 9 5 H z 和 1 0 5 H z ,阻带衰减不小于 3 0 d B ,采用巴特沃斯滤波器实现。滤 波器的各个系数可以由 Matlab 软件计 算得出。Matlab 的信号处理工具箱中
摘要 I I R (无限冲激响应)数字滤波器在许多领域 得到广泛应用。这里介绍了一种利用 M a t l a b 设计一个 IIR 数字陷波器的方法,接着在硬件 实现时将其转化为二阶级联形式,以 V e r i l o g H D L 语言书写模块,最后利用 A l t e r a 公司的 Quartus II 软件进行 FPGA 设计及仿真。 关键词 无限冲激响应; 巴特沃斯带阻滤波器; 级联; Matlab Quartus II Abstract IIR (Infinite Impulse Response) digital filters are widely used in many fields. In this paper, it introduce how to design a bandstop IIR digital filter in Matlab. And then divided it into second order filters called biquads. The implementation is simulated using the Verilog HDL in Quartus II. Key words IIR;Butterworth bandstop filter;cascaded transfer; MATLAB;Quartus IIFra bibliotek-83-
制 造

Matlab课程设计自适应陷波器

Matlab课程设计自适应陷波器

Matlab课程设计自适应陷波器一、教学目标本节课的教学目标是使学生掌握自适应陷波器的设计原理和MATLAB实现方法。

通过本节课的学习,学生应能够理解自适应陷波器的基本概念,掌握自适应陷波器的设计步骤,并能够利用MATLAB进行自适应陷波器的仿真和实现。

具体来说,知识目标包括:1.掌握自适应陷波器的基本原理和设计方法。

2.理解自适应陷波器在信号处理中的应用。

3.熟悉MATLAB中自适应陷波器的实现方法。

技能目标包括:1.能够使用MATLAB设计自适应陷波器。

2.能够进行自适应陷波器的仿真和实验。

情感态度价值观目标包括:1.培养学生的创新意识和实践能力。

2.增强学生对信号处理和自适应陷波器应用的兴趣。

二、教学内容本节课的教学内容主要包括自适应陷波器的设计原理、MATLAB实现方法和应用案例。

具体包括以下几个部分:1.自适应陷波器的基本原理:介绍自适应陷波器的工作原理、特点和应用场景。

2.自适应陷波器的设计方法:讲解自适应陷波器的设计步骤和方法,包括滤波器设计、自适应算法选择等。

3.MATLAB实现方法:介绍如何在MATLAB中实现自适应陷波器,包括MATLAB函数和编程方法。

4.应用案例:通过实际案例分析,使学生了解自适应陷波器在信号处理中的应用,并能够进行仿真和实验。

三、教学方法为了达到本节课的教学目标,将采用以下几种教学方法:1.讲授法:通过讲解自适应陷波器的设计原理和MATLAB实现方法,使学生掌握基本概念和理论。

2.案例分析法:通过分析实际应用案例,使学生了解自适应陷波器的应用场景和效果。

3.实验法:让学生动手进行自适应陷波器的仿真和实验,提高学生的实践能力和创新意识。

四、教学资源为了支持本节课的教学内容和教学方法的实施,将准备以下教学资源:1.教材:提供相关章节的自适应陷波器设计原理和MATLAB实现方法的教材。

2.多媒体资料:制作PPT和视频等多媒体资料,帮助学生更好地理解和掌握自适应陷波器的设计和实现。

陷波器设计

陷波器设计

数字信号处理课程设计报告书题目陷波器设计课程设计任务书课题题目摘要随着数字技术的发展,数字滤波器在许多领域得到广泛的应用。

它是通信、语言、图像、自动控制、雷达、航空航天、生物医学信号处理等领域中的一种基本处理部件,具有稳定性好、精度高、灵活性大等突出优点。

在信号采集时,往往受到50Hz电源频率干扰,尤其是在供电系统不稳定、外界环境适应性差时严重影响要采集信号的正确判断。

本设计研究一种在MATLAB语言环境下分别用IIR和FIR滤波器设计方法设计实现一个数字陷波器,并将设计的滤波器应用到混合的正弦信号,通过仿真测试,用两种方法设计的滤波器可以很好的消除50Hz的工频干扰,并分析比较了各种方法所设计的陷波器性能。

在设计IIR数字陷波器过程中,是用椭圆数字陷波滤波器的设计方法,而FIR数字陷波器的设计主要用窗函数法、频率采样法及等波纹逼近法。

FIR滤波器可以得到严格的线性相位,但它的传递函数的极点固定在原点,只能通过改变零点位置来改变性能,为了达到高的选择性,必须用较高的阶数,对于同样的滤波器设计指标,FIR滤波器要求的阶数可能比IIR 滤波器高5~10倍。

IIR滤波器的设计可以利用模拟滤波器的许多现成的设计公式、数据和表格,计算的工作量较小。

关键词数字陷波器;50Hz工频干扰;IIR和FIR滤波器目录课程设计任务书 (I)摘要 (II)1设计概述 (1)1.1设计背景 (1)1.2设计目的 (1)1.3设计内容及要求 (1)2设计方案及实现 (2)2.1总体方案设计 (2)2.2设计原理 (2)2.2.1数字陷波器原理 (2)2.2.2IIR数字陷波器原理 (3)2.2.3FIR数字陷波器原理 (3)3设计结果分析 (8)3.1IIR数字陷波器设计 (8)3.2FIR数字陷波器设计 (10)3.2.1用窗函数法设计陷波器 (10)3.2.2频率采样法设计陷波器 (12)3.2.3基于切比雪夫等波纹逼近法 (13)4总结 (16)1 设计概述1.1 设计背景在我国采用的是50Hz 频率的交流电,所以在平时需要对信号进行采集处理和分析时,常会存在50Hz 的工频干扰,对我们的信号处理造成很大干扰,因此50Hz 陷波器在日常成产生活中被广泛应用,其技术已基本成熟。

50hz陷波器课程设计

50hz陷波器课程设计

50hz陷波器课程设计一、课程目标知识目标:1. 学生能理解50Hz陷波器的基本原理,掌握其电路构成及工作原理。

2. 学生能掌握陷波器的设计方法,包括电路参数的计算和元件的选择。

3. 学生了解50Hz陷波器在实际应用中的功能,如消除电力线干扰等。

技能目标:1. 学生能运用所学知识,设计并搭建一个简单的50Hz陷波器电路。

2. 学生能够运用示波器、信号发生器等仪器,测试陷波器的性能,并分析测试结果。

3. 学生能够通过团队合作,解决在设计过程中遇到的问题,提高实际操作能力。

情感态度价值观目标:1. 学生培养对电子技术的兴趣,增强学习动力,培养创新意识。

2. 学生在学习过程中,养成积极思考、主动探究的良好习惯。

3. 学生通过合作学习,培养团队精神,提高沟通与协作能力。

本课程针对高中电子技术课程,结合学生已有知识基础和认知特点,注重理论与实践相结合,培养学生实际操作能力和团队协作精神。

通过本课程的学习,学生能够掌握50Hz陷波器的设计与应用,为后续电子技术课程打下坚实基础。

二、教学内容本章节教学内容主要包括以下几部分:1. 50Hz陷波器的基本原理:介绍陷波器的作用、原理,以及其在电子技术中的应用。

2. 陷波器电路构成及工作原理:详细讲解陷波器的电路构成,包括电阻、电容、运算放大器等元件的作用,以及陷波器的工作原理。

3. 电路参数计算与元件选择:教授如何根据实际需求计算陷波器的电路参数,并指导学生进行元件的选择。

4. 50Hz陷波器设计方法:分析不同类型的陷波器设计方法,以实例形式讲解具体设计步骤。

5. 陷波器性能测试与评估:介绍测试陷波器性能的仪器及方法,如示波器、信号发生器等,并教授如何分析测试结果。

6. 实际应用案例分析:通过分析陷波器在实际应用中的案例,使学生更好地理解其功能。

教学内容安排和进度:1. 第1课时:50Hz陷波器基本原理及作用。

2. 第2课时:陷波器电路构成及工作原理。

3. 第3课时:电路参数计算与元件选择。

自适应谱线增强器和陷波器的设计

自适应谱线增强器和陷波器的设计

自适应谱线增强器和陷波器的设计1 引言自适应谱线增强器最早是Widrow 等人与1975年在研究自适应噪声相消时提出来的,目的是将正弦波与宽带噪声分离出来,并提取正弦波信号。

相反,如果正弦波信号是希望抑制的噪声或干扰,实现这一任务的的自适应滤波器称为陷波器。

现在,自适应谱线增强器和陷波器已广泛的应用于瞬时频率估计,谱分析,窄带检测,语音编码,窄带干扰抑制,干扰检测,数字式数据接收机的自适应载体恢复的领域。

自适应陷波器是用来恢复淹没在背景噪声中的未知频率的正弦信号以及估计正弦信号的频率。

在自适应陷波器的设计中,我们总是希望得到足够的尖截止特性,为了达到这个目的,自适应FIR 滤波器通常需要很高的阶数,从而导致计算量很大,但是自适应IIR 滤波器只用二阶就能得到最佳的近似。

一个IIR 陷波器是指在单位圆上,它的幅度响应在某一个特定值处为零,此值我们称为陷波频率,而它的幅度在单位圆上的其他点时几乎是连续不变的。

我们利用陷波器的输入减去输出,便可以得到具有尖截至特性的带通滤波器,从而在有效减小背景干扰噪声的同时,恢复输入信号中的正弦信号。

考虑下面的观测信号)()sin()()()(1n v n w A n v n s n x i pi i i +Θ+=+=∑= (1) 式中Ai ,wi ,oi 分别是第i 个正弦波信号的幅值,频率和初始相位:v(n)为加性的宽带噪声,可以是有色的。

希望设计的滤波器,让含噪声的信号x(n)通过该滤波器后,输出中只含有P 个正弦波信号s(n),而没有其他任何信号或噪声。

由于P 个正弦波信号的功率谱为P 条离散的谱线,所以这种只抽取正弦波信号的滤波器称为谱线增强器。

令H(w)是谱线增强器的传递函数,为了抽取P 个正弦波,并拒绝所有其他信号和噪声,传递函数H(w)必须满足以下条件:p w w w H .....,0,1)(0其他若〈= (2)反之,若陷波器的传递函数p w w w H .....1,0)(0其他若〈= (3) 则滤波器将抑制掉P 个正弦波信号,并让v(n)完全通过,这种滤波器的作用相当一个正弦波的陷阱,故称为陷波器。

50Hz陷波器设计(matlab)

50Hz陷波器设计(matlab)

源代码:%陷波器的设计%陷波器的传输函数为% B(1/z) (z-exp(j*2*pi*f0))*(z-exp(-j*2*pi*f0))%H(z) = -------- = --------------------------------------------% A(1/z) (z-a*exp(j*2*pi*f0))*(z-a*exp(-j*2*pi*f0))%其中f0为陷波器要滤除信号的频率,a为与陷波器深度相关的参数,a越大,深度越深。

%%已知信号中50Hz工频干扰,信号为x=sin(2*pi*50*n*Ts)+sin(2*pi*125*n*Ts);%要求通过陷波器滤除50Hz干扰信号%参数设置:采样率Ts=0.001s,采样长度:512点clf;clear;%设置初值f0=50;Ts=0.001;fs=1/Ts;NLen=512;n=0:NLen-1;%陷波器的设计apha=-2*cos(2*pi*f0*Ts);beta=0.96;b=[1 apha 1];a=[1 apha*beta beta^2];figure(1);freqz(b,a,NLen,fs);%陷波器特性显示x=sin(2*pi*50*n*Ts)+sin(2*pi*125*n*Ts);%原信号y=dlsim(b,a,x);%陷波器滤波处理%对信号进行频域变换。

xfft=fft(x,NLen);xfft=xfft.*conj(xfft)/NLen;y1=fft(y,NLen);y2=y1.*conj(y1)/NLen;figure(2);%滤除前后的信号对比。

subplot(2,2,1);plot(n,x);grid;xlabel('Time (s)');ylabel('Amplitude');title('Input signal');subplot(2,2,3);plot(n,y);grid;xlabel('Time (s)');ylabel('Amplitude');title('Filter output');subplot(2,2,2);plot(n*fs/NLen,xfft);axis([0 fs/2 min(xfft) max(xfft)]);grid;xlabel('Frequency (Hz)');ylabel('Magnitude (dB)');title('Input signal');subplot(2,2,4);plot(n*fs/NLen,y2);axis([0 fs/2 min(y2) max(y2)]);grid;xlabel('Frequency (Hz)');ylabel('Magnitude (dB)');title('Filter output');100200300400500600-2-112Time (s)A m p l i t u d eInput signal100200300400500600-2-112Time (s)A m p l i t u d eFilter output010020406080100120M a g n i t u d e (d B )010020406080100120M a g n i t u d e (d B )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陷波器设计陷波器是无限冲击响应(IIR)数字滤波器,该滤波器可以用以下常系数线性差分方程表示:∑∑==---=M i Ni i i i n y b i n x a n y 01)()()( (1)式中: x(n)和y(n)分别为输人和输出信号序列;i a 和i b 为滤波器系数。

对式(1)两边进行z 变换,得到数字滤波器的传递函数为:∏∏∑∑===-=---==N i i M i i N i i iM i ii p z z z z b z a z H 1100)()()( (2)式中:i z 和i p 分别为传递函数的零点和极点。

由传递函数的零点和极点可以大致绘出频率响应图。

在零点处,频率响应出现极小值;在极点处,频率响应出现极大值。

因此可以根据所需频率响应配置零点和极点,然后反向设计带陷数字滤波器。

考虑一种特殊情况,若零点i z 在第1象限单位圆上,极点i p 在单位圆内靠近零点的径向上。

为了防止滤波器系数出现复数,必须在z 平面第4象限对称位置配置相应的共轭零点*i z 、共轭极点*i p 。

这样零点、极点配置的滤波器称为单一频率陷波器,在频率ωo 处出现凹陷。

而把极点设置在零的的径向上距圆点的距离为l-μ处,陷波器的传递函数为:))1()()1(())(()(2121z z z z z z z z z H μμ------= (3) 式(3)中μ越小,极点越靠近单位圆,则频率响应曲线凹陷越深,凹陷的宽度也越窄。

当需要消除窄带干扰而不能对其他频率有衰减时,陷波器是一种去除窄带干扰的理想数字滤波器。

当要对几个频率同时进行带陷滤波时,可以按(2)式把几个单独频率的带陷滤波器(3)式串接在一起。

一个例子:设有一个输入,它由50Hz 信号和100Hz 信号组成。

50Hz 是一个干扰信号,要设计一个50 Hz 的带陷滤波器,采样频率为400Hz 。

4/400/5021ππω=⨯=因此z 平面上的零极点可设置为4/14/1999.0ππj j ep e z ±±== 展开式为70637064)707.0707.0(999.0)4sin 4(cos999.0999.0707.0707.022224sin 4cos 4/14/1j j j e p j j j e z j j ±=±=±=±=±=±=±±ππππππ== 它的传递函数为2121221111999.04126.11414.11999.04126.11414.1)7063.07063.0)(7063.07063.0()707.0707.0)(707.0707.0())(())(()(----**+-+-=+-+-=+---+---=----=z z z z z z z z j z j z j z j z p z p z z z z z z H因此分子系数是[1 1.414 1];分母系数是[1 1.4126 0.999]。

差分方程有)2()3()1()2()2()3()1()2()()()2()3()1()2()()2()3()1()2()(-----+-+=∴-+-+=-+-+n y a n y a n x b n x b n x n y n x b n x b n x n y a n y a n y程序清单有% 50Hz notch filter% sample frequency=400%clear all;clc;b=[1 -sqrt(2) 1];a=[1 -sqrt(2)*0.999 0.999];[db, mag, pha, grd, w]=freqz_m(b, a); subplot(221); plot(w*200/pi, db); title(' Magnitude Response' ); xlabel('frequency in Hz'); ylabel('dB'); axis([0, 100, -200, 5]); set(gca, 'XTickMode', 'manual', 'XTick', [0, 50, 100]);set(gca, 'YTickmode', 'manual', 'YTick', [-200, -100, 0]); grid title('Notch filter response');t0=1:8000;t=1:256;t1=1:100;t2=1:128;x=sin(2*pi*50*t0/400)+0.5*sin(2*pi*100*t0/400);x1=x(t);y=filter(b,a,x1);subplot(222); plot(x1);title('Original waveform');X=fft(x1);subplot(223); plot(t2*400/256,abs(X(t2)));xlabel('frequency in Hz'); ylabel('|H|'); axis([0, 200, 0, 150]); title('Spectrum for original');set(gca, 'XTickMode', 'manual', 'XTick', [0, 50, 100, 150]); set(gca, 'YTickmode', 'manual', 'YTick', [50, 100]); gridy=filter(b,a,x);x1=y(t+7600);X=fft(x1);subplot(224); plot(t2*400/256,abs(X(t2)));xlabel('frequency in Hz'); ylabel('|H|'); axis([0, 200, 0, 150]);title('Spectrum after filter');set(gca, 'XTickMode', 'manual', 'XTick', [0, 50, 100, 150]);set(gca, 'YTickmode', 'manual', 'YTick', [50, 100]); gridfigure(2);subplot(611);plot(x(t1)); axis([1, 100, -1.5, 1.5]); ylabel('input x'); set(gca, 'YTickmode', 'manual', 'YTick', [-1,-0.5,0, 0.5,1]); grid subplot(612);plot(y); axis([1, 100, -1.5, 1.5]); ylabel('first');set(gca, 'YTickmode', 'manual', 'YTick', [-1,-0.5,0,0.5,1]); grid subplot(613);plot(y); axis([401, 500, -1.5, 1.5]); ylabel('second'); set(gca, 'YTickmode', 'manual', 'YTick', [-1,-0.5,0, 0.5,1]); grid subplot(614);plot(y); axis([1201, 1300, -1.0, 1.0]); ylabel('forth'); set(gca, 'YTickmode', 'manual', 'YTick', [-0.5,0, 0.5]); gridsubplot(615);plot(y); axis([2000, 2100, -1.0, 1.0]); ylabel('sixth'); set(gca, 'YTickmode', 'manual', 'YTick', [-0.5,0, 0.5]); gridsubplot(616);plot(y); axis([3601, 3700, -1.0, 1.0]); ylabel('tenth'); set(gca, 'YTickmode', 'manual', 'YTick', [-0.5,0, 0.5]); gridfigure(3);subplot(611);plot(y); axis([4401, 4500, -1, 1]); ylabel('twelfth'); set(gca, 'YTickmode', 'manual', 'YTick', [-0.5,0, 0.5]); gridsubplot(612);plot(y); axis([5201, 5300, -1.0, 1.0]);ylabel('fourteenth');set(gca, 'YTickmode', 'manual', 'YTick', [-0.5,0, 0.5]); gridsubplot(613);plot(y); axis([6001, 6100, -1.0, 1.0]);ylabel('sixteenth');set(gca, 'YTickmode', 'manual', 'YTick', [-0.5,0, 0.5]); gridsubplot(212);plot(y); axis([7601, 7650, -1.0, 1.0]);ylabel('twentieth');set(gca, 'YTickmode', 'manual', 'YTick', [-0.5, 0, 0.5]); grid滤波器频响,输入和输出的谱图。

相关文档
最新文档