(完整word版)现代控制理论习题解答
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《现代控制理论》第1章习题解答
1.1 线性定常系统和线性时变系统的区别何在? 答:线性系统的状态空间模型为:
x
Ax Bu y Cx Du
=+=+&
线性定常系统和线性时变系统的区别在于:对于线性定常系统,上述状态空间模型中的系数矩阵A ,B ,C 和D 中的各分量均为常数,而对线性时变系统,其系数矩阵A ,B ,C 和
D 中有时变的元素。线性定常系统在物理上代表结构和参数都不随时间变化的一类系统,
而线性时变系统的参数则随时间的变化而变化。
1.2 现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别? 答: 传递函数模型与状态空间模型的主要区别如下:
1.3 线性系统的状态空间模型有哪几种标准形式?它们分别具有什么特点?
答: 线性系统的状态空间模型标准形式有能控标准型、能观标准型和对角线标准型。对于n 阶传递函数
121210
1110
()n n n n n n n b s b s b s b G s d s a s a s a ------++++=+++++L L ,
分别有
⑴ 能控标准型: []012
1012
10100000100000101n n n x
x u a a a a y b b b b x du
---⎧⎡⎤⎡⎤
⎪⎢⎥⎢⎥⎪⎢⎥⎢⎥⎪⎢⎥⎢⎥=+⎪⎢
⎥⎢⎥⎨⎢⎥⎢⎥
⎪
⎢⎥⎢⎥⎪----⎣⎦⎣⎦
⎪=+⎪⎩L
L &M M M O M M L L
L
⑵ 能观标准型: []001122110001000100010001n n n b a b a x
a x u
b a b y x
du ---⎧-⎡⎤⎡⎤⎪⎢⎥⎢⎥
-⎪⎢⎥⎢
⎥⎪⎢⎥⎢⎥=-+⎪⎢⎥⎢⎥
⎨⎢⎥⎢⎥⎪
⎢⎥⎢⎥⎪-⎣⎦⎣⎦
⎪
=+⎪⎩L L &%%L M M M M M M L %L ⑶ 对角线标准型: []1212001001001n n p p x x u p y c c c x du
⎧⎡⎤⎡⎤⎪⎢⎥⎢⎥⎪⎢⎥⎢⎥=+⎪⎢⎥⎢⎥⎨
⎢⎥⎢⎥⎪⎣⎦⎣⎦⎪⎪=+⎩L L &M M O M M L L 式中的12,,,n p p p L 和12,,,n c c c L 可由下式给出,
12121012
1
11012()n n n n n n n n n
b s b s b s b
c c c G s
d d s a s a s a s p s p s p ------++++=+=++++++++---L L L 能控标准型的特点:状态矩阵的最后一行由传递函数的分母多项式系数确定,其余部分具有特定结构,输出矩阵依赖于分子多项式系数,输入矩阵中的元素除了最后一个元素是1外,其余全为0。
能观标准型的特点:能控标准型的对偶形式。 对角线标准型的特点:状态矩阵是对角型矩阵。 1.4 对于同一个系统,状态变量的选择是否惟一?
答:对于同一个系统,状态变量的选择不是惟一的,状态变量的不同选择导致不同的状态空间模型。
1.5 单输入单输出系统的传递函数在什么情况下,其状态空间实现中的直接转移项D 不等
于零,其参数如何确定?
答: 当传递函数)(s G 的分母与分子的阶次相同时,其状态空间实现中的直接转移项D 不等于零。
转移项D 的确定:化简下述分母与分子阶次相同的传递函数
1110
111)(a s a s a s b s b s b s b s G n n n
n n n n ++++++++=----ΛΛ 可得:
d a s a s a s c s c s c s G n n n n n ++++++++=----0
11
10
111)(ΛΛ 由此得到的d 就是状态空间实现中的直接转移项D 。
1.6 在例1.
2.2处理一般传递函数的状态空间实现过程中,采用了如图1.12的串联分解,试
问:若将图1.12中的两个环节前后调换,则对结果有何影响?
答: 将图1.12中的两个环节调换后的系统方块图为:
图中,
32
210
11()a s s a s a s a =+++,2
210()b s b s b s b =++。 由于3
s y -相当于对y 作3次积分,故1()
y m a s =可用如下的状态变量图表示:
因为2
s b 相当于对b 作2次微分,故()m
b s u
=可用如下的状态变量图表示:
因此,两个环节调换后的系统状态变量图为
进一步简化,可得系统状态变量图为
u
取3y x =,2y
x =&,1y x =&&,可以得到两个环节调换后的系统的状态空间模型为 0011220
01001[0
01]a b x a x b u
a b y x
-⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦=&
两个环节调换前的状态空间模型是:
012012010000101[]x x u a a a y b b b x
⎡⎤⎡⎤
⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦=&
显然,调换前后的状态空间实现是互为对偶的。 1.7 已知系统的传递函数
2()6
()56
Y s s U s s s +=++ 试求其状态空间实现的能控标准形和能观标准形。 答: 系统的能控标准形为:
[]01065161x x u y x
⎧⎡⎤⎡⎤=+⎪⎢⎥⎢⎥--⎣⎦⎣⎦⎨
⎪=⎩
& 系统的能观标准形为:
[]06615101x x u y x
⎧-⎡⎤⎡⎤=+⎪⎢⎥⎢⎥-⎣⎦⎣⎦⎨
⎪=⎩
&%%% 1.8 考虑由下图描述的二阶水槽装置,