纤维的结构特征演示课件
合集下载
纺织材料学 第二章 纤维的结构特征
24
1)聚合度与力学性质的关系:
n→n临,纤维开始具有强力; n↑,纤维强力↑(∵n↑;大分子间的结合
键↑结合能量变大); 但n增加至一定程度,强力趋于不变。 n低时,一般来说,纤维的强度低些,湿
强度也低些,脆性明显些。
2020/6/28
25
聚合度与力学性质的关系
强 度
P
no
2020/6/28
即聚合物的相对分子质量具有多分散性,每个聚合物试 样都有其相对分子质量分布,其相对分子质量只具有统 计平均的意义。
2020/6/28
22
高分子链的形态
高分子链的形态有微构象与宏构象之分:
微构象:指高分子主链键构象 宏构象:指整个高分子链的形态
构象:由于高分子链上的化学键的不同取向引 起的结构单元在空间的不同排布。
2020/6/28
6
(3)原纤 由若干基原纤或含若干根微原纤大致平行组合
在一起的更为粗大的大分子束,直径10-30nm。
(4)巨原纤 由多个微原纤或原纤堆砌而成的结构体,直径
100-600nm。
(5)细胞 由巨原纤或微原纤直接堆砌而成的,并有明显
的细胞边界。
2020/6/28
7
二、纤维的聚集态结构(超分子结构,分子 间结构)
的化学键
是化学键中作用力较弱 的一种,能量30~50千
卡/克分子
少数纤维的大分子之间存在这桥式 侧基。化学键主要包括共价键、离 子键和金属键
能量50~200千卡/克分
子
9
四种结合力的能量大小:
– 化学键>盐式键>氢键>范德华力
四种结合力的作用距离:
– 化学键<盐式键<氢键<范德华力
2020/6/28
常用纺织纤维的结构和性能课件
苷键水解催化
酸性愈强,水解愈快 浓度愈大,水解愈快 温度愈高,水解愈快 时间愈长,水解愈严重 结构愈疏松,水解愈快
中和:过剩的碱 加强漂白:含氯氧化剂 蝉翼纱、烂花织物
(3)氧化剂的作用
一般不受还原剂的影响 氧化纤维素
伯羟基 → 醛基 → 羧基 仲羟基 → 酮基 → 开环的醛基和羧基 半缩醛基 → 羧基
O
Serine (16%)
C H2 C H2 C H2 N H C H C H2 C n
O
Tyrosine (11%)
丝素分子链的构象
丝素的性质
耐热性
好,100℃,强力无影响
溶胀和溶解性
水中,直径增加16%~18%,长度1.2% 不能溶解,水只能进入无定形区 钠、锌、镁、钾强酸盐类,溶解 铁、铝、钙、铬盐类,增重
结晶度
棉70%,麻90%,丝光 棉50%,黏胶40%
取向度(取向因子)
陆地棉0.62,苎麻0.97, 普通黏胶0.54
缨状原纤结构模型
分子结构对力学性能的影响
聚合度高,强力高 结晶度,强力高
麻>棉>黏胶
取向度高,强力高
顺应排列,次价键力增高 改善受力情况
棉和丝光棉 化学纤维纺丝过程中的拉伸
具有良好的化学惰性,保护羊毛内层组织, 具有耐碱、氧化剂、还原剂和蛋白酶的功 能
羊毛缩绒性
皮质层
决定羊毛的主要物理、机械和化学性能 皮质层由角朊蛋白组成,由近20种氨基酸
组成,其中最为特殊的是含量高达14%以 上的胱氨酸(二硫键) 存在两种皮质细胞:正皮质和副皮质细胞 部分皮质层可能存在天然色素
结晶度对染色性能的影响
染液只能进入无定形区和晶区的边缘 高:染料平衡吸附量少,得色浅淡 低:染料平衡吸附量多,得色深浓 棉和丝光棉
酸性愈强,水解愈快 浓度愈大,水解愈快 温度愈高,水解愈快 时间愈长,水解愈严重 结构愈疏松,水解愈快
中和:过剩的碱 加强漂白:含氯氧化剂 蝉翼纱、烂花织物
(3)氧化剂的作用
一般不受还原剂的影响 氧化纤维素
伯羟基 → 醛基 → 羧基 仲羟基 → 酮基 → 开环的醛基和羧基 半缩醛基 → 羧基
O
Serine (16%)
C H2 C H2 C H2 N H C H C H2 C n
O
Tyrosine (11%)
丝素分子链的构象
丝素的性质
耐热性
好,100℃,强力无影响
溶胀和溶解性
水中,直径增加16%~18%,长度1.2% 不能溶解,水只能进入无定形区 钠、锌、镁、钾强酸盐类,溶解 铁、铝、钙、铬盐类,增重
结晶度
棉70%,麻90%,丝光 棉50%,黏胶40%
取向度(取向因子)
陆地棉0.62,苎麻0.97, 普通黏胶0.54
缨状原纤结构模型
分子结构对力学性能的影响
聚合度高,强力高 结晶度,强力高
麻>棉>黏胶
取向度高,强力高
顺应排列,次价键力增高 改善受力情况
棉和丝光棉 化学纤维纺丝过程中的拉伸
具有良好的化学惰性,保护羊毛内层组织, 具有耐碱、氧化剂、还原剂和蛋白酶的功 能
羊毛缩绒性
皮质层
决定羊毛的主要物理、机械和化学性能 皮质层由角朊蛋白组成,由近20种氨基酸
组成,其中最为特殊的是含量高达14%以 上的胱氨酸(二硫键) 存在两种皮质细胞:正皮质和副皮质细胞 部分皮质层可能存在天然色素
结晶度对染色性能的影响
染液只能进入无定形区和晶区的边缘 高:染料平衡吸附量少,得色浅淡 低:染料平衡吸附量多,得色深浓 棉和丝光棉
纺织纤维的形态及基本性质ppt课件
- 与纺纱工艺的关系 纤维越细,加工过程中容易扭结、折断而产生棉结、短纤维。
对织物的影响
纤维细度与功能的关系
纤维细度种类 线密度(dtex) 直径(mm)
细旦
0.89~2.2
8.41~17.7
棉、丝型纤维 0.89~1.33
8.41~13.7
毛、麻型纤维 1.1~2.2
13.7~17.7
超细
0.011~0.89
3.0~11.2
皮革(特细) 0.011~0.11
0.9~4.0
极细 纳米尺度
0.0001~0.01 10-8~10-4
0.09~0.12 0.001~0.1
性能特征 柔软、均匀、高支轻薄化 柔软、均匀、高支轻薄化 柔软、均匀、高支轻薄化 吸湿、导湿、细腻、仿皮革 透汽、防水、细密、麂皮特
征 吸附、超滤、功能
横截面 Cross Section
长度 Length
卷曲及转曲 Crimp and Convolution
纤维的长度〔Length〕
普通指伸直长度,即纤维伸直而未伸长时两端的间隔。 另有自然长度,指纤维在自然伸展形状下的长度。 自然长度与伸直长度之比,为纤维伸直度。
天然纤维——随动物、植物的种类、品系与生长条件而不同。
回潮率:料干重
平衡回潮率:在一定大气条件下,吸、放湿到达平衡时 的回潮率。 规范回潮率:在一致规范条件下,吸湿过程到达平衡时 的回潮率。 公定回潮率:为折算〔商业〕分量时加到枯燥分量上的 水分量对枯燥分量的百分数。 公定分量:纺织资料在公定回潮率时的分量。
一定长度改动 180度的个数表 征。
单位长度反向次数 多的棉纤维强度降 低,反向次数少的 强度较高,其内微 原纤的反向引起了 纤维的弱环。
对织物的影响
纤维细度与功能的关系
纤维细度种类 线密度(dtex) 直径(mm)
细旦
0.89~2.2
8.41~17.7
棉、丝型纤维 0.89~1.33
8.41~13.7
毛、麻型纤维 1.1~2.2
13.7~17.7
超细
0.011~0.89
3.0~11.2
皮革(特细) 0.011~0.11
0.9~4.0
极细 纳米尺度
0.0001~0.01 10-8~10-4
0.09~0.12 0.001~0.1
性能特征 柔软、均匀、高支轻薄化 柔软、均匀、高支轻薄化 柔软、均匀、高支轻薄化 吸湿、导湿、细腻、仿皮革 透汽、防水、细密、麂皮特
征 吸附、超滤、功能
横截面 Cross Section
长度 Length
卷曲及转曲 Crimp and Convolution
纤维的长度〔Length〕
普通指伸直长度,即纤维伸直而未伸长时两端的间隔。 另有自然长度,指纤维在自然伸展形状下的长度。 自然长度与伸直长度之比,为纤维伸直度。
天然纤维——随动物、植物的种类、品系与生长条件而不同。
回潮率:料干重
平衡回潮率:在一定大气条件下,吸、放湿到达平衡时 的回潮率。 规范回潮率:在一致规范条件下,吸湿过程到达平衡时 的回潮率。 公定回潮率:为折算〔商业〕分量时加到枯燥分量上的 水分量对枯燥分量的百分数。 公定分量:纺织资料在公定回潮率时的分量。
一定长度改动 180度的个数表 征。
单位长度反向次数 多的棉纤维强度降 低,反向次数少的 强度较高,其内微 原纤的反向引起了 纤维的弱环。
纤维-PPT课件
Introduction to polymer science
高分子科学导论
纤维 Fiber
Fiber 纤维的基础知识
Foundation of the Fiber
Definition of the Fiber
细度很细,直径一般为几微米到几十微米,而长度比直 径大百倍、千倍以上的细长物质称为纤维,如棉花、叶 络、肌肉、毛发等。 长径比(length-diameter ratio)> 1000 直径(diameter)< 0.1mm 纤维通常用来制造纺织品,故又称为纺织纤维。
Fiber processing
熔体纺丝“melt spinning” 湿法纺丝“wet spinning” 干法纺丝“dry spinning” 凝胶纺丝“gel spinning” or “dry-wet spinning” 静电纺丝 “electrostatic spinning”
Properties of fiber
直度(straightness):
用纤维在纱条轴向投影长度占纤维伸直长度的百分数来表示。
强度(strength): 通常用(gf/tex)表示,其中tex(特克斯)指1000米长的纤维束的 克数,gf是克力
延伸性和弹性(extensibility and elasticity)
可以量度长度的纤维称为短纤维,无限长度的纤维称为长纤维。
100% Hemp Yarn Long Fiber Wet Spun
Short hemp fiber
Properties of fiber
横截面的形状和表面形状 shape of cross section and surface
高分子科学导论
纤维 Fiber
Fiber 纤维的基础知识
Foundation of the Fiber
Definition of the Fiber
细度很细,直径一般为几微米到几十微米,而长度比直 径大百倍、千倍以上的细长物质称为纤维,如棉花、叶 络、肌肉、毛发等。 长径比(length-diameter ratio)> 1000 直径(diameter)< 0.1mm 纤维通常用来制造纺织品,故又称为纺织纤维。
Fiber processing
熔体纺丝“melt spinning” 湿法纺丝“wet spinning” 干法纺丝“dry spinning” 凝胶纺丝“gel spinning” or “dry-wet spinning” 静电纺丝 “electrostatic spinning”
Properties of fiber
直度(straightness):
用纤维在纱条轴向投影长度占纤维伸直长度的百分数来表示。
强度(strength): 通常用(gf/tex)表示,其中tex(特克斯)指1000米长的纤维束的 克数,gf是克力
延伸性和弹性(extensibility and elasticity)
可以量度长度的纤维称为短纤维,无限长度的纤维称为长纤维。
100% Hemp Yarn Long Fiber Wet Spun
Short hemp fiber
Properties of fiber
横截面的形状和表面形状 shape of cross section and surface
染整精品课件:纤维素纤维的结构和性能
一类是与纤维素分子结构中联结葡萄糖剩基 的甙键有关的化学反应 一类则是纤维素分子结构中葡萄糖剩基上的 三个自由羟基有关的化学反应
20
从纤维素纤维的形态和超分子结构 来看,在保持纤维状态下进行化学反应 时,具有不均一的特征。
21
酸对纤维素的作用
在染整工艺过程中常常会用酸来处理织 物,例如漂白后的酸洗等。
12
棉纤维的断裂很可能是由于超分子结构中存 在缺口、弱点,在拉伸时弱点首先断裂,缺口逐 渐扩大,进而应力集中,分子链拉断,导致纤维 断裂。
在潮湿状态下水的增塑作用,可以部分消除 纤维照片那个的弱点,而增大了纤维的强度。
13
但对粘胶纤维来说,大分子的聚合度较 低,结晶度也低,取向度也不高,断裂主要 原因:分子链或其他结构单元间的相对滑移
9
一、纤维断裂强度
1、绝对强力 纤维在连续增加的负荷作用下,直到断裂时
所能经受的最大负荷 2、抗强强度
纤维受断裂负荷作用而发生断裂时,单位面 积上能承受的力 3、相对强度
纤维断裂时每旦或特能承受的力 4、断裂长度(湿强和干强)
由于纤维本身重量而发生断裂时的长度
10
二、纤维的断裂强度
纤维在拉伸时产生断裂有两种可能性: 1.大分子链产生断裂 2.分子链间的滑移
5
3:次生胞壁(决定棉纤维 的主要性能)
次生胞壁由纤维素组成, 是棉纤维的主体部分,约占 整个纤维总质量的90%以上, 是由纤维素在初生胞壁内沉 积而成的原纤网状组织。 4:胞腔(决定棉纤维的染 色性能,化学性质)
纤维生长阶段,形成薄 壁小管,管内充满原生质。
6
棉纤维的组成,随着棉纤的品种的不同 略有出入。一般棉纤维中除了含有纤维素外, 大约还有6—10%的天然杂质。
20
从纤维素纤维的形态和超分子结构 来看,在保持纤维状态下进行化学反应 时,具有不均一的特征。
21
酸对纤维素的作用
在染整工艺过程中常常会用酸来处理织 物,例如漂白后的酸洗等。
12
棉纤维的断裂很可能是由于超分子结构中存 在缺口、弱点,在拉伸时弱点首先断裂,缺口逐 渐扩大,进而应力集中,分子链拉断,导致纤维 断裂。
在潮湿状态下水的增塑作用,可以部分消除 纤维照片那个的弱点,而增大了纤维的强度。
13
但对粘胶纤维来说,大分子的聚合度较 低,结晶度也低,取向度也不高,断裂主要 原因:分子链或其他结构单元间的相对滑移
9
一、纤维断裂强度
1、绝对强力 纤维在连续增加的负荷作用下,直到断裂时
所能经受的最大负荷 2、抗强强度
纤维受断裂负荷作用而发生断裂时,单位面 积上能承受的力 3、相对强度
纤维断裂时每旦或特能承受的力 4、断裂长度(湿强和干强)
由于纤维本身重量而发生断裂时的长度
10
二、纤维的断裂强度
纤维在拉伸时产生断裂有两种可能性: 1.大分子链产生断裂 2.分子链间的滑移
5
3:次生胞壁(决定棉纤维 的主要性能)
次生胞壁由纤维素组成, 是棉纤维的主体部分,约占 整个纤维总质量的90%以上, 是由纤维素在初生胞壁内沉 积而成的原纤网状组织。 4:胞腔(决定棉纤维的染 色性能,化学性质)
纤维生长阶段,形成薄 壁小管,管内充满原生质。
6
棉纤维的组成,随着棉纤的品种的不同 略有出入。一般棉纤维中除了含有纤维素外, 大约还有6—10%的天然杂质。
《植物纤维》PPT课件
第三章 植物纤维
第一节 第二节 第三节 第四节
种子纤维 韧皮纤维 叶纤维 维管束纤维
内容提要: 植物纤维的分类 棉纤维和木棉纤维的形态特征及其主要性能特点 各类麻纤维的形态特征及主要性能特点 竹纤维的形态特征及其主要性能特点
整理课件
2
植物纤维的主要组成物质是纤维素,还有果胶、 半纤维素、木质素、水溶物、灰分等。
整理课件
5
2. 按初加工方法分
初加工:将籽棉上的纤维与棉籽分离的过程,亦 称轧棉(yà mián)。
(1)籽棉:带有棉籽的棉花。
(2)皮棉(原棉):去除棉籽所得到的棉纤维。
皮棉重量占籽棉重量的百分数,称为衣分率 (30%~40%)。
(3)锯齿棉:用锯齿轧花机加工的皮棉。纺纱用 棉多为锯齿棉。
(4)皮辊棉:用皮辊轧花机加工的皮棉。
(5)微生物的作用:不耐霉菌,霉变后强力下降。
(6)染色性:染色性好,可用多种染料进行染色。
初生层:约束和保护作用
纤维的初生细胞壁,由 网状原纤组成。对棉纤维 整体起约束和保护作用。
整理课件
次生层:纤维主体,决定主要的物理机械性质 (1)棉纤维在加厚期淀积而成的部 分,几乎都是纤维素。
(2)纤维素逐日淀积一层形成了棉 纤维的日轮。
(3)与棉纤维的成熟度、天然转曲 有关。(纤维素以束状小纤维的形态
(2)彩色棉:天然生长的非白色棉花,有称有 色棉。产品不用染色,无污染。
整理课件
8
(二)棉纤维的生长发育与形态特征
1、棉纤维的生长发育
整个棉纤维的形成过程可分为三个时期:伸长期、加 厚期、转曲期。 (1)伸长期:主要增长长度而胞壁极薄,形成有中腔的 细长薄壁管状物。(16-25天)
(2)加厚期:细胞壁由外向里逐日螺旋淀积纤维素,最 后留有中腔,与成熟度有关。(35-55天)
第一节 第二节 第三节 第四节
种子纤维 韧皮纤维 叶纤维 维管束纤维
内容提要: 植物纤维的分类 棉纤维和木棉纤维的形态特征及其主要性能特点 各类麻纤维的形态特征及主要性能特点 竹纤维的形态特征及其主要性能特点
整理课件
2
植物纤维的主要组成物质是纤维素,还有果胶、 半纤维素、木质素、水溶物、灰分等。
整理课件
5
2. 按初加工方法分
初加工:将籽棉上的纤维与棉籽分离的过程,亦 称轧棉(yà mián)。
(1)籽棉:带有棉籽的棉花。
(2)皮棉(原棉):去除棉籽所得到的棉纤维。
皮棉重量占籽棉重量的百分数,称为衣分率 (30%~40%)。
(3)锯齿棉:用锯齿轧花机加工的皮棉。纺纱用 棉多为锯齿棉。
(4)皮辊棉:用皮辊轧花机加工的皮棉。
(5)微生物的作用:不耐霉菌,霉变后强力下降。
(6)染色性:染色性好,可用多种染料进行染色。
初生层:约束和保护作用
纤维的初生细胞壁,由 网状原纤组成。对棉纤维 整体起约束和保护作用。
整理课件
次生层:纤维主体,决定主要的物理机械性质 (1)棉纤维在加厚期淀积而成的部 分,几乎都是纤维素。
(2)纤维素逐日淀积一层形成了棉 纤维的日轮。
(3)与棉纤维的成熟度、天然转曲 有关。(纤维素以束状小纤维的形态
(2)彩色棉:天然生长的非白色棉花,有称有 色棉。产品不用染色,无污染。
整理课件
8
(二)棉纤维的生长发育与形态特征
1、棉纤维的生长发育
整个棉纤维的形成过程可分为三个时期:伸长期、加 厚期、转曲期。 (1)伸长期:主要增长长度而胞壁极薄,形成有中腔的 细长薄壁管状物。(16-25天)
(2)加厚期:细胞壁由外向里逐日螺旋淀积纤维素,最 后留有中腔,与成熟度有关。(35-55天)
纤维的截面形状及表征课件(共19张PPT)《纺织材料学(第2版)》
R00
Ar
R 2 - r 2
A0
R
D =rS =r
截面异形度
径向异形度
R - r
A -
0
0
式中, R0和Ri ,A0和Ai分别为最多接触点的外接圆和内切圆半径,截面 积,见下图左图; r为一可替换半径; Ndt 为线密度; γ为纤维的密度。 其中Dr较多地强调径向的波动;而Sr 则偏重异形使截面积的变化。显 然,以r=Ri 的敏感性最大,以r=R0可作理论估算。对于多叶形异形,除异形度外,造型系数π是表达其叶瓣数n 的特
δt = tn - DitnδA = 1 -
P = Pf - Pos Pos
1.空心截面的特征中空截面也是一种异形,即纤维内部空缺异形,与前面轮廓相对圆 的空缺是对仗的。天然棉、麻不仅轮廓内空缺,而且异形,是典型的复合异形截面; 兔毛不仅椭圆和单孔中腔,而且有异形和多孔中腔,还带有竹腔层节结 构,是合纤至今无法实现的复合异形结构;木棉巨大的中腔、超薄的胞 壁,同样也是合纤加工梦寐以求的中控纤维形态。有关截面形状异形的表达见前,本节表达纤维截面的空缺部分,即 中空度和中腔率的表达。
非圆形截面纤维的表观特征会随截面形状的不同而变,其力学、表观物理和表面吸附性质,也都会随纤维截面的异形化而变。即便是圆形 纤维,也会随内部的中空及复合产生形态、线密度和结构的变化,使纤 维的空间造型多样化、表观占有空间变大。中空使纤维弯曲、扭转刚度增大,纤维变粗; 中空可含静止空气或 相变材料,使纤维的隔热性增大,透气性不变或略增。复合使纤维结构不均匀和非对称,使各组分功能分担与互补,而获 得皮芯结构的高强舒适或高强可粘结纤维; 双边或偏心分布的高弹、空 间卷曲与螺旋和形状记忆纤维; 海岛型或海绵多孔型功能纤维或超细纤 维等。纤维的异形化即截面非实心圆变化,主要有两类形式, 一是截面形 状的非圆形化,下又分为轮廓波动的异形化和直径不对称的异形化; 一 是截面的中空和复合化。
Ar
R 2 - r 2
A0
R
D =rS =r
截面异形度
径向异形度
R - r
A -
0
0
式中, R0和Ri ,A0和Ai分别为最多接触点的外接圆和内切圆半径,截面 积,见下图左图; r为一可替换半径; Ndt 为线密度; γ为纤维的密度。 其中Dr较多地强调径向的波动;而Sr 则偏重异形使截面积的变化。显 然,以r=Ri 的敏感性最大,以r=R0可作理论估算。对于多叶形异形,除异形度外,造型系数π是表达其叶瓣数n 的特
δt = tn - DitnδA = 1 -
P = Pf - Pos Pos
1.空心截面的特征中空截面也是一种异形,即纤维内部空缺异形,与前面轮廓相对圆 的空缺是对仗的。天然棉、麻不仅轮廓内空缺,而且异形,是典型的复合异形截面; 兔毛不仅椭圆和单孔中腔,而且有异形和多孔中腔,还带有竹腔层节结 构,是合纤至今无法实现的复合异形结构;木棉巨大的中腔、超薄的胞 壁,同样也是合纤加工梦寐以求的中控纤维形态。有关截面形状异形的表达见前,本节表达纤维截面的空缺部分,即 中空度和中腔率的表达。
非圆形截面纤维的表观特征会随截面形状的不同而变,其力学、表观物理和表面吸附性质,也都会随纤维截面的异形化而变。即便是圆形 纤维,也会随内部的中空及复合产生形态、线密度和结构的变化,使纤 维的空间造型多样化、表观占有空间变大。中空使纤维弯曲、扭转刚度增大,纤维变粗; 中空可含静止空气或 相变材料,使纤维的隔热性增大,透气性不变或略增。复合使纤维结构不均匀和非对称,使各组分功能分担与互补,而获 得皮芯结构的高强舒适或高强可粘结纤维; 双边或偏心分布的高弹、空 间卷曲与螺旋和形状记忆纤维; 海岛型或海绵多孔型功能纤维或超细纤 维等。纤维的异形化即截面非实心圆变化,主要有两类形式, 一是截面形 状的非圆形化,下又分为轮廓波动的异形化和直径不对称的异形化; 一 是截面的中空和复合化。
化学纤维PPT课件
性好
D、光学性质 耐光性好,仅次于腈纶
E、耐酸不耐强碱,不霉不蛀 F、密度: 1.38 g/cm3
2、锦纶
(1)结构
分子式:H [ NH(CH2)5CO] n OH 锦纶6
H [ NH(CH2)6NHCO(CH2)4 CO] n OH 锦纶66
特征基团: 有极性集团-CONH-;-NH2;-COOH;
以配成纺丝溶液,将纺丝液从喷丝孔中压出后射 入凝固浴中凝固成条。
湿法纺丝:试剂固化(腈纶、氯纶、粘胶) 干法纺丝:热空气固化(维纶、醋酯)
2.熔体法纺丝:高温熔化成熔体后从喷丝孔 喷出, 用空气或水固化。
有色纺丝或原液纺丝:纺丝液+色母粒
(三)后加工
1.集束:将几个喷丝头喷出的丝束以均匀的张力集合 成规定粗细的大股丝束,以便于以后加工
D、耐光性差 E、耐碱不耐酸 F、密度较小:1.14 g/cm3
3、腈纶
第一单体:丙烯腈(超过85%)
第二单体:丙烯酸甲酯、甲醛丙烯酸甲酯、 醋酸乙烯酯等,改善纤维的脆性,增加弹性、 柔软性,同时还有利于染料分子进入。
第三单体:引入一定量带有酸性或碱性亲 染料的基团 改善纤维的染色性
(1)结构
准结晶结构
⑷耐磨性差
粘胶皮芯结构
⑸尺寸稳定性差
五、铜氨纤维(Cuprammonium rayon) 1.原料:木材、甘蔗渣、芦苇、棉短绒(主要)
溶在氢氧化铜或碱性铜盐溶液中 2.结构与性能: ⑴圆型截面、全皮层、不完全透明 ⑵柔软(比粘胶好),光泽柔和(圆截面) ⑶吸湿接近粘胶 ⑷染色好 ⑸湿强高于粘胶 ⑹工艺复杂(比粘胶
返回
2.合成纤维:
用煤、石油、天然气、农副 产品等低分子化合物, 经人工合成 与机械加工而制得的纤维(涤纶、 丙纶等)
D、光学性质 耐光性好,仅次于腈纶
E、耐酸不耐强碱,不霉不蛀 F、密度: 1.38 g/cm3
2、锦纶
(1)结构
分子式:H [ NH(CH2)5CO] n OH 锦纶6
H [ NH(CH2)6NHCO(CH2)4 CO] n OH 锦纶66
特征基团: 有极性集团-CONH-;-NH2;-COOH;
以配成纺丝溶液,将纺丝液从喷丝孔中压出后射 入凝固浴中凝固成条。
湿法纺丝:试剂固化(腈纶、氯纶、粘胶) 干法纺丝:热空气固化(维纶、醋酯)
2.熔体法纺丝:高温熔化成熔体后从喷丝孔 喷出, 用空气或水固化。
有色纺丝或原液纺丝:纺丝液+色母粒
(三)后加工
1.集束:将几个喷丝头喷出的丝束以均匀的张力集合 成规定粗细的大股丝束,以便于以后加工
D、耐光性差 E、耐碱不耐酸 F、密度较小:1.14 g/cm3
3、腈纶
第一单体:丙烯腈(超过85%)
第二单体:丙烯酸甲酯、甲醛丙烯酸甲酯、 醋酸乙烯酯等,改善纤维的脆性,增加弹性、 柔软性,同时还有利于染料分子进入。
第三单体:引入一定量带有酸性或碱性亲 染料的基团 改善纤维的染色性
(1)结构
准结晶结构
⑷耐磨性差
粘胶皮芯结构
⑸尺寸稳定性差
五、铜氨纤维(Cuprammonium rayon) 1.原料:木材、甘蔗渣、芦苇、棉短绒(主要)
溶在氢氧化铜或碱性铜盐溶液中 2.结构与性能: ⑴圆型截面、全皮层、不完全透明 ⑵柔软(比粘胶好),光泽柔和(圆截面) ⑶吸湿接近粘胶 ⑷染色好 ⑸湿强高于粘胶 ⑹工艺复杂(比粘胶
返回
2.合成纤维:
用煤、石油、天然气、农副 产品等低分子化合物, 经人工合成 与机械加工而制得的纤维(涤纶、 丙纶等)
常用纺织纤维结构和性能PPT教案
第48页/共80页
3、羊毛的性质
1.保暖 2.吸湿透气为天然纤维之最 : 纤维含亲水基团,
COOH--, -NH2 –OH 3.弹性好: 表面有卷曲 4.光泽柔和:每一根纤维表面鳞片有漫射现象 5.缩水:热水、碱性、机械外力强时缩水很大 6.耐酸性:耐弱酸,不耐强酸 7.耐碱性差:碱作用变黄
第49页/共80页
目前世界上唯一集合成纤维和天然纤维优点于一体的新型纤维
第41页/共80页
(四)竹纤维
竹原纤维 竹浆纤维
第42页/共80页
竹原纤维形态结构、分子结构
横截面:扁平形或三角形,有中腔 有横节、沟槽、裂缝、空洞 结晶度71%
竹浆纤维:与粘胶相似,皮芯结构不明显,结晶度小于竹原纤维
第43页/共80页
第67页/共80页
五、聚乳酸纤维的结构和主要性能(PLA)
原料:以天然糖为原料,(玉米、小麦、甜菜、大米) 加工过程: 发酵工艺生产乳酸 缩聚生成聚乳酸 纺丝 已开发出塑料级、薄膜级、纤维级、医药级多个分子量级别的聚乳酸 应用:玉米塑料、可吸收缝线、可吸收支架等
(1)吸湿和溶胀(absorption and swell)
采用回潮率和含水率两项指标测试
第11页/共80页
第12页/共80页
(2)耐酸性(acid-resistant):遇强酸水解
应用:蝉翼纱,烂花布 烂花布:涤棉包芯纱织物通过 与有花纹的酸滚筒接触后制得的半透明织物
第13页/共80页
苷键水解
二、蚕丝的结构和主要性能
1、组成:
丝素 丝胶 色素 蜡质 无机物
第53页/共80页
分子结构和组成:
由多种α氨基酸剩基以酰胺键联结构成的长链大分子 蚕丝由丝素和丝胶两种蛋白质组成
3、羊毛的性质
1.保暖 2.吸湿透气为天然纤维之最 : 纤维含亲水基团,
COOH--, -NH2 –OH 3.弹性好: 表面有卷曲 4.光泽柔和:每一根纤维表面鳞片有漫射现象 5.缩水:热水、碱性、机械外力强时缩水很大 6.耐酸性:耐弱酸,不耐强酸 7.耐碱性差:碱作用变黄
第49页/共80页
目前世界上唯一集合成纤维和天然纤维优点于一体的新型纤维
第41页/共80页
(四)竹纤维
竹原纤维 竹浆纤维
第42页/共80页
竹原纤维形态结构、分子结构
横截面:扁平形或三角形,有中腔 有横节、沟槽、裂缝、空洞 结晶度71%
竹浆纤维:与粘胶相似,皮芯结构不明显,结晶度小于竹原纤维
第43页/共80页
第67页/共80页
五、聚乳酸纤维的结构和主要性能(PLA)
原料:以天然糖为原料,(玉米、小麦、甜菜、大米) 加工过程: 发酵工艺生产乳酸 缩聚生成聚乳酸 纺丝 已开发出塑料级、薄膜级、纤维级、医药级多个分子量级别的聚乳酸 应用:玉米塑料、可吸收缝线、可吸收支架等
(1)吸湿和溶胀(absorption and swell)
采用回潮率和含水率两项指标测试
第11页/共80页
第12页/共80页
(2)耐酸性(acid-resistant):遇强酸水解
应用:蝉翼纱,烂花布 烂花布:涤棉包芯纱织物通过 与有花纹的酸滚筒接触后制得的半透明织物
第13页/共80页
苷键水解
二、蚕丝的结构和主要性能
1、组成:
丝素 丝胶 色素 蜡质 无机物
第53页/共80页
分子结构和组成:
由多种α氨基酸剩基以酰胺键联结构成的长链大分子 蚕丝由丝素和丝胶两种蛋白质组成
03-第2章 纤维的结构特征
结晶度对纤维结构与性能的影响
结晶度↑→纤维的拉伸强度、初始模量、硬度、尺寸稳定性、 密度↑;纤维的吸湿性、染料吸着性、润胀性、柔软性、化学 活泼性↓。 结晶度↓→纤维吸湿性↑,容易染色,拉伸强度降低,变形较大, 纤维较柔软,耐冲击,弹性有所改善,密度较小,化学反应性 比较活泼。
(2)非晶态:纤维大分子无规则聚集排列的状态。 ①非晶区(无定形区,amorphous region )
高聚物分子链间具有强次价力,例如氢键相互作用时,
分子间的侧向排列具有有序性,甚至完全规整的有序 排列。
测定方法:将试样置于逐渐增加浓度或温度的溶剂内,
依次测定各物理量,如溶胀、溶解、收缩、吸附或吸 收等性质的变化。凡侧序较低的部分首先受到溶剂的 影响而发生相应的变化。
三、纤维的分子结构(molecular structure )
诱导力 色散力
氢键
盐式键
在部分大分子侧基上,某些成对基团之 化学键中作用力 间接近时,产生能级跃迁的原子转移, 较弱,能量30~ 从而基团间形成相互结合的化学键 50千卡/克分子
少数纤维的大分子之间存在着桥式侧基 能量50~200千卡/ 克分子
化学键
二、纤维的聚集态( state of aggregation )结构
纤维大分子无规则聚集排列的区域。
非晶区特点:
a.大分子链段排列混乱,无规律; b.结构松散,有较多的缝隙、孔洞; c.相互间结合力小,互相接近的基团结合力没饱和。
直接影响着纤维的吸湿、染色、热定形、力学弹 性及伸长等
“两相结构” 模型 :纤维中存在明显边界的晶区与非晶区, 一些大分子的长度可以远超过晶区或无定形区各自的长度﹐足 够把若干个晶区和无定形区串连起来形成网络结构 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大分子 基原纤 微原纤
微原纤的堆砌形式示意图
4
原纤(fibril):一统称,有时可代表由若干基原纤或含若干根 微原纤,大致平行组合在一起的更为粗大的大分子束,直径 10~30nm 。 微原纤之间依靠相邻的分子结合力和穿越的大分子主链联结
巨原纤(macro-fibril):由多个微原纤或原纤堆砌而成的结构 体。横向尺寸一般约为0.1~0.6μ m
? 高聚物分子链间具有强次价力,例如氢键相互作用时, 分子间的侧向排列具有有序性,甚至完全规整的有序 排列。
? 测定方法:将试样置于逐渐增加浓度或温度的溶剂内, 依次测定各物理量,如溶胀、溶解、收缩、吸附或吸 收等性质的变化。凡侧序较低的部分首先受到溶剂的 影响而发生相应的变化。
①结晶区:纤维大分子有规律地整齐排列的区域。
晶区(crystalline zone )特点: a. 大分子链段排列规整; b. 结构紧密,缝隙,孔洞较少; c. 相互间结合力强,互相接近的基团结合力饱和。 ②结晶度:纤维内部结晶区占整个纤维的百分率
重量结晶度:纤维内部结晶区的重量占纤维总重量的百分率。 体积结晶度:纤维内部结晶区的体积占纤维总体积的百分率。
在部分大分子侧基上,某些成对基团之 化学键中作用力
间接近时,产生能级跃迁的原子转移, 较弱,能量30~
从而基团间形成相互结合的化学键
50千卡/克分子
少数纤维的大分子之间存在着桥式侧基 能量50~200千卡/ 克分子
6
二、纤维的聚集态( state of aggregation )结构
1、结晶 (1)结晶态:纤维大分子有规律地整齐排列的状态。
? 形态结构(morphological structure ):表观形态 (纤维的长度、粗细、截面形状和卷曲或转曲等 )、表面 结构、微细结构(原纤结构与排列 )。
2
一、纤维的形态结构 —微细结构,原纤结构
微细结构:纤维内部的有序区(结晶或取向排列区)和无 序区(无定形或非结晶区)的形态、尺寸和相互间的排列 与组合,及细胞构成与结合方式。 纤维是柔软细长物,其微细结构的基本组成单元大多为 细长纤维状的物质,统称为原纤(fibril) 原纤(fibril):大分子有序排列的结构,或称结晶结构。
? 纤维大分子无规则聚集排列的区域。
? 非晶区特点:
? a.大分子链段排列混乱,无规律; ? b.结构松散,有较多的缝隙、孔洞; ? c.相互间结合力小,互相接近的基团结合力没饱和。
? 直接影响着纤维的吸湿、染色、热定形、力学弹 性及伸长等
9
“两相结构” 模型 :纤维中存在明显边界的晶区与非晶区, 一些大分子的长度可以远超过晶区或无定形区各自的长度﹐足 够把若干个晶区和无定形区串连起来形成网络结构 。
13
2、取向度(orientation degree)
? (1)定义:大分子排列方向与纤维轴向吻合 的程度称作取向度 。
? (2)取向度与纤维性能间的关系:
? 取向度大→大分子可能承受的轴向拉力也大,拉伸 强度较大,伸长较小,模量较高,光泽较好,各向 异性明显。
14
3、侧序(lateral order ):在垂直于纤维取向轴方向 上分子链排列的有序性。
基原纤→微原纤→原纤→巨原纤→细胞
3
基原纤(proto-fibril):一般由几根以至十几根长链分子,互相 平行或螺旋状地按一定距离、相位稳定地结合在一起的大分 子束,直径为1~3nm(10~30? ),具有一定的柔曲性。
微原纤(micro-fibril):由若干根基原纤平行排列组合在 一起粗一点的,基本上属结晶态的大分子束,直径大约4~ 8nm(40~80 ? ),个别高达100nm
7
结晶度对纤维结构与性能的影响
结晶度↑→纤维的拉伸强度、初始模量、硬度、尺寸稳定性、 密度↑;纤维的吸湿性、染料吸着性、润胀性、柔软性、化学 活泼性↓。 结晶度↓→纤维吸湿性↑,容易染色,拉伸强度降低,变形较大, 纤维较柔软,耐冲击,弹性有所改善,密度较小,化学反应性 比较活泼。
8
(2)非晶态:纤维大分子无规则聚集排列的状态。 ? ①非晶区(无定形区, amorphous region )
细胞(cell):由巨原纤或微原纤直接堆砌而成的,有明显的细 胞边界。
5
名称 范德华力 定向力
诱导力 色散力 氢键
盐式键 化学键
产生原因
特点
产生于极性分子间,是由它们的永久偶 作用能量3~5千
极矩作用而产生的
卡/克分子;与温
度有关
由相邻分子间的诱导电动势产生的,产 1.5~3千卡/克分
生于极性分子与非极性分子之间
第二章 纤维的结构特征
1
? 纤维结构:
? 组成纤维的结构单元相互作用达到平衡时在空 间的几何排列。
? 大分子结构:化学组成、单基结构、端基组成、聚 合度及其பைடு நூலகம்布、大分子构象、大分子链柔曲性等;
? 超分子结构(supermolecular structure ):晶态、非 晶态、结晶度、晶粒大小、取向度、侧序分布等;
取向和无序排列的缨状微胞(fringed micelle )结构 缨状:无序区中分子排列的状态;微胞:分子有序排列的结构块
10
Hearle教授的缨状原纤结构模型
11
子分结缚
取向和非取向折叠链片晶(fringed lamellar crystal)结构模型
折叠链缨状微胞模型中大分子可以折叠在一个晶区内﹐也可以 穿过无定形区进入另一晶区折叠
子,与温度有关
由相邻原子上的电子云旋转引起瞬时的 0.2~2千卡/克分 偶极矩而产生的,产生于一切非极性分 子,与温度无关 子中。
大分子侧基(或部分主链上)极性基团 之间的静电吸引力(如-NH2,-
COOH,-OH,-CONH等)
能力1.3~10.2千 卡/克分子,距离
2.3~3.2埃;与温 度有关
12
两相结构﹕其基本概念是纤维中存在明显边界的晶区与非晶区,一些 大分子的长度可以远超过晶区或无定形区各自的长度﹐足够把若干个 晶区和无定形区串连起来形成网络结构。 粘胶纤维属于分散的晶相和连续的无定形相所组成的例子。棉及苎麻 等则属于连续晶相和分散的无定形相的两相结构。 两相结构的两种模型:缨状微胞模型中大分子可以穿过若并晶区和无 定形区﹐而折叠链缨状微胞模型中大分子可以折叠在一个晶区内﹐也 可以穿过无定形区进入另一晶区折叠。
微原纤的堆砌形式示意图
4
原纤(fibril):一统称,有时可代表由若干基原纤或含若干根 微原纤,大致平行组合在一起的更为粗大的大分子束,直径 10~30nm 。 微原纤之间依靠相邻的分子结合力和穿越的大分子主链联结
巨原纤(macro-fibril):由多个微原纤或原纤堆砌而成的结构 体。横向尺寸一般约为0.1~0.6μ m
? 高聚物分子链间具有强次价力,例如氢键相互作用时, 分子间的侧向排列具有有序性,甚至完全规整的有序 排列。
? 测定方法:将试样置于逐渐增加浓度或温度的溶剂内, 依次测定各物理量,如溶胀、溶解、收缩、吸附或吸 收等性质的变化。凡侧序较低的部分首先受到溶剂的 影响而发生相应的变化。
①结晶区:纤维大分子有规律地整齐排列的区域。
晶区(crystalline zone )特点: a. 大分子链段排列规整; b. 结构紧密,缝隙,孔洞较少; c. 相互间结合力强,互相接近的基团结合力饱和。 ②结晶度:纤维内部结晶区占整个纤维的百分率
重量结晶度:纤维内部结晶区的重量占纤维总重量的百分率。 体积结晶度:纤维内部结晶区的体积占纤维总体积的百分率。
在部分大分子侧基上,某些成对基团之 化学键中作用力
间接近时,产生能级跃迁的原子转移, 较弱,能量30~
从而基团间形成相互结合的化学键
50千卡/克分子
少数纤维的大分子之间存在着桥式侧基 能量50~200千卡/ 克分子
6
二、纤维的聚集态( state of aggregation )结构
1、结晶 (1)结晶态:纤维大分子有规律地整齐排列的状态。
? 形态结构(morphological structure ):表观形态 (纤维的长度、粗细、截面形状和卷曲或转曲等 )、表面 结构、微细结构(原纤结构与排列 )。
2
一、纤维的形态结构 —微细结构,原纤结构
微细结构:纤维内部的有序区(结晶或取向排列区)和无 序区(无定形或非结晶区)的形态、尺寸和相互间的排列 与组合,及细胞构成与结合方式。 纤维是柔软细长物,其微细结构的基本组成单元大多为 细长纤维状的物质,统称为原纤(fibril) 原纤(fibril):大分子有序排列的结构,或称结晶结构。
? 纤维大分子无规则聚集排列的区域。
? 非晶区特点:
? a.大分子链段排列混乱,无规律; ? b.结构松散,有较多的缝隙、孔洞; ? c.相互间结合力小,互相接近的基团结合力没饱和。
? 直接影响着纤维的吸湿、染色、热定形、力学弹 性及伸长等
9
“两相结构” 模型 :纤维中存在明显边界的晶区与非晶区, 一些大分子的长度可以远超过晶区或无定形区各自的长度﹐足 够把若干个晶区和无定形区串连起来形成网络结构 。
13
2、取向度(orientation degree)
? (1)定义:大分子排列方向与纤维轴向吻合 的程度称作取向度 。
? (2)取向度与纤维性能间的关系:
? 取向度大→大分子可能承受的轴向拉力也大,拉伸 强度较大,伸长较小,模量较高,光泽较好,各向 异性明显。
14
3、侧序(lateral order ):在垂直于纤维取向轴方向 上分子链排列的有序性。
基原纤→微原纤→原纤→巨原纤→细胞
3
基原纤(proto-fibril):一般由几根以至十几根长链分子,互相 平行或螺旋状地按一定距离、相位稳定地结合在一起的大分 子束,直径为1~3nm(10~30? ),具有一定的柔曲性。
微原纤(micro-fibril):由若干根基原纤平行排列组合在 一起粗一点的,基本上属结晶态的大分子束,直径大约4~ 8nm(40~80 ? ),个别高达100nm
7
结晶度对纤维结构与性能的影响
结晶度↑→纤维的拉伸强度、初始模量、硬度、尺寸稳定性、 密度↑;纤维的吸湿性、染料吸着性、润胀性、柔软性、化学 活泼性↓。 结晶度↓→纤维吸湿性↑,容易染色,拉伸强度降低,变形较大, 纤维较柔软,耐冲击,弹性有所改善,密度较小,化学反应性 比较活泼。
8
(2)非晶态:纤维大分子无规则聚集排列的状态。 ? ①非晶区(无定形区, amorphous region )
细胞(cell):由巨原纤或微原纤直接堆砌而成的,有明显的细 胞边界。
5
名称 范德华力 定向力
诱导力 色散力 氢键
盐式键 化学键
产生原因
特点
产生于极性分子间,是由它们的永久偶 作用能量3~5千
极矩作用而产生的
卡/克分子;与温
度有关
由相邻分子间的诱导电动势产生的,产 1.5~3千卡/克分
生于极性分子与非极性分子之间
第二章 纤维的结构特征
1
? 纤维结构:
? 组成纤维的结构单元相互作用达到平衡时在空 间的几何排列。
? 大分子结构:化学组成、单基结构、端基组成、聚 合度及其பைடு நூலகம்布、大分子构象、大分子链柔曲性等;
? 超分子结构(supermolecular structure ):晶态、非 晶态、结晶度、晶粒大小、取向度、侧序分布等;
取向和无序排列的缨状微胞(fringed micelle )结构 缨状:无序区中分子排列的状态;微胞:分子有序排列的结构块
10
Hearle教授的缨状原纤结构模型
11
子分结缚
取向和非取向折叠链片晶(fringed lamellar crystal)结构模型
折叠链缨状微胞模型中大分子可以折叠在一个晶区内﹐也可以 穿过无定形区进入另一晶区折叠
子,与温度有关
由相邻原子上的电子云旋转引起瞬时的 0.2~2千卡/克分 偶极矩而产生的,产生于一切非极性分 子,与温度无关 子中。
大分子侧基(或部分主链上)极性基团 之间的静电吸引力(如-NH2,-
COOH,-OH,-CONH等)
能力1.3~10.2千 卡/克分子,距离
2.3~3.2埃;与温 度有关
12
两相结构﹕其基本概念是纤维中存在明显边界的晶区与非晶区,一些 大分子的长度可以远超过晶区或无定形区各自的长度﹐足够把若干个 晶区和无定形区串连起来形成网络结构。 粘胶纤维属于分散的晶相和连续的无定形相所组成的例子。棉及苎麻 等则属于连续晶相和分散的无定形相的两相结构。 两相结构的两种模型:缨状微胞模型中大分子可以穿过若并晶区和无 定形区﹐而折叠链缨状微胞模型中大分子可以折叠在一个晶区内﹐也 可以穿过无定形区进入另一晶区折叠。