电感元件上电压电流的有效值关系为
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
件上电压与电流的比值,但它与电阻有所不同,电
阻反映了元件上耗能的电特性,而感抗则是表征了
电感元件对正弦交流电流的阻碍作用,这种阻碍作
用不消耗电能,只能推迟正弦交流电流通过电感元
件的时间。
XL与频率成正比;与电感量L成正比
周期T: 正弦量完整变化一周所需要的时间。
频率f: 正弦量在单位时间内变化的周数。
周期与频率的关系: f 1 T
角频率ω: 正弦量单位时间内变化的弧度数。
角频率与周期及频率的关系:
2 2f
T
7.1.3 正弦量的相位、初相和相位差
相位: 正弦量解析式中随时间变化的电角度(ω t+φ )。
瞬时功率: P i u
平均功率: P UI I 2 R U 2G
例 求:“220V、100W”和“220V、40W”灯泡的电阻?
解:
R100
U2 P
2202 100
484
U 2 2202 R40 P 40 1210
显然,电阻负载在相同电压下工作,功率与其阻值成反比。
第7章 正弦交流电路
7.1 正弦交流电基本概念 7.2 正弦量的相量表示法 7.3 纯电阻的交流电路 7.4 电感元件的交流电路 7.5 电容元件的交流电路
Go!
Go!
Go!
Go!
本章教学 目的及要
Go!
求
7.6 基尔霍夫定律相量形式 Go!
7.7 RLC串联电路
Go!
7.8 RLC并联电路
Go!
7.9 交流电路一般分析方法 Go!
例 已知 u1 2U1 sin t 1 ,u2 2U 2 sin t 2 ,
把它们表示为相量,并且画在相量图中。
用有效值相量表示,即: U1 = U1 ψ1
画在相量图中:
U2 = U2 ψ2
U2
也可以把复平面省略,直接画作
U2
2 U1
1
虚线可以不画
2 U1
1
7.1 正弦交流电的基本概念
在直流电路中讨论的电压和电流均为稳恒直流 电,其大小和方向均不随时间变化,称为稳恒直流 电,简称直流电。直流电的波形图如下图所示:
u、i
t 0
经常遇到的是随时间而变化的电压和电流,通 常其大小随时间变化,方向不随时间变化,称为脉 动直流电,如图所示。
如果电压或电流的大小和方向均随时间变化, 称为交流电。
初相: t=0时的相位φ,它确定了正弦量计时始的位置。 相位差:两个同频率正弦量之间的相位之差。
例 u Um sin(t u ), i Im sin(t i )
相位
初相
u、i 的相位差为:
(t u ) (t i ) u i
显然,相位差实际上等于两个同频率正弦量之间的初 相之差。
I
=
U
R
7.3.2 电阻电压与电流的相量关系
因为电阻电压、电流为同频率的正弦量,所以可以将其电
压与电流的关系表示为相量形式:
U I R
则有
u i
U Ue ju I Re ji
U
IR
I
G
结论:上式说明,电阻电压与电流的相量关系仍符合欧姆
定律,即电阻元件的相量形式的欧姆定律
7.10 电路的谐振
Go!
7.11 三相交流电路
Go!
本章学习目的及要求
正弦交流电路的基本理论和基本分析 方法是学习电路分析的重要内容之一,应 很好掌握。通过本章的学习,要求理解正 弦交流电的基本概念;熟悉正弦交流电的 表示方法;深刻理解相量的概念,牢固掌 握串联谐振与并联谐振的电路特点;了解 三相交流电路的基本分析方法。
I mL cost U Lm sin(t 90)
电压电流之间的数量关系:ULm=Imωt =ImXL
其感中抗,XL单是位电和感电对阻正一弦样交,流也电是流欧所姆呈。现的电抗,简称
电感元件上电压、电流的有效值关系为:
XL
UL I
XL=2πf L=ωL,虽然式中感抗和电阻类似,等于元
U
Um 2
0.707Um
Im 2I 1.414I
7.2 正弦量的相量表示法
学习目标:了解相量的概念,熟练掌握正弦量的相
量表示法;初步了解相量图的画法。
7.2.1 正弦量的相位表示
与正弦量相对应的复电压和复电流称之为相量。
为区别与一般复数,相量的头顶上一般加符号“·”。
例如正弦量i=Imsin(ωt+φi) ,若用相量表示,
7.1.4 正弦量的有效值
有效值指与交流电热效应相同的直流电数值。
例
iR
IR
交流电i 通过电阻R时,在t 时间内产生的热量为Q
直流电I 通过相同电阻R时,在 t 时间内产生的热量也为Q
即:热效应相同的直流电流 I 称之为交流电流 i 的有效 值。有效值可以确切地反映交流电的作功能力。
理论和实际都可以证明:
其最大值相量为:
I m Ime ji
有效值相量为:
I Ie ji
由于一个电路中各正弦量都是同频率的,所以相量
只需对应正弦量的两要素即可。即模值对应正弦量
的有效值(或最大值),幅角对应正弦量的初相。
7.2.2 正弦量的相量图
按照各个正弦量的大小和相位关系用初始位置的
有向线段画出的若干个相量的图形,称为相量图。
7.3 纯电阻的交流电路
7.3.1 正弦电路中电阻元件的电压与电流关系
i
1. 电阻元件上的电压、电流关系
u
R
i
=
u
R
电压、电流的瞬时值表达式为:
u 2 U sin t
i u R
2U R
sin t Im sin t
由两式可推出,电阻元件上电压、电流的相位上
存在同相关系;数量上符合欧姆定律,即:
平均功率代表了电路实际消耗的功率,因此也 称之为有功功率。
百度文库
7.4 电感元件的交流电路
7.4.1 正弦电路中电感电压与电流的关系
如图电感电路:
u
L
设通过L中的电流为: i 2 I sin t
则L两端的电压为:uL
由式可推出L上电压
L
di dt
L
d (I m sin t)
dt
电流之间的相位上存 在90°的正交关系, 且电压超前电流。
7.1.1 正弦量的三要素
随时间按正弦规律变化的交流电称为正弦交流 电。一般表达式为:
u Um sin(t u )
u i Im sin(t i )
t 0 幅值、角频率及初相角这三个参数可决定一个 正弦量,称为正弦量的三要素。
7.1.2 周期与频率
1. 正弦交流电的周期、频率和角频率
阻反映了元件上耗能的电特性,而感抗则是表征了
电感元件对正弦交流电流的阻碍作用,这种阻碍作
用不消耗电能,只能推迟正弦交流电流通过电感元
件的时间。
XL与频率成正比;与电感量L成正比
周期T: 正弦量完整变化一周所需要的时间。
频率f: 正弦量在单位时间内变化的周数。
周期与频率的关系: f 1 T
角频率ω: 正弦量单位时间内变化的弧度数。
角频率与周期及频率的关系:
2 2f
T
7.1.3 正弦量的相位、初相和相位差
相位: 正弦量解析式中随时间变化的电角度(ω t+φ )。
瞬时功率: P i u
平均功率: P UI I 2 R U 2G
例 求:“220V、100W”和“220V、40W”灯泡的电阻?
解:
R100
U2 P
2202 100
484
U 2 2202 R40 P 40 1210
显然,电阻负载在相同电压下工作,功率与其阻值成反比。
第7章 正弦交流电路
7.1 正弦交流电基本概念 7.2 正弦量的相量表示法 7.3 纯电阻的交流电路 7.4 电感元件的交流电路 7.5 电容元件的交流电路
Go!
Go!
Go!
Go!
本章教学 目的及要
Go!
求
7.6 基尔霍夫定律相量形式 Go!
7.7 RLC串联电路
Go!
7.8 RLC并联电路
Go!
7.9 交流电路一般分析方法 Go!
例 已知 u1 2U1 sin t 1 ,u2 2U 2 sin t 2 ,
把它们表示为相量,并且画在相量图中。
用有效值相量表示,即: U1 = U1 ψ1
画在相量图中:
U2 = U2 ψ2
U2
也可以把复平面省略,直接画作
U2
2 U1
1
虚线可以不画
2 U1
1
7.1 正弦交流电的基本概念
在直流电路中讨论的电压和电流均为稳恒直流 电,其大小和方向均不随时间变化,称为稳恒直流 电,简称直流电。直流电的波形图如下图所示:
u、i
t 0
经常遇到的是随时间而变化的电压和电流,通 常其大小随时间变化,方向不随时间变化,称为脉 动直流电,如图所示。
如果电压或电流的大小和方向均随时间变化, 称为交流电。
初相: t=0时的相位φ,它确定了正弦量计时始的位置。 相位差:两个同频率正弦量之间的相位之差。
例 u Um sin(t u ), i Im sin(t i )
相位
初相
u、i 的相位差为:
(t u ) (t i ) u i
显然,相位差实际上等于两个同频率正弦量之间的初 相之差。
I
=
U
R
7.3.2 电阻电压与电流的相量关系
因为电阻电压、电流为同频率的正弦量,所以可以将其电
压与电流的关系表示为相量形式:
U I R
则有
u i
U Ue ju I Re ji
U
IR
I
G
结论:上式说明,电阻电压与电流的相量关系仍符合欧姆
定律,即电阻元件的相量形式的欧姆定律
7.10 电路的谐振
Go!
7.11 三相交流电路
Go!
本章学习目的及要求
正弦交流电路的基本理论和基本分析 方法是学习电路分析的重要内容之一,应 很好掌握。通过本章的学习,要求理解正 弦交流电的基本概念;熟悉正弦交流电的 表示方法;深刻理解相量的概念,牢固掌 握串联谐振与并联谐振的电路特点;了解 三相交流电路的基本分析方法。
I mL cost U Lm sin(t 90)
电压电流之间的数量关系:ULm=Imωt =ImXL
其感中抗,XL单是位电和感电对阻正一弦样交,流也电是流欧所姆呈。现的电抗,简称
电感元件上电压、电流的有效值关系为:
XL
UL I
XL=2πf L=ωL,虽然式中感抗和电阻类似,等于元
U
Um 2
0.707Um
Im 2I 1.414I
7.2 正弦量的相量表示法
学习目标:了解相量的概念,熟练掌握正弦量的相
量表示法;初步了解相量图的画法。
7.2.1 正弦量的相位表示
与正弦量相对应的复电压和复电流称之为相量。
为区别与一般复数,相量的头顶上一般加符号“·”。
例如正弦量i=Imsin(ωt+φi) ,若用相量表示,
7.1.4 正弦量的有效值
有效值指与交流电热效应相同的直流电数值。
例
iR
IR
交流电i 通过电阻R时,在t 时间内产生的热量为Q
直流电I 通过相同电阻R时,在 t 时间内产生的热量也为Q
即:热效应相同的直流电流 I 称之为交流电流 i 的有效 值。有效值可以确切地反映交流电的作功能力。
理论和实际都可以证明:
其最大值相量为:
I m Ime ji
有效值相量为:
I Ie ji
由于一个电路中各正弦量都是同频率的,所以相量
只需对应正弦量的两要素即可。即模值对应正弦量
的有效值(或最大值),幅角对应正弦量的初相。
7.2.2 正弦量的相量图
按照各个正弦量的大小和相位关系用初始位置的
有向线段画出的若干个相量的图形,称为相量图。
7.3 纯电阻的交流电路
7.3.1 正弦电路中电阻元件的电压与电流关系
i
1. 电阻元件上的电压、电流关系
u
R
i
=
u
R
电压、电流的瞬时值表达式为:
u 2 U sin t
i u R
2U R
sin t Im sin t
由两式可推出,电阻元件上电压、电流的相位上
存在同相关系;数量上符合欧姆定律,即:
平均功率代表了电路实际消耗的功率,因此也 称之为有功功率。
百度文库
7.4 电感元件的交流电路
7.4.1 正弦电路中电感电压与电流的关系
如图电感电路:
u
L
设通过L中的电流为: i 2 I sin t
则L两端的电压为:uL
由式可推出L上电压
L
di dt
L
d (I m sin t)
dt
电流之间的相位上存 在90°的正交关系, 且电压超前电流。
7.1.1 正弦量的三要素
随时间按正弦规律变化的交流电称为正弦交流 电。一般表达式为:
u Um sin(t u )
u i Im sin(t i )
t 0 幅值、角频率及初相角这三个参数可决定一个 正弦量,称为正弦量的三要素。
7.1.2 周期与频率
1. 正弦交流电的周期、频率和角频率