运筹学作业参考答案

合集下载

运筹学例题及答案

运筹学例题及答案
cj zj 0 0 1/3 4/3 0 0 1
继续迭代;得表7
表7
cj 3 2 0 0 0 0 4 cB xB b x1 x2 x3 x4 x5 x6 x7 2 x2 4/3 0 1 2/3 1/3 0 0 0 3 x1 3 1 0 0 1/2 0 1/2 0 0 x5 5/3 0 0 1/3 1/2 1 2 0 4 x7 1/3 0 0 1/3 1/6 0 1/2 1
即新解为 x(1,2,2,0,0,0)T
b 将cj的改变反应到最终单纯形表上;得表4
cj 2 5 0 0 0 0 cB xB b x1 x2 x3 x4 x5 x6 5 x2 4/3 0 1 2/3 1/3 0 0 2 x1 10/3 1 0 1/3 2/3 0 0 0 x5 3 0 0 1 1 1 0 0 x6 2/3 0 0 2/3 1/3 0 1
x2
x3
x4
x5
21210
10401
62300
1 1/2 1 1/2 0 0 1/2 3 1/2 1 01330
cj
cB xB b
6
x1 4
2
x2 6
cj zj
62300
x1
x2
x3
x4
x5
10401
01612
00922
达到最优解;且最优解唯一
2 用大M或两阶段法解LP问题
max z 2 x 1 x 2 2 x 3
x1 3 x2 x4 8
2 x1
x2
6
s.t. x 2 x 3 x4 6
x1
x2
x3
9
x1, x2, x3, x4 0
要求:a写出对偶问题;b已知原问题最有解
X*=2;2;4;0;用互补松弛性求出对偶问题的最 优解

最全运筹学习题及答案

最全运筹学习题及答案

最全运筹学习题及答案运筹学习题答案第⼀章(39页)1.1⽤图解法求解下列线性规划问题,并指出问题是具有唯⼀最优解、⽆穷多最优解、⽆界解还是⽆可⾏解。

(1)max 12z x x =+ 51x +102x ≤501x +2x ≥1 2x ≤4 1x ,2x ≥0(2)min z=1x +1.52x1x +32x ≥3 1x +2x ≥2 1x ,2x ≥0(3)max z=21x +22x1x -2x ≥-1-0.51x +2x ≤21x ,2x ≥0(4)max z=1x +2x1x -2x ≥031x -2x ≤-31x ,2x ≥0解:(1)(图略)有唯⼀可⾏解,max z=14 (2)(图略)有唯⼀可⾏解,min z=9/4 (3)(图略)⽆界解(4)(图略)⽆可⾏解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

(1)min z=-31x +42x -23x +54x 41x -2x +23x -4x =-21x +2x +33x -4x ≤14-21x +32x -3x +24x ≥21x ,2x ,3x ≥0,4x ⽆约束(2)k i z =1mk x=-∑ik x ≥(1Max s. t .-41x x 1x ,2x(2)解:加⼊⼈⼯变量1x ,2x ,3x ,…n x ,得: Max s=(1/k p )1ni =∑mk =∑ik αik x -M 1x -M 2x -…..-M n xs.t.m(1)max z=21x +32x +43x +74x 21x +32x -3x -44x =8 1x -22x +63x -74x =-31x ,2x ,3x ,4x ≥0(2)max z=51x -22x +33x -64x1x +22x +33x +44x =721x +2x +3x +24x =31x 2x 3x 4x ≥0(1)解:系数矩阵A 是:23141267----?? 令A=(1P ,2P ,3P ,4P )1P 与2P 线形⽆关,以(1P ,2P )为基,1x ,2x 为基变量。

(完整版)运筹学》习题答案运筹学答案

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。

CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。

DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。

CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。

DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。

CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。

CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。

运筹学参考答案

运筹学参考答案
-5/4+5M/2
-3 x2 [4] 2 -3+6M 1 0
0
-1 x3 2 0 -1+2M 1/2 -1
1/2-M
0 x4 -1 0 -M -1/4 -1/2
-3/4-M/2
0 x5 0 -1 -M 0 -1
-M
-M x6 1 0 0 1/4 -1/2
3/4-3M/2
-M x7 0 1 0 0 1
b.用单纯形法求解 列单纯形表: 解: Cj→ CB 0 0 xB x3 x4 x3 x1 x2 x1 b 15 24 3 4 3/4 15/4 2 x1 3 [6] 2 0 1 0 0 1 0
*
1 x2 5 2 1 [4] 1/3 1/3 1 0 0
T
0 x3 1 0 0 1 0 0 1/4 -1/12 -1/12
5 x1 + 3 x2 + x3 + x4 = 9 −5 x1 + 6 x2 + 15 x3 + x5 = 15 s.t. 2 x1 + x2 + x3 − x6 + x7 = 5 x , x , x , x , x , x , x , ≥ 0 1 2 3 4 5 6 7
M 为一个任意正数 Cj→ CB 0 0 -M Cj-Zj 10 0 -M Cj-Zj 10 12 -M Cj-Zj x1 x3 x7 3/2 3/2 1/2 x1 x5 x7 9/5 24 7/5 xB x4 x5 x7 b 9 15 5 10 x1 [5] -5 2 10+2M 1 0 0 0 1 0 0 0 15 x2 3 6 1 15+M 3/5 9 -1/5 9-M/5 39/80 9/16 -43/80 27/8-43M/80 12 x3 1 15 1 12+M 1/5 [16] 3/5 10+3M/5 0 1 0 0 0 x4 1 0 0 0 1/5 1 -2/5 -2-2M/5 3/16 1/16 -7/16 -21/8-7M/16 0 x5 0 1 0 0 0 1 0 0 -1/80 1/16 -3/80 -5/8-3M/80 0 x6 0 0 -1 -M 0 0 -1 -M 0 0 -1 -M -M x7 0 0 1 0 0 0 1 O 0 0 1 0 9 3/2 7/3 9/5 5/2

(完整版)运筹学》习题答案运筹学答案

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。

CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。

DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。

CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。

DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。

CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。

CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。

运筹学习题答案(1)

运筹学习题答案(1)

第一章 线性规划及单纯形法(作业)1.4 分别用图解法和单纯型法求解下列线性规划问题,并对照指出单纯形表中的各基可行解对应图解法中可行域的哪一顶点。

(1)Max z=2x 1+x 2St.⎪⎩⎪⎨⎧≥≤+≤+0,24261553212121x x x x x x 解:①图解法:由作图知,目标函数等值线越往右上移动,目标函数越大,故c 点为对应的最优解,最优解为直线⎩⎨⎧=+=+242615532121x x x x 的交点,解之得X=(15/4,3/4)T 。

Max z =33/4. ② 单纯形法:将上述问题化成标准形式有: Max z=2x 1+x 2+0x 3+0x 4St. ⎪⎩⎪⎨⎧≥≤++≤++0,,,242615535421421321x x x x x x x x x x其约束条件系数矩阵增广矩阵为:P 1 P 2 P 3 P 4⎥⎦⎤⎢⎣⎡241026150153 P 3,P 4为单位矩阵,构成一个基,对应变量向,x 3,x 4为基变量,令非基变量x 1,x 2为零,找到T 优解,代入目标函数得Max z=33/4.1.7 分别用单纯形法中的大M 法和两阶段法求解下列线性规划问题,并指出属哪一类。

(3)Min z=4x 1+x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 解:这种情况化为标准形式: Max z '=-4x 1-x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 添加人工变量y1,y2Max z '=-4x 1-x 2+0x 3+0x 4-My 1-My 2⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x(2) 两阶段法: Min ω=y 1+y 2St.⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x第二阶段,将表中y 1,y 2去掉,目标函数回归到Max z '=-4x 1-x 2+0x 3+0x 4第二章 线性规划的对偶理论与灵敏度分析(作业)2.7给出线性规划问题:Max z=2x 1+4x 2+x 3+x 4⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤++≤++≤+≤++)4,3,2,1(096628332143221421j x x x x x x x x x x x x j要求:(1)写出其对偶问题;(2)已知原问题最优解为X *=(2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解。

运筹学习题参考答案

运筹学习题参考答案

习题参考答案第二章 习 题1.线性规划模型为:⎪⎪⎩⎪⎪⎨⎧≥≤++≤++≤++++0,,1800231200214002..453max 321321321321321x x x x x x x x x x x x t s x x x 2. 标准形式为:⎪⎪⎩⎪⎪⎨⎧≥=-++-=++=++---+-0,,,,,,1002333800120035.15.1..322min 87654328325473262543254x x x x x x x x x x x x x x x x x x x t s x x x x 3.(1)最优解为(2,2),最优值为8.(2)根据等式约束得:213--6x x x =代入规划等价于:⎪⎩⎪⎨⎧≥≥+≤+++0,3-6..62max 21212121x x x x x x t s x x 先用图解法求线性规划⎪⎩⎪⎨⎧≥≥+≤++0,3-6..2max 21212121x x x x x x t s x x 得最优解为(0,6)代入原规划可得最优解为(0,6,0)最优值为18.4.(1)以21,x x 为基变量可得基可行解(3,1,0),对应的基阵为:⎪⎪⎭⎫⎝⎛1101 以31,x x 为基变量可得基可行解(2,0,1),对应的基阵为:⎪⎪⎭⎫ ⎝⎛2111 (2)规划转化为标准形式:⎪⎩⎪⎨⎧≥=++=++--0,,,55623..34min 432142132121x x x x x x x x x x t s x x 以32,x x 为基变量可得基可行解(0,1,4,0),对应的基阵为:⎪⎪⎭⎫⎝⎛0512 5. 以432,,x x x 为基变量可得基可行解(0,2,3,9),对应的典式为:32192231412=+=+=x x x x x 非基变量1x 的检验数为21-。

6. (1) a=0,b=3,c=1,d=0;(2) 基可行解为(0,0,1,6,2) (3)最优值为3.7.(1)最优解为(1.6,0,1.2),最优值为-4.4;(2)令11-=x y ,则0≥y ,11+=y x ,在规划中用1+y 替代1x ,并化标准形式。

运筹学练习参考答案

运筹学练习参考答案

线性规划问题1、某工厂生产I 、II 、III 三种产品,分别经过A 、B 、C 三种设备加工。

已知生产单位各种产品所需的设备台时、设备的现有加工能力及每件产品的预期利润见((2) 产品III 每件的利润增加到多大时才值得安排生产;(3) 如有一种新产品,加工一件需设备A 、B 、C 的台时各为1,4,3小时,预期每件的利润为8元,是否值得安排生产。

解:(1)设x 1,x 2,x 3分别为I 、II 、III 三种产品的产量,z 表示利润。

该问题的线性规划模型为:用单纯形法求上述线性规划问题。

化为标准形式:123123123123123max 10641001045600..226300,,0z x x x x x x x x x s t x x x x x x =++++≤⎧⎪++≤⎪⎨++≤⎪⎪≥⎩123456123412351236max 1064000 1001045 600.. 226 3000,1,2,,6j z x x x x x x x x x x x x x x s t x x x x x j =++++++++=⎧⎪+++=⎪⎨+++=⎪⎪≥=所以最优解为x * =(100/3,200/3,0,0,0,100)T ,即产品I 、II 、III 的产量分别为:100/3,200/3,0;最优解目标函数值z * =2200/3(2)设产品III 每件的利润为c 3产品III 每件的利润增加到20/3时才值得安排生产。

(3)设x 7为新产品的产量。

177711028(,,0)420333B c c B P σ-⎛⎫⎪=-=-=>⇒ ⎪ ⎪⎝⎭值得投产 1775/31/60112/31/604020131P B P --⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥'==-= ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥-⎣⎦⎝⎭⎝⎭()1333333335/66,10,01/620/3020/34B B c C B P c C P c c c σ-'=-=-⎛⎫⎪=-=-≥⇒≥ ⎪ ⎪⎝⎭所以最优解为x * =(100/3,0,0,0,0,200/3)T ,即产品I 的产量:100/3,新产品的产量:200/3;最优解目标函数值z * =2600/3 2、已知下列线性规划问题:12312312312312363336022420..33360,,0maxz x x x x x x x x x s t x x x x x x =-+++≤⎧⎪-+≤⎪⎨+-≤⎪⎪≥⎩ 求:(1)用单纯形法求解,并指出问题属于哪一类解; (2)写出该问题的对偶问题,并求出对偶问题的最优解;解:(1)将原问题划为标准形得:123456123412351236max 6330003 60224 20..333 600,1,2,,6j z x x x x x x x x x x x x x x s t x x x x x j =-+++++++=⎧⎪-++=⎪⎨+-+=⎪⎪≥=⎩最优解为x * =(15,5,0,10,0,0)T 最优解目标函数值z * =75 非基变量的检验数<0, 为唯一最优解. (2)该问题的对偶问题为:123123123123123min 6020603236233..433,,0w y y y y y y y y y s t y y y y y y =++++≥⎧⎪-+≥-⎪⎨+-≥⎪⎪≥⎩对偶问题的最优解:y* =(0,9/4,1/2)3、已知线性规划问题: 求:(1)用图解法求解; (2)写出其对偶问题;(3)根据互补松弛定理,写出对偶问题的最优解。

运筹学1至6章习题参考答案

运筹学1至6章习题参考答案

运筹学1至6章习题参考答案第1章 线性规划1.1 工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 1.2 建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:【解设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑ (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩1.3某企业需要制定1~6月份产品A 的生产与销售计划。

已知产品A 每月底交货,市场需求没有限制,由于仓库容量有限,仓库最多库存产品A1000件,1月初仓库库存200件。

1~6月份产品A 的单件成本与售价如表1-25所示。

(2)当1月初库存量为零并且要求6月底需要库存200件时,模型如何变化。

运筹学课后习题答案

运筹学课后习题答案

6
5
6
3
σ34=15+50=1;至此;六个闭回路全部计算完 ;σ11=4;σ14=2;σ22=0;σ31=2;σ32=2;σ34=1;即全部检验数σ均 大于或等于0 即用上述三种方法计算中;用沃格尔法计算所
得结果z*=35为最优解
2024/1/10
16
表329
销地 B1
B2
B3
B4
产量
产地
A1
3
7
22
4
A3 销量
4
33
3
3
B3
6 3 28 2
B4 B5 产量
1 4 30
5

2
0
2②
15 0
6⑧
2
3





x11=1;x14=1;x15=3;x21=2;x32=3;x33=2;x34=1;总费用=1×3 +1×4+3×0+2×2+3×3+2×8+1×5=41
2024/1/10
18
②西北角法求解:
3 2 运输问题的基可行解应满足什么条件 试判断形表 326和表327中给出的调运方案是否作为表上作业法迭 代时的基可行解 为什么
2024/1/10
1
表326
销地 B1
B2
B3
B4
产量
产地
A1
0
A2
A3
5
销量
5
15
15
15
10
25
5
15
15
10
解:表326产地个数m=3;销地个数n=4;m+n1=3+41=6个;而 表326中非零个数的分量为5个≠6个;所以表326不可作为表上 作业法时的基可行解

最全运筹学习题及答案

最全运筹学习题及答案

最全运筹学习题及答案共1 页运筹学习题答案)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。

(1)max z?x1?x25x1+10x2?50x1+x2?1x2?4x1,x2?0(2)min z=x1+1.5x2x1+3x2?3x1+x2?2x1,x2?0(3)+2x2x1-x2?-0.5x1+x2x1,x2?0(4)max z=x1x2x1-x2?03x1-x2?-3x1,x2?0(1)(图略)有唯一可行解,max z=14(2)(图略)有唯一可行解,min z=9/4(3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

共2 页(1)min z=-3x1+4x2-2x3+5x4 4x1-x2+2x3-x4=-2x1+x2+3x3-x4?14 -2x1+3x2-x3+2x4?2x1,x2,x3?0,x4无约束(2zk?i??xk?1mxik?(1Max s. t .-4x1xx1,x2共3 页(2)解:加入人工变量x1,x2,x3,…xn,得:Max s=(1/pk)? i?1n?k?1m?ikxik-Mx1-Mx2-…..-Mxnm(1)max z=2x1+3x2+4x3+7x4 2x1+3x2-x3-4x4=8x1-2x2+6x3-7x4=-3x1,x2,x3,x4?0(2)max z=5x1-2x2+3x3-6x4共4 页x1+2x2+3x3+4x4=72x1+x2+x3+2x4=3x1x2x3x4?0(1)解:系数矩阵A是:?23?1?4??1?26?7? ??令A=(P1,P2,P3,P4)P1与P2线形无关,以(P1,P2有2x1+3x2=8+x3+4x4x1-2x2=-3-6x3+7x4令非基变量x3,x4解得:x1=1;x2=2基解0,0)T为可行解z1=8(2)同理,以(P=(45/13,0,-14/13,0)T是非可行解;3以(P1,P4X(3)=,,7/5)T是可行解,z3=117/5;(4)以(P2,P=(,45/16,7/16,0)T是可行解,z4=163/16;3以(P2,P4)为基,基解X(5)0,68/29,0,-7/29)T是非可行解;(6)TX以(P4,P)为基,基解=(0,0,-68/31,-45/31是非可行解;)3最大值为z3=117/5;最优解X(3)=(34/5,0,0,7/5)T。

《运筹学》习题与答案

《运筹学》习题与答案

《运筹学》习题与答案(解答仅供参考)一、名词解释1. 线性规划:线性规划是运筹学的一个重要分支,它主要研究在一系列线性约束条件下,如何使某个线性目标函数达到最大值或最小值的问题。

2. 动态规划:动态规划是一种解决多阶段决策问题的优化方法,通过把原问题分解为相互联系的子问题来求解,对每一个子问题只解一次,并将其结果保存起来以备后续使用,避免了重复计算。

3. 整数规划:整数规划是在线性规划的基础上,要求决策变量取值为整数的一种优化模型,用于解决实际问题中决策变量只能取整数值的情形。

4. 马尔可夫决策过程:马尔可夫决策过程是一种随机环境下的决策模型,其中系统的状态转移具有无后效性(即下一状态的概率分布仅与当前状态有关),通过对每个状态采取不同的策略(行动)以最大化期望收益。

5. 最小费用流问题:最小费用流问题是指在网络流模型中,每条边都有一个容量限制和单位流量的成本,寻找满足所有节点流量平衡的同时使得总成本最小的流方案。

二、填空题1. 运筹学的主要研究对象是系统最优化问题,其核心在于寻求在各种(约束条件)下实现(目标函数)最优的方法。

2. 在运输问题中,供需平衡指的是每个(供应地)的供应量之和等于每个(需求地)的需求量之和。

3. 博弈论中的纳什均衡是指在一个博弈过程中,对于各个参与者来说,当其他所有人都不改变策略时,没有人有动机改变自己的策略,此时的策略组合构成了一个(纳什均衡)。

4. 在网络计划技术中,关键路径是指从开始节点到结束节点的所有路径中,具有最长(总工期)的路径。

5. 对于一个非负矩阵A,如果存在一个非负矩阵B,使得AB=BA=A,则称A为(幂等矩阵)。

三、单项选择题1. 下列哪项不是线性规划的标准形式所具备的特点?(D)A. 目标函数是线性的B. 约束条件是线性的C. 决策变量非负D. 变量系数可以为复数2. 当线性规划问题的一个基解满足所有非基变量的检验数都非正时,那么该基解(C)。

A. 不是可行解B. 是唯一最优解C. 是局部最优解D. 不一定是可行解3. 下列哪种情况适合用动态规划法求解?(B)A. 问题无重叠子问题B. 问题具有最优子结构C. 问题不能分解为多个独立子问题D. 子问题之间不存在关联性4. 在运输问题中,如果某条路线的运输量已经达到了其最大运输能力,我们称这条路线处于(A)状态。

《运筹学》(A)参考答案.docx

《运筹学》(A)参考答案.docx

《运筹学》(A)参考答案一、不定项选择题(每小题3分,共9分)1.线性规划的标准型有特点(B D )0A、右端项非零;B、目标求最大;C、有等式或不等式约束;D、变量均非负。

2.一个线性规划问题(P)与它的对偶问题(D)有关系(BCD)。

A、(P)无可行解则(D) 一定无可行解;B、(P)、(D)均有可行解则都有最优解;C、(P)的约束均为等式,则(D)的所有变量均无非负限制;D、若(D)是(P)的对偶问题,则(P)是(D)的对偶问题。

3.关于动态规划问题的下列命题中(B )是错误的。

A、动态规划阶段的顺序与求解过程无关;B、状态是由决策确定的;C、用逆序法求解动态规划问题的重要基础之一是最优性原理;D、列表法是求解某些离散变量动态规划问题的有效方法。

二、判断题(每小题2分,共10分)1.若某种资源的影子价格等于Q在其他条件不变的情况下,当该种资源增加5个单位时,相应的目标函数值将增大5k个单位。

(X)2.如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数久最优调运方案将不会发生变化。

(V)3.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,有无穷多最优解,无界解,无可行解。

(X )4.用割平面法求解纯整数规划问题时,要求包括松弛变量在内的全部变量必须取整数值。

(V )5.如图中某点匕有若干个相邻点,与其距离最远的相邻点为耳,则边卩,刀必不包含在最小支撑树内。

(X)三(20分)、考虑下列线性规划:max z = 3xj + 5x2 + x34xj + 2X2+x3 < 14< X] + x2 + x3 < 4Xj > 0, j = 1,2,31(10分)、写出此线性规划的最优解、最优值、最优基B和它的逆沪;2(2分)、求线性规划的对偶问题的最优解;3(4分)、试求C2在什么范围内,此线性规划的最优解不变;4 (4分)、若^=14变为9,最优解及最优值是什么?解:1(10分)、写出此线性规划的最优解、最优值、最优基B和它的逆沪;标准形式:max z = 3xj + 5x2 + x34xj + 2*2 + X3 + 卩=14< X] + *2 + X3 + x5 = 4X j > 0, j = 1,2,3,4,5最优解 X' =(0,4,0,6,0)『 最优值r =20 ---------------- (1分) 最优基5 = P 2]---------------- (2分)0 1 "1 -2B~l= o ]---------------- (2 分)2(2分)、求线性规划的对偶问题的最优解; 对偶问题的最优解厂=(0,5)3(4分)、试求c?在什么范围内,此线性规划的最优解不变;(1分)(2分)要使得原最优解不变,则所有检验数非正,即 3 — c 2 W 0 <1-C 2 <0 ,解得c 2 >3--------------- (2 分)~C 2 - 04(4分)、若$=14变为9,最优解及最优值是什么?-2j9 1 4最优值r =20-四(10分)、下述线性规划问题:max z = 10“ + 24x 2 + 20x 3 + 2O.r 4 + 25x 5X] + x 2 + 2x, + 3X 4 + 5X 5 < 19 < 2x 1 + 4X 2 + 3x, + 2X 4 + x 5 < 57 ">(2分)(2分)0, j =l,2,---,5以几,力为对偶变量写出其对偶问题。

运筹学课后习题及答案

运筹学课后习题及答案

运筹学课后习题及答案在运筹学这门课程中,课后习题是帮助学生巩固理论知识和提高解决实际问题能力的重要环节。

以下是一些典型的运筹学课后习题及答案,供学生参考和练习。

习题1:线性规划问题问题描述:一个工厂需要生产两种产品A和B,每种产品都需要使用机器1和机器2。

产品A每单位需要机器1工作3小时,机器2工作2小时;产品B每单位需要机器1工作2小时,机器2工作4小时。

机器1每天最多工作24小时,机器2每天最多工作20小时。

如果产品A每单位的利润是500元,产品B每单位的利润是600元。

假设工厂希望最大化利润,问应该生产多少单位的产品A和B?解答:首先,设产品A的产量为x,产品B的产量为y。

根据题目条件,我们可以得到以下两个约束条件:\[ 3x + 2y \leq 24 \]\[ 2x + 4y \leq 20 \]目标函数是利润最大化,即:\[ \text{Maximize} \ P = 500x + 600y \]通过图解法或单纯形法,我们可以得到最优解为x=4,y=3。

此时,利润最大化为\( P = 500 \times 4 + 600 \times 3 = 3800 \)元。

习题2:网络流问题问题描述:一个供水系统由多个泵站和水库组成,需要确保每个水库都有足够的水量供应。

已知每个泵站的供水能力以及每个水库的需求量。

如何分配泵站的供水量,以满足所有水库的需求?解答:首先,需要构建一个网络流图,其中节点代表泵站和水库,边代表供水路径。

每条边的容量表示泵站的供水能力,每条边的流量表示实际供水量。

目标是找到满足以下条件的网络流:- 每个泵站的总流出量等于其供水能力。

- 每个水库的总流入量等于其需求量。

- 网络中没有负流量。

使用最大流算法,如Ford-Fulkerson算法或Edmonds-Karp算法,可以找到满足上述条件的最大网络流。

习题3:整数规划问题问题描述:一个公司需要决定是否投资于三个不同的项目,每个项目都需要一定的资金和人力资源。

《运筹学》试题及参考答案

《运筹学》试题及参考答案

《运筹学》在线作业参考资料一、单选题1. 设线性规划的约束条件为 (D)则非退化基本可行解是A.(2,0,0,0)B.(0,2,0,0)C.(1,1,0,0)D.(0,0,2,4)(A)2.A.无可行解B.有唯一最优解C.有无界解D.有多重最优解3.用DP方法处理资源分配问题时,通常总是选阶段初资源的拥有量作为决策变量(B)A.正确B.错误C.不一定D.无法判断4.事件j的最早时间TE(j)是指(A)A.以事件j为开工事件的工序最早可能开工时间B.以事件j为完工事件的工序最早可能结束时间C.以事件j为开工事件的工序最迟必须开工时间D.以事件j为完工事件的工序最迟必须结束时间5.通过什么方法或者技巧可以把产销不平衡运输问题转化为产销平衡运输问题(C)A.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量6.连通图G有n个点,其部分树是T,则有(C)A.T有n个点n条边B.T的长度等于G的每条边的长度之和C.T有n个点n-1条边D.T有n-1个点n条边7.下列说法正确的是(C)A.割集是子图B.割量等于割集中弧的流量之和C.割量大于等于最大流量D.割量小于等于最大流量8.工序A是工序B的紧后工序,则错误的结论是(B)A.工序B完工后工序A才能开工B.工序A完工后工序B才能开工C.工序B是工序A的紧前工序D.工序A是工序B的后续工序9.影子价格是指(D)A.检验数B.对偶问题的基本解C.解答列取值D.对偶问题的最优解10.m+n-1个变量构成一组基变量的充要条件是(B)A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关11.为什么单纯形法迭代的每一个解都是可行解?答:因为遵循了下列规则 (A)A.按最小比值规则选择出基变量B.先进基后出基规则C.标准型要求变量非负规则D.按检验数最大的变量进基规则12.线性规划标准型的系数矩阵A m×n,要求 (B)A.秩(A)=m并且m<nB.秩(A)=m并且m<=nC.秩(A)=m并且m=nD.秩(A)=n并且n<m13.下列正确的结论是(C)A.最大流等于最大流量B.可行流是最大流当且仅当存在发点到收点的增广链C.可行流是最大流当且仅当不存在发点到收点的增广链D.调整量等于增广链上点标号的最大值14.下列错误的结论是(A)A.容量不超过流量B.流量非负C.容量非负D.发点流出的合流等于流入收点的合流15. 工序(i,j)的最乐观时间、最可能时间、最保守时间分别是5、8和11,则工序(i,j)的期望时间是(C)A. 6B. 7C. 8D. 916.在计划网络图中,节点i的最迟时间T L(i)是指(D)A.以节点i为开工节点的活动最早可能开工时间B.以节点i为完工节点的活动最早可能结束时间C.以节点i为开工节点的活动最迟必须开工时间D.以节点i为完工节点的活动最迟必须结束时间17. 工序(i,j)的最早开工时间T ES(i,j)等于 ( C)A.T E(j)B. T L(i)C.{}max()E kikT k t+D.{}min()L ijiT j t−18.运输问题 (A)A.是线性规划问题B.不是线性规划问题C.可能存在无可行解D.可能无最优解19. 工序(i,j)的总时差R(i,j)等于 (D)A.()()L E ijT j T i t−+B.),(),(j iTj iT ESEF−C.(,)(,)LS EFT i j T i j−D. ijELtiTjT�)()(−20.运输问题可以用(B)法求解。

运筹学题库及详解答案

运筹学题库及详解答案

运筹学题库及详解答案1. 简述线性规划的基本假设条件。

答案:线性规划的基本假设条件包括目标函数和约束条件都是线性的,所有变量的取值范围都是连续的,并且目标函数和约束条件都是确定的。

2. 解释单纯形法的基本原理。

答案:单纯形法是一种求解线性规划问题的算法。

它从一个初始可行解开始,通过迭代的方式,每次选择一个非基变量,通过行操作将其变为基变量,同时保持解的可行性,直到达到最优解。

3. 什么是对偶问题?请给出一个例子。

答案:对偶问题是指一个线性规划问题与其对应的另一个线性规划问题之间的关系。

它们共享相同的技术系数矩阵,但目标函数和约束条件互换。

例如,如果原问题是最大化目标函数 \( c^T x \) 受约束\( Ax \leq b \),对偶问题则是最小化 \( b^T y \) 受约束 \( A^T y \geq c \)。

4. 如何确定一个线性规划问题的最优解?答案:确定线性规划问题的最优解通常需要满足以下条件:(1) 所有约束条件都得到满足;(2) 目标函数的值达到可能的最大值(最大化问题)或最小值(最小化问题);(3) 存在至少一个基解,使得所有非基变量的值都为零。

5. 解释灵敏度分析在运筹学中的作用。

答案:灵敏度分析用于评估当线性规划问题中的参数发生变化时,对最优解的影响。

它可以帮助决策者了解哪些参数的变化对结果影响最大,从而在实际应用中做出更灵活的决策。

6. 什么是运输问题,它与一般线性规划问题有何不同?答案:运输问题是线性规划的一个特例,它涉及将一种或多种商品从一个地点运输到另一个地点,以满足不同地点的需求,同时最小化运输成本。

与一般线性规划问题不同,运输问题通常具有特定的结构,可以通过特定的算法(如西北角法或最小元素法)来求解。

7. 描述网络流问题的基本特征。

答案:网络流问题涉及在网络中流动的资源或商品,目标是最大化或最小化流的总价值或成本。

网络由节点和边组成,节点代表资源的供应点或需求点,边代表资源流动的路径。

(完整word版)运筹学习题及答案

(完整word版)运筹学习题及答案
A.无可行解 B。有唯一最优解 C。有多重最优解 D。有无界解
34。某个常数bi波动时,最优表中引起变化的有(A)
A.B-1bB。 C.B-1D.B-1N
35.某个常数bi波动时,最优表中引起变化的有(C)
A. 检验数 B。CBB-1C。CBB-1b D。系数矩阵
36.任意一个容量的网络中,从起点到终点的最大流的流量等于分离起点和终点的任一割集的容量.(B)A.正确B。错误C.不一定D。无法判断
9.对偶单纯形法迭代中的主元素一定是负元素( )A
A。正确B.错误C。不一定D。无法判断
10。对偶单纯形法求解极大化线性规划时,如果不按照最小化比值的方法选取什么变量则在下一个解中至少有一个变量为正( )B
A。换出变量B.换入变量C.非基变量D。基变量
11.对 问题的标准型: ,利用单纯形表求解时,每做一次换基迭代,都能保证它相应的目标函数值 必为()B
A.换出变量B.换入变量C。非基变量D。基变量
29。可行解是满足约束条件和非负条件的决策变量的一组取值.( )A
A。正确B。错误C。不一定D。无法判断
30。 连通图G有n个点,其部分树是T,则有(C)
A。T有n个点n条边 B.T的长度等于G的每条边的长度之和
C.T有n个点n-1条边 D。T有n-1个点n条边
47.通过什么方法或者技巧可以把产销不平衡运输问题转化为产销平衡运输问题(C)
A。非线性问题的线性化技巧B.静态问题的动态处理
C.引入虚拟产地或者销地D。引入人工变量
48.为什么单纯形法迭代的每一个解都是可行解?因为遵循了下列规则 (A)
A。按最小比值规则选择出基变量 B。先进基后出基规则
C。标准型要求变量非负规则 D。按检验数最大的变量进基规则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《运筹学》作业参考答案作业一一、是非题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

(√)2.线性规划问题的每一个基解对应可行解域的一个顶点。

(╳)3.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。

(√)4.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。

(√)5.单纯形法计算中,如果不按最小比值规划选出基变量,则在下一个解中至少有一个基变量的值为负。

(√)6.线性规划问题的可行解如为最优解,则该可行解一定是基可行解。

(╳)7.若线性规划问题具有可行解,且可行解域有界,则该线性规划问题最多具有有限个数的最优解。

(╳)8.对一个有n个变量,m个约束的标准型线性规划问题,其可行域的顶点数恰好为mnC个。

(╳)9.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。

(√)10.求Max型的单纯形法的迭代过程是从一个可行解转换到目标函数值更大的另一个可行解。

(√)二、线性规划建模题:1.某公司一营业部每天需从A、B两仓库提货用于销售,需提取的商品有:甲商品不少于240件,乙商品不少于80台,丙商品不少于120吨。

已知:从A仓库每部汽车每天能运回营业部甲商品4件,乙商品2台,丙商品6吨,运费200元/每部;从B仓库每部汽车每天能运回营业部甲商品7件,乙商品2台,丙商品2吨,运费160元/每部。

问:为满足销售量需要,营业部每天应发往A、B两仓库各多少部汽车,并使总运费最少?解:设营业部每天应发往A、B两仓库各x1,x2部汽车,则有:12 121212min200160 47240 2280 621200(1,2)jW x xx xx xx xx j=++≥⎧⎪+≥⎪⎨+≥⎪⎪≥=⎩2.现有一家公司准备制定一个广告宣传计划来宣传开发的新产品,以使尽可能多的未来顾客特别是女顾客得知。

现可利用的广告渠道有电视、广播和报纸,根据市场调查整理得到下面的数据:该企业计划用于此项广告宣传的经费预算是80万元,此外要求:①至少有200万人次妇女接触广告宣传;②电视广告费用不得超过50万元,③电视广告至少占用三个单元一般时间和两个单元黄金时间,④广播和报纸广告单元均不少于5个单元而不超过10个单元。

解:设电视一般时间、黄金时间、广播和报纸各投放广告单元数为x1,x2,x3,x4,有:123412341234121234max 409050200.40.70.30.1580304020102000.40.750325105100(1,...4)Z x x x x x x x x x x x x x x x x x x xj j =++++++≤⎧⎪+++≥⎪⎪+≤⎪≥⎪⎨≥⎪⎪≤≤⎪≤≤⎪⎪≥=⎩三、计算题:对于线性规划模型1212122j max 34 628x 3x 0(j=1,2)z x x x x x x =++≤⎧⎪+≤⎪⎨≤⎪⎪≥⎩1.用图解法求出其所有基本解,并指出其中的基本可行解和最优解。

2.三个方程中分别添加松驰变量x3,x4,x5后把模型化成标准型,用单纯形法寻求最优解。

并与1题中图解法中对照,单纯形表中的基可行解分别对应哪些顶点。

3.若直接取最优基125[,,]B P P P =,请用单纯形表的理论公式进行计算对应基B 的单纯形表,并与第2题最优单纯形表的计算结果比较是否一致。

(附单纯形表的理论公式:非基变量xj 的系数列向量由Pj 变成-1j j p B p = ,基变量的值为1B X B b -=,目标函数的值为10 B B B Z C X C B b -==,检验数公式jj j B R C C P =-)。

解:(1)图解如下:所有基本可行解:O (0,0),Q 1(6,0),Q 2(4,2),Q 3(2,3),Q 4(0,3)共五个基可行解。

从上图知:最优解为点Q 2(4,2),目标函数值为Z =20。

(2)模型标准化为:1212312425j max 346 28 (2) x +x =3 (3)x 0(j)z x x x x x x x x =+++=⎧⎪++=⎪⎨⎪⎪≥⎩ (1)一切从上表知:表一中的基可行解(0,0,6,8,3)对应坐标原点O ,表二中的基可行解为(6,0,0,2,3)对应图中的Q 1点,表三中的基可行解为(4,2,0,0,1)对应图中的Q 2点,得到最优解。

(3)若取基[]⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦125110B =P ,P ,P 120011,基变量为x 1,x 2,x 5,刚好是最优表中的对应基变量,可算出⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦-12-10B -1101-11(从第三个单纯形表也可找到B -1),由单纯形表计算公式计算非基变量的系数列向量、检验数及基解等。

32-1012-110011-1101P ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,42-1001-110111-1101P -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,1252-1064-110821-1131B x X x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦。

33320(3,4,0)121B R c C P ⎡⎤⎢⎥=-=--=-⎢⎥⎢⎥⎣⎦,44410(3,4,0)111B R c C P -⎡⎤⎢⎥=-=-=-⎢⎥⎢⎥-⎣⎦与迭代的第三个单纯形表计算结果一致。

四、写出下列线性规划问题的对偶问题。

1231312323231Min Z = 5x +4x + 3x 2x +7x 8 8x +5x -4x 154x + 6x = 30x ,x 0,x ≥⎧⎪≤⎪⎨⎪⎪≥⎩自由变量 解:设三个方程的对偶变量分别为y 1,y 2,y 3,有:1231223123123max 8153028554474630,0,W y y y y y y y y y y y y y =+++=⎧⎪+≤⎪⎨-+≤⎪⎪≥≤⎩为自由变量五、有一个Max 型的线性规划问题具有四个非负变量,三个“≤”型的条件,其最优表格如下表,请写出其对偶问题的最优解及目标函数值。

解:该问题的松驰变量为x 5,x 6,x 7,由对偶规划的性质知三个对偶变量的值分别为x 5,x 6,x 7检验数的负值,目标函数值与原问题相等。

故12341Y=(y ,y ,y )=(,0,)33, W =34/3。

用表上作业法求解此问题的最优解。

(要求用行列差值法给初始解,用位势法求检验数。

) 解:(1(2)用位势法求检验数:对基变量有:()0ij ij i j R c u v =-+=,并令u1=0,求出行列位势,如下表。

各非基变量的检验数分别为:R 12=4-(3+0)=1, R 23=7-(3+2)=2,即基变量的检验数都大于0,当前方案为最优调运方案。

作业二一、用隐枚举法求解下面0-1型整数规划问题:⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤-+≤-+≤+≤++-+=10,,44225423..232132132132321321或x x x x x x x x x x x x x x t s x x x Z Max解:问题为求极大型,需所有的变量前的价值系数变为负号,故令11221',1'x x x x =-=-,模型变为:231123231231231233('2')'3' 2 (1)4' 1 (2)..'2' 1 (3)'4' 1 (4)',',01Max Z x x x x x x x x s t x x x x x x x x x =-++--+≤-⎧⎪-+≤⎪⎪---≤-⎨⎪---≤-⎪=⎪⎩或,用目标函数值探索法求最大值:从表中可以看出,当123'0,'1,0x x x ===时具最大目标函数值,即1231,0,0x x x ===,Z max =2。

二、某服装厂有五项工作需要分给五个技工去完成,组成分派问题,各技工完成各项工作的能力评分如下表所示。

请问应如何分派,才能使总得分最大?解:(1)效率矩阵为:1.30.800 1.00 1.2 1.3 1.30[] 1.000 1.200 1.0500.2 1.41.00.90.61.1ij c ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,问题是求极大,转化为求极小问题,设 1.4ij ij b c =-,构造以b ij 为系数的矩阵,0.10.6 1.4 1.40.41.40.20.10.1 1.4[]0.41.4 1.40.2 1.41.40.35 1.4 1.200.40.50.81.40.3ij b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(2)对b ij 矩阵进行系数变换,使每行每列出现0元素,00.4 1.3 1.30.31.3000 1.3[']0.21.1 1.201.21.40.25 1.4 1.200.10.10.51.10ij b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(3)进行试分配:(0)0.4 1.3 1.30.31.3(0) 1.3[']0.21.1 1.2(0) 1.21.40.25 1.4 1.2(0)0.10.10.51.1ij b ⎡⎤⎢⎥∅∅⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥∅⎣⎦,(4)作最少的直线覆盖所有的0元素:(0)0.4 1.3 1.30.31.3(0) 1.3[']0.21.1 1.2(0) 1.21.40.25 1.4 1.2(0)0.10.10.51.1ij b ⎡⎤⎢⎥∅∅⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥∅⎣⎦ √√(5)在没有被覆盖的部分中找出最小数0.1,则第四、五行减去这个最小数0.1,同时第五列加上这个最小数,其他元素不变,目的是增加0元素的个数。

00.4 1.3 1.30.41.3000 1.4[']0.21.1 1.20 1.31.30.15 1.3 1.1000.41.00ij b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(6)试分配:(0)0.4 1.3 1.30.41.3(0) 1.4['']0.21.1 1.2(0) 1.31.30.15 1.3 1.1(0)(0)0.41.0ij b ⎡⎤⎢⎥∅∅⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥∅∅⎣⎦,此时,所有的0都已打括号或划掉,且打括号的0元素(独立的0元素)个数刚好为5个,得到了问题的最优解,问题的解矩阵为:1000000100000100000101000ij x ⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥=⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦,即A 1做平车,A 2做卷边,A 3做绷缝,A 4做打眼,A 5做考克,总得分为6.1。

相关文档
最新文档