代数式与恒等变形
代数式的恒等变形
教学·信息 课程教育研究 Course Education Ressearch 2015年9月 下旬刊174· ·著名教育家裴斯泰洛奇说过:“教学最大的挑战是她的不可预知性。
”语文课堂教学是师生、生生、生本之间相互对话、相互碰撞的动态过程,课堂随时会出现一些非预设性的新情况、新动态。
这就是所谓的“不可预知性”,通常也叫做节外生枝。
教师该如何运用教学的节外生枝,使其也能绽放出春天的光彩,我谈两个看法。
一、节外生枝,巧在引导有位教师教学苏教版五年级下册的《埃及的金字塔》第二自然段,形成下面的对话:师:读了这段话,谁来说说金字塔有什么作用?生:金字塔是拿来看的!(全班同学哄堂大笑,该同学满脸通红)师:这位同学已经跳出课文,融入了自己的理解,他把今天金字塔的作用用一个“看”字进行了高度的概括。
这个“看”字可不一般呀,同学们请想一想,你能给“看”换个词吗?生(纷纷举手):欣赏、研究、考察、勘探、瞻仰。
师:说得好!下面请同学们认真的默读第3、4、5、自然段,想一想,不同身份的人站在金字塔前,他们是怎么“看”的?《课标》指出:“阅读是学生的个性化行为。
”学生对文本的阅读感悟,是依据自己的阅读经验和情感而产生自然而真实的反应,有时会出现教师不可预料的阅读感悟。
上述教学,由于学生的生活经验和对文本的感悟不同,其认识确实偏离了课文内容。
但执教老师却没有简单地否定,而是充分尊重学生的个性化理解,顺学而导,由“看”引出“欣赏、研究、考察、勘探、瞻仰”等意思,让学生带着问题与文本进行一番深层次的对话,再次交流自己的体会和感悟。
看似离谱的回答,在老师巧妙地引导下,竟化腐朽为神奇。
学生的思维火花被点燃了,“欣赏金字塔、研究金字塔、勘探金字塔……”,对金字塔的崇敬之情、热爱之情油然而生,课堂呈现百花齐放、百家争鸣的局面,也加深了学生对文本的理解和感悟。
这样的引导,既呵护了学生,化解课堂教学的尴尬,又引发学生深入阅读探究,发表见解,从而获得真知求知。
代数式恒等变形法则归纳
代数式恒等变形法则归纳引言代数式是代数学中的基础概念之一,它用字母和常数通过运算符号相连而成。
在数学中,我们常常需要对代数式进行变形,以达到简化、分解、合并或者推导等目的。
代数式的变形是数学问题解决过程中重要的一环,它不仅能提高计算效率,还能揭示代数运算的本质。
在代数式的变形中,恒等变形法则是重要的基础工具,本文将对代数式的恒等变形法则进行归纳总结。
一、基本变形法则1. 加法法则:•加法结合律:a+(b+c)=(a+b)+c•加法交换律:a+b=b+a•加法零元:a+0=a #### 2. 乘法法则:•乘法结合律:$a \\cdot (b \\cdot c) = (a \\cdot b) \\cdot c$•乘法交换律:$a \\cdot b = b \\cdot a$•乘法零元:$a \\cdot 0 = 0$•乘法单位元:$a \\cdot 1 = a$二、分配律1. 左分配律:对于任意的a,b,c,有$a \\cdot (b + c) = a \\cdot b + a \\cdot c$ #### 2. 右分配律:对于任意的a,b,c,有$(a + b) \\cdot c = a \\cdot c + b \\cdot c$三、幂运算法则1. 幂运算与乘法运算:•幂运算与乘法运算的交换律:$(a \\cdot b)^n = a^n \\cdot b^n$•幂运算与乘法运算的结合律:$(a^n)^m = a^{n \\cdot m}$ #### 2.幂运算的乘方法则:•幂运算的乘方法则1:$a^n \\cdot a^m = a^{n + m}$•幂运算的乘方法则2:$(a^n)^m = a^{n \\cdot m}$•幂运算的乘方法则3:$(a \\cdot b)^n = a^n \\cdot b^n$四、指数运算法则1. 指数运算与乘法运算:•指数运算与乘法运算的交换律:$(a \\cdot b)^n = a^n \\cdot b^n$•指数运算与乘法运算的结合律:$(a^n)^m = a^{n \\cdot m}$ #### 2.指数运算的指数法则:•指数运算的指数法则1:$a^n^m = a^{n \\cdot m}$•指数运算的指数法则2:$(a^n)^m = a^{n \\cdot m}$•指数运算的指数法则3:$(a^m)^n = a^{m \\cdot n}$五、因式分解法则1. 公因式提取法则:•公因式提取法则1:ax+ay=a(x+y)•公因式提取法则2:$a \\cdot b + a \\cdot c = a \\cdot (b + c)$ ####2. 公式分解法则:•差的平方公式:a2−b2=(a+b)(a−b)•平方差公式:a2−b2=(a−b)(a+b)•完全平方公式:a2+2ab+b2=(a+b)2•完全平方公式:a2−2ab+b2=(a−b)2六、合并同类项法则合并同类项法则:将含有相同字母指数的项合并为一个项•合并同类项法则1:ax+bx=(a+b)x•合并同类项法则2:ax2+bx2=(a+b)x2•合并同类项法则3:ax n+bx n=(a+b)x n结论恒等变形法则在代数式的变形中起着重要的作用。
代数式恒等变形及答案
代数式恒等变形A 卷1、若3265122-+-+=+--x bx a M x x x ,a 、b 是常数,则( ) A 、M 是一个二次多项式 B 、M 是一个一次多项式 C 、6=++b a M D 、10=-+M b a 答案:C解答:由已知等式得:()()6522656512222+---+++-+=+--x x b M x b a M Mx x x x ∴()()b M x b a M Mx x 226522--+++-+= ∴⎪⎩⎪⎨⎧-=--=++-=1236051b a M b a M M ,解得:⎪⎩⎪⎨⎧=-==831b a M 提示:利用待定系数法解决问题。
2、(2002年重庆市初中竞赛题)若012192=+-x x ,则=+441xx ( ) A 、411 B 、16121 C 、1689 D 、427答案:C 解答:∵0≠x ∴2191=+x x ,411122=+xx ∴168921122244=-⎪⎭⎫ ⎝⎛+=+x x x x提示:本题的关键是利用211222-⎪⎭⎫⎝⎛+=+x x x x 进行化简。
3、(2001年全国初中数学竞赛)若143=-x x ,则552128234+--+x x x x 的值是( ) A 、2 B 、4 C 、6 D 、8 答案:D解答:∵143=-x x∴()()8523252434255212833234=+-+=+--+-=+--+x x x x x x x x x x x x提示:本题利用添项与拆项进行分解整体代入,本题也可以利用已知逐步降次解决问题。
4、(全国竞赛题)如果52332412---=----+cc b a b a ,则c b a ++的值是( ) A 、6 B 、8 C 、20 D 、24 答案:C解答:∵52332412---=----+cc b a b a ∴()[]()[]()[]053293632142421121=+--+----+---++---c c b b a a∴()()()033212211222=-----+--c b a∴011=--a ,022=--b ,033=--c ∴2=a ,6=b ,12=c ∴20=++c b a提示:本题利用添项构造完全平方式解决问题。
代数式的恒等变形
代数式的恒等变形一、常值代换求值法——“1”的妙用例1 、 已知ab=1,求221111ba +++的值 [解] 把ab=1代入,得221111b a +++ =22b ab aba ab ab +++ =b a a b a b +++=1例2 、已知xyzt=1,求下面代数式的值:分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理练习:1111,1=++++++++=c ca cb bc b a ab a abc 证明:若二、配方法例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b a a b +之值。
[解] ∵a2b2+a2+b2-4ab+1=(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2则有(ab-1)2+(a-b)2=0∴⎩⎨⎧==-.1,0ab b a解得⎩⎨⎧==;1,1b a ⎩⎨⎧-=-=.1,1b a当a=1,b=1时,b aa b +=1+1=2 当a=-1,b=-1时,b a a b +=1+1=2 例1 设a 、b 、c 、d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数的平方和,其形式是______.解mn=(a2+b2)(c2+d2)=a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2=(ac-bd)2+(ad+bc)2,所以,mn 的形式为(ac+bd)2+(ad-bc)2或(ac-bd )2+(ad+bc)2.例 2 设x 、y 、z 为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2.求的值.解 将条件化简成2x2+2y2+2z2-2xy-2x2-2yz=0 ∴ (x-y)2+(x-z)2+(y-z)2=0 ∴ x=y=z,∴原式=1.练习:,0146422222=+---++x cx bx ax c b a 已知求证:3:2:1::=c b a三、因式分解法例6 已知a4+b4+c4+d4=4abcd ,且a ,b ,c ,d 都是正数,求证:a=b=c=d . 证 由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0, 所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以 a2-b2=c2-d2=ab-cd=0,所以 (a+b)(a-b)=(c+d)(c-d)=0.又因为a ,b ,c ,d 都为正数,所以a+b≠0,c+d≠0,所以 a =b ,c=d . 所以ab-cd=a2-c2=(a+c)(a-c)=0, 所以a =c .故a=b =c=d 成立.例4 已知|a|+|b|=|ab|+1, 求a+b 之值 [解] ∵|a|+|b|=|ab|+1∴|a|·|b|-|a|-|b|+1=0 (|a|-1)(|b|-1)=0 |a|=1 |b|=1 ∴a=±1或b=±1. 则当a=1,b=1时,a+b=2 当a=1,b=-1时,a+b=0 当a=-1,b=1时,a+b=0当a=-1,b=-1时,a+b=-2[评注] 运用该法一般有两种途径求值,一是将已知条件变形为一边为0,另一边能分解成几个因式的积的形式,运用“若A ·B=0,则A=0或B=0”的思想来解决问题。
整式恒等变形
第8讲整式恒等变形模块一恒等变形→降幂迭代与换元基础夯实题型一降幂迭代法与大除法【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________.【练1】(1990年第一届希望杯初二第一试)已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.题型二 整体代入消元法【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值.【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值.题型三 换元法强化挑战【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2.【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求()()()()()()222111111yz zx xy x y z ++++++的值.模块二 恒等变形→因式分解与不定方程题型一 因式分解基础夯实【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________.(2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________.【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x 2012=__________.(2)已知15x 2-47xy +28y 2=0,求x y的值.强化挑战【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c .【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .(2)已知△ABC 三边a 、b 、c ,满足条件a 2c -a 2b +ab 2-b 2c +c 2b -ac 2=0,试判断△ABC 的形状,并说明理由.题型二 不定方程【例6】(1)方程xy -2x -2y +7=0的整数解(x ≤y )为___________.(2)已知a >b >c ≥0,求适合等式abc +ab +ac +bc +a +b +c =2011的整数a ,b ,c 的值.【练6】(1)长方形的周长为16cm ,它的两边长x ,y 均为整数,且满足x -y -x 2+2xy -y 2+2=0,求它的面积.(2)矩形的周长28cm ,两边长为x cm 、y cm ,且x 3+x 2y -xy 2-y 3=0,求矩形的面积.【例7】(2000年联赛)实数x ,y 满足x ≥y ≥1和2x 2-xy -5x +y +4=0,则x +y =_______.【练7】当x 变化时,分式22365112x x x x ++++的最小值是________.模块三 恒等变形→配方法【例8】已知x 2+2xy +2y 2+4y +4=0,求x ,y .【练8】已知x 2-6xy +10y 2-4y +4=0,求x ,y .【例9】已知x2+2xy+2y2+4x+8=0,求x,y.【练9】已知x2-6xy+10y2+2x-8y+2=0,求x,y.【例10】已知实数a、b、c满足a-b+c=7,ab+bc+b+c2+16=0.则ba的值等于____.【练10】已知a-b=4,ab+c2+4=0,则a+b=________.模块四恒等变形→乘法公式知识点睛【常见乘法公式】1、二元二次:(1)(a+b)(a-b)=__________.(2)(a-b)2=__________.2、三元二次:(3)(a+b+c)2=_________.(4)a2+b2+c2+ab+bc+ca=_______.3、二元三次:(5)(a+b)3=______________.(6)a3+b3=______________.4、三元三次:(7)(a+1)(b+1)(c+1)=abc+ab+bc+ca+a+b+c+1(8)(a+b)(b+c)(c+a)=a2b+b2c+c2a+ab2+bc2+ca2+2abc(9)(a+b+c)(ab+bc+ca)=a2b+b2c+c2a+ab2+bc2+ca2+3abc(10)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)5、三元四次:(11)(a+b+c)(a+b-c)(b+c-a)(c+a-b)=-a4-b4-c4+2a2b2+2b2c2+2c2a26、二元n次:(12)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)(13)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2+…-ab n-2+b n-1)(n为奇数)7、n元二次:(14)(a1+a2+…+a n)2=a12+a22+…+a n2+2a1a2+2a1a3+…+2a1a n+2a2a3+2a2a4+…+2a n-1a n.(15)a12+…+a n2+a1a2+…+a1a n+a2a3+…+a2a n+…+a n-1a n=1[(a1+a2)2+…+(a n-1+a n)2]强化挑战【例11】已知实数a、b、x、y满足a+b=x+y=3,ax+by=4,求(a2+b2)xy+ab(x2+y2)的值.【练11】(第6届希望杯初一)已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406,试求1995(x+y)+6xy-172(a+b)的值.【例12】若a+b+c=0,a3+b3+c3=0,求证:a2011+b2011+c2011=0.【练12】若a+b-c=3,a2+b2+c2=3,那么a2012+b2012+c2012=___________.【例13】(2009年北京市初二数学竞赛)设a+b+c=0,a2+b2+c2=1.(1)求ab+bc+ca的值;(2)求a4+b4+c4的值.【练13】若a+b+c=1,a2+b2+c2=2,a3+b3+c3=83,(1)求abc的值;(2)求a4+b4+c4的值.巅峰突破【例14】若x+y=a+b,且x2+y2=a2+b2,求证:x2014+y2014=a2014+b2014.【练14】已知a+b=c+d,a3+b3=c3+d3,求证:a2013+b2013=c2013+d2013.【拓14】已知a+b=c+d,a5+b5=c5+d5,求证:a2013+b2013=c2013+d2013.第8讲课后作业【习l】已知x2+x-1=0,求x8-7x4+11的值.【习2】已知a+b+c=1,b2+c2-4ac+6c+1=0,求abc的值.【习3】若m=20062+20062×20072+20072,则m( )A.是完全平方数,还是奇数B.是完全平方数,还是偶数C.不是完全平方数,但是奇数D.不是完全平方数,但是偶数【习4】正整数a、b、c是等腰三角形三边的长,并且a+bc+b+ca=24,则这样的三角形有( ) A.1个B.2个C.3个D.4个【习5】已知a、b、c是一个三角形的三边,则a4+b4+c4-2a2b2-2b2c2-2c22a2的值( ) A.恒正B.恒负C.可正可负D.非负【习6】如果a+2b+3c=12,且a2+b2+c2=ab+bc+ca,求a+b2+c3的值.【习7】已知实数a、b、x、y满足a+b=x+y=2,ax+by=5,求(a2+b2)xy+ab(x2+y2)的值.【习8】已知x是实数并且x3+2x2+2x+1=0.求x2008+x2011+x2014的值.【习9】(1999年北京市初二数学竞赛)若3x3-x=1,求9x4+12x3-3x2-7x+2010的值.的值.【习11】(十八届希望杯初二二试)已知a1,a2,a3,…,a2007,是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),试比较M、N的大小.【习12】(2013年联赛)已知实数x,y,z满足x+y=4,|z+1|=xy+2y-9,则x+2y+3z=_______.【习13】(2013年竞赛)已知正整数a、b、c满足a+b2-2c-2=0,3a2-8b+c=0,则abc的最大值为____________.【习14】(2001年联赛)求实数x,y的值,使得(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值.。
因式分解与分式
第二部分 代数式与恒等变形部分★五、多项式的因式分解:1、把一个多项式化成几个整式的积的形式,叫做因式分解。
《因式分解和整式乘法是互逆变形.如,22))((n m n m n m -=-+是整式乘法,=-22n m ))((n m n m -+是因式分解》2、因式分解的方法、步骤和要求:(1)若多项式的各项有公因式,则先提公因式.如=+--cm bm am ⋅-m ( )。
(2)若各项没有公因式或对于提取公因式后剩下的多项式,可以尝试运用公式法. 如229b a -= ,=++-=---)2(22222b ab a n n b abn n a 。
(3)如果用上述方法不能分解,那么可以尝试用其他方法.*十字相乘法:))(()(2b x a x ab x b a x ++=+++.如)1)(3(322-+=-+x x x x 。
*分组分解法(适用于超过三项的多项式,有分组后再提公因式和分组后再用公式两种情况).如=++-1222x y x =-++2212y x x 22)1(y x -+=)1)(1(y x y x -+++。
(4)因式分解必须分解到每一个因式不能再分解为止。
《因式分解要在指定的范围内进行.如,在有理数范围内分解)2)(2(4224-+=-x x x ,若在实数范围,还可继续分解至)2)(2)(2(2-++x x x .*在高中时还可进一步分解》【拓展型问题】:1.根据“因式分解和整式乘法是互逆变形”,你能对下列整式乘法的结果进行因式分解吗?①)1)(32(-+x x ;②))((z y x z y x --+-;③()()n m b a ++.2.试整理:能进行因式分解的二项式和三项式一般可用哪些方法?【中考真题】:1.代数式3322328714b a b a b a -+的公因式是( )A.327b aB.227b aC.b a 27D.3328b a2.若7,6=-=-mn n m ,则n m mn 22-的值是( )A.-13B.13C.42D.-423.分解因式:①31255x x -;②3228y y x -;③()()()x y x y y x -+----4423;④81721624+-x x .⑤122--x x ;⑥2)()(2-+-+y x y x ;⑦20)2)(1(---x x . 4.下列分解因式正确的是( ) A.1)12(24422+-=+-x x xB.)(2n m m m mn m +=++C.)2)(4(822+-=--a a a aD.22)21(21-=+-x x x 5.若A n m n m mn n m ⋅+=+-+)()()(3,则A 是( )A.22n m +B.22n mn m +-C.223n mn m +-D.22n mn m ++6.若16)4(292+-+x m x 是一个完全平方式,则m 的值为 。
整式恒等变形
整式恒等变形编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(整式恒等变形)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为整式恒等变形的全部内容。
第8讲整式恒等变形模块一恒等变形→降幂迭代与换元基础夯实题型一降幂迭代法与大除法【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________.【练1】(1990年第一届希望杯初二第一试)已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.题型二 整体代入消元法【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值.【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值.题型三 换元法 强化挑战【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2.【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求的值.模块二 恒等变形→因式分解与不定方程 题型一 因式分解 基础夯实【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________.(2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________.【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x2012=__________.(2)已知15x 2-47xy +28y 2=0,求的值.强化挑战【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c .【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .(2)已知△ABC 三边a 、b 、c ,满足条件a 2c -a 2b +ab 2-b 2c +c 2b -ac 2=0,试判断△ABC 的形状,并说明理由.()()()()()()222111111y z z x x y x y z ++++++xy题型二 不定方程【例6】(1)方程xy -2x -2y +7=0的整数解(x ≤y )为___________.(2)已知a >b >c ≥0,求适合等式abc +ab +ac +bc +a +b +c =2011的整数a ,b ,c 的值.【练6】(1)长方形的周长为16cm ,它的两边长x ,y 均为整数,且满足x -y -x 2+2xy -y 2+2=0,求它的面积.(2)矩形的周长28cm ,两边长为x cm 、y cm ,且x 3+x 2y -xy 2-y 3=0,求矩形的面积.【例7】(2000年联赛)实数x ,y 满足x ≥y ≥1和2x 2-xy -5x +y +4=0,则x +y =_______.【练7】当x 变化时,分式的最小值是________.模块三 恒等变形→配方法【例8】已知x 2+2xy +2y 2+4y +4=0,求x ,y .【练8】已知x 2-6xy +10y 2-4y +4=0,求x ,y .【例9】已知x 2+2xy +2y 2+4x +8=0,求x ,y .【练9】已知x 2-6xy +10y 2+2x -8y +2=0,求x ,y .【例10】已知实数a 、b 、c 满足a -b +c =7,ab +bc +b +c 2+16=0.则的值等于____.22365112x x x x ++++ba【练10】已知a -b =4,ab +c 2+4=0,则a +b =________.模块四 恒等变形→乘法公式 知识点睛【常见乘法公式】 1、二元二次:(1)(a +b )(a -b )=__________.(2)(a -b )2=__________. 2、三元二次:(3)(a +b +c )2=_________.(4)a 2+b 2+c 2+ab +bc +ca =_______. 3、二元三次:(5)(a +b )3=______________.(6)a 3+b 3=______________. 4、三元三次:(7)(a +1)(b +1)(c +1)=abc +ab +bc +ca +a +b +c +1(8)(a +b )(b +c )(c +a )=a 2b +b 2c +c 2a +ab 2+bc 2+ca 2+2abc(9)(a +b +c )(ab +bc +ca )=a 2b +b 2c +c 2a +ab 2+bc 2+ca 2+3abc(10)a 3+b 3+c 3-3abc =(a +b +c )(a 2+b 2+c 2-ab -bc -ca ) 5、三元四次:(11)(a +b +c )(a +b -c )(b +c -a )(c +a -b )=-a 4-b 4-c 4+2a 2b 2+2b 2c 2+2c 2a 26、二元n 次:(12)a n -b n =(a -b )(a n -1+a n -2b +a n -3b 2+…+ab n -2+b n -1)(13)a n +b n =(a +b )(a n -1-a n -2b +a n -3b 2+…-ab n -2+b n -1)(n 为奇数) 7、n 元二次:(14)(a 1+a 2+…+a n )2=a 12+a 22+…+a n 2+2a 1a 2+2a 1a 3+…+2a 1a n +2a 2a 3+2a 2a 4+…+2a n -1a n .(15)a 12+…+a n 2+a 1a 2+…+a 1a n +a 2a 3+…+a 2a n +…+a n -1a n =[(a 1+a 2)2+…+(a n -1+a n )2] 强化挑战【例11】已知实数a 、b 、x 、y 满足a +b =x +y =3,ax +by =4,求(a 2+b 2)xy +ab (x 2+y 2)的值.【练11】(第6届希望杯初一)已知ax +by =7,ax 2+by 2=49,ax 3+by 3=133,ax 4+by 4=406,试求1995(x +y )+6xy -(a +b )的值.【例12】若a +b +c =0,a 3+b 3+c 3=0,求证:a2011+b2011+c2011=0.12172【练12】若a +b -c =3,a 2+b 2+c 2=3,那么a2012+b2012+c2012=___________.【例13】(2009年北京市初二数学竞赛)设a +b +c =0,a 2+b 2+c 2=1. (1)求ab +bc +ca 的值;(2)求a 4+b 4+c 4的值.【练13】若a +b +c =1,a 2+b 2+c 2=2,a 3+b 3+c 3=,(1)求abc 的值;(2)求a 4+b 4+c 4的值.巅峰突破【例14】若x +y =a +b ,且x 2+y 2=a 2+b 2,求证:x 2014+y 2014=a 2014+b 2014.【练14】已知a +b =c +d ,a 3+b 3=c 3+d 3,求证:a2013+b2013=c2013+d2013.【拓14】已知a +b =c +d ,a 5+b 5=c 5+d 5,求证:a2013+b2013=c2013+d2013.第8讲 课后作业【习l 】已知x 2+x -1=0,求x 8-7x 4+11的值.【习2】已知a +b +c =1,b 2+c 2-4ac +6c +1=0,求abc 的值.【习3】若m =20062+20062×20072+20072,则m ( )A .是完全平方数,还是奇数B .是完全平方数,还是偶数C .不是完全平方数,但是奇数D .不是完全平方数,但是偶数83【习4】正整数a、b、c是等腰三角形三边的长,并且a+bc+b+ca=24,则这样的三角形有( )A.1个 B.2个 C.3个 D.4个【习5】已知a、b、c是一个三角形的三边,则a4+b4+c4-2a2b2-2b2c2-2c22a2的值( ) A.恒正 B.恒负 C.可正可负 D.非负【习6】如果a+2b+3c=12,且a2+b2+c2=ab+bc+ca,求a+b2+c3的值.【习7】已知实数a、b、x、y满足a+b=x+y=2,ax+by=5,求(a2+b2)xy+ab(x2+y2)的值.【习8】已知x是实数并且x3+2x2+2x+1=0.求x2008+x2011+x2014的值.【习9】(1999年北京市初二数学竞赛)若3x3-x=1,求9x4+12x3-3x2-7x+2010的值.【习10】(第18届希望杯初一)有理数a,b,c满足a:b:c=2:3:5,且a2+b2+c2=abc,求a+b+c的值.【习11】(十八届希望杯初二二试)已知a1,a2,a3,…,a2007,是彼此互不相等的负数,且M=(a+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),试1比较M、N的大小.【习12】(2013年联赛)已知实数x,y,z满足x+y=4,|z+1|=xy+2y-9,则x+2y+3z=_______.【习13】(2013年竞赛)已知正整数a、b、c满足a+b2-2c-2=0,3a2-8b+c=0,则abc 的最大值为____________.【习14】(2001年联赛)求实数x,y的值,使得(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值.。
专题01代数式的恒等变形【2022中考数学专题复习高频考点拓展讲练】(原卷版)
专题1 代数式的恒等变形(原卷版)专题诠释:代数式的恒等变形是中考最常见的题型,恒等变形所用的核心知识是整式的乘除、因式分解、方程、函数、不等式等;运用到的主要方法是整体代入,配方法,作差比较法等。
通过恒等变形可以求值,求最值,确定字母的范围,比较大小等。
第一部分 典例剖析+针对训练类型一 通过恒等变形求代数式的值典例1 设m >n >0,m 2+n 2=4mn ,求m 2−n 2mn 的值.典例2 已知:m 2﹣2m ﹣1=0,n 2+2n ﹣1=0且mn ≠1,则mn+n+1n 的值为 .针对练习11.(2020秋•锦江区校级期末)已知2a ﹣3b +1=0,则代数式6a ﹣9b +1= .2.已知实数a 、b 满足a +b =8,ab =15,且a >b ,求a ﹣b 的值.解:∵a +b =8 ab =15∴(a ﹣b )2=a 2﹣2ab +b 2﹣4ab =(a +b )2﹣4ab =82﹣4×15=4又∵a >b∴a ﹣b >0∴a ﹣b =2.请利用上面的解法,解答下面的问题.已知实数x 满足x −1x =√5,且x <0,求x +1x 的值.类型二 通过恒等变形求代数式的最值典例3 (2021秋•下城区期中)已知实数m ,n 满足m ﹣n 2=1,则代数式m 2+2n 2+4m ﹣2的最小值等于 .典例4(2021秋•鼓楼区校级期末)阅读下面的材料,并解答后面的问题材料:将分式2x 2+4x−3x−1拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x ﹣1,可设2x 2+4x ﹣3=(x ﹣1)(2x +m )+n .因为(x ﹣1)(2x +m )+n =2x 2+mx ﹣2x ﹣m +n =2x 2+(m ﹣2)x ﹣m +n ,所以2x 2+4x ﹣3=2x 2+(m ﹣2)x ﹣m +n ,所以{m −2=4−m +n =−3,解得{m =6n =3,所以2x 2+4x−3x−1=(x−1)(2x+6)+3x−1=2x +6+3x−1. 这样,分式就被拆分成了一个整式2x +6与一个分式3x−1的和的形式, 根据你的理解解决下列问题:(1)请将分式3x 2+4x−1x+1拆分成一个整式与一个分式(分子为整数)的和(差)的形式; (2)若分式5x 2+9x−3x+2拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m ﹣11+1n−6,求m 2﹣n 2+mn 的最大值.针对练习23.若m ,n 是方程x 2﹣2ax +1=0且a ≥1的两个实数根,则(m ﹣1)2+(n ﹣1)2的最小值是 .类型三 通过代数式的恒等变形求字母的取值范围典例5已知:2a ﹣3x +1=0,3b ﹣2x ﹣16=0,且a ≤4<b ,求x 的取值范围.针对训练34.平面直角坐标系中,已知点(a ,b )在双曲线(0)k y k x 上,且满足22a b m ,22b a m ,a b ,求k 的取值范围。
1—1代数式恒等变换方法与技巧
1—1 代数式的恒等变换方法与技巧一、代数式恒等的一般概念定义1 在给定的数集中,使一个代数式有意义的字母的值,称为字母的允许值。
字母的所有允许值组成的集合称为这个代数式的定义域。
对于定义域中的数值,按照代数式所包含的运算所得出的值,称为代数式的值,这些值的全体组成的集合,称为代数式的值域。
定义2 如果两个代数式A、B,对于它们定义域的公共部分(或公共部分的子集)内的一切值,它们的值都相等,那么称这两个代数式恒等,记作A=B。
两个代数式恒等的概念是相对的。
同样的两个代数式在它们各自的定义域的某一个子集内是恒等,但x=,在x≥0时成立,但在x<0时不成立。
因此,在研究两个代数式恒等时,一定要首先弄清楚它们在什么范围内恒等。
定义3 把一个代数式变形成另一个与它恒等的代数式,这种变形称为恒等变换。
代数式的变形,可能引起定义域的变化。
如lgx2的定义域是(,0)(0,)-∞+∞,2lgx的定义域是(0,)+∞,因此,只有在两个定义域的公共部分(0,)+∞内,才有恒等式lgx2=2lgx。
由lgx2变形为2lgx时,定义域缩小了;反之,由2lgx变形为lgx2时,定义域扩大了。
这种由恒等变换而引起的代数式定义域的变化,对研究方程和函数等相关问题时也十分重要。
由于方程的变形不全是代数式的恒等变形,但与代数式的恒等变形有类似之处,因此,在本节里,我们把方程的恒等变形与代数式的恒等变形结合起来讨论。
例1:设px=有实根的充要条件,并求出所有实根。
由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。
这样可避免增根和遣根的出现。
解:原方程等价于222(0,0x p xx x⎧-=-⎪⎨-≥⎪⎩222222(4)4448(2)441330440,0pxx p px xx x p x⎧-=⎪⎧=+--⎪⎪⎪⎪⇔≤≤⇔≤⎨⎨⎪⎪≥⎪⎪+-≤≥⎩⎪⎩222(4)8(2)44,043pxppx x⎧-=⎪⎪-⇔⎨-⎪≤≤≥⎪⎩由上式知,原方程有实根,当且仅当p满足条件24(4)4448(2)33p ppp--≤≤⇔≤≤-这说明原方程有实根的充要条件是43p≤≤。
代数式恒等变形及标准答案
代数式恒等变形A 卷1、若3265122-+-+=+--x bx a M x x x ,a 、b 是常数,则( ) A 、M 是一个二次多项式 B 、M是一个一次多项式 C 、6=++b a M D 、10=-+M b a 答案:C解答:由已知等式得:()()6522656512222+---+++-+=+--x x b M x b a M Mx x x x ∴()()b M x b a M Mx x 226522--+++-+= ∴⎪⎩⎪⎨⎧-=--=++-=1236051b a M b a M M ,解得:⎪⎩⎪⎨⎧=-==831b a M 提示:利用待定系数法解决问题。
2、(2002年重庆市初中竞赛题)若012192=+-x x ,则=+441xx ( ) A 、411 B 、16121 C 、1689 D 、427答案:C 解答:∵0≠x ∴2191=+x x ,411122=+xx ∴168921122244=-⎪⎭⎫ ⎝⎛+=+x x x x提示:本题的关键是利用211222-⎪⎭⎫⎝⎛+=+x x x x 进行化简。
3、(2001年全国初中数学竞赛)若143=-x x ,则552128234+--+x x x x 的值是( )A 、2B 、4C 、6D 、8答案:D解答:∵143=-x x∴()()8523252434255212833234=+-+=+--+-=+--+x x x x x x x x x x x x 提示:本题利用添项与拆项进行分解整体代入,本题也可以利用已知逐步降次解决问题。
4、(全国竞赛题)如果52332412---=----+cc b a b a ,则c b a ++的值是( ) A 、6 B 、8 C 、20 D 、24 答案:C解答:∵52332412---=----+cc b a b a ∴()[]()[]()[]053293632142421121=+--+----+---++---c c b b a a∴()()()033212211222=-----+--c b a∴011=--a ,022=--b ,033=--c ∴2=a ,6=b ,12=c ∴20=++c b a提示:本题利用添项构造完全平方式解决问题。
初升高衔接数学讲义
第1章 代数式与恒等变形1.1四个公式 知识衔接在初中,我们学习了实数与代数式,知道代数式中有整式,分式,根式,它们具有类似实数的属性,可以进行运算。
在多项式乘法运算中,我们学习了乘法公式,如:平方差公式22))((b a b a b a -=-+;完全平方公式2222)(b ab a b a +±=±,并且知道乘法公式在整式的乘除,数值计算,代数式的化简求值以及代数等式的证明等方面有着广泛的应用。
而在高中阶段的学习中,将会遇到更复杂的多项式运算为此在本章中我们将拓展乘法公式的内容。
知识延展1 多项式的平方公式:ac bc ab c b a c b a 222)(2222+++++=++2 立方和公式:3322))((b a b ab a b a +=+-+3 立方差公式:3322))((b a b ab a b a -=++-4 完全立方公式:3223333)(b ab b a a b a ±+±=±注意:(1)公式中的字母可以是数,也可以是单项式或多项式;(2)要充分认识公式自身的价值,在多项式乘积中,正确使用乘法公式能提高运算速度,减少运算中的失误;(3)对公式的认识应当从发现,总结出公式的思维过程中学习探索,概括,抽象的科学方法;(4)由于公式的范围在不断扩大,本章及初中所学的仅仅是其中最基本,最常用的几个公式。
一 计算和化简例1 计算:))(()(222b ab a b a b a +++-变式训练:化简 62222))()()((y xy y x xy y x y x y x +-+++-+二 利用乘法公式求值;例2 已知0132=+-x x ,求331x x +的值。
变式训练:已知3=++c b a 且2=++ac bc ab ,求222c b a ++的值。
三 利用乘法公式证明例3 已知0,0333=++=++c b a c b a 求证:0200920092009=++c b a变式训练:已知2222)32()(14c b a c b a ++=++,求证:3:2:1::=c b a习题精练1 化简:322)())((b a b ab a b a +-+-+2 化简 )1)(1)(1)(1)(1)(1(12622+++-+++-a a a a a a a a3 已知10=+y x 且10033=+y x ,求代数式22y x +的值;4 已知21201,19201,20201+=+=+=x c x b x a ,求代数式ac bc ab c b a ---++222的值;5 已知)(3)(2222z y x z y x ++=++,求证:z y x ==6 已知abcd d c b a 44444=+++且d c b a ,,,均为正数,求证:以d c b a ,,,为边的四边形为菱形。
代数式解题技巧总结
求代数式的值的方法与技巧归纳:例1、已知x=1+22,则分式15429222----x x x x 的值是多少? 分析:由条件x=1+22变形得x —1=22,再两边平方得x 2-2x=7,将分式15)2(29)2(1542922222----=----x x x x x x x x ,于是将x 2-2x=7整体代入即可求出其值。
(二)变形代入法例2、如果a+b 1=1,b+c 2=1,那么c+a2等于多少? 分析:可由a+b 1=1得出a=b b 1-,再由b+c 2=1得出c=b -12,再代入c+a 2即可。
(三)参数法例3、若4x-3y-6z=0,x+2y-7z=0(xyz ≠0),则代数式222222103225z y x z y x ---+的值。
分析:可将z 看作参数,把4x-3y-6z=0和x+2y-7z=0转化成y=2z ,x=3z 代入所求代数式即可求出其值。
(四)特殊值法例4、若(3x+1)4=ax 4+bx 3+cx 2+dx+e ,则a-b+c-d+e 的值。
分析:此题可采用特殊法解,可令x =-1,即可求出代数式的值。
解:令x =-1,则将其代入(3x+1)4=ax 4+bx 3+cx 2+dx+e ,得(-2)4=a-b+c-d+e所以a-b+c-d+e=16(五)引入新未知数法 已知:3a =4b =5c ≠0,求cb ac b a --+-223的值。
分析:题中含有等比式时可以用“设比例系数(或单位份数)”来换元。
解:设3a =4b =5c =k (k ≠0) 则a=3k ,b=4k ,c=5k 所以原式=k k k k k k 583589--+-=-53(六)配方法若a 2+b 2-10a-6b+34=0,求ba b a 22-+的值。
分析:观察a 2+b 2-10a-6b+34=0将其可配方得:(a-5)2+(b-3)2=0,得a=5,b=3代入原式可求之。
道代数式的恒等变形练习题
9.在△ABC 中,BC=a, .
15.实数 x 、 y 、 z 满足: x y 2 , 2xy 2 2z 2 1 0 ,求 x y z
16. a、b、c 为三角形的三条边长,满足 ac2+b2c-b3=abc.若三角形的一个内角为 100°,则三角形的另两个角之 差的正弦等于
.
59.已知实数 x1、x2、…、x2002 满足
x1 1
x2 1
x 2002
1 =
1 2
(x1+x2+…+x2002)则,x1+2x2+…+2002x2002 的
值为=
60.已知整数 a、b、c 满足不等式 a2+b2+c2+42≤ab+9b+8c,则 a、b、c 分别等于
.
61. 已知实数 a, b, c 满足 a 2b 2, 且 ab 3 c2 1 0 ,则 bc 的值为
17.若 a、b、C 为实数, a b c, a b c 1, a 2 b 2 c 2 3 ,则 b c 的取值范围是
18.已知 xyz=1,x+y+z=2,x2+y2+z2=16.则 1 1 1 xy 2z yz 2x zx 2 y
19.已知 x、y 为正整数,且满足 2x2+3y2=4x2y2+1.则 x2+y2=
2
3 a
1 a2
1 a3
,则 a
1 a
的值为
36.已知 x2 5x 2006 0, 则 (x 2)3 (x 1)2 1 x2
代数变形常用技巧
代数变形中常用的技巧代数变形是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活应用。
代数变形技巧是学习掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。
本文就初等代数变形中的解题技巧,作一些论述。
两个代数式A、B,如果对于其中所含字母的一切允许值它们对应的值都相等,则称这两个代数式恒等,记作A≡B或A=B,把一个代数式换成另一个和它恒等的代数式,叫做代数式的恒等变形。
恒等变形是代数的最基本知识,是学好中学数学的基础,恒等变形的理论依据是运算律和运算法则,所以,恒等变形必须遵循各运算法则,并按各运算法则在其定义域内进行变形。
代数恒等变形技巧是学习与掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。
代数恒等变形实质上是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活与综合应用。
中学生在平时的学习中不善于积累和总结变形经验,在稍复杂的问题面前常因变形方向不清,而导致常规的化归、转化工作难以实施,甚至失败,其后果直接影响着应试的能力及效率。
代数的恒等变形包括的内容较多,本文着重阐述代数运算和解题中常见的变形技巧及应用。
一、整式变形整式变形包括整式的加减、乘除、因式分解等知识。
这些知识都是代数中的最基础的知识。
有关整式的运算与化简求值,常用到整式的变形。
例1:化简(y+z-2x)2+(z+x-2y)2+(x+y-2z)2-3(y-z)2-3(z-x)2-3(x-y)2分析:此题若按常规方法先去括号,再合并类项来进行恒等变形的话,计算会繁杂。
而通过观察发现此题是一个轮换对称多项式,就其特点而言,若用换元法会使变形简单,从而也说明了换元法是变形的一种重要方法。
第一讲:代数式与恒等变形
第 1 章代数式与恒等变形四个公式知识连接在初中,我们学习了实数与代数式,知道代数式中有整式,分式,根式,它们拥有近似实数的属性,能够进行运算。
在多项式乘法运算中,我们学习了乘法公式,如:平方差公式( a b)(a b) a2b2;完整平方公式(a b)2 a 22ab b2,而且知道乘法公式在整式的乘除,数值计算,代数式的化简求值以及代数等式的证明等方面有着宽泛的应用。
而在高中阶段的学习中,将会碰到更复杂的多项式运算为此在本章中我们将拓展乘法公式的内容。
知识延展1多项式的平方公式:(a b c)2 a 2b2c22ab2bc 2ac2立方和公式: ( a b)(a 2ab b2 )a3b33立方差公式: ( a b)(a2ab b2 )a3b34完整立方公式: (a b)3a33a2b3ab2b3注意:( 1)公式中的字母能够是数,也能够是单项式或多项式;(2)要充足认识公式自己的价值,在多项式乘积中,正确使用乘法公式能提升运算速度,减少运算中的失误;(3)对公式的认识应该从发现,总结出公式的思想过程中学习探究,归纳,抽象的科学方法;(4)因为公式的范围在不停扩大,本章及初中所学的只是是此中最基本,最常用的几个公式。
一计算和化简例 1 计算:(a b) 2 ( a b)(a 2ab b2 )变式训练:化简( x y)( x y)( x2y2xy)( x2y2xy) y6二利用乘法公式求值;例 2 已知x23x 10 ,求x31的值。
x3变式训练:已知 a b c 3 且 ab bc ac 2 ,求 a2b2 c 2的值。
三利用乘法公式证明例 3 已知a b c 0, a3b3c30 求证:a2009b2009c20090变式训练:已知14(a2b2c2 ) (a 2b 3c)2,求证: a : b : c1: 2 : 3习题精练1 化简:(a b)(a2ab b2 ) (a b)32 化简( a 1)( a2 a 1)(a 1)( a2 a 1)(a61)( a12 1)3 已知x y 10 且 x3y3100 ,求代数式x2y2的值;4 已知a1x 20,b1x 19,c1x 21 ,求代数式 a2b2c2ab bc ac 的202020值;5 已知( x y z)23(x2y2z2 ) ,求证: x y z6 已知a4b4c4 d 44abcd 且 a, b, c, d 均为正数,求证:以 a, b, c, d 为边的四边形为菱形。
数学方法01_恒等变形法
第一篇 恒等变形法
恒等变形法:在代数式的变形过程中,往往要求形变值不变,而变化后新得到的形式,恰是有利于结论的推导的。
此法包括因式分解法、配方法、降幂法等
例1 解方程:22(1997)(1996)1x x -+-=
例2 在满足23,0,0x y x y +≤≥≥的条件下,求2x y +能达到的最大值
例3 如果20a b +=,求
12a a b b
-+-的值
例4 证明:没有一个自然数n ,能使6543235154123n n n n n n +--+++的值是某个自然数的平方
例5 证明:任一偶数是表达式2221112456x xy y x y +++++的值,其中变量x 和y 取任一整数值
例6 已知1,1a b ab +==-,求77a b +的值
例7 求方程32103x x x ---
=的实数解
例8 设122006,,x x x 都是+1或-1,证明12320062320060x x x x ++++≠
回家作业
(1)若分数()104()33
-⨯ +中,括号( )内是一个三位自然数,为了使该分数成为一个可约分数,( )内最小、最大的三位数是_________
(2)使22231
x x A x x --=-+为整数的一切整数x 为________________
(3)证明:n 为任何整数,形如2912n n ++的数,不能被121整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5讲 爹代数式与恒等变形在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形.恒等变形,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简洁,一般可以把恒等变形分为两类:一类是无附加条件的,需要在式子默认的范围中运算;另一类 是有附加条件的,要善于利用条件,简化运算.恒等式变形的基本思路:由繁到简(即由等式较繁的一边向另一边推导)和相向趋进(即将等式两边同时转化为同一形式).恒等式证明的一般方法:1.单向证明,即从左边证到右边或从右边证到左边,其原则是化繁为简,变形的过程中要不断注意结论的形式,调整证明的方向.2.双向证明,即把左、右两边分别化简,使它们都等于第三个代数式. 3.运用“比差法”或“比商法”,证明“左边一右边=0"或1=右边左边(右边≠O)”,可得左边d 右边. 4.运用分析法,由结论出发,执果索因,探求思路,本节结合实例对代数式的基本变形(如配方、因式分解、换元、设参、拆项与逐步合并等)方法作初步介绍,题1 求证 :=-+⨯+-+++n n n n 23522322n 2).235(1011-+-+n n n对同底数幂进行合并整理,解 方法一:左边)222()33(55221n n n n n -+-+++⨯⨯=++)22(2)13(35103121+-++⨯=-+n n n11210310510-+⨯-⨯+⨯=n n n)235(1011-+-+=n n n=右边,方法二:左边)12(2)13(352222+-++⨯=+n n n.25310522n n n ⨯-⨯+⨯=+右边11210310510-+⨯-⨯+⨯=n n n.25310522n n n ⨯-⨯+⨯=+故 左边=右边.方法一中受右边”、、“11235-+n n n 的提示,对左边式子进行合并时,以n n 351、+与12-n 为主元合并,迅速便捷. 读一题,练3题,练就解题高手1-1.已知,0=++c b a 求证:.3333abc c b a =++1-2.已知,xyz z y x =++证明:-+--1()1)(1(22y z y x .4)1)(1()1)(2222xyz y x z z x =--+- 1-3.证明:.32232++⋅+.13222.3222=++-+++题2 ?100321=++++ 经研究,这个问题的一般结论是),1(21321+=++++ n n n 其中,n 为整数,现在我们来研究一个类似的问题: ?=+⨯++⨯+⨯)1(...3221n n 观察下面三个特殊的等式:);210321(3121⨯⨯-⨯⨯=⨯ );321432(3132⨯⨯-⨯⨯=⨯ );432543(3143⨯⨯-⨯⨯=⨯ 将这三个式子两边相加(累加),可得.2054331433221=⨯⨯⨯=⨯+⨯+⨯ 读完这段材料,请您思考回答:=⨯++⨯+⨯m 1003221)1(=+++⨯+⨯)1(3221)2(n n)2)(1(.432321)3(++++⨯⨯+⨯⋅⨯n n n =(只写出结果,不必写出中间的过程) 分析此题可得到如下信息:⨯⨯-⨯⨯=⨯10099102101100(31101100)1();101 +--++=+n n n n n n n n ()1()2)(1([31)1()2()];1 解 321(3110100]3221)1(⨯⨯=⨯++⨯+⨯ 210101100321432210⨯⨯++⨯⨯-⨯⨯+⨯⨯- ;34340010210110031)10110099=⨯⨯⨯=⨯⨯- (2)由类比思想知).2)(1(31)1(3221++=+++⨯+⨯n n n n n ),32104321(41321)3(⨯⨯⨯-⨯⨯⨯=⨯⨯ ),43215432(41432.⨯⨯⨯-⨯⨯⨯=⨯⨯ ……)]2)(1()1()3)(2)(1([41)2)(1(++--+++=++n n n n n n n n n n n 则 )2)(1(432321++++⨯⨯+⨯⨯n n n).3)(2)(1(41+++=n n n n 在解题时要善于利用类比推理思想,理解并记住一些常用的一般性结论,如++⨯+⨯ 321211 11321211,1)1(1++++++++=+n n n n n n .)12(531,112n n n =-++++-+= 读一题,练3题,练就解题高手2-1.已知n 是正整数,),(n n n y x P 是反比例函数xk y =图象上的一列点,其中.,,2,121n x x x n === 记⋅===1099322211,,,y x T y x T y x T 若=1T ,1则921T T T 的值是2-2.我们把分子为1的分数叫做单位分数,如,31,21,,41 任何一个单位分数都可以写成两个不同的单位分数的和,如,1214131,613121+=+⋅= ,2015141+= (1)根据对上述式子的观察,你会发现+=口151,1O请写出O ,口所表示的数; (2)进一步思考,单位分数n 1(n 是不小于2的正整数)=*+∆11请写出,*∆所表示的代数式,并加以验证.2-3.已知200921,,a a a 都是正数,+++= 21(a a M ),)(2009322008a a a a +++ +++=< 21a a N).)(2008322009a a a a +++试比较M 与N 的大小.题3 已知c b a a c a c c b c b b a b a ,,,)(3)(2-+=-+=-+互不相等,求证.0598⋅=++c b α 本题可设,)(3)(2k a c a C c b c h b a b a =-+=-+=-+然后求解. 解 设,)(3)(2k a c a c c b c b b a b a =-+=-⋅+=-+ 则).(3),(2),.(a c k a c c b k c b a k b a -=+-=-=+故 )(2),()(3),(6)(6a c c b c b b a k b a +-=+-=+α).(6a c k -=以上三式相加,得=+++++)(2)(3)(6a c c b b a ).(6a c c b a k -+--即 .0598=++c b a本题运用了连比等式设参数k 的方法,这种引入参数的方法是恒等式证明中的常用技巧,读 一题,练1题,决出能力高下 3-1.已知,26223823122523=-++-=-+++=---+a c a c c b c b bk a b a 则=++--++734232c b a c b a题4 证明 333)2()2()2(z y x y x z x z y -++-++-+).2)(2()2(3z y x x z x z y -+-+⋅-+=γ本题看似复杂,但是仔细分析各项特征,可尝试使用多变量换元法.解 令①,2a x z y =-+②,2b y x z =-+③,2c z y x =-+则原待证恒等式转化为.3333abc c b a =++联想到公式 --++++=-++ab c b a c b a abc c b a 222333)((3).ca bc -由①+②+③,得)2()2()2(z y x y x z x z y c b a -++-++⋅-+=++.0=故,03333=-++abc c b a即.3333abc c b a =++原式得证.换元法的使用可以使题目条件更趋简洁,更易把握题目特点.读一题,练3题,冲刺奥数金牌4-1试用x+l 的各项幂表示.13.223-+-x x x4-2.已知z y x z y x ,0,0,200920072005222>>==0>且.1111=++zy x 求证:20072005200920072005+=++z y x .2009+ 4-3.解方程:,23322332⋅---=---x x x x 题5 设x,y,z 互为不相等的非零实数,且x z z y y x 111+=+=+求证: 1222=z y x 由于结论为”“1222=z y x 的形式,可以从题设 式中导出x ,y ,z 乘积的形式xy ,yz ,zx解 由,11xy y x +=+变形可得⋅-=-=-yz z y y z y x 11 则①⋅--=y x z y yz 同理可得②,zy x z zx --= ③xz y x xy --= 由①×②×③,得.1222=z y x本题中x ,y ,z 具有轮换对称的特点,也可从二元情形中得到启示:即令x ,y 为互不相等的非零实数,且,11x y y x +=+易推出,11y x y x -=-故有,1-=--=y x x y xy 所以,122=y x 三元与二元情形类似.读一题,练3题,冲刺奥数金牌5-1若实数x ,y ,z 满足x z z y y x 1,11,41+=+=+ ,37=则xyz= 5-2.已知),35(21),35(21-=+=y x 求226y xy x ++的值. 5-3.已知实数a ,b ,c ,d 互不相等,且=+=+c b b a 11,11x a d d c =+=+试求x 的值, 题6 已知 za a x y a z x a a y 222,,-==-=求证: 由待证式z a a x 2-=知要从题设条件中消去y .解 由已知,得.,22z a y a x a a y -=-=两式相乘,得),)((22z a x a a a -⋅⋅-= 即⋅+--=x z a az x a a a 2322 所以 ⋅-=x a xaz z 2故 ⋅-=z a a x 2综合考查条件结论,充分挖掘隐含信息,常会成为解题的关键,如本题中由-=-=a z x a a y ,2,,2y a 到,,,2z a a x -=发现要消去y 这一信息.读一题,练3题,冲刺奥数金牌 6-1.已知,1=ab 求11+++b b a a 的值. 6-2.设⋅+-=+-=+-=,,,a c a c r c b c b q b a b a P 其中a c c b b a +++,,不为零.求证: ).1()1)(1()1)(1)(1(r q P r q P -⋅--=+++6-3.已知a ,b ,c ,d 满足3,0,,a d c b a d c b a =/+=+≤≤.333d c b ⋅+=+ 求证:.,d b c a ==参考答案与提示。