311不等关系与不等式

合集下载

高中数学 第3章 不等式 3.1.1 不等关系与不等式 3.1.2 不等式的性质课件 新人教B版必修5

高中数学 第3章 不等式 3.1.1 不等关系与不等式 3.1.2 不等式的性质课件 新人教B版必修5






3.1 不等关系与不等式
3.1.1 不等关系与不等式

阶 段 二
3.1.2 不等式的性质
业 分 层 测

1.了解不等式的性质.(重点) 2.能用不等式(组)表示实际问题中的不等关系.(难点)
[基础·初探]
教材整理 1 不等关系与不等式 阅读教材 P61~P62 例 1,完成下列问题. 1.不等式的定义所含的两个要点 (1)不等符号_<_,_≤__,_>_,_≥_____或_≠__. (2)所表示的关系是不__等_关__系___.
推论 1
a+b>c⇒__a_>_c_-_b____
推论 2
a>b,c>d⇒a_+_c_>__b+__d___
性质 4 (可乘性)
a>b,c>0⇒a_c_>_b_c__;a>b,c<0⇒_ac_<_b_c___
推论 1
a>b>0,c>d>0⇒_a_c_>_b_d___
推论 2
a>b>0⇒ _a_n_>__b_n(_n_∈__N_+ __,__n_>__1_) _
[再练一题]
1.用不等式(组)表示下列问题中的不等关系:
(1)限速 80 km/h 的路标;
(2)桥头上限重 10 吨的标志;
(3)某酸奶的质量检查规定,酸奶中脂肪的含量 f 应不多于 2.5%,蛋白质的
含量 p 不少于 2.3%. 【解】 (1)设汽车行驶的速度为 v km/h,则 v≤80.
(2)设汽车的重量为 ω 吨,则 ω≤10.
f≤2.5%,
(3)

p≥2.3%.
比XX较X 两数(式)的大小
比较下列各组中两个代数式的大小: (1)x2+3 与 3x; (2)已知 a,b 为正数,且 a≠b,比较 a3+b3 与 a2b+ab2.

人教B版高中数学必修五课件3.1不等关系与不等式.pptx

人教B版高中数学必修五课件3.1不等关系与不等式.pptx

利用不等式基本性质和 两正数和仍是正数来证 明 :
a b
b c
a b
b c
0 0
(a
b)
(b
c)
0
a
c
0
a
c.
新课讲解
3.1 不等关系与不等式
不等式的性质3:
如果a b, 那么a c ___ b c; a b c _a____c___b_ .
利用不等式基本性质来 证明 :
移项法

又因为c 0, 得: c c . ba
ab 即 1 1.
ba
即 c c. ab
练习:已知,a b,问:1 与 1 的大小? ab
小结 小结
3.1 不等关系与不等式
不等式的性质
内容
对称性
a b b a;
abba
传递性
a b,b c a c
加法性质 a b a c b c; a b,c d a c b d
a b 0 an ___ bn.
a b 0 an bn它是不等式乘法性质的推论.
不等式的性质8:
a b 0 n a ___ n b.(n N ,且n 1)
证明 : 假设n a不大于n b , 则n a n b或n a n b . 当0 n a n b时,由"0 b a bn an"得a b,
(2)截得600mm钢管的数量不能超过 500mm钢管数量
的3倍;
以上不等关系用不等式组表示为
(3)截得两种钢管
500x 600 y 4000
的数量都不能为负.
3x y x0
考虑到实际问题的 意义,y 还 0应有x,y∈N
新课引入
3.1 不等关系与不等式

高中数学第三章不等式3.1不等关系与不等式3.1.1不等关系课件新人教A版必修5

高中数学第三章不等式3.1不等关系与不等式3.1.1不等关系课件新人教A版必修5

文字语言
数学符号
文字语言
数学符号
大于
>
至多

小于
<
至少

大于等于

不少于

小于等于

不多于

【做一做】 实数x大于-1,用不等式表示(biǎoshì)为(
A.x>-1 B.x≥-1
C.x<-1 D.x≤-1
答案:A
第三页,共10页。
).
“不等关系”与“不等式”的区别
剖析不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,其中前三
第1课时(kèshí) 不等关系
第一页,共10页。
1.了解生活(shēnghuó)中存在的不等关系.
2.会用不等式(组)表示不等关系.
第二页,共10页。
不等关系
现实世界和日常生活中,既有相等关系,又存在着大量的不等关系,不等关系常
用不等式表示(biǎoshì).
归纳总结常见文字语言与数学符号之间的转换如下表:
第八页,共10页。
题型一
题型二
解x kg甲种食物含有(hán yǒu)维生素A 600x单位,含有(hán yǒu)维生素B
800x单位,y kg乙种食物含有(hán yǒu)维生素A 700y单位,含有(hán yǒu)维
生素B 400y单位,则x kg甲种食物与y kg乙种食物总共含有(hán yǒu)维生素
(guān xì),试问:
(1)当销售量为多少时,该公司赢利(收入大于成本)?
(2)当销售量为多少时,该公司亏损(收入小于成本)?
解(1)当销售量大于a t,即x>a时,公司赢利.

高中数学3-1不等关系与不等式习题新人教A版必修5

高中数学3-1不等关系与不等式习题新人教A版必修5

3.1不等关系与不等式一、选择题:本题共8个小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【题文】已知a b >,c d >,那么一定正确的是 ( )A .ad bc >B .ac bd >C .a c b d ->-D .a d b c ->-2.【题文】设201612016a ⎛⎫= ⎪⎝⎭,120162016b =,1lg 2016c =,则c b a ,,的大小关系为 ( ) A .c a b << B .b c a <<C .a b c <<D .b a c <<3.【题文】已知,a b 为非零实数,且0a b <<,则下列命题成立的是 ( )A .22a b <B .2211ab a b <C .22a b ab <D .b a a b< 4.【题文】设22(21),(1)(3)M a a N a a =--=+-,则有 ( )A. M N >B. M N ≥C. M N <D. M N ≤5.【题文】如果01a <<,那么下列不等式中正确的是 ( )A .(1)log (1)0a a -+>C .32(1)(1)a a ->+D .1(1)1a a +->6.【题文】设,a b ∈R ,若0a b ->,则下列不等式中正确的是 ( )A .0b a ->B .330a b +<C .220a b -<D .0b a +> 7.【题文】设 1a b >>,0c <,给出下列三个结论:①c c a b>;②c c a b >; ③()()log >log b a a c b c --.其中所有正确结论的个数是 ( )A .0B .1C .2D .38.【题文】已知,,a b c ∈R ,则下列推证中错误的是( )A .22a b ac bc >⇒≥B .,0a b c a b c c><⇒< C .3311,0a b ab a b >>⇒< D .2211,0a b ab a b >>⇒<二、填空题:本题共3小题.9.【题文】132-,123,2log 5三个数中最大的数是 . 10.【题文】若13,12,a b ≤≤-≤≤则2a b -的取值范围为______.11.【题文】若2,a b c ==,则a 、b 、c 的大小顺序是 .三、解答题:解答应写出文字说明,证明过程或演算步骤.12.【题文】已知:m n >,a b <,求证:m a n b ->-.13.【题文】设110,1ab a >->,比较a +1的大小. 14.【题文】已知,a b ∈R ,b a x -=3,a b a y -=2,试比较x 与y 的大小.3.1不等关系与不等式 参考答案及解析1. 【答案】D【解析】由同向不等式的加法性质可知由a b >,c d >,可得,a c b d a d b c +>+∴->-.考点:不等式性质.【题型】选择题【难度】较易2. 【答案】D 【解析】()201612016110,1,20161,lg 0,.20162016a b c c a b ⎛⎫=∈=>=<∴<< ⎪⎝⎭考点:比较大小.【题型】选择题【难度】较易3. 【答案】B 【解析】因为0a b <<,所以可令2,1a b =-=,可排除A 、C 、D ,故选B.考点:不等式的性质.【题型】选择题【难度】较易4. 【答案】B【解析】()()()()22222211324223M N a a a a a a a a a -=---+-=-----=-()22110a a +=-≥恒成立,所以M N ≥.故B 正确.考点:作差法比较大小.【题型】选择题【难度】一般5. 【答案】A【解析】因为01,a <<所以011,a <-<所以(1)x y a =-在R 上单调递减,所以A.本题也可以用特殊值法,如:令12a =来解决. 考点:比较大小.【题型】选择题【难度】一般6. 【答案】D 【解析】由0a b ->得a b >,0,,0.a b a b a b ∴>≥∴>±∴+>考点:不等式性质.【题型】选择题【难度】一般7. 【答案】C【解析】①∵1a b >>,0c <,∴(0c c c b a a b ab --=>),故c c a b>,正确; ②∵0c <,∴c y x =在()0,+∞上是减函数,而0a b >>,所以c c a b <,错误;③当1a b >>时,有()()()log >log >log b b a a c b c b c ---,正确.故选C .考点:比较大小.【题型】选择题【难度】一般8. 【答案】D【解析】对于A : 20c ≥,则22ac bc ≥,故A 正确;对于B :0a b a b c c c--=> ,当0c <时,有a b <,故B 正确; 对于C :∵33a b >,0ab >,∴不等式两边同乘以()3ab 的倒数,得到3311b a >,即11a b<,故C 正确; 对于D :∵22a b >,0ab >,∴不等式两边同乘以()2ab 的倒数,得到2211b a >,不一定有11a b<,故D 错误.故选D . 考点:不等关系与不等式.【题型】选择题【难度】较难9. 【答案】2log 5 【解析】11322221,12,log 5log 42-<<<>=,所以最大的数为2log 5. 考点:指数、对数式大小判定.【题型】填空题【难度】一般10.【题文】若13,12,a b ≤≤-≤≤则2a b -的取值范围为______.【答案】[]0,7【解析】13,12,226,21,a b a b ≤≤-≤≤∴≤≤-≤-≤利用同向不等式可以相加,得到2a b -的取值范围为[]0,7.考点:不等式的性质.【题型】填空题【难度】一般10. 【答案】[]0,7【解析】13,12,226,21,a b a b ≤≤-≤≤∴≤≤-≤-≤利用同向不等式可以相加,得到2a b -的取值范围为[]0,7.考点:不等式的性质.【题型】填空题【难度】一般11. 【答案】a b c >>【解析】a ==,2bc ===,因为20+>,>>,故a b c >>. 考点:不等关系与不等式.【题型】填空题【难度】一般12. 【答案】证明略【解析】证法一:由m n >知0m n ->,由a b <知0b a ->.∴()()()()0m a n b m n b a m a n b ---=-+->⇒->-.证法二:∵a b <,∴a b ->-,又∵m n >,∴()()m a n b +->+-,即m a n b ->-.考点:不等式的性质.【题型】解答题【难度】较易13. 【答案】ba ->+111 【解析】由,10111,0<<⇒>->b a b a2211111ab a b ab b a b b ⎛⎫-- ⎪--⎝⎭∴-==--, 又110,10,1ab b b a>->->,22∴-⇒> 考点:平方法作差比较大小.【题型】解答题【难度】一般14. 【答案】详见解析 【解析】()()()32221x y a b a b a a a b a b a b a -=--+=-+-=-+, 当b a >时,0>-y x ,所以y x >;当b a =时,0=-y x ,所以y x =;当b a <时,0<-y x ,所以y x <.考点:作差法比较大小.【题型】解答题【难度】一般。

高中数学第三章不等式31不等关系与不等式课件新人教A版必修5

高中数学第三章不等式31不等关系与不等式课件新人教A版必修5

D.5
【解题探究】判断不等关系的真假,要紧扣不等的性
质,应注意条件与结论之间的联系. 【答案】C
【解析】①c 的范围未知,因而判断 ac 与 bc 的大小缺乏 依据,故该结论错误.
②由 ac2>bc2 知 c≠0,则 c2>0,
∴a>b,∴②是正确的.
③a<b, ⇒a2>ab,a<b, ⇒ab>b2,
【答案】M>N
【解析】M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1= a1(a2 - 1) - (a2 - 1) = (a1 - 1)(a2 - 1) , 又 ∵ a1∈(0,1) , a2∈(0,1) , ∴ a1 - 1<0 , a2 - 1<0.∴(a1 - 1)(a2 - 1)>0 , 即 M - N>0.∴M>N.
用不等式表示不等关系
【例1】 某钢铁厂要把长度为4 000 mm的钢管截成 500 mm 和600 mm两种规格,按照生产的要求,600 mm 钢管 的数量不能超过500 mm钢管的3倍.试写出满足上述所有不等 关系的不等式.
【解题探究】应先设出相应变量,找出其中的不等关 系,即①两种钢管的总长度不能超过4 000 mm;②截得600 mm钢管的数量不能超过500 mm钢管数量的3倍;③两种钢管 的数量都不能为负.于是可列不等式组表示上述不等关系.
比较大小要注重分类讨论
【示例】设 x∈R 且 x≠-1,比较1+1 x与 1-x 的大小. 【错解】∵1+1 x-(1-x)=1-1+1-x x2=1+x2 x,而 x2≥0,∴ 当 x>-1 时,x+1>0,1+x2 x≥0,即1+1 x≥1-x; 当 x<-1 时,x+1<0,1+x2 x≤0,即1+1 x≤1-x.

31不等关系与不等式精品PPT课件

31不等关系与不等式精品PPT课件

3x y
x
N
*
y N *
必修5 第74页
a+b ≥0 h4
新课讲授
2.文字语言与数学符号间的转换.
文字语言 数学符号 文字语言 数学符号
大于
>
至多

小于
<
至少

大于等于 ≥
不少于

小于等于 ≤
不多于

三、不等式基本原理
a - b > 0 <=> a > b
a - b = 0 <=> a = b
4.作差比较法 步骤:作差,变形,定号
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
20
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
讲师:XXXXXX XX年XX月XX日
变式a b 0那么 1
1
ab a
(2)如果a>b>c>0,那么 c
c
ab
变式a>b>c>0,那么 b c a-b a c
练习:已知c>a>b>0,试比较 b 与 c 的大小? c-b c a
例3.如果30<x<42,16<y<24,求x+y,x-2y,x 的范围? y
例4:已知a>b>0,c>d>0,求证:a d
a b 0 n a n b (n N *, n 2)
(可乘方性、可开方性)
课堂练习
1. 若a、b、c R,a b,则下列不等式成

人教B版高中数学必修五《3.1 不等关系与不等式 3.1.1 不等关系与不等式》_11

人教B版高中数学必修五《3.1 不等关系与不等式 3.1.1 不等关系与不等式》_11

3.1不等关系与不等式3.1.1不等关系与不等式(一)通过本节课的学习让学生从一系列的具体问题情境中感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用,这是学习本章的基础,也是不等关系在本章内容的地位与作用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较的过程,即能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程,这是学习本章第三节的基础.在本节课的学习过程中还安排了一些简单的学生易于处理的问题,用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望,这也是学生学习本章的情感基础.根据本节课教学内容,应用观察、抽象归纳、思考、交流、探究,得出数学模型,进行启发式教学并使用投影仪辅助.教学重点 1.通过具体的问题情景,让学生体会不等量关系存在的普遍性及研究的必要性;2.用不等式或不等式组表示实际问题中的不等关系,并用不等式或不等式组研究含有简单的不等关系的问题;3.理解不等式或不等式组对于刻画不等关系的意义和价值.教学难点1.用不等式或不等式组准确地表示不等关系;2.用不等式或不等式组解决简单的含有不等关系的实际问题.教具准备投影仪、胶片、三角板、刻度尺三维目标一、知识与技能1.通过具体情境建立不等观念,并能用不等式或不等式组表示不等关系;2.了解不等式或不等式组的实际背景;3.能用不等式或不等式组解决简单的实际问题.二、过程与方法1.采用探究法,按照阅读、思考、交流、分析,抽象归纳出数学模型,从具体到抽象再从抽象到具体的方法进行启发式教学;2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;3.设计较典型的现实问题,激发学生的学习兴趣和积极性.三、情感态度与价值观1.通过具体情境,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系,鼓励学生用数学观点进行观察、归纳、抽象,使学生感受数学、走进数学、改变学生的数学学习态度;2.学习过程中,通过对问题的探究思考、广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;3.通过对富有实际意义问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的简洁美,激发学生的学习兴趣.教学过程导入新课师日常生活中,同学们发现了哪些数量关系.你能举出一些例子吗?生实例1:某天的天气预报报道,最高气温32℃,最低气温26℃.生实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则x a<x b.(老师协助画出数轴草图)生实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.(学生迫不及待地说出这么多,说明课前的预习量很充分,学习数学的兴趣浓,此时老师应给以充分的肯定和表扬)推进新课师同学们所举的这些例子联系了现实生活,又考虑到数学上常见的数量关系,非常好.而且大家已经考虑到本节课的标题不等关系与不等式,所举的实例都是反映不等量关系,这将暗示我们这节课的效果将非常好.(此时,老师用投影仪给出课本上的两个实例)实例6:限时40 km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p 应不少于2.3%.[过程引导]师能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点、进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人来说必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?生可以用不等式或不等式组来表示.师什么是不等式呢?生用不等号将两个解析式连结起来所成的式子叫不等式.(老师给出一组不等式-7<-5;3+4>1+4;2x≤6;a+2≥0;3≠4.目的是让同学们回忆不等式的一些基本形式,并说明不等号“≤,≥”的含义,是或的关系.回忆了不等式的概念,不等式组学生自然而然就清楚了)师能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程,通过对不等式数学模型的研究,反过来作用于我们的现实生活,这才是我们学习数学的最终目的.(此时,同学们已经迫不及待地想说出自己的观点.)[合作探究]生我们应该先像实例2那样用不等式或不等式组把上述实例中的不等量关系表示出来.师说得非常好,下面我们就把上述实例中的不等量关系用不等式或不等式组一一表示出来.那应该怎么样来表示呢?(学生轮流回答,老师将答案相应地写在实例后面)生上述实例中的不等量关系用不等式表示应该为32℃≤t≤26℃.生可以表示为x≥0.(此时,学生有疑问,老师及时点拨,可以画出图形.让学生板演)(老师顺便画出三角形草画)生|AC|+|BC|>|AB|(只需结合上述三角形草图).生|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.生 |AB |-|BC |<|AC |、|AC |-|BC |<|AB |、|AB |-|AC |<|BC |.交换被减数与减数的位置也可以.生 如果用v 表示速度,则v≤40 km/h.生 f≥2.5%或p≥2.3%.(此时,一片安静,同学们在积极思考)生 这样表达是错误的,因为两个不等量关系要同时满足,所以应该用不等式组来表示此实际问题中的不等量关系,即可以表示为⎩⎨⎧≥≥%.3.2%,5.2p f 生 也可表示为f≥2.5%且p≥2.3%.师 同学们看这两位同学的观点是否正确?生 (齐答)大家齐声说,都可以.师 同学们的思考很严密,很好!应该用不等式组来表示此实际问题中的不等量关系,也可以用“且”的形式来表达.[合作探究]【问题】 某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?生 可设杂志的定价为x 元,则销售量就减少2.01.05.2⨯-x 万本.师 那么销售量变为多少呢?如何表示?生 可以表示为)2.01.05.28(⨯--x 万本,则总收入为x x )2.01.05.28(⨯--万元. 〔老师板书,即销售的总收入为不低于20万元的不等式表示为)2.01.05.28(⨯--x x≥20〕 师 是否有同学还有其他的解题思路?生 可设杂志的单价提高了0.1n 元,(n ∈N *), (下面有讨论的声音,有的同学存在疑问,此时老师应密切关注学生的思维状况)师 为什么可以这样设?生 我只考虑单价的增量.师 很好,请继续讲.生 那么销售量减少了0.2n 万本,单价为(2.5+0.1n)元,则也可得销售的总收入为不低于20万元的不等式,表示为(2.5+0.1n)(8-0.2n)≥20.师 这位同学回答得很好,表述得很准确.请同学们对两种解法作比较.(留下让学生思考的时间)师 请同学们继续思考第三个问题. [合作探究]【问题3】 某钢铁厂要把长度为4 000 mm 的钢管截成500 mm 和600 mm 两种,按照生产的要求,600 mm 钢管的数量不能超过500 mm 钢管的3倍.怎样写出满足上述所有不等关系的不等式?师 假设截得500 mm 的钢管x 根,截得600 mm 的钢管y 根.根据题意,应当有什么样的不等量关系呢?生 截得两种钢管的总长度不能超过4 000 mm.生 截得600 mm 钢管的数量不能超过500 mm 钢管的3倍.生 截得两种钢管的数量都不能为负.师为了对不等式的基本性质给出严格证明,我们还有必要回忆实数的基本性质.(此时学生对这一名词肯定感到生疏,老师在黑板上应很快给出数轴)[教师精讲]师若点A对应的实数为a,点B对应的实数为b,因为点A在点B的左边,所以可得a>b.a >b表示a减去b所得的差是一个大于0的数即正数,即a>b⇒a-b>0.它的逆命题是否正确?生显然正确.师类似地,如果a<b,则a减去b是负数,如果a=b,则a减去b等于0,它们的逆命题也正确.一般地,a>b⇒a-b>0;a=b⇒a-b=0;a<b⇒a-b<0.师这就是实数的基本性质的一部分,还有任意两个正数的和与积都是正数等.等价符号左边不等式反映的是实数的大小顺序,右边不等式反映的则是实数的运算性质,合起来就成为实数的运算性质与大小顺序之间的关系,它是不等式这一章的理论基础,是证明不等式以及解不等式的主要依据.师由实数的基本性质可知,我们如何比较两个实数的大小呢?生只要考察它们的差就可以了.师很好.请同学们思考下面这个问题.(此时,老师用投影仪给出问题)[合作探究]【问题1】已知x≠0,比较(x2+1)2与x4+x2+1的大小.(问题是数学研究的核心,此处以问题展示的形式来培养学生的问题意识与探究意识)(让学生板演,老师根据学生的完成情况作点评)解:(x2+1)2-x4-x2-1=x4+2x2+1-x4-x2-1=x2,由x≠0,得x2>0,从而(x2+1)2>x4+x2+1.(学生对x≠0,得x2>0在说理过程中往往会忽略)师下面我们来看一组比较复杂的问题,请大家都来开动脑筋,认真审题,仔细分析.(让学生板演,老师根据学生的完成情况作点评)师同学们完成得很好,证明不等式时,应注意有理有据、严谨细致,还应条理清晰.比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.(此时,老师用投影仪给出下列问题)课堂小结常用的不等式的基本性质及证明:(1)a>b,b>c ⇒a>c;a>b,b>c ⇒a-b>0,b-c>0⇒(a-b)+(b-c)>0⇒a-c>0a>c.(2)a>b a+c>b+c;a>b⇒a-b>0⇒(a-b)+(c-c)>0⇒(a+c)-(b+c)>0⇒a+c>b+c.(3)a>b,c>0⇒ac>bc;a>b,c>0⇒a-b>0,c>0⇒(a-b)c>0⇒ac-bc>0⇒ac>bc.(4)a>b,c<0⇒ac<bc.a>b,c<0⇒a-b>0,c<0⇒(a-b)c<0⇒ac-bc<0⇒ac<bc.布置作业课本第84页习题3.1A组3,B组1.(3)(4)、2.不等关系与不等式(二)引入方法引导方法归纳不等式和实数的基本性质实例剖析(知识方法应用)小结示范解题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档