基于MATLAB的图像处理的课程设计论文

合集下载

基于matlab的数字图像处理本科毕业设计论文

基于matlab的数字图像处理本科毕业设计论文

毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

毕业论文-基于MATLAB的数字图像处理

毕业论文-基于MATLAB的数字图像处理

摘要数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成为可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。

数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术.数字图像处理技术已经在各个领域上都有了比较广泛的应用。

图像处理的信息量很大,对处理速度的要求也比较高。

MATLAB强大的运算和图形展示功能,使图像处理变得更加的简单和直观。

本文介绍了MATLAB 语言的特点,基于MATLAB 的数字图像处理环境,介绍了如何利用MATLAB及其图像处理工具箱进行数字图像处理,并通过一些例子来说明利用MATLAB图像处理工具箱进行图像处理的方法.主要论述了利用MATLAB实现图像增强、二值图像分析等图像处理。

关键词:MATLAB,数字图像处理,图像增强,二值图像AbstractDigital image processing is an emerging technology,with the development of computer hardware,real—time digital image processing has become possible due to digital image processing algorithms to appear, making it faster and faster processing speed, better for People services 。

Digital image processing is used by some algorithms computer graphics image processing technology. Digital image processing technology has been in various areas have a relatively wide range of applications。

基于matlab编程的数字图像处理论文

基于matlab编程的数字图像处理论文

基于matlab编程的数字图像处理论文郑州航空工业管理学院结课设计(论文)2008 级电子信息工程专业 0813083 班级课程数字图像处理姓名苏冰山学号 081308322指导教师陈宇职称讲师二О一一年十月十七一、引言数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成为可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。

数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。

数字图像处理技术已经在各个领域上都有了比较广泛的应用。

图像处理的信息量很大,对处理速度的要求也比较高。

MATLAB强大的运算和图形展示功能,使图像处理变得更加的简单和直观。

本次结课设计基于MATLAB的数字图像处理环境,利用MATLAB及其图像处理工具箱进行数字图像处理,并通过一些例子来说明利用MATLAB图像处理工具箱进行图像处理的方法。

论述了利用MATLAB实现灰度图像增强技术研究与设计。

二、设计内容此次设计探究了灰度图像增强技术在MATLAB的数字图像处理环境下的实现,主要包括空域变换增强和空域滤波增强的基本原理及编程实现。

涉及对比度的增强、图像求反、线性平滑滤波器、非线性平滑滤波器、低通滤波、高通滤波的程序算法实现及运行后的效果图。

灰度图像增强图像增强是一类基本的图像处理技术,其目的是对图像进行加工,以得到对具体应用来说视觉效果更好、更有用的图像。

这里的好和有用要因具体的应用目的和要求而异,并且所需的具体增强技术也可不同。

目前常用的增强技术根据其处理所进行的空间不同,可分为基于图像域的方法和基于变化域的方法。

第一类,直接在图像所在的空间进行处理,也就是在像素组成的空间里直接对像素进行操作;第二类,在图像的变化域对图像进行间接处理。

空域增强方法可表示为:g(x,y)=EH[f(x,y)]其中f(x,y)和g(x,y)分别为增强前后的图像,EH代表增强操作。

基于matlab编程的数字图像处理论文

基于matlab编程的数字图像处理论文

基于matlab编程的数字图像处理论文郑州航空工业管理学院结课设计(论文)2008 级电子信息工程专业0813083 班级课程数字图像处理姓名苏冰山学号081308322 指导教师陈宇职称讲师二О一一年十月十七一、引言数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成为可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。

数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。

数字图像处理技术已经在各个领域上都有了比较广泛的应用。

图像处理的信息量很大,对处理速度的要求也比较高。

MATLAB强大的运算和图形展示功能,使图像处理变得更加的简单和直观。

本次结课设计基于MATLAB的数字图像处理环境,利用MATLAB及其图像处理工具箱进行数字图像处理,并通过一些例子来说明利用MATLAB图像处理工具箱进行图像处理的方法。

论述了利用MATLAB实现灰度图像增强技术研究与设计。

二、设计内容此次设计探究了灰度图像增强技术在MATLAB的数字图像处理环境下的实现,主要包括空域变换增强和空域滤波增强的基本原理及编程实现。

涉及对比度的增强、图像求反、线性平滑滤波器、非线性平滑滤波器、低通滤波、高通滤波的程序算法实现及运行后的效果图。

灰度图像增强图像增强是一类基本的图像处理技术,其目的是对图像进行加工,以得到对具体应用来说视觉效果更好、更有用的图像。

这里的好和有用要因具体的应用目的和要求而异,并且所需的具体增强技术也可不同。

目前常用的增强技术根据其处理所进行的空间不同,可分为基于图像域的方法和基于变化域的方法。

第一类,直接在图像所在的空间进行处理,也就是在像素组成的空间里直接对像素进行操作;第二类,在图像的变化域对图像进行间接处理。

空域增强方法可表示为:g(x,y)=EH[f(x,y)]其中f(x,y)和g(x,y)分别为增强前后的图像,EH代表增强操作。

基于matlab的简单图像处理

基于matlab的简单图像处理
form=1:h(1)
forn=1:h(2)
I(m+round(n*tan(pi/6)),n,1:h(3))=A(m,n,1:h(3));
end
end
I1=uint8(I);
imshow(I1);
functionjingxiang_Callback(hObject, eventdata, handles)
axes(handles.axes2);
A=handles.img;
h=size(A);
A_fliplr(1:h(1),1:h(2),1:h(3))=A(h(1):-1:1,h(2):-1:1,1:h(3));
imshow(A_fliplr);
functionhuidu_Callback(hObject, eventdata, handles)
(6)修正的阿尔法均值滤波消除噪声
三、总体设计 如图1
图1
四、具体设计
4.1 Menu Editor 如图2
图2
4.2图像的读取与保存
(1)利用“文件”菜单中的“打开”、“保存”分别实现图像的读取与保存。
1)图像的读取 如图3
图3
2)图像的保存 如图4
图4
4.3 直接灰度变换
(1)灰度线性变换
1)负相变换 如图5
ifnargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
ifnargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
'gui_Singleton', gui_Singleton,...

基于MATLAB GUI图像处理系统的设计与实现

基于MATLAB GUI图像处理系统的设计与实现

基于MATLAB GUI图像处理系统的设计与实现1. 引言1.1 介绍本文将基于MATLAB GUI图像处理系统展开研究,并通过对图像处理原理和GUI设计原理的深入探讨,设计出一个功能完善、操作简便的图像处理系统。

本系统将具备图像增强、滤波、边缘检测等常用图像处理功能,并通过界面设计直观方便地展示给用户。

通过本研究,不仅可以展示MATLAB在图像处理领域的强大应用能力,同时也可以为其他领域的图像处理应用提供参考和借鉴。

本文的研究具有重要的理论意义和实际应用意义,为图像处理技术的研究和发展做出了一定的贡献。

1.2 研究背景传统的图像处理软件通常操作繁琐,用户体验不佳,因此开发一款基于MATLAB GUI的图像处理系统显得尤为重要。

GUI(Graphical User Interface)可以提供直观、易操作的界面,使用户能够更方便地进行图像处理操作。

本次研究旨在设计并实现一款基于MATLAB GUI的图像处理系统,以提升用户体验,同时探讨GUI设计原理与系统设计实现的相关技术。

通过对系统功能模块的设计和效果展示,展示系统的实用性和便利性,为图像处理领域的研究和应用提供更好的支持。

1.3 研究意义图像处理是计算机视觉领域的重要研究方向,随着信息技术的发展,图像处理在各个领域都有着广泛的应用。

基于MATLAB GUI图像处理系统的设计与实现,可以更加方便快捷地进行图像处理操作,提高工作效率,降低工作量,为用户提供更好的使用体验。

这种系统具有一定的普适性,可以被广泛应用于不同领域的图像处理工作中。

通过研究MATLAB GUI图像处理系统的设计与实现,可以深入探讨图像处理技术在实际工程中的应用,不仅可以提高图像处理的效率和精度,还可以为相关领域的研究提供支持。

该系统的设计与实现还可以推动图像处理技术的发展,促进相关技术的创新,为未来的研究工作奠定基础。

2. 正文2.1 MATLAB在图像处理中的应用MATLAB在图像处理中被广泛应用,其强大的图像处理功能及丰富的工具箱使得图像处理变得更加简单和高效。

应用图像处理matlab软件课程设计--毕设论文

应用图像处理matlab软件课程设计--毕设论文

MATLAB软件课程设计设计题目:应用图像处理班级:学号:姓名:指导老师:设计时间: 2013年4月8日-4月14日目录摘要 (3)1、概述 (4)2、课程设计及要求 (4)2.1设计要求 (4)2.2设计任务 (5)3、系统设计 (5)3.1系统方案 (5)3.1.1结构框图 (5)3.1.2系统工作原理 (6)3.2单元模块设计 (8)3.2.1单元模块的设计 (8)3.2.2元模块的连接 (16)4、系统调试 (19)4.1系统的连接 (19)4.2系统的运行 (19)4.3运行的结果 (23)4.4故障分析 (33)5、收获、心得 (34)6、参考文献 (35)摘要应用图像处理系统是一种专门针对图像需求处理的软件设计,图像处理包括图像数字化,图像增强和复原,图像数字编码,图像分割,图像识别和图像理解等。

这种系统广泛应用于IT行业,尤其是对图像的识别处理有重要的意义。

本文针对课程设计的要求,分别设计了常用处理模块、图像压缩模块、噪声处理模块、彩色增强模块、灰度变换模块等五大单元模块。

基本实现了图像处理功能的需求。

常用处理模块设计了图像的旋转、底片效果、边缘信息、运动模糊处理功能,运用imrotate,imcomplement,edge,fspecial等函数来实现。

针对课程任务内容一,设计了图像压缩模块。

采用了DCT变换、小波变换和双线插值等方法,实现了图片压缩的效果。

针对课程任务内容二,设计了图像增强模块。

采用了RGB分量、亮度切割和伪彩色等方法,实现了对图像彩色的增强效果。

针对课程任务内容三,设计了灰度变换模块。

采用了直方图均衡化和规定化等方法,实现了对图像灰度变换的效果。

针对课程任务内容四,设计了噪声处理模块。

运用imnoise函数,添加了高斯、椒盐、乘性等三种噪声。

设计了均值滤波、中值滤波、维纳滤波、线性滤波等滤波器,实现了对加入噪声图像滤波的功能。

其中,中值滤波对椒盐噪声的滤波效果好一点。

基于Matlab的数字图像处理系统设计

基于Matlab的数字图像处理系统设计

基于Matlab的数字图像处理系统设计论文(设计)题目:基于MATLAB的数字图像处理系统设计姓名宋立涛学号201211867学院信息学院专业电子与通信工程年级2012级2013年6月16日基于MATLAB的数字图像处理系统设计摘要MATLAB 作为国内外流行的数字计算软件,具有强大的图像处理功能,界面简洁,操作直观,容易上手,而且是图像处理系统的理想开发工具。

笔者阐述了一种基于MATLAB的数字图像处理系统设计,其中包括图像处理领域的大部分算法,运用MATLAB 的图像处理工具箱对算法进行了实现,论述了利用系统进行图像显示、图形表换及图像处理过程,系统支持索引图像、灰度图像、二值图像、RGB 图像等图像类型;支持BMP、GIF、JPEG、TIFF、PNG 等图像文件格式的读,写和显示。

上述功能均是在MATLAB 语言的基础上,编写代码实现的。

这些功能在日常生活中有很强的应用价值,对于运算量大、过程复杂、速度慢的功能,利用MATLAB 可以既能快速得到数据结果,又能得到比较直观的图示。

关键词:MATLAB 数字图像处理图像处理工具箱图像变换第一章绪论1.1 研究目的及意义图像信息是人类获得外界信息的主要来源,近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题,由此可见图像信息的重要性,数字图像处理技术将会伴随着未来信息领域技术的发展,更加深入到生产和科研活动中,成为人类生产和生活中必不可少的内容。

MATLAB 软件不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,是近几年来在国内外广泛流行的一种可视化科学计算软件。

MATLAB 语言是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,比Basic、Fortan、C 等高级语言更加接近我们书写计算公式的思维方式,用MATLAB 编写程序犹如在演算纸上排列出公式与求解问题一样。

毕业设计(论文)-基于MATLAB的医学图像处理

毕业设计(论文)-基于MATLAB的医学图像处理

届别 2012学号 ************毕业设计(论文)基于MATLAB的医学图像处理姓名系别、专业计算机系通信工程专业导师姓名、职称完成时间 2012年3月10日基于MATLAB的医学图像处理摘要本文针对基于MATLAB的医学图像处理环境,对其结构、特点及应用做了介绍。

重点阐述了多种算法综合运用解决特定应用环境下的图像处理,如用直方图均衡进行图像增强,通过形态学方法进行图像特征提取与分析,利用傅里叶变换进行图像分析等。

目的:改善医学图像质量,使低对比度的图像得到增强。

方法:利用MATLAB工具箱函数,采用灰度直方图均衡化和灰度直方图规定化的方法对一幅X线图像进行增强处理,并比较它们的增强效果。

结果:用直方图均衡化和规定的算法,将原始图像密集的灰度分布变得比较稀疏,处理后的图像视觉效果得以改善。

直方图均衡化对于局部细节不显著,而直方图规定化则不易观察到的细节变得清晰。

结论:使用MATLAB工具箱大大简化了编程工作,为医学图像处理提供了一种技术平台。

直方图规定化法处理医学图像局部细节方面好于均衡化。

关键词:MATLAB,规定化,均衡化,图像处理,图像增强THE REALIZATION OF IMAGE PROCESSING BASED ONMATLABABSTRACTThe paper presents a digital image processing environment which is based on MATLAB,and introduce its structure,characteristics and application.It focuses on the comprehensive using of a variety of algorithms to solve image processing problems in specific application environment,such as using histogram equalization for image enhancement ,using the morphological approach for image feature extraction and analysis, using fourier transform for analysis image and so on. AIM: To improve the quality of medical image by enhancing the lowcontrast details. METHODS: Two processing methods, the graylevel histogram equalization and the graylevel histogram regulation, were applied to enhance an Xray image and their enhancement effects were compared by using Matlab toolbox functions. RESULTS: By the two means of algorithmhistogram equalization or regulation, the dense graylevel distribution of the original image became sparse, and the output image was refined. The regulation method strengthened the difficultly observed details, while the equalization method improved less the local details of image. CONCLUSION: Matlab toolbox is helpful for simplifying the programming and provides a platform for medical image processing. The regulation method is better than the equalization method in presenting the local details of medical images.KEYWORDS: equalization,regulation,algorithms,MATLAB,image enhancement目录摘要 (2)第1章系统简介 (7)§1.1 综述 (7)§1.2 课题背景 (7)§1.2.1 MATLAB语言背景 (7)§1.3本文主要研究工作 (9)第2章系统实现 (10)§2.1 调用程序设计原理 (10)§2.1.1 创建和获取ActiveX自动化对象的过程 (10)§2.1.2 MATLAB对象的一些属性和方法[8] (10)§2.2 调用MATLAB程序的实现 (11)§2.2.1图片的缩放处理 (11)§2.2.2 图片的旋转处理 (11)§2.2.3 图像的负片效果 (11)§2.2.4 图像的剪切处理 (11)§2.2.5 图像的灰度变换 (12)§2.2.6 图像的对比度增强 (12)§2.2.7 图像显示直方图 (12)§2.2.8 图像直方图均衡化 (13)§2.2.9 图像消噪 (14)§2.2.10 图像边缘检测 (15)§2.2.11 图像平滑处理 (15)§2.2.12 图像锐化处理 (16)第3章系统调试 (18)§3.1 软件设计说明 (18)§3.2 软件使用说明 (18)§3.3 软件测试分析 (19)§3.3.1 图像旋转测试 (19)§3.3.2 图像剪切测试 (19)§3.3.3 图像负片效果测试 (20)§3.3.4 灰度变换测试 (20)§3.3.5 直方图均衡化测试 (22)§3.3.6 锐化效果测试 (23)§3.3.7 边缘检测效果测试 (24)结论 (27)参考文献 (28)致谢 (29)附录 (30)前言图像处理系统(Image Processing System),用计算机对图像进行分析,以达到所需效果的技术,又称影像处理。

基于MATLAB的数字图像处理系统的研究毕业设计论文

基于MATLAB的数字图像处理系统的研究毕业设计论文

摘要数字图像处理是近几年来新兴的研究领域,受到越来越多的学者的高度重视。

因为图像在生成、传递、压缩、储存、变换等诸多过程中,会受到不利成分的影响。

比方分别在不一样的照明情况下操作,会引起图像亮度的转变;操作设备时,不可避免地会发生抖动,这样做的话就会引起图像位移;捕获到的图像对比度较低或是位置不契合等等。

所以想要获得清晰的图像就要对图像进行数字图像的处理。

本文主要从图像增强、图像复原、图像编码的Matlab仿真以及GUI板块的设计四个角度进行研究。

在本文中图像增强主要深入讨论了使用灰度变换函数去拉伸图像的对比度,使用直方图均衡化去合理分配图像的灰度,使用空域滤波和频域滤波使图像变得越发清晰。

图像编码主要简述的就是编码冗余、空间冗余以及不相关信息,通过以上图像编码的三种方法可以减小图片的冗余度和加大数据压缩比等等。

图像复原主要概述的是维纳滤波、最小二乘法滤波以及L-R滤波三种滤波方法,这三种滤波方式可以达到过滤掉图像中模糊部分的目的。

通过可视化界面达到了将以上三种图像处理方法结合在一起的目的。

在GUI 界面中,只要选定一种处理方式并按下“开始”按钮就能够执行相应的处理方法,而且会同时得到原始图像与处理后的图像。

关键字:图像增强;图像压缩;图像复原;Matlab;GUIAbstractDigital image processing is the emerging research field in recent years, by more and more scholars attach great importance.Because the image in the generation, transmission, compression, storage, transformation and many other processes, will be affected by the adverse effects.For example, in the case of different lighting operations, will cause the image brightness changes; operating equipment, it will inevitably jitter, so it will cause image displacement;The captured image is low or the position is not fit and so on. So you want to get a clear image of the image is necessary to digital image processing.This paper mainly studies image enhancement, image restoration, Matlab simulation of image coding and GUI design.In this paper, the image enhancement mainly discusses the contrast of using the gray scale transformation function to stretch the image, and uses the histogram equalization to rationally distribute the gray scale of the image. The use of spatial filtering and frequency domain filtering makes the image become more and more clear.Image coding is mainly described in the coding redundancy, spatial redundancy and irrelevant information, through the above image encoding of the three methods can reduce the redundancy of the picture and increase the data compression ratio and so on.Image restoration is mainly summarized in the Wiener filter, least squares filtering and L-R filter three filtering methods, these three filtering methods can be filtered to filter out the purpose of the fuzzy part of the image.Through the visual interface to achieve the above three kinds of image processing methods together for the purpose. In the GUI interface, as long as the selection of a processing method and press the "start" button to be able to perform the appropriate processing methods, and will also get the original image and processed images.Key words: image enhancement; image compression; image restoration; Matlab; GUI第1章绪论1.1 课题研究背景及意义当今这个时代,信息传播迅速,大家也从各种渠道上获取信息,时刻掌握世界的动态。

基于MATLAB软件的图像处理技术

基于MATLAB软件的图像处理技术

基于MATLAB软件的图像处理技术摘要摘要:在图像工程中,图像处理、图像分析、图像理解是其研究的三个重要层次。

图像处理是图像u前发展的主体技术,它强调的是图形之间的转换。

图像的灰度处理是图像处理的最基础理论之一,本文基于MATLAB软件进行编程,探讨了通过读取灰度图像,并对灰度图像进行处理等过程,完成图像灰度处理的整个过程及其实现的方法。

关键词:图像处理;形态学处理;开运算AbstractAbstract: In the imagery project, the imagery processing, the imagery analysis and the imagery understood are three important levels in its research・ With the development of the image, the imagery processing has become the main technology, it emphasizes the transformstion between the graphs・ The imagery gradation processing is one of most basic theories of the imagery processing, the programming in this article bases on the MATLAB・ The process of the gradation image reading and the processing to the gradation image, also the entire process, the completing of the image gradation processing and its realization method are deeply discussed in this article・Key words: Image; Gradation image; Imagery processing; Gradation processingII摘要 (I)Abstract (II)第1章绪论 (1)1.1课题背景 (1)1.2立题的目的和意义 (2)1.3设计题目可行性及存在的困难和解决方法 (2)1.4主要技术指标 (3)第2章数学形态学基础 (4)2.1数学形态学 (4)2. 2形态学基础运算 (4)2.3形态学算法 (4)2.4本章小结 (5)第3章边缘提取技术 (6)3.1 CANNY边缘检测 (6)3. 2 Prewitt 算子 (8)3. 3 SOBEL 算子 (9)3.4 ROBERT 算子 (9)3.5 LAPLACIAN 算子 (10)3.6边缘检测结果比较 (10)3.7本章小结 (10)第四章实验结果及分析 (11)4.1实验环境 (11)4.1形态学开运算 (13)4.2灰度人0»路径识别 (15)4.3实验结果分析 (19)4.4本章小结 (20)结论 (21)致谢................................................... 错误!未定义书签。

基于matlab的数字图像处理仿真分析毕业论文[管理资料]

基于matlab的数字图像处理仿真分析毕业论文[管理资料]

摘要数字图像处理是一门新兴技术,随着计算机硬件的发展,其处理能力的不断增强,数字图像的实时处理已经成为可能。

由于数字图像处理的各种算法的出现,图像处理学科在飞速发展的同时逐渐向其他学科交叉渗透。

数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。

这种处理技术已经在各个领域上都有了比较广泛的应用。

MATLAB是一种优秀的数学工具,具有强大的运算功能和图形展示功能,使图像处理变得更加的简单和直观。

本文介绍了MATLAB语言的特点,包括MATLAB软件的简介和基本使用方法说明。

介绍了基于MATLAB图像处理的实现和仿真,包含图像的编辑、图像的变形、噪声与滤波以及频谱分析等。

关键词: MATLAB;数字图像处理AbstractDigital image processing is an emerging technology, with the development of computer hardware and the processing capacity, real-time digital image processing has become possible. Due to digital image processing algorithms to appear, with the rapid development of the subject of image processing, it has also gradually permeated to other subjects. Digital image processing is used by some algorithms computer graphics image processing technology, and it has been in many areas have a wide range of applications. MATLAB is an excellent math tool, and it has powerful computing and graphics display capabilities. So it makes images processing become more simple and intuitive. This paper introduces characteristics of MATLAB Image Processing Toolbox for its digital image processing, including the introduction of MATLAB and its usage. The paper also introduces the simulation and analysis of image processing based on MATLAB, including the level of gray , brightness, scaling, rotating, noise, filtering, and frequency analysis. Key words: MATLAB ;Digital image processing目录一绪论 (1)(一)数字图像处理概述 (1)(二)数字图像处理目的 (1)(三)MATLAB软件基本知识介绍 (2)二基于MATLAB数字图像处理的实现和仿真 (3)(一)使用MATLAB实现对图像的基本运算 (3)1、图像缩放 (3)2、图像裁剪 (5)3、图像灰度调节 (6)(二)使用MATLAB对图像进行旋转变形 (7)(三)噪声 (9)(四)均值滤波 (11)(五)频谱分析 (12)三总结与展望 (14)参考文献 (15)致谢 (16)文献翻译 (17)(一)英文原文 (17)(二)中文翻译 (20)一、绪论(一)数字图像处理概述图像是一种重要的信息源,图像处理的最终目的就是要帮助人类理解信息的内涵。

数字信号处理课程设计--基于Matlab的数字图像处理

数字信号处理课程设计--基于Matlab的数字图像处理

目录摘要 (II)第1章绪论...................................... 错误!未定义书签。

第2章数字图像处理系统设计...................... 错误!未定义书签。

2.1设计概括 (5)2.2文件 (6)2.2.1打开 (6)2.2.2保存 (6)2.2.3退出 (6)2.3编辑 (7)2.3.1灰度 (7)2.3.2亮度 (8)2.3.3截图 (10)2.3.4缩放 (10)2.4旋转 (13)2.4.1上下翻转 (13)2.4.2左右翻转 (14)2.4.3任意角度翻转 (15)2.5噪声 (16)2.6滤波 (17)2.6.1中值滤波 (17)2.6.2自适应滤波 (17)2.6.3 平滑滤波 (18)2.7直方图统计 (19)2.8频谱分析 (21)2.8.1、频谱图 (21)2.8.2通过高通滤波器 (22)2.8.3通过低通滤波器 (23)2.9灰度图像处理 (24)2.9.1二值图像 (24)2.9.2创建索引图像 (25)2.10颜色模型转换 (26)2.11操作界面设计 (27)第3章程序调试及结果分析 (28)总结 (29)参考文献 (30)摘要数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。

在数字图像处理过程中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。

MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台。

它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。

根据它提供的500多个数学和工程函数,工程技术人员和科学工作者可以在它的集成环境中交互或编程以完成各自的计算。

本文利用MATLAB图像处理工具箱,根据需求进行程序的功能分析和界面设计,实现数字图像的灰度处理、亮度处理、截图、缩放、旋转、噪声、滤波、直方图统计、频谱分析、颜色模型转换等。

基于MATLAB图像处理技术及应用-毕业论文

基于MATLAB图像处理技术及应用-毕业论文

基于MATLAB图像处理技术及应用摘要现在,社会信息化以较快的速度不断发展,我们周围环绕着各类数据,人们在各类比较繁杂的数据里面查找自己需要的各类数据,进而确保自己能够按照较快的速度去追上潮流。

由于信息技术能够持续发展,数字式的图像处置技术能够较多的使用到航空航天、生物医学工程这些方面,并且能够使用到工业检测、机器人视觉这些方面,另外能够使用到军事制导和文化艺术等一系列相关的领域中。

关于图像处理这门学科,它越来越受到人们的重视,并且具有更加宽阔的前景,至于MATLAB语言,它具有较强的科学运算能力,具备比较灵活的程序设计过程,并且具备优质的图形可视化和界面设计,另外具备和别的程序语言比较便利的接口功能,因此它是目前全球范围内科学界影响力最高、活力最强的软件。

另外MATLAB也叫做矩阵实验室,它具备较强的矩阵运算实力,这是别的语言不能进行比拟的,在图像处置过程中,矩阵运算则是主要部分。

这篇文章经过相关的实例解析,重点介绍了基于Matlab GUI的常见图像处理算法实现。

关键词:MATLAB;平滑处理;图像增强Image processing technology and application based onMATLABAbstractToday, with the rapid development of social informationization, we are surrounded by a variety of information. People are trying to find useful information of their own in a variety of information, so that they can catch up with the trend of the times at a faster pace in order to avoid being OUT of the times. With the continuous development of information technology, digital image processing technology is increasingly used in aerospace, biomedical engineering, industrial testing, robot vision, military guidance, culture and art and other fields. Image processing has increasingly become a noticeable and promising subject. With powerful scientific operation, flexible programming process, high-quality graphics visualization and interface design, and convenient interface functions with other programs and languages, MATLAB has become the most influential and dynamic software in the international scientific community. Matrix Lab is also called Matrix Lab. Its powerful matrix operation ability is incomparable with other languages. Matrix operation is the basis of image processing. This paper focuses on the implementation of common image processing algorithms based on MATLAB GUI through an example analysis.Key words: MATLAB; smoothing; image enhancement目录摘要 (I)Abstract (II)1 绪论 (5)1.1研究背景及意义 (5)1.2研究现状 (5)2 相关概述 (6)2.1 MATLAB特点 (6)2.2 MATLAB GUI技术 (6)2.3数字图像处理的基本内容 (7)2.3.1基本概念 (7)2.3.2数字图像处理的主要内容 (7)2.4数字图像处理的特点和应用 (8)2.4.1数字图像处理的特点 (8)2.4.2数字图像处理的应用 (9)3 图像分割 (10)3.1 阈值分割原理 (10)3.1.1直方图阈值分割 (11)3.1.2 类间方差阈值分割 (12)3.1.3 最大熵阈值分割 (12)3.1.4 模糊阈值分割 (13)3.2 基于区域的分割 (13)3.2.1 区域增长 (13)3.3 邻域平均法 (17)3.4 中值滤波法 (17)4 图像分析与描述 (18)4.1 图像目标的特征提取 (18)4.1.1 幅度特征 (18)4.1.2 统计特征 (18)4.2 基于区域的特征提取 (20)4.2.1 区域面积 (20)4.2.2 区域质心 (21)4.2.3 区域方向 (21)4.2.4 区域周长 (22)5 运用MATLAB实现图像中区域特征检测 (23)5.1 灰度处理 (23)5.1.1 程序分析 (23)5.1.2结果分析 (23)5.2 用区域生长法分割图像 (24)5.2.1 程序分析 (24)5.2.2 结果分析 (24)5.3 图像区域基本特征计算 (26)5.3.1 程序分析 (26)5.3.2 结果分析 (26)总结 (29)参考文献 (30)致谢 (32)1 绪论1.1研究背景及意义科学技术持续发展并且持续进行创新,这样能够为数字式的图像处置技术提供更多的拓展空间,从而令它的使用范围持续增大,进而推动数字式的图像处置技术获得深层面的发展,并且这种发展比较普遍且比较快速。

《Matlab数字图像处理》课程论文

《Matlab数字图像处理》课程论文

Matlab数字图像处理课程论文匀速直线运动模糊图像的复原1引言运动模糊图像复原是图像复原技术中十分重要的一个分支,在生产生活领域、航天领域、智能交通领域都有着广泛的应用。

由于匀速直线运动模糊是具有普遍意义的一种退化方式,本文针对匀速直线运动模糊图像的复原进行了系统的研究,建立恰当的退化模型和准确的辨识模糊参数是良好复原退化图像的关键。

本文首先根据匀速直线运动模糊图像的特点建立了相应的退化模型,得出其点扩散函数是由模糊长度和模糊角度确定的。

对于匀速直线运动模糊图像,其频谱图像中存在平行排布的暗条纹,这些暗条纹的生成与退化图像的模糊参数存在特定的关系。

本文通过对匀速运动模糊图像的频谱出现平行暗条纹的原因的分析,推导了匀速运动模糊图像点扩散函数的离散域表达式,找到了退化图像频谱暗条纹方向和间距与退化图像模糊参数之间的关系式。

2研究进展随着计算机技术的不断发展,与之相关的学科也随之兴盛起来。

譬如:利用matlab处理图像等。

其中多帧运动模糊图像复原方法的研究就是其研究方向之一。

下面重点介绍多帧运动模糊图像复原方法的研究。

0) 引言电视监控作为安全防范系统的重要组成部分之一,对于惩治犯罪、维护社会稳定起着极为重要作用。

然而,电视影像在形成、传输和记录过程中,由于成像系统、传输介质和记录设备的完善,都会造成影像的质量下降,即图像退化。

其中,摄像设备与景物之间相对运动引起的模图像是一种典型的退化图像。

在图像检验工作中,我们常常遇到不同形式的运动模糊图像处理问题,诸如监控录像中犯罪嫌疑人模糊相貌辨别、交通监测中违章车辆模糊牌照识别等等。

运动模糊图像的复原直接影响着案件的侦破和审理工作。

目前,针对电视摄像的特点,多帧融合理技术已经成为运动模糊图像复原的主要方法。

1) 问题的提出在数字图像处理过程中,需要利用计算机图像采集装置将录象带上记录的模拟图像采样、量化成数字图像,以便于计算机分析和处理。

多帧数字图像可以表示成空间域内取值范围为[O,A]的实函数:0≤f(X,Y,tk)≤A;k=1,2,⋯,M (1)式中,变量X,Y是象素的位置坐标,X,Y=1,2,3,⋯,N 是图像的水平宽度及垂直宽度,t 是摄取第k帧图像的时刻,M是图像的帧数,对于8位量化图像,A的取值是255,即该图像为256级的灰度图像。

matlab用于图像处理课程设计

matlab用于图像处理课程设计

matlab用于图像处理课程设计一、教学目标本课程的目标是使学生掌握MATLAB在图像处理方面的基本知识和技能,能够运用MATLAB进行简单的图像处理操作。

通过本课程的学习,学生应能够理解图像处理的基本概念,掌握MATLAB图像处理工具箱的使用,学会运用MATLAB进行图像处理的基本操作,如图像读取、显示、转换、滤波、边缘检测等。

同时,通过实践操作,学生应能够培养解决问题的能力和创新思维,提高对图像处理的兴趣和热情。

二、教学内容本课程的教学内容主要包括MATLAB图像处理的基本概念和操作。

首先,将介绍MATLAB图像处理工具箱的基本功能和用法,使学生能够熟悉MATLAB图像处理环境。

然后,将讲解图像处理的基本概念和原理,如图像读取、显示、转换等。

接着,将介绍图像处理的基本操作,如滤波、边缘检测、形态学处理等。

最后,将结合实际案例,使学生能够运用所学知识和技能解决实际问题。

三、教学方法为了提高教学效果,将采用多种教学方法相结合的方式进行教学。

首先,将采用讲授法,为学生讲解图像处理的基本概念和原理,使学生能够理解并掌握相关知识。

其次,将采用讨论法,引导学生进行思考和讨论,培养学生的创新思维和解决问题的能力。

同时,将采用案例分析法,通过分析实际案例,使学生能够将所学知识和技能运用到实际问题中。

最后,将采用实验法,让学生亲自动手进行实验操作,巩固所学知识和技能。

四、教学资源为了支持教学内容和教学方法的实施,将准备适当的教学资源。

教材方面,将选用《MATLAB图像处理》一书,作为学生学习的主要参考资料。

参考书方面,将推荐《数字图像处理》等相关书籍,供学生深入学习和参考。

多媒体资料方面,将制作PPT课件和教学视频,以直观展示图像处理的基本概念和操作。

实验设备方面,将准备计算机和MATLAB软件,供学生进行实验操作。

同时,还将提供在线资源和网络平台,供学生随时查阅和学习。

五、教学评估本课程的评估方式将包括平时表现、作业和考试三个部分,以全面客观地评估学生的学习成果。

基于MATLAB的图像处理系统的设计与实现

基于MATLAB的图像处理系统的设计与实现

基于MATLAB的图像处理系统的设计与实现基于MATLAB的图像处理系统的设计与实现摘要:随着计算机技术和图像处理技术的不断发展,图像处理系统在许多领域中得到了广泛应用。

本文以MATLAB为平台,设计和实现一个基于MATLAB的图像处理系统。

系统包括图像获取模块、图像预处理模块、图像增强模块、图像分割模块、图像特征提取模块和图像显示模块等。

本文通过详细介绍系统的各模块功能和实现流程,展示了该图像处理系统在图像处理方面的优势和应用前景。

关键词:图像处理、MATLAB、图像获取、图像预处理、图像增强、图像分割、特征提取1. 引言图像处理在生活中得到广泛应用,如医学影像、安防监控和数字图书馆等。

随着计算机性能的不断提高,图像处理算法的发展和成熟,图像处理系统的性能和功能需求也不断提高。

基于MATLAB的图像处理系统具有开发简单、易用性高和功能强大等优点,被广泛应用于学术研究和工程实践中。

2. 系统设计2.1 图像获取模块图像获取是图像处理系统的起始模块,通过连接摄像头或导入图像文件,获取待处理的图像数据。

MATLAB提供了丰富的图像获取函数,如imread()函数用于读取图像文件,videoinput()函数用于连接摄像头获取实时视频流。

2.2 图像预处理模块图像预处理模块主要对图像进行几何和灰度转换,以满足后续处理的要求。

几何转换包括图像的旋转、缩放和平移等操作;灰度转换包括图像的灰度化、二值化和色彩平衡等操作。

MATLAB提供了丰富的图像预处理函数,如imrotate()函数用于图像旋转,imresize()函数用于图像缩放,rgb2gray()函数用于将彩色图像转换为灰度图像。

2.3 图像增强模块图像增强模块旨在提高图像的视觉效果和质量。

常见的图像增强方法包括直方图均衡化、滤波和锐化等。

直方图均衡化能够提高图像的对比度,使图像细节更加清晰;滤波能够抑制图像中的噪声,提高图像的清晰度;锐化能够使图像边缘更加清晰,强化图像细节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于MATLAB的图像处理的课程设计论文目录一、课程设计目的 (3)二、课程设计要求 (3)三、课程设计的内容 (3)四、题目分析 (3)五、总体设计 (4)六、具体设计 (5)6.1、文件 (5)6.1.1、打开 (5)6.1.2、保存 (5)6.1.3、退出 (5)6.2、编辑 (5)6.2.1、灰度 (5)6.2.2、亮度 (6)6.2.3、截图 (7)6.2.4、缩放 (7)6.3、旋转 (9)6.3.1、上下翻转 (9)6.3.2、左右翻转 (9)6.3.3任意角度翻转 (9)6.4、噪声 (10)6.5、滤波 (10)6.6、直方图统计 (11)6.7、频谱分析 (12)6.7.1、频谱图 (12)6.7.2、通过高通滤波器........................... .. (12)6.7.3、通过低通滤波器...................................... . (13)6.8、灰度图像处理................................................ . . (14)6.8.1、二值图像……………………………………………….. .146.8.2、创建索引图像............................................. (14)6.9、颜色模型转换 (14)6.10、操作界面设计 (15)七、程序调试及结果分析 (15)八、心得体会 (16)九、参考文献 (17)十、附录 (18)基于MATLAB的图像处理的课程设计摘要:数字图像处理技术是20世纪60年代发展起来的一门新兴学科,随着图像处理理论和方法的进一步完善,使得数字图像处理技术在各个领域得到了广泛应用,并显示出广阔的应用前景。

MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台。

它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。

根据它提供的500多个数学和工程函数,工程技术人员和科学工作者可以在它的集成环境中交互或编程以完成各自的计算。

MATLAB中集成了功能强大的图像处理工具箱。

由于MATLAB语言的语法特征与C语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式,而且这种语言可移植性好、可扩展性强,再加上其中有丰富的图像处理函数,所以MATLAB在图像处理的应用中具有很大的优势。

关键词:MATLAB,数字图像处理一、课程设计目的综合运用MATLAB工具箱实现图像处理的GUI程序设计。

二、课程设计要求1)熟悉和掌握MA TLAB 程序设计方法2)掌握MATLAB GUI 程序设计3)学习和熟悉MA TLAB图像处理工具箱4)学会运用MATLAB工具箱对图像进行处理和分析三、课程设计的内容学习MATLAB GUI程序设计,利用MATLAB图像处理工具箱,设计和实现自己的Photoshop 。

要求:按照软件工程方法,根据需求进行程序的功能分析和界面设计,给出设计详细说明。

然后按照自己拟定的功能要求进行程序设计和调试。

以下几点是程序必须实现的功能。

1)图像的读取和保存。

2)设计图形用户界面,让用户能够对图像进行任意的亮度和对比度变化调整,显示和对比变换前后的图像。

3)设计图形用户界面,让用户能够用鼠标选取图像感兴趣区域,显示和保存该选择区域。

4)编写程序通过最近邻插值和双线性插值等算法将用户所选取的图像区域进行放大和缩小整数倍的操作,并保存,比较几种插值的效果。

5)图像直方图统计和直方图均衡,要求显示直方图统计,比较直方图均衡后的效果。

6)能对图像加入各种噪声,并通过几种滤波算法实现去噪并显示结果。

比较去噪效果。

四、题目分析信息化社会中,计算机在各种信息处理中发挥着重要的作用。

我们可以借助计算机,对数字图像进行处理,以达到不同的效果。

根据题目的要求,除了实现要求的功能外,还有很多的功能需要用到。

(1)、将一个RGB图像转换为灰度图像。

(2)、可以对图像做各种变换,如旋转等。

(3)、有时并不需要图像显示其细节部分,只要其轮廓,这时候不要很高的灰度级。

可以把图像转换为二值图像,进行图像腐蚀,或是创建索引图像等。

(4)、分析一个图像的频谱特征,利用傅里叶变换,将图像从空间域变换到频域,然后进行各种处理,经过高通滤波器或是低通滤波器。

(5)、为了科学地定量描述和使用颜色,人们提出了各种颜色模型,按用途可分为三类:计算颜色模型,视觉颜色模型和工业颜色模型。

有时为了不同的需要,要对颜色模型进行转换。

五、总体设计由于要实现的功能并不是很多,所以在排版的过程中,把各个功能都安排在目录栏上,整体安排如下图所示:同时在调节亮度时,虽然可以同对话框的形式输入调节的比例系数,但是这样效果不好了,不容易调节,因此这里考虑用滚动条来调节。

因此,总体的设计界面如下图所示:六、具体设计6.1、文件6.1.1、打开为了让使用者更方便的使用,所以在设计的时候,通过对话框的形式来选择文件,选择uigetfile函数来实现,uigetfile函数显示一个打开文件对话框,该对话框自动列出当前路径下的目录和文件,由于这个GUI程序的操作对象是图像文件,所以设置这里的缺省后缀名为“.bmp”。

Uigetfile函数的调用格式为[name,path]=yigetfile(…), 在按下对话框中的执行按钮“打开”后,返回选择的文件名和路径,分别保存到“name”和“path”中。

如果按下取消按钮或是发生错误,则返回值是0。

根据返回值的情况,如果是0,则弹出提示错误的对话框,否则,通过imread函数读出图像数据,把图像数据赋值给全局变量handles.img。

6.1.2、保存同样也通过对话框的形式来保存图像数据,通过uigetfile函数选择文件名和路径,用getimage(gca)取出坐标2变换后的图像数据保存到变量i,最后用imwrite 函数,把数据i存到指定的文件。

6.1.3、退出退出比较简单,程序如下所示:clc;close all;close(gcf);6.2、编辑6.2.1、灰度由于RGB图像是三维图像,所以图像数据是一个三维数组,为了显示灰度图像,把三维图像降为二维,可以只取其中的二维数据,实现方法程序为:y=(handles.img(:,:,1)); %当然也可以选择(:,:,2) 或(:,:,3)••••imshow(y);但是这样的话,根据程序所选的不同,图像数据也不同,显示也就不一样。

另一种方法就是,运用rgb2gray函数实现彩色图像到灰度图像的转换。

程序为:y=rgb2gray(handles.img); •••••imshow(y);这个程序只能用于RGB图像转换灰度图像,当原始图像本来就是灰度图像时,运行该程序时就会出错,但是使用者在使用时有时并不知道这些,为了使该程序更加完善,应该在使用者原先图像时灰度图像时使用该功能时,应该要显示提示类信息。

所以在开始时应该要有一个RGB图像或是灰度图像的判断过程。

完整的程序如下:if isrgb(handles.img)y=rgb2gray(handles.img);•••••imshow(y);elsemsgbox('这已经是灰度图像','转换失败');end如果原图是RGB,执行该操作的结果如下图:如果原图本身已经是灰度图像了,执行该操作弹出如右图所示的提示对话框6.2.2、亮度用imadjust函数,其调用格式如下:g=imadust(f,[low_in high_in],[low_out high_out]),gamma)gamma 表示映射性质,默认值是1 表示线性映射。

由于该函数有五个参数需要输入,为了方便用户改变,所以这里设计一个输入对话框,用户通过对话框把五个参数赋值给[low_in high_in],[low_out high_out],gamma这五个参数,如下一组命令建立了如图所示的输入对话框:prompt={'输入参数1','输入参数2','输入gamma'};defans={'[0 0.7]','[0 1]','1'};p=inputdlg(prompt,'输入参数',1,defans);但是,这种方法并不能很好的让用户能够对图像进行任意的亮度和对比度变化调整,有时并不事先知道参数的值要多少,也不关心,而是任意调节的,直到满意为止。

所以应该用滑动条来调节图像的亮度和对比度,这样更适合用户的使用习惯。

由于imadjust函数有五个参数,所以原则上需要设计五个滑动条来调节对比度,这对用户来说显然比较麻烦,因此在设计的时候固定其中的三个参数,通过调节两个参数的值来改变亮度和对比度。

[0 handles.beta],[0 1],handles.gm,这里的变量handles.beta和handles.gm就通过滑动条得到,滑动条设计如下图:亮度调整的tag名为ld,取值范围0~1,gamma值的tag名为gamma,取值范围为0~5。

获取滑动条参数的程序如下:handles.beta=get(handles.ld,'value');handles.gm=get(handles.gamma,'value');执行该操作,调节滑动条到上图所示位置,结果如下图:6.2.3、截图在MATLAB中,用函数imcrop实现对图像的剪切操作。

该操作剪切的是图像中的一个矩形子图,用户可以通过参数指定这个矩形四个顶点的坐标,也可以交互地用鼠标选取这个矩形。

Imcrop函数的调用格式如下:y=imcrop(handles.img);不管handles.img是三维的还是二维数据,该函数都能进行操作。

下图就是对三维图像的截图:6.2.4、缩放在MATLAB中,用函数imresize来实现对图像的放大或缩小。

插值方法可选用三种方法,最近邻插值,双线性插值,双三次插值。

该函数的调用格式如下:B=imresize(A,m,method)其中:参数method用于指定插值的方法,可选的值为“nearest”(最近邻法),“bilinear”(双线性插值)、“bicubic”(双三次插值),缺省值为“nearest”。

B=imresizee(A.m,method)表示返回原图A的m倍放大图像(m小于1时实际上是缩小);下图就是采用邻近插值法的放大和缩小图像,参数值保持默认设置:虽然处理后看不出放大的效果,这是由于坐标轴限制的原因,如果把处理后的图片保存起来,再把处理后的文件打开,就可以看到比较明显的放大效果。

相关文档
最新文档