第六章-光的吸收、散射和色散
光的吸收、色散和散射_图文
![光的吸收、色散和散射_图文](https://img.taocdn.com/s3/m/5ba627a0d5bbfd0a795673c1.png)
§6.2 光的色散
光的色散(分光)现象
由折射定律可知:折射率n是随波长分布的:n(λ) 色散率:单位波长差所产生折射率差,是介质色散程度的度量
(6-21)
或
(6-22)
一、正常色散 折射率随波长增加而减小的色散 ---正常色散
电子离开平衡位置的距离 若单位体积内有N个原子,则单位体积内的平均电偶极矩
(6-2)
2、第二牛顿定律F=ma:受迫振动的电子的运动方程为
受迫力
阻尼力 准弹性力
光波电场强度
将电子振动的运动方程改写为
(6-5)
解方程得
---光与介质相互作用经典理论的基本方程
代入(6-2)式得
由 电极化率 是复数,可写为 并将(6-6)与(6-7)式对照可得
吸收带内为反常色散区 吸收带之间均为正常色散区
钠蒸气由底部向顶部扩散 管内蒸气密度由顶部向底部逐渐增加 这相当于一蒸气棱镜其厚度由上向下增加
分两部分:1)S1,L1,L2,S2 准直聚焦, S1在S2上成像 2)S2,L3,P,L4 分光系统
当管子未加热时,气体均匀 S1的白光成像于S2后, 在分光仪焦面上得一窄的水平光谱带
1、按电磁理论:每个次波的振幅与它频率的平方成正比,光强与振幅成正比 所以散射光强度与频率的四次方成正比
∝∝
∴短波长的光比长波长的光散射更多
解释大气现象: ①为什么天空呈光亮
③中午太阳呈白色
②天空为什么呈蓝色 ④旭日和夕阳呈红色
2、散射光强分布
∝
3、散射光是偏振光
二、米散射 理论尚不成熟,仅适用于导电粒子
第六章_光的吸收、散射与色散
![第六章_光的吸收、散射与色散](https://img.taocdn.com/s3/m/eb8f7061f61fb7360b4c65d9.png)
是散射光方向与入射光方向之间的夹角。
可见,散射光 强的分布是对 于光的传播方 向及垂直于光 的传播方向是 对称的。
散射光方向
入射光方向
虽然从光源发出的光是自然光,但从正侧方用检偏器检 查发现,散射光是线偏振的,沿着斜侧面观察发现是部 分偏振光,只有正对着入射方向观察时,透射光才是自 然光。
数,其数值由实验数据来确定,当波长变化范围不大
时,科希公式可只取前两项,即
n
A
B
2
则介质的色散率为:
dn
d
2B
3
A、B均为正值,上式表明,折射率和色散率的数值 都随波长的增加而减小,当发生正常色散时,介质的 色散率小于零。
二. 反常色散
对介质有强烈吸收的波段称为吸收带。实验表明,在强 烈吸收的波段,色散曲线的形状与正常色散曲线大不相 同。
当光通过介质时,不仅介质的吸收使透射光强减弱,由于 光的散射也使使射入介质的光强按指数形式衰减,因此, 穿过厚度为l 的介质透射光强为:
I I0e( )
为吸收系数,为散射系数,+就称为衰减系数。在 很多情况下,和中一个往往比另一个小很多,因而可 以忽略。
三. 散射光强的角分布和偏振态
实验表明,散射光的强度随光的方向而变化,自然 光入射时,散射光强满足下式:
假设入射光是线偏振的,传播方向沿着Z轴,如图。设
在各向同性的介质中有一粒子P。
当光与粒子相遇时,使P作
x
受迫振动,所形成的电矢量
也平行于X轴。由此产生的
次波为球面波。光波又是横
波,振动方向与传播方向垂
直。在各个方向的振幅应等 y
于最大振幅在相应方向的投
影。
第六章光的色散吸收散射瑞利散射米氏散射光偏振性
![第六章光的色散吸收散射瑞利散射米氏散射光偏振性](https://img.taocdn.com/s3/m/f1959b731eb91a37f1115cf3.png)
米氏散射和瑞利散射的规律不同,它产生的散射与波长的 关系不大,几乎所有波长的光都含有,所以看起来是白色光。 也是是否看到蓝天白云的根本原因。也是人工降雨的理论基础。
8
黄山风景山中的雾气实际上是悬浮在空气中的小液滴,是 一种很理想的散射源。由于液滴的尺寸比光波波长大得多,主 要是米氏散射,散射光呈白色。
10
一幢大楼晚上楼顶上的几束强光刺破夜空,能看到这几 道光束,就是散射的作用。如果城市上空的空气不干净,悬 浮尘埃越多,散射就越强,光束就会显得很亮。反之,光束 就会显得很淡。如果晚上基本上看不到这几道光束了,也许 白天城市就会有蓝色的天空了。 思考:如果没有空气,天空又会是什么样的呢?
11
4 散射光的偏振性
4
3 瑞利散射
把线度小于光的波长的微粒对入射光的散射, 称为瑞利散射(Rayleigh scattering)。 瑞利散射不改变原入射光的频率。 1 I散 4
瑞利散射时,由于蓝光波长较短,其散射强度就比波长 较长的红光强,因此散射光中蓝光的成份较多。
5
注意画面上的香火形成的烟雾呈现出一种浅蓝色这是由于 组成烟雾的碳粒子线度非常小,由这些烟雾产生的散射光符合 瑞利散射的条件,因此散射光中的蓝光成份比红光成份强得多。 我们平时所说的“袅袅青烟。”说是就是这种瑞利散射所产生 的现象。
§6.3 光的散射 问:天空为什么是蓝的?旭日和夕阳为什么是红 的,而中午的太阳看起来又是白的?云为什么是 白的?如果没有空气,天空又会是什么样的呢?
1 光的散射现象
当光束通过均匀的透明介质时,从侧面是难以看到光 的。但当光束通过不均匀的透明介质时,则从各个方向都 可以看到光,这是介质中的不均匀性使光线朝四面八方散 射的结果,这种现象称为光的散射。 例如,当一束太阳光从窗外射进室内时,我们从侧面 可以看到光线的径迹,就是因为太阳光被空气中的灰尘散 射的缘故。
第六章 光的吸收、散射和色散
![第六章 光的吸收、散射和色散](https://img.taocdn.com/s3/m/b0aa712577232f60dccca13d.png)
第七章 光的吸收、散射和色散光通过物质,其传播情况发生变化,有两个方面:一、光强随光深入物质而减弱:光能或被物质吸收,或向各个方向散射所造成。
二、物质中光的传速度小于真空中的,且随频率变化,光的色散。
这都是光与物质相互作用引起的,实质上是光和原子中的电子相互作用引起的。
§1 电偶极辐射对反射、折射现象的解释一、电偶极子模型(理想模型)用一组简谐振子来代替实际物质的分子,每一振子可认为是一个电偶极子,由两个电量相等,符号相反的带电粒子组成,电偶极子之间有准弹性力作用,能作简谐振动。
两种振子:原子内部电荷的运动(电子振子):核假定不参加运动,准弹力的中心 分子或原子电荷的振动和整个分子的转动(分子振子): 质量较大的一个粒子可认为不参加运动 经典解释模型:P电偶极子,向外辐射电磁波t A Z eZ P ωcos ==:Z 离开原点的距离电动力学证明,电偶极子辐射电磁波矢 )(c o s s i n 4220c R t Re eA E -=ωθωπεcE H 0μ=R :观察点与偶极子的距离201E cEH H E S μ==⨯= θπωμμ22242202s i n 321CRA e E c I S o === 由上面式子,光在半径为R 的球面上各点的位相相等(球面波)落后原点CR 。
但振幅则随θ角度,即波的强度I (能流密度)在同一波面上。
分布不均匀,见图I ,2πθ=最大(赤道面上)在两极即偶极子轴线方向上0 ,0==I Q 。
二、电偶极辐射对反射和折射现象的初步解释原子、分子:cm 810- 光波长:cm 510-在固或液物中,可认为在一个光波长范围,分子的排列非常有规律,非常密集,或可以认为是连续的。
总说明:光通过物质,各分子将依次按入射光到达该分子时的位相作受迫振动,在一分了的不同部分,入射光的位相差忽略不计。
各分子受迫振动,依次发出电磁波,所有这些次波保持一定位相关系(同惠一原理中次波)说明1:各向同性均匀物质中的直线传播所有分子振子在各方向有相同的图有频率,分子受迫振动发出次级电磁波将与入射光波迭加,从而改变合成波位相,改变了它的传播速度(位相速度) 说明2:反射与折射电射与折射是由于两种介质界面上分子性质的不连续性所引起,用同样模型可解释。
第六章 光的吸收、散射和色散
![第六章 光的吸收、散射和色散](https://img.taocdn.com/s3/m/52412fc09ec3d5bbfd0a744e.png)
( Absorption、Scattering and Dispersion of Light)
教学目标:掌握朗伯定律、瑞利定律;理解光的吸 收、散射和色散的特点及相互联系;了解有关现象 的经典理论解释。 教学内容: 第一单元(§6.2):光的吸收及规律 第二单元(§6.3):光的散射及规律 第三单元(§6.4):光的色散及规律
第6章 光的吸收、散射和色散
§6.3 光的散射
6.3.4 散射光的强度 1.正常传播方向上的光强: 因为散射分散了正常传 播方向上的光能量,表现为正常传播方向上光强的 减弱,故可用朗伯定律描述:
I I 0e
a s l
ห้องสมุดไป่ตู้
I 0e
l
s 称散射系数
2.散射光的光强:设观察方向与正常传播方向之间的 夹角为 ,散射光强为:
第6章 光的吸收、散射和色散
§6.2 光的吸收
6.2.3 吸收光谱(absorption spectrum) 产生连续光谱的光源在通过选择吸收的介质后,所形 成的光谱为吸收光谱。吸收系数大的位置出现谱线消 失。
发射光谱(emission spectrum):物体发光直接产生的 光谱。
同一物质的发射光谱和吸收光谱之间有严格的对应关 系,物质自身发射哪些波长的光,它就强烈吸收这些 波长的光。 用途:物质的定量分析;气象、天文研究。
6.4.2 色散的特点
物质的色散特性可用角色散率D描述:
D d d
dn d
对棱镜 :
D
A 2 sin 2 A 1 n sin 2
2 2
dn d
表征 n f 关系的存在,即表征物质的色散特性。
第六章光的吸收
![第六章光的吸收](https://img.taocdn.com/s3/m/1b4cdf27647d27284b7351d0.png)
2.朗伯定律
能量观点
dI Idx dI a Idx I dI d I I 0 a dx a 为吸收系数 I I 0 e a d ,
n
dn , 恒定, n d 不同物质, n f ( ) 不同。
反常色散(MN)
总是与光的吸收有密切关系。
例6.3
0
d
a AC ,式中A是一个与浓度无关 稀溶液:
的常量,C为溶液的浓度。
6.2 光的散射(Scattering of Light)
1.规律 光束通过光学性质不均匀的物质时,从侧 向却可以见到光,称为光的散射。
I I 0e
( a s ) d
I 0e
d
a 为吸收系数, s 为散射系数, 为衰减系数。
分解成 +
被微粒散射时,各方向上的振幅可看成以上 两个分振动的合成。
5.分子散射
概念 在光学性质完全均匀的物质中,由于 物质分子密度的涨落而引起的散射。
解释(瑞
利散射为 主)
晴朗的天空呈现浅蓝色;清晨日出或傍 晚日落时,看到太阳呈现红色;正午时太阳 光,呈现白色。
6.分子散射 米氏散射(与波长关系不大)与城市天 空的景象。
瑞利定律
散射光强度 I f ( )4 紫光的散射强度大约是红光的10倍。
y p O B’
y D A’ B
4. 偏振性
z z
AP
x
D’ 实验 自然光入射到散射物质中,观察到:
正侧方(z)线偏振 斜方向(C)部分偏振 对着x方向(x)自然光
光的吸收、散射和色散
![光的吸收、散射和色散](https://img.taocdn.com/s3/m/6508c462caaedd3383c4d38a.png)
失去
米氏散射定律
根据颜色变化而监测受污染的程度
拉曼光谱的重要用途
1、拉曼散射光谱在生物医学上的用途 基本原理:基于拉曼光谱的非破坏性与分辨的精确性 水是生物主要成分,但它的拉曼光谱信号非常微弱
主要优势
许多生物样品中含有产生共振拉曼光谱信号的色素
适应用于激发和信号收集的各种光导纤维
蛋白质
核酸
对应于不同 的拉曼光谱
光的吸收
知识结构图
一般吸收
光的吸收
选择吸收
朗伯定律
I I 0 e a d
比尔定律
朗伯定律
dI a Idx
I I 0e
a d
推导:朗伯用单色平行光通过均匀物质 发现光强 改变量与其穿透距离改变量存在上数关系 —— 吸收系数,与I无关。
在非线性光学领域里,吸收系数依赖于光的强度, 朗伯定律不在成立。
光束通过不均匀的透明介质时,从各个方
向都可以看到光这种现象称为光的散射, 这也是光的散射区别于漫反射之处,从侧 面看,漫反射有些地方看不见光;
从微观角度来看:原子中的电子在光波的作用下会振动,振动的 电子向周围发射电磁波,如果介质不均匀性的线度大于或与光波 长相当时,这些电磁波位相随机变化,散射光不会干涉相消,反 之在均匀介质中,发生干涉相消导致,只剩下原来的光束,从侧 面难以看到光。
线 共性:相邻的两个吸收带之间n单调下降,每 经过一次吸收带,n急剧加大,柯西公式中A 的 加大 由图中可以看出对于极短波(X射线),任何 物质的折射率均小于1,那么X射线空气射向 该物质(从光密介质射向光疏介质),发生 全反射
光的吸收、散射和色散
公式归纳及习题分析
朗伯定律加散射衰 减系数的公式
光的吸收、色散和散射
![光的吸收、色散和散射](https://img.taocdn.com/s3/m/0969ef13842458fb770bf78a6529647d2628344b.png)
当光束通过理想均匀的透明介质时, 除了传播方向外, 其它方向看不到光 当光束通过浑浊液体或具有悬浮粒和气溶胶的大气时能看到光束轨迹 光的散射---
光束通过不均匀介质所产生的偏离原来传播方向而向四周散射的现象
散射分类: 1.k变化,波长不变
廷德尔散射 分子散射
瑞利散射, 米氏散射
2. k变化,波长也变化
i 2 z
eikz e 0 / n eik0nz
E0ek0z eik0nz
消光系数,与前一致,衰减系数K 2k 为吸收曲线
n 折射率实部,n 为色散曲线,由于在振子固有频率0处会产生共振吸收, 所以在0附近为反常色散,远离0为正常色散
§6.4 光的散射
§ 6.4.1 光的散射现象
(6-25)
二、反常色散
1862年勒鲁实验: 碘蒸汽三棱镜分光,紫光折射率比红光折射率小 与正常色散相反,因此称其为反常色散, 波长↓:折射率↓
反常色散与选择吸收有关, 也属正常
波长↑:折射率↑
反常色散都发生在吸收带内
图为石英的色散曲线, 测量扩展到红外吸收区
吸收带内为反常色散区 吸收带之间均为正常色散区
(6-6) (6-7)
(6-8) (6-9)
折射率 n 为复折射率
n2
r
1
1
Ne2
0m
1
02 2
i
同理 n 可写为
n n i
n2 n2 2 i2n
将(6-11)与(6-10)相对照, 可得
n2 2 1 Ne2
0m
02 2 02 2 2 22
2n Ne2
0m
如:石英对可见光波段 选择吸收---对某些波段的光有强烈的吸收
如:石英对3.5~5.0μm吸收
第六章光的吸收散射和色散
![第六章光的吸收散射和色散](https://img.taocdn.com/s3/m/c9eefab55727a5e9846a6128.png)
ii. 分子作受迫振动ω,发出电磁波(偶极振子模型)
iii. 可证明.只要分子的密度是均匀的,次波相干迭加 的结果只剩下遵从几何光学规律的光线. 沿其余 的振动干涉相消 用半波带概念.
iv. 用惠更斯 — 菲涅耳原理可解释. 但此处的“次波” 有真实的振源.
当光波在媒质中传播时,由于光波和物 质的相互作用,一般呈现两种效应,一种是 速度减慢引起的折射和双折射现象;另一种 是光能减弱的消光 (extinction)现象。消光现 象中,将光能转换成其它形式的能量,是吸 收 (absorption)现象;而有部分光波沿其它方 向传播,是散射 (scattering)现象。对于沿原 方向传播的光波来说,这两种现象都使光能 减弱,起消光作用。
不稳定非均匀介质 a 变, 非弹性散射 ( 拉曼、布里渊散射)
二. 散射、反射、漫射、衍射的区别
光的散射现象之所以区别于直射心的排列:
散射时无规则 一定有序 完全有序
散射. d <λ. 衍射. d≥λ 漫射. d >λ.
反射. d >>λ.
R表示观察者离偶极子的距离
光在半径为R的球面上各点的相位都 相等,且相位较原点处落后了R/c
但是振幅随θ角而变,这就引起波的 强度I(能流密度)在同一波面上的不 均匀分布。如图
二. 电偶极辐射对反射和折射现象的初步解释
解释1:均匀介质中的直线传播定律. i. 分子线度很小(d ~10-8cm, λ~10-5cm) . 在一个分子
解: 根据公式:
I0-II0(1-e-aad)
I 为光通过厚度为d的吸收层以后的光强,αa为吸收系数.
同样强度的光通过不同吸收物质的不同厚度,而产生相等的吸
第六章---光的吸收、散射和色散
![第六章---光的吸收、散射和色散](https://img.taocdn.com/s3/m/e9fb4757b42acfc789eb172ded630b1c59ee9bc5.png)
大多数天然物质如颜料、花等的颜色都是在光入 射物体内部相当深处的过程中,由于某些波长的光被 选择吸收后,使得物体呈现未被吸收的色光的颜色.
体色:即物体的颜色是由于物体内部成分不同而形成 的,所以叫作体色,呈现体色物体的透射光和反射光的 颜色是一样的.
表面色:物体的颜色是由于物体表面的选择反射形成 的,所以叫作表面色
例1. 南北极探险用: “太阳罗盘”(利用阳光散射的偏振性) 辨别方向(因磁罗盘在南北极无用).
例2. 蜜蜂靠天空光的偏振性辨别方向(蜜蜂的眼睛中有对偏振 敏感的器官)
2) 纯净气体或液体的散射(分子散射)
分子热运动,引起密度起伏,形成非均匀的小 “区域” , 发出次波,造成非相干迭加。
米— 德拜,廷德尔散射 ( d >λ/20 ). 散射光强与λ无关 白光散射,也可以为是衍射的结果. 例: 白云、雾、白烟.
教学目标
1.了解电偶极子模型及其对反射和折射现象、布 儒斯特定律的解释;
2.理解光的吸收的原因,朗伯定律,吸收光谱; 3.理解光的散射的原因,散射的分类及其特性; 4.理解色散的特点,正常色散和反常色散的原因; 5.了解电偶极子振子模型及其经典电子理论对光
的吸收、散射和色散的解释.
除真空外,任何介质对电磁波都不是绝 对透明。这是由于光通过介质时光通过物质时 其传播情况就会发生变化:
延迁德 德尔尔散射系:散 胶体射、乳:胶液胶、体 含有,烟雾乳灰胶 尘的液大气,等含有 分分子 子散散射:射由: 于分由子热于运动分成子 局部热涨落运引动 起的造成局部
四、散射光的偏振性
各向同性介质: 入射光是自然光,正侧方
向——线偏振, 斜方c ——部分偏振,正对
x ——自然光. 各向异性介质: 入射光是线偏振光,侧向 ——部分偏振.
光的吸收、色散和散射
![光的吸收、色散和散射](https://img.taocdn.com/s3/m/0db3b58d18e8b8f67c1cfad6195f312b3169ebca.png)
2
波动及近 代光学
光射入媒质,主要发生两个方面的变化: ①强度逐渐减弱 吸收和散射
②速度小于 c ,且随 变化 色散
定性讨论光的吸收,色散和散射现象 及其经典解释。光与物质相互作用的严格 理论由量子力学与量子电动力学讨论。
光的吸收、色散和散射
3
波动及近 代光学
分子光学的基本概念
电偶极子模型 光 物质,物质中分子,原子或离子中
波动及近 代光学
• 光的色散
②不但正确表达了正常色散,也近似地表达 了吸收带附近地反常色散。
但有严重缺点:
在长波一边 n
,0在(短无波限一趋边近n吸收带)
,
无意义。
③同一介质分子振子可能有几种固有频率
0 ,1, 2 (对应0 , 1, 2 )
光的吸收、色散和散射
波动及近 代光学
• 光的色散
波动及近 代光学
• 光的色散
2 塞耳迈尔方程: 塞耳迈尔于1871年,根据介质分子具有 不同固有振动频率的假定,从理论上说明了在 吸收带附近和远离吸收带处的全部色散情况。
n2
1
b2 2 20
说明:① 式中 :入射光在真空中的波长。
b :物质常数
0 :和固有频率有关。 00 c
光的吸收、色散和散射
1908和1909年,米(Mie)和德拜(Debye)
以球形质点(半径 )为模型作了计算,只有
2
a
0.3 a
时,瑞利定律才成立,当
2
a
较大时,散射强度几乎与波长无关(米氏
散射)。
光的吸收、色散和散射
波动及近 代光学
n2
1
b02 2 20
b12 2 12
6 第六次课、光的色散_吸收和散射
![6 第六次课、光的色散_吸收和散射](https://img.taocdn.com/s3/m/ec5a26c3240c844769eaee4a.png)
内容
一、色散的定义和观察 二、色散率 三、正常色散和反常色散 四、光的吸收 五、光的散射
1
一、色散的定义和观察
1、色散的定义
介质中的折射率 ( 或光速 ) 随光波波长 ( 或频率 ) 变化的现
象叫光的色散现象。 由理论分析,光的色散可以通过介质折射率的频率特性 描述:n=n(ω)
25
米氏(Mie)散射的主要特点
④、当散射粒子的线度与光波长相近时,散射光强度对于
光矢量振动平面的对称性被破坏,随着悬浮微粒线度的增
大,沿入射光方向的散射光强将大于逆入射光方向的散射 光强。 当微粒线度约为1/4波长时,散射光强角分布如图 (a)所示,此 时I(θ)在θ=0和θ=π处的差别尚不很明显。
26
当微粒线度继续增大时,如图 (b) 所示,在 θ=0 方向的 散射光强明显占优势,并产生一系列次极大值
27
10
1、朗伯(Lambert)光吸收定律
dI Kdl I
K为吸收系数,负号表示光强减少。
I=I0e-Kl
I0是l=0处的光强
朗伯定律或吸收定律。 实验证明,朗伯定律是相当精确的,并且也符合金属介质的 吸收规律。
11
吸收系数K愈大,光波吸收得愈强烈;
当l=1/K=le时,光强减少为原来的 1/e,称le为该介质对光的透
21
2、光散射的分类
亭达尔-瑞利散射
微粒线度 < λ/10
弹性散射:
米氏(Mie)散射
散射光波矢 k 变化, 微粒线度 ≥ λ 而波长不变。
光散射
分子散射
由微粒的密度起伏、取 向起伏、浓度起伏引起 非弹性散射: 散射光波矢 k 与波 长均发生变化。
第六章 光的吸收
![第六章 光的吸收](https://img.taocdn.com/s3/m/e4adc55d3b3567ec102d8aed.png)
第六章光的吸收、散射和色散在光束通过物质时,它的传播情况将要发生变化。
首先光束越深入物质,它的光强将越减弱,这是由于一部分光的能量被物质所吸收,而另一部分光向各个方向散射所造成的,这就是光的吸收和散射现象。
其次,光在物质中的速度将小于光在真空中的速度,并将随频率而改变,这就是光的色散现象,光的吸收、散射和色散这三种现象,都有是由于光与物质的相互作用引起的,实质上是由光与原子中的电子相互作用引起的。
这些现象是不同物质光学性质的主要表现,对它们的讨论可以为我们提供关于原子、分子和物质结构的信息。
本章侧重于对现象及其唯象规律的描述,并用经典电子论对这些现象作进一步的解释。
§6.1电偶极辐射对反射和折射现象的解释1.1、电偶极子模型1 电偶极子模型:用一组简谐振子来代替实际物质的分子。
每一振子可认为是一个电偶极子,由两个电量相等、符号相反的带电粒子所组成。
在外电场的作用下,偶极子能做简谐振动。
2 振子的分类:一种相当于原子内部电荷的运动(电子振子),另一种相当于分子或原子电荷的振动和整个分子的转动(分子振子)注:在电子振子中带负电的粒子是电子,带正电的粒子是质量比电子大得多得的原子核,所以可认为原子核不参与运动,把它当作固定的准弹性力的中心。
1.2、电偶极辐射对反射和折射现象的初步解释(学生自学)§6.2光的吸收2.1 吸收现象在一个波长范围内,若某种媒质对于通过它的各种波长的光波都作等量(指能量)吸收,且吸收量很小,则称这种媒质具有一般吸收(general absorption)性。
光通过呈现一般吸收性的媒质时,光波几乎都能从媒质透射,因此又可说媒质对这一波长范围的光是透明的。
通常所说的透明体,如玻璃、水晶,是指对白光呈现一般吸收性。
除真空外,对全部波长范围内的光都透明的物体是不存在的。
lcm厚的玻璃板对可见光范围内的各种波长的光波都等量吸收1%(即透射光的功率密度为入射光的99%),然而玻璃对于波长大于2500nm 的光波,或波长小于380am的光波都能完全吸收,因而对于红外线或紫外线来说,玻璃就成为非透明体了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
米氏散射:散射粒子的线度与光波长同量级或大于 光波波长的散射,称为~。
二. 瑞利散射定律
光学性质不均匀的介质,可能是由于均匀物质中散布着 折射率与它不同的其它物质的大量微粒,也可能是由于 物质本身的组成部分(粒子)的不规则聚集;
例如尘埃、烟(大气中散布着固态微粒),雾(空气中散布着 液态微粒),悬浮液(液体中悬浮着固态微粒),乳状液 (一种液体中悬浮着另一种液体而不能互相溶解),如水中 加入几滴牛奶,等等。这样的物质称为混浊介质。
当入射光的波长大于十分之一时,散射光的强度与波 长的依赖关系不明显。因此散射光的颜色与入射光相 近,白光入射将观察到白色的散射光。
这就是云雾呈白色的缘故。
例如,点燃的香烟冒出蓝色的烟,但从口中吐出的烟却 是白色的。Why?
这是因为组成烟的微小颗粒蓝光散射强烈——瑞利散射; 而从口中吐出的烟,由于凝聚了水蒸气在其上,颗粒变 大——属于米氏散射,故呈现白色。
为:dn/d
一. 正常色散
测量不同波长的光线通过棱镜的偏转角,就可算出棱 镜材料的折射率n与波长λ之间的依赖关系曲线,即色 散曲线。
实验表明:凡在可见光范 围内无色透明的物质,它 们的色散曲线形式上很相 似,其间有许多共同特点, 如n随λ的增加而单调下降, 且下降率在短波一端更大, 等等。这种色散称为正常 色散。
图中可以看出,沿着PA、 PA、PD、PD、PF等正侧 面观察时,散射光都是线 偏振光。振动面垂直于入 射光的传播方向。
沿着光的传播方向仍为 自然光;从其他方向观 察时,散射光是部分偏 振光。
D x
B
F P
A'
B'
A
z
y
D'
以上讨论的散射介质,假设它的分子本身是各向同性 的。如果介质分子本身就是各向异性的,情况就要复 杂的多。
电偶极子模型
S
I
1
oc
E2
0e2 A2 4 32 2CR2
sin
2
2、电偶极辐射对反射和折射现象的初步解释
解释1:各向同性均匀物质中的直线传播 解释2:反射与折射 解释3:布儒斯特定律
§6.1 光的吸收
6.2 光的吸收(Absorption of Light)
1.一般吸收和选择吸收(normal absorption & selective absorption)
假设入射光是线偏振的,传播方向沿着Z轴,如图。设
在各向同性的介质中有一粒子P。
当光与粒子相遇时,使P作
x
受迫振动,所形成的电矢量
也平行于X轴。由此产生的
次波为球面波。光波又是横
波,振动方向与传播方向垂
直。在各个方向的振幅应等 y
于最大振幅在相应方向的投
影。
因此,在赤道平面ABAB 上的个电的振幅最大,在 两极D和D处,振幅等于 零。
一般吸收
吸收很少,且在某一给定波段内几乎不变。
选择吸收 吸收很多,且随波长而剧烈地变化。 例如石英对可见光吸收甚微,但是对3.5~5.0 m 的红外光却强烈吸收。
2.朗伯定律
6.2 光的吸收(Absorption of Light)
能量观点
dI Idx
dI aIdx
I dI
I I0
d
0 adx
d
I I0ead ,a 为吸收系数
稀溶液:a AC ,式中A是一个与浓度无关
的常量,C为溶液的浓度。
§6.2 光的散射
Scattering of Light
光线通过均匀的透明介质(如玻璃、空气、清水) 时,从侧面是难以看到光线的。如果介质不均匀, 如有悬浮微粒的浑浊液体,我们便可从侧面清晰 地看到光束的轨迹,这是介质中的不均匀性使光 线朝四面八方散射的结果。
实验表明,散射光的强度随光的方向而变化,自然 光入射时,散射光强满足下式:
I I0 (1 cos2 )
是散射光方向与入射光方向之间的夹角。
可见,散射光 强的分布是对 于光的传播方 向及垂直于光 的传播方向是 对称的。
散射光方向
入射光方向
虽然从光源发出的光是自然光,但从正侧方用检偏器检 查发现,散射光是线偏振的,沿着斜侧面观察发现是部 分偏振光,只有正对着入射方向观察时,透射光才是自 然光。
用以上的散射理论可以解释许多我们日常熟悉的自 然现象,如天空为什么是蓝的?旭日和夕阳为什么 是红?以及云为什么是白?等等。
首先,白昼天空之所以是亮的,完全是大气散射阳光 的结果。如果没有大气,即使在白昼,人们仰观天空, 将看到光辉夺目的太阳悬挂在漆黑的背景中。这景象 是宇航员司空见惯了的。
按瑞利定律,由于大气的散射,白光中的短波成分 (蓝紫色)遭到散射比长波成分(红黄色)强烈得多,散 射光乃因短波的富集而呈蔚蓝色。所以每当大雨初霁、澄 清了尘埃的时候,天空总是蓝得格外美丽可爱,其道理就 在这里.
当光通过介质时,不仅介质的吸收使透射光强减弱,由于 光的散射也使使射入介质的光强按指数形式衰减,因此, 穿过厚度为l 的介质透射光强为:
I I0e( )
为吸收系数,为散射系数,+就称为衰减系数。在 很多情况下,和中一个往往比另一个小很多,因而可 以忽略。
三. 散射光强的角分布和偏振态
假设白光中波长为720nm的红光与波 长为440nm的青蓝光具有相同的强度, 由于两种波长之比为:
红 1.64 蓝
所以散射光中,蓝光的强度与红光强度之比为:
I蓝 =(红 )4 7.2
I红
蓝
可见散射光中蓝光的强度约为红光强 度的7.2倍,因此透射光中所含的红光 成分就较多,故带红色。
表面上看起来是纯净均匀的介质,由于分子的热运动 使分子密度有涨落而引起的散射,称为分子散射。分 子散射也满足瑞利散射定律。
例如当线偏振光照射某些气体或液体时,从侧面观察 时,散射光变成了部分偏振光(有些情况透射光也变 成了部分偏振光)。这种现象称为退偏振。
以Ix和Iy分别表示散射光沿着x轴和y轴振动的强度, 则散射部分偏振光的偏振度为:
P Iy Ix Iy Ix
通常又引入退偏振度的概念:
1 P
例如: H2 : 1%;
如图所示为一种在可见光区域内透明的物质(如 石英)在红外区域中的色散曲线,在可见光区域内色散 是正常的,曲线(PQ段)满足科希公式。
若向红外区域延伸, 并接近吸收带时,色 散曲线开始与科希公 式偏离(见图中R 点)。
在吸收带内因光极弱,很难推测到折射率的数据。过 了吸收带,色散曲线(ST段)发生正常色 散时,白光中 不仅紫光比红 光偏折的厉害, 而且在所形成 的光谱中,紫 端比红端展得 更开。
1836年科希(A.L.Cauchy, 1789-1857)给出一个正常色散 的折射率随波长变化的经验公 式。
正常色散的经验公式:
n
A
B
2
C
4
上式称为科希公式,式中A,B,C是与物质有关的常
定义:由于介质中存在的微小粒子或分子对光的 作用,使光束偏离原来的传播方向或波长发生变 化,向四周传播的现象,称为光的散射。
光的散射可分为两大类:
散射光的波长不变 散射光的波长改变
瑞利散射 米氏散射
拉曼散射(Raman1928) 布里渊散射Brillouin1921
瑞利散射:散射粒子的线度小于光的波长的十分之 一,则称为~。
如果制做棱镜P1和P2材料的色散规律(即n 与 λ的依赖 关系)不同,倾斜光带a'b'将是弯曲的,它的形状直观 地反映了两种材料色散性能的差异。
1904年伍德(R. W. Wood)曾用交叉棱镜法观察了钠蒸汽 的色散。他的装置如图所示。
当钠被蒸发时,由于管V内蒸汽的色散作用,不同波 长的光不同程度地向下编折,在钠的吸收线附近,分 光仪焦面上的水平光谱带被严重扭曲和割断,变成图 所示的样子。
早在1869年爱尔兰物理学家亭德尔 (Tyndall, 1820-1893) 就对混浊介质的散 射现象做过大量的实验研究。尤其对于线 度小于波长的微粒。因此瑞利散射有时又 称亭德尔效应。
在亭德尔的基础上,英国物理学家瑞利于1899年对小 粒子散射又进行了研究。实验装置如图。
透 射 光
散射光
检偏器
探测器
6.1 电偶极辐射对反射、折射现象的解释
1、电偶极子模型(理想模型)
用一组简谐振子来代替实际物质的分子,每一振子可认为 是一个电偶极子,由两个电量相等,符号相反的带电粒子 组成,电偶极子之间有准弹性力作用,能作简谐振动。 两种振子: 电子振子:核假定不参加运动,准弹力的中心。 分子振子:质量较大的一个粒子可认为不参加运动
实验发现:从容器侧 面看到的散射光,带 有青蓝色,透射光则 带有红色。
瑞利(Lord Rayleigh ,1842 -1919) 1904年 诺贝尔物理学奖获得者
进一步研究表明,散射光的强度与光波波长的四次方 成反比,可表示为:
I ( )
1
4
——称为瑞利散射定律
根据瑞利散射定律,可以对前面的实验现象作出很好 的解释。
N2 : 4%;
CS2 gas : 14%; CO2 : 7%;
退偏振这一现象的解释也是瑞利提出的。他认为退 偏振度与散射分子的光学性质各向异性有关。在这 种分子里电极化的方向一般不与光波的电矢量方向 相同。测量退偏振度可以判断分子的各向异性,因 此也可以用来判断分子的结构。
§6.3 光的色散
Dispersion of Light
光在介质中的传播速度v 随波长而异的现象,亦即介质 的折射率随着波长而变化,这种现象称为光的色散。 1672年牛顿首先利用三棱镜的色散效应把日光分解为 彩色光带。
为了表征介质折射率随波长的变化快慢程度和趋势,引 入介质色散率的概念。 定义为:介质的折射率对波长的导数,即介质的色散率