二次函数最新综合题练习50道(含详细解析)
专题四 二次函数综合题(含答案)2025年中考数学一轮题型专练(陕西)
专题四 二次函数综合题题型1 二次函数的实际应用二次函数的实际应用问题,在陕西中考2022,2023,2024年连续三年进行考查,其考查本质为二次函数表达式的应用,其主要为顶点式的考查,在表达式的基础上进行实践应用的考查,知x求y或知y求x,利用二次函数性质求最值,感受数学在实际问题中的应用.类型1 抛物线运动轨迹问题(2024·西安市莲湖区模拟)如图,在一场校园羽毛球比赛中,小华在点P选择吊球进行击球,当羽毛球飞行的水平距离是1 m时,达到最大高度3.2 m,建立如图所示的平面直角坐标系.羽毛球在空中的运行轨迹可以近似地看成抛物线的一部分,队友小乐则在点P选择扣球进行击球,羽毛球的飞行高度y1(单位:m)与水平距离x(单位:m)近似地满足一次函数关系y1=-0.4x+2.8.(1)根据如图所示的平面直角坐标系,求吊球时羽毛球满足的二次函数表达式.(2)在(1)的条件下,已知球网AB与y轴的水平距离OA=3 m,CA=2 m,且点A,C都在x轴上,实践发现击球和吊球这两种方式都能使羽毛球过网.要使球的落地点到点C的距离更近,请通过计算判断应该选择哪种击球方式?解题指南 (1)抓住最大高度这一特征,设出顶点式:y=a(x-h)2+k,然后将点P的坐标代入即可.(2)分别令一次函数与二次函数的y为0,对比两种方式在x轴的交点的横坐标到点C的横坐标的距离大小即可.类型2 以建筑为背景的“过桥”问题(2024·西工大模拟)陕北窑洞,具有十分浓厚的民俗风情和乡土气息.如图,某窑洞口的下部近似为矩形OABC,上部近似为一条抛物线.已知OA=3 m,AB=2 m,m.窑洞的最高点M(抛物线的顶点)离地面OA的距离为258(1)建立如图所示的平面直角坐标系,求抛物线的表达式.(2)若在窑洞口的上部要安装一个正方形窗户DEFG,使得点D,E在矩形OABC的边BC上,点F,G在抛物线上,那么这个正方形窗户DEFG的边长为多少米?解题指南 (1)借助点M为顶点,设出顶点式,然后将点B坐标代入顶点式即可.(2)设出小正方形DEFG的边长,然后用所设边长表示出点G的横坐标、纵坐标,最后代入(1)中抛物线的表达式解方程即可.(2024·西安新城区模拟)某地想将新建公园的正门设计为一个抛物线型拱门,设计部门给出了如下方案:将拱门图形放入平面直角坐标系中,如图,抛物线型拱门的跨度ON=24 m,拱高PE=8 m.其中,点N在x轴上,PE⊥ON,OE=EN.(1)求该抛物线的函数表达式.(2)现要在拱门中设置矩形框架,其周长越小越好(框架粗细忽略不计).设计部门给出了两个设计方案:方案一:矩形框架ABCD的周长记为C1,点A、D在抛物线上,边BC在ON上,其中AB=6 m.方案二:矩形框架A'B'C'D'的周长记为C2,点A',D'在抛物线上,边B'C'在ON上,其中A'B'=4 m.求这两个方案中,矩形框架的周长C1,C2,并比较C1,C2的大小.类型3 以“悬挂线”为背景解决高度问题如图,在一个斜坡上架设两个塔柱AB,CD(可看作两条竖直的线段),塔柱间挂起的电缆线下垂可以近似地看成抛物线的形状.两根塔柱的高度满足AB=CD=27 m,塔柱AB与CD之间的水平距离为60 m,且两个塔柱底端点D与点B的高度差为12 m.以点A为坐标原点,1 m为单位长度构建平面直角坐标系. (1)求点B,C,D的坐标.x2一样,且电(2)经过测量,AC段所挂电缆线对应的抛物线的形状与抛物线y=1100缆线距离斜坡面竖直高度至少为15.5 m时,才符合设计安全要求.请结合所学知识判断上述电缆线的架设是否符合安全要求?并说明理由.(2024·陕师大附中模拟)在元旦来临之际,学校安排各班在教室进行联欢.八(2)班同学准备装点一下教室.他们在屋顶对角A,B两点之间拉了一根彩带,彩带自然下垂后呈抛物线形状.若以两面墙交线AO为y轴,以点A正下方的墙角点O为原点建立平面直角坐标系,此时彩带呈现出的抛物线表达式为y=ax2-0.6x+3.5.已知屋顶对角线AB长12 m.(1)a= ,该抛物线的顶点坐标为.(2)小军想从屋顶正中心C(C为AB的中点)系一根绳子CD.将正下方彩带最低点向上提起,这样两侧的彩带就形成了两个对称的新抛物线形状(如图所示).要使两个新抛物线彩带最低点之间的水平距离为5 m,且比之前的最低点提高0.3 m.求这根绳子的下端D到地面的距离.题型2 图形面积探究类型1 面积、线段最值探究二次函数中面积问题,基本上都可以转化为线段相关问题,线段的三种表示方式:①水平型,②垂直型,③斜型.以边为分类标准,可采取不同方法进行面积的求解,现对不同类型线段的表示作以说明.(1)线段AB∥y轴时,点A,B横坐标相等,则AB=|y1-y2|=|y2-y1|=y1-y2.(2)线段BC∥x轴时,点B,C纵坐标相等,则BC=|x2-x1|=|x1-x2|=x2-x1.(3)线段AC与x轴,y轴不平行时,在Rt△ABC中,AC=AB2+BC2=(x1-x2)2+(y1-y2)2.第一步,过动点向x轴作垂线,与定边产生交点第二步,设动点坐标,表示交点坐标第三步,表示纵向线段长度|y上-y下|第四步,利用水平宽铅垂高表示三角形面积:S=12(y 上-y 下)(x 右-x 左)【原创好题】“水平宽”与“铅垂高”的运用:已知△ABC 的三个顶点坐标分别为A(x A ,y A ),B(x B ,y B ),C(x C ,y C ),用含有A,B,C 坐标的方式表示出△ABC 的面积.解题指南 (1)在平面直角坐标系中作△ABC,要求点A,B 在点C 的左、右两侧,经过点C 作x 轴的垂线交AB 于点D,则△ABC 被分成两部分,即S △ABC =S △ACD +S △BCD .(2)过点A 作△ADC 的高h 1,过点B 作△DBC 的高h 2,所以△ACD 与△BCD 的面积表示为S △ADC =12CD·h 1,S △BCD =12CD·h 2.(3)所以S △ABC =S △ADC +S △BCD =12CD·h 1+12CD·h 2=12CD·(h 1+h 2).(4)其中h 1与h 2的和可以看作点A 与点B 的水平间的距离,因此称之为“水平宽”,h 1+h 2=|x B -x A |,CD 是点C 与点D 的竖直间的距离,称之为“铅垂高”,即CD=|y D -y C |,故S △ABC =S △ACD +S △BCD =12|y D -y C |·|x B -x A |.1.如图,在平面直角坐标系xOy 中,直线y=x+4与坐标轴分别交于A,B 两点,抛物线y=-x 2+bx+c 过A,B 两点,D 为线段AB 上一动点,过点D 作CD ⊥x 轴于点C,交抛物线于点E.(1)求抛物线的表达式.(2)求△ABE 面积的最大值.2.如图,抛物线y=-x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标.(2)若P为线段BC上的一点(不与点B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N.当线段PM的长度最大时,求点M的坐标.类型2 面积关系探究(2018.T24)x2+bx与x轴交于O,A 【改编】在平面直角坐标系xOy中,已知抛物线y=-43两点,B(1,4)在抛物线上.若P是抛物线上一点,且在直线AB的上方,且满足△OAB 的面积是△PAB面积的2倍,求点P的坐标.解题指南 (1)第一步,将点B的坐标代入抛物线的表达式,求出b的值,根据A,B两点的坐标,求出直线AB的表达式;(2)第二步,借助三角形的面积公式,求出△OAB的面积,根据△OAB与△PAB的面积关系求出△PAB的面积;(3)第三步,设点P的坐标为t,-43t2+163t,过点P作x轴的垂线,与AB交于点N,并结合直线AB的表达式,表示出点N的坐标;(4)第四步,借助“水平宽,铅垂高”,求出PN的长度,用含有t的式子表示出PN的长度,构造方程求解即可.1.如图,抛物线y=-x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为x+3交于C,D两点,连接BD,AD.(3,0),抛物线与直线y=-32(1)求m的值.(2)求A,D两点的坐标.(3)若抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.2.如图,在平面直角坐标系中,点A(0,-1),抛物线y=-x2+bx+c经过点B(4,5)和C(5,0).(1)求抛物线的表达式.(2)连接AB,BC,求∠ABC的正切值.(3)在抛物线的对称轴上,是否存在点D,使得S△ABD=S△ABC?若存在,直接写出点D 的坐标;若不存在,请说明理由.3.已知抛物线y=-x2+bx+c过点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式.(2)P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P 的坐标.(3)在(2)的条件下,是否存在M为抛物线第一象限上的点,使得S△BCM=S△BCP?若存在,求出点M的横坐标;若不存在,请说明理由.解题指南 (1)由交点式可直接得出抛物线的解析式.(2)设P(1,m),根据列出方程,进而求得点P的坐标.(3)作PQ∥BC交y轴于点Q,作MN∥BC交y轴于点N,先求出PQ的解析式,进而求得MN的解析式,进一步求得结果. 借助“同底等高”找等面积的方法在平面直角坐标系中有△ABC,分别在BC所在直线的两侧找出一点P和Q,使得S△PBC=S△QBC=S△ABC.操作方式:(1)根据要求可知△PBC和△QBC均与△ABC具有共同的底边BC,要使它们的面积相等,只需要它们的高相等即可,因此可以设△PBC与△QBC的高均为h;(2)确定高以后,过点A作BC的平行线,则在所作平行线上存在一点P满足S△PBC=S△ABC;(3)如图,将BC所在直线向下平移AO'个单位长度,过A'作BC的平行线,则该直线上存在一点Q满足S△QBC=S△ABC;(4)运用“同底等高”法时,务必考虑不同位置的情况;(5)进行面积计算时,可以直接利用三角形面积公式求解.题型3 特殊三角形问题探究类型1 等腰三角形问题探究等腰三角形存在问题,可以分为两个方向来解决,几何法和代数法,其中几何法的优势在于比较直观地得到结果,对几何图形要求较高;代数法以解析几何为背景可更快地找到等量关系,方法较为单一,等腰三角形问题做完之后一定要验证是否出现三点共线的情况.方法一 几何法(1)两圆一线找出点;(2)利用勾股、相似、三角函数等求线段长,由线段长求得点坐标方法二 代数法(1)表示出三个点坐标A,B,C;(2)由点坐标表示出三条线段AB,AC,BC;(3)分类讨论①AB=AC;②AB=BC;③AC=BC;(4)列出方程求解(2024·铁一中模拟)如图,在平面直角坐标系中,抛物线L的顶点E的坐标为(-2,8),且过点B(0,6),与x轴交于M,N两点.(1)求该抛物线L的表达式.(2)设抛物线L关于y轴对称后的抛物线为L',其顶点记为点D,连接MD,在抛物线L'对称轴上是否存在点Q,使得以点M,D,Q为顶点的三角形为等腰三角形?若存在,求出点Q的坐标;若不存在,请说明理由.(2024·西咸新区模拟)如图,抛物线L:y=ax2+bx-3(a、b为常数,且a≠0)与x轴交于点A(-1,0),B(3,0),与y轴交于点C.将抛物线L向右平移1个单位长度得到抛物线L'.(1)求抛物线L的函数表达式.(2)连接AC,探究抛物线L'的对称轴直线l上是否存在点P,使得以点A,C,P为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.类型2 直角三角形问题探究直角三角形存在问题,菱形中对角线垂直,矩形中的内角为直角,有下列两个方向可以帮助解决问题,不同的方法适用不同方向的题目,注意区分其方法.一、勾股定理若AC2+BC2=AB2,则△ABC为直角三角形二、构造“K”字型相似过直角顶点作坐标轴的平行线,过其他两点向平行线作垂直,出现“一线三等角”模型,利用“一线三等角”的相似模型,构建方程解决问题已知抛物线L:y=ax2-2ax-8a(a≠0)与x轴交于点A,点B,且点A在点B的左侧,与y轴交于点C.(1)求出点A与点B的坐标.(2)当△ABC是以AB为斜边的直角三角形时,求抛物线L的表达式.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+c(a≠0)交x轴于点A(-5,0),B(-1,0),交y轴于点C(0,5).(1)求抛物线C1的表达式和顶点D的坐标.(2)将抛物线C1关于y轴对称的抛物线记作C2,E为抛物线C2上一点,若△DOE是以DO为直角边的直角三角形,求点E的坐标. 直角三角形中的找点方法和计算方法找点方法:示例:如图,在平面内有A,B两点,试着找出一点C,使得A,B,C三点构成的三角形为直角三角形.分两种情况讨论:当AB为直角边时,{过点A作AB的垂线l1,过点B作AB的垂线l2;当AB为斜边时,以AB为直径作圆.如图,在直线l1,l2上的点C满足△ABC为直角三角形,但要注意一点:点C不与A,B两点重合.我们将这种找点C的方法称为“两线一圆”.计算方法:(1)利用勾股定理构造方程求解;(2)以“K”字型搭建相似三角形,列比例式构造方程求解.类型3 等腰直角三角形问题探究等腰直角三角形相关问题,以等腰直角三角形和正方形问题,主要解题方法相对统一,注意如何构图能直观得到“K”字全等是解决问题的关键之处.(1)过直角顶点作坐标轴平行线,构造“K”字全等(2)方法一:设某小边长度.方法二:设点坐标,表示直角三角形中的直角边(3)利用某纵向或横向线段构建等式(x+1)(x-5)与x轴交于A,B两点,与y轴交于点C.如果P是如图,抛物线y=-25抛物线上一点,M是该抛物线对称轴上的点,当△OMP是以OM为斜边的等腰直角三角形时,求点P的坐标.解题指南 第一步,过直角顶点作平行y轴的垂线,分别过另两个顶点作垂直,构造“K”字全等;第二步,利用坐标分别表示两直角三角形的直角边;第三步,利用某边相等构造方程.(2024·高新一中模拟)如图,在平面直角坐标系中,抛物线L:y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,3).(1)求出抛物线L的表达式和顶点的坐标.(2)P是抛物线L的对称轴右侧图象上的一点,过点P作x的垂线交x轴于点Q,作抛物线L关于直线PQ对称抛物线L',则C关于直线PQ的对称点为C',若△PCC'为等腰直角三角形,求出抛物线L'的表达式.题型4 三角形关系问题类型1 与相似三角形结合问题三角形的关系问题是陕西考试中非常常见的一个类型,中考中多次连续出现,相似问题的处理方法也相对较为固定,以固定三角形为参照,找到定角,以边为分类标准,进行分类讨论.主要有两个方法.方法一:利用一角相等,邻边成比例证明相似方法二:两组角相等的三角形相似分析目标三角形:第一类:找一角相等,用邻边成比例.第二类:找一角相等(多为90°问题),找另一角相等.方法总结:(1)分动、定三角形;(2)找等角;(3)表示边或者找另一角相等.(2024·曲江一中模拟)如图,抛物线y=ax 2+bx 经过坐标原点O 与点A(3,0),正比例函数y=kx 与抛物线交于点B 72,74.(1)求该抛物线的函数表达式.(2)P 是第四象限抛物线上的一个动点,过点P 作PM ⊥x 轴于点N,交OB 于点M,是否存在点P,使得△OMN 与以点N,A,P 为顶点的三角形相似?若存在,请求出点P 的坐标;若不存在,请说明理由.(2024·陕师大附中模拟)已知抛物线L 1:y=x 2+bx+c 与x 轴交于点A,B(点A 在点B 的左侧),与y 轴交于点C(0,-3),对称轴为直线x=1.(1)求此二次函数表达式和点A,B 的坐标.(2)P 为第四象限内抛物线L 1上一动点,将抛物线L 1平移得到抛物线L 2,抛物线L 2的顶点为点P,抛物线L 2与y 轴交于点E,过点P 作y 轴的垂线交y 轴于点D.是否存在点P,使以点P,D,E 为顶点的三角形与△AOC 相似?如果存在,请写出平移过程,并说明理由.类型2 与全等三角形结合问题1.全等为特殊的相似,相似比为1,方法与相似一致.2.注意相等角的邻边分类情况.【改编】如图,抛物线y=-23x 2+103x+4的图象与x 轴交于A,B 两点,与y 轴的正半轴交于点C,过点C 的直线y=-43x+4与x 轴交于点D.若M 是抛物线上位于第一象限的一动点,过点M 作ME ⊥CD 于点E,MF ∥x 轴交直线CD 于点F,当△MEF ≌△COD 时,求出点M 的坐标.解题指南 当△MEF ≌△COD 时,(1)找准对应角、边.结合关系式可知,∠MEF=∠COD,∠MFE=∠CDO,MF=CD.(2)根据直线CD 的表达式求出线段CD 的长度.由点M 在抛物线上,可以设点M的坐标为m,-23m 2+103m+4,再由MF ∥x 轴,得点F 的纵坐标.根据全等三角形的对应边相等可以得出点F 的横坐标为m-5.(3)由点F 在直线CD 上,将点F 的坐标代入直线CD 的表达式中,求出m 的值.已知经过原点O 的抛物线y=-x 2+4x 与x 轴的另一个交点为A.(1)求点A 的坐标及抛物线的对称轴.(2)B 是OA 的中点,N 是y 轴正半轴上一点,在第一象限内的抛物线上是否存在点M,使得△OMN 与△OBM 全等,且点B 与点N 为对应点?若存在,请求出点M 的坐标;若不存在,请说明理由. 与全等三角形结合问题的求解步骤(1)全等三角形的问题与相似三角形的问题步骤类似,均是先列出三角形的对应关系式,再根据关系式找出对应边相等;(2)借助对应边相等,将边与边的长度关系用点的坐标进行表示,然后运用“两点间距离公式”构造方程求解.题型5 特殊四边形问题探究类型1 平行四边形问题探究平行四边形问题,一般分为三定一动,两定两动问题,选取固定的两个点为分类标准,①以某边为边时;②以某边为对角线时.第一步,寻找分类标准;第二步,平移点,找关系(注意:从A到B和从B到A);第三步,代入关系求值(2024·西工大附中模拟)如图,抛物线y=ax2-2x+c与直线y=kx+b都经过A(0,3),B(-3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的表达式.(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过点M作x轴的垂线交抛物线于点N.使点M,N,C,E是平行四边形的四个顶点?若存在,求出点M的坐标;若不存在,请说明理由.【改编】已知点A(-1,0)在抛物线L:y=x2-x-2上,抛物线L'与抛物线L关于原点对称,点A的对应点为点A',是否在抛物线L上存在一点P,在抛物线L'上存在一点Q,使得以AA'为边,且以A,A',P,Q为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由. 平行四边形中坐标的计算如图1,在平行四边形ABDC 中,关于坐标的计算——平移法则:x B -x A =x D -x C ,y B -y A =y D -y C ,x A -x C =x B -x D ,y A -y C =y B -y D .如图2,在平行四边形ADBC 中,关于坐标的计算——中点坐标公式:x M =x A +x B 2=x C +x D 2,y M =y A +y B 2=y C +y D 2.类型2 菱形问题探究菱形存在问题,主要分两类. 第一类:以平行四边形为背景,在平行四边形的基础上增加对角线垂直或邻边相等即可得菱形.(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A +x C 2=x B +x D 2;y A +y C 2=y B +y D 2.(3)对角线垂直:可参照直角存在问题.邻边相等:可参照等腰存在问题.(4)平移型:先平行四边形,再菱形.翻折型:先等腰,再菱形.第二类:若出现在平面内任意一点存在性问题,则去掉此点,转化为等腰存在问题,可以利用等腰存在问题策略解决问题如图,抛物线y=x 2+bx+c 与x 轴交于A,B 两点,与y 轴交于点C,OA=2,OC=6,连接AC 和BC.(1)求抛物线的函数表达式.(2)若M是y轴上的动点,在坐标平面内是否存在点N,使以A,C,M,N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.类型3 矩形问题探究矩形存在性问题,主要分两类. 第一类:以平行四边形为背景,在平行四边形的基础上增加对角线相等或一内角为90°即可得到矩形.(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A+x C=x B+x D;y A+y C=y B+y D.(3)方向一 对角线相等:(x A-x C)2+(y A-y C)2=(x B-x D)2+(y B-y D)2.方向二 有一角为90°.第二类:若出现在平面内任意一点存在性问题,则去掉此点,转化为直角存在问题,可以利用直角存在问题策略解决问题已知抛物线L:y=ax2+bx(a≠0)经过点B(6,0),C(3,9).(1)求抛物线L的表达式.(2)若抛物线L'与抛物线L关于x轴对称,P,Q(点P,Q不与点O,B重合)分别是抛物线L,L'上的动点,连接PO,PB,QO,QB,问四边形OPBQ能否为矩形?若能,求出满足条件的点P和点Q的坐标;若不能,请说明理由.已知抛物线L:y=-x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求A,B,C三点的坐标.(2)抛物线L平移后得到抛物线L',点A,C在抛物线L'上的对应点分别为点A',C',若以A,C,A',C'为顶点的四边形是面积为20的矩形,求平移后的抛物线L'的表达式.类型4 正方形问题探究(在菱形的基础上增加对角线相等)(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A+x C=x B+x D;y A+y C=y B+y D.(3)平行四边形题基础上加等腰直角三角形问题.,正方形ABCD的边AB 如图,一条抛物线y=ax2+bx(a≠0)的顶点坐标为2,83落在x轴的正半轴上,点C,D在这条抛物线上.(1)求这条抛物线的表达式.(2)求正方形ABCD的边长.解题指南 (1)已知顶点,可直接设抛物线的顶点式:y=a(x-h)2+k,将点的坐标代入计算即可.(2)①在正方形中,四条边均相等;②设出正方形的边长,并根据所设边长表示出正方形ABCD的顶点坐标;③注意观察正方形ABCD的顶点C,D在抛物线上;④代入相应点的坐标求出所设的边长即可.x2+bx+c的图象L经过原点,且与x轴的另一个交点为(8,0).已知二次函数y=-13(1)求该二次函数的表达式.(2)作x轴的平行线,交L于A,B两点(点A在点B的左侧),过A,B两点分别作x 轴的垂线,垂足分别为D,C.当以A,B,C,D为顶点的四边形是正方形时,求点A的坐标. 借助抛物线判定正方形的思路步骤1.明确在抛物线上的正方形的两个顶点;2.借助抛物线表达式y=ax2+bx+c(a≠0),设出其中一个顶点坐标为(x,ax2+bx+c),然后利用抛物线对称轴表示出另一个顶点坐标;3.根据正方形四条边相等构造一元二次方程求解即可.题型6 角度问题探究角相关问题是二次函数中相对较为综合性的问题,在近几年中考中也常出现在各个省市的中考题中,问题最终都会落到以下问题上来.等角问题,可直接用等角的性质来处理问题.解决策略:(1)寻找相似,出现等角;(2)利用三角函数找等角;(3)利用轴对称来找等角.【改编】在平面直角坐标系xOy中,已知抛物线y=-x2+4x-3与x轴分别交于A,B两点,且点A在点B的左侧.在抛物线上是否存在一点D,使得∠DOA=45°?若存在,求出点D的坐标;若不存在,请说明理由.解题指南 以平面直角坐标系为背景来探究角度问题,常用的思路为借助三角函数构造方程求解.本题具体步骤如下:第一步,根据∠DOA=45°,联想tan∠DOA=1;第二步,根据点D在抛物线上,可以过点D作x轴的垂线,记垂足为H,在△DOH中,tan∠DOH=DH OH;第三步,由点D在抛物线上,设点D的坐标为(t,-t2+4t-3);第四步,根据DH=|y D|=|-t2+4t-3|,OH=|t|,构造方程求解即可.已知抛物线L:y=-23x2+bx+c,与y轴的交点为C(0,2),与x轴的交点分别为A(3,0),B(点A在点B右侧).(1)求抛物线的表达式.(2)将抛物线沿x轴向左平移m(m>0)个单位长度,所得的抛物线与x轴的左交点为M,与y轴的交点为N,若∠NMO=∠CAO,求m的值.参考答案题型1 二次函数的实际应用类型1 抛物线运动轨迹问题例1 解析:(1)在y 1=-0.4x+2.8中,令x=0,则y 1=2.8,∴P (0,2.8).根据题意,二次函数图象的顶点坐标为(1,3.2).设二次函数的表达式为y=a (x-1)2+3.2,把P (0,2.8)代入y=a (x-1)2+3.2,得a+3.2=2.8,解得a=-0.4,∴吊球时羽毛球满足的二次函数表达式y=-0.4(x-1)2+3.2.(2)吊球时,令y=0,则-0.4(x-1)2+3.2=0,解得x 1=1+22,x 2=1-22(舍去),扣球时,令y=0,则-0.4x+2.8=0,解得x=7.∵OA=3 m,CA=2 m,∴OC=OA+AC=5.∵7-5=2,|22+1-5|=4-22<2,∴选择吊球时,球的落地点到点C 的距离更近.类型2 以建筑为背景的“过桥”问题例2 解析:(1)由题意得点M ,B 的坐标分别为32,258,(3,2).设抛物线的表达式为y=a x-322+258,将点B 的坐标代入上式得2=a 3-322+258,解得a=-12,∴抛物线的表达式为y=-12x-322+258.(2)设正方形的边长为2m.把点G 32-m ,2+2m 代入抛物线表达式,得2+2m=-1232-m-322+258,解得m=12(负值已舍去),∴正方形窗户DEFG 的边长为1 m .变式设问 解析:(1)由题意得抛物线的顶点坐标为(12,8),N (24,0).设y=a (x-12)2+8,把N (24,0)代入表达式中,得a=-118,∴该抛物线的函数表达式为y=-118(x-12)2+8.(2)方案一:令y=6,即6=-118(x-12)2+8.解得x 1=6,x 2=18,∴BC=AD=12.又∵AB=CD=6,∴矩形ABCD 的周长C 1=2×12+2×6=36(m).方案二:令y=4,即4=-118(x-12)2+8,解得x 1=12-62,x 2=12+62,∴B'C'=A'D'=12+62-(12-62)=122.又∵A'B'=C'D'=4,∴矩形A'B'C'D'的周长C 2=2×122+2×4=(242+8)m .∵C 1=36=28+8=4×7+8,C 2=242+8=4×62+8,∴36<242+8,即C 1<C 2.类型3 以“悬挂线”为背景解决高度问题例3 解析:(1)如图,过点C 作CE ⊥y 轴,垂足为E ,过点D 作DF ⊥y 轴,垂足为F.记CD 与x 轴相交于点G.根据题意,得点B 的坐标是(0,-27).∵FB=12,则GD=OF=OB-FB=27-12=15,OG=FD=EC=60,CG=CD-GD=27-15=12,∴点C 的坐标是(60,12),点D 的坐标是(60,-15).(2)符合安全要求.理由:设AC 段所挂电缆线对应的抛物线的函数表达式为y=1100x 2+bx ,将点C (60,12)代入表达式中,得12=1100×602+60b ,解得b=-25,∴y=1100x 2-25x.由点B (0,-27),D (60,-15)可知直线BD 的表达式为y=15x-27.记M 为抛物线上一点,过点M 作x 轴的垂线与BD 交于点N.设点M m ,1100m 2-25m ,则点N m ,15m-27,故MN=1100m 2-25m-15m-27=1100(m-30)2+18≥18>15.5,∴电缆线距离斜坡面竖直高度的最小值为18 m,高于安全需要的距离15.5 m,故符合安全要求.变式设问 解析:(1)0.05;(6,1.7).提示:由题意得抛物线的对称轴为直线x=6,则A (0,3.5),B (12,3.5),∴144a-7.2+3.5=3.5,解得a=0.05,∴抛物线的表达式为y=0.05x 2-0.6x+3.5.当x=6时,y=0.05x 2-0.6x+3.5=1.7,即该抛物线的顶点坐标为(6,1.7),(2)∵两个新抛物线彩带最低点之间的水平距离为5 m,且比之前的最低点提高0.3 m,∴左边新抛物线的顶点坐标为(3.5,2).设左边新抛物线的表达式为y=a'(x-3.5)2+2,将点A 的坐标代入上式得3.5=a'(0-3.5)2+2,解得a'=649,∴左侧抛物线的表达式为y=649(x-3.5)2+2.当x=6时,y=649(6-3.5)2+2=27198,∴这根绳子的下端D 到地面的距高为27198m .题型2 图形面积探究类型1 面积、线段最值探究例1 解析:如图,过点C 作垂直于x 轴的直线,与AB 交于点D ,分别过点A ,B 作CD 的垂线段h 1,h 2,即S △ABC =S △ACD +S △BCD .∵S △ADC =12CD ·h 1,S △BCD =12CD ·h 2,∴S △ABC =S △ACD +S △BCD =12CD ·(h 1+h 2).又∵CD=|y D -y C |,h 1+h 2=|x B -x A |,∴S △ABC =S △ACD +S △BCD =12(y D -y C)(x B -x A ).变式设问 1.解析:(1)在一次函数y=x+4中,令x=0,得y=4,令y=0,得x=-4,∴A (-4,0),B (0,4).∵点A (-4,0),B (0,4)在抛物线y=-x 2+bx+c 上,∴{-16-4b +c =0,c =4,解得{b =-3,c =4,∴抛物线的表达式为y=-x 2-3x+4.(2)设点C 的坐标为(m ,0)(-4≤m ≤0),则点E 的坐标为(m ,-m 2-3m+4),点D 的坐标为(m ,m+4),。
二次函数综合题经典40题(含知识点与答案解析)(可编辑修改word版)
2019年03月08日〃子初ぐ的初中数学组卷评卷人得分一.解答题(共40小题)1.已知二次函数y=ax2+bx+c图象的对称轴为y轴,且过点(1,2),(2,5).(1)求二次函数的解析式;(2)如图,过点E(0,2)的一次函数图象与二次函数的图象交于A,B两点(A点在B 点的左侧),过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D.①当CD=3时,求该一次函数的解析式;②分别用S1,S2,S3表示△ACE,△ECD,△EDB的面积,问是否存在实数t,使得S22=tS1S3都成立?若存在,求出t的值;若不存在,说明理由.2.如图,已知抛物线y=x2﹣x﹣k(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)过D点向x轴作垂线,垂足为点M,连结AD,若∠MDA=∠ABD,求点D的坐标;(3)若在第一象限的抛物线上有一点P,使得以点A,B,P为顶点的三角形与△ABC相似,请直接写出△ABC的面积.3.如图,已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,图象经过B(﹣3,0)、C(0,3)两点,且与x轴交于点A.(1)求二次函数y=ax2+bx+c(a≠0)的表达式;(2)在抛物线的对称轴上找一点M,使△ACM周长最短,求出点M的坐标;(3)若点P为抛物线对称轴上的一个动点,直接写出使△BPC为直角三角形时点P的坐标.4.定义:在平面直角坐标系xOy中,直线y=a(x﹣m)+k称为抛物线y=a(x﹣m)2+k 的关联直线.(1)求抛物线y=x2+6x﹣1的关联直线;(2)已知抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,求这条抛物线的表达式;(3)如图,顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与它的关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,连结AC、BC.当△ABC为直角三角形时,求a的值.5.已知抛物线y=﹣x2+mx+m+1与x轴交于A、B两点(点A在点B的左侧).(1)当m=2时,抛物线与y轴交于点C.①直接写出点A、B、C的坐标;②如图1,连接AC,在x轴上方的抛物线上有一点D,若∠ABD=∠ACO,求点D的坐标;③如图2,点P为抛物线位于第一象限图象上一动点,过P作PQ⊥CB,求PQ的最大值;(2)如图3,若点M为抛物线位于x轴上方图象上一动点,过点M作MN⊥x轴,垂足为N,直线MN上有一点H,满足∠HBA与∠MAB互余,试判断HN的长是否变化,若变化,请说明理由,若不变,请求出HN长.6.如图,已知抛物线经过点A(3,0),B(0,3),C(﹣1,0).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标;(3)如图1,点D是抛物线上一动点,过D作y轴的平行线DE交直线AB于点E,当线段DE=1时,请直接写出D点的横坐标;(4)如图2,当D为直线AB上方抛物线上一动点时,DF⊥AB于F,设AC的中点为M,连接BD,BM,是否存在点D,使得△BDF中有一个角与∠BMO相等?若存在,请直接写出点D的横坐标;若不存在,请说明理由.7.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.8.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,2),直线CD:y=﹣x+2与x轴交于点D.动点M在抛物线上运动,过点M作MP⊥x轴,垂足为P,交直线CD于点N.(1)求抛物线的解析式;(2)当点P在线段OD上时,△CDM的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由;(3)点E是抛物线对称轴与x轴的交点,点F是x轴上一动点,点M在运动过程中,若以C、E、F、M为顶点的四边形是平行四边形时,请直接写出点F的坐标.9.如图,在直角坐标平面内,抛物线经过原点O、点B(1,3),又与x轴正半轴相交于点A,∠BAO=45°,点P是线段AB上的一点,过点P作PM∥OB,与抛物线交于点M,且点M在第一象限内.(1)求抛物线的表达式;(2)若∠BMP=∠AOB,求点P的坐标;(3)过点M作MC⊥x轴,分别交直线AB、x轴于点N、C,若△ANC的面积等于△PMN 的面积的2倍,求的值.10.在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,顶点为D,且过点(2,﹣3a).(1)求抛物线的解析式;(2)抛物线上是否存在一点P,过点P作PM⊥BD,垂足为点M,PM=2DM?若存在,求点P的坐标;若不存在,说明理由.(3)在(2)的条件下,求△PMD的面积.11.如图,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式;(2)已知点P是抛物线上的一个动点,并且点P在第二象限内,过动点P作PE⊥x轴于点E,交线段AC于点D.①如图1,过D作DF⊥y轴于点F,交抛物线于M,N两点(点M位于点N的左侧),连接EF,当线段EF的长度最短时,求点P,M,N的坐标;②如图2,连接CD,若以C,P,D为顶点的三角形与△ADE相似,求△CPD的面积.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.13.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3与直线y=x﹣3交于点A(3,0)和点B(﹣2,n),与y轴交于点C.(1)求出抛物线的函数表达式;(2)在图1中,平移线段AC,点A、C的对应点分别为M、N,当N点落在线段AB上时,M点也恰好在抛物线上,求此时点M的坐标;(3)如图2,在(2)的条件下,在抛物线上是否存在点P(不与点A重合),使△PMC 的面积与△AMC的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.14.已知抛物线l1与l2形状相同,开口方向不同,其中抛物线l1:y=ax2﹣6ax﹣10交x轴于A,B两点(点A在点B的左侧),且AB=4,抛物线l2与l1交于点A与C(4,m).(1)求抛物线l1,l2的函数表达式;(2)当x的取值范围是 时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大;(3)直线PQ∥y轴,分别交x轴,l1,l2于点D(n,0),P,Q,当≤n≤5时,求线段PQ的最大值.15.如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.16.在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.17.已知直线y=x+4分别交x轴、y轴于A、B两点,抛物线y=x2+mx﹣4经过点A,和x轴的另一个交点为C.(1)求抛物线的解析式;(2)如图1,点D是抛物线上的动点,且在第三象限,求△ABD面积的最大值;(3)如图2,经过点M(﹣4,1)的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求OE•OF的值.18.如图,在平面直角坐标系中,直线y=+2分别交x轴、y轴于点A、B,抛物线y=﹣x2+bx+c经过点A、B.点P是x轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m.(1)点A的坐标为 .(2)求这条抛物线所对应的函数表达式.(3)点P在线段OA上时,若以B、E、F为顶点的三角形与△FPA相似,求m的值.(4)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称E、F、P三点为“共谐点”.直接写出E、F、P三点成为“共谐点”时m的值.19.如图1,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=4,直线1是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图1,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.抛物线上有一点Q,使得△PQN与△APM的面积相等,请求出点Q到直线PN的距离.20.如图抛物线y=ax2+2交x轴于点A(﹣2,0)、B,交y轴于点C;(1)求抛物线的解析式;(2)点P从点A出发,以1个单位/秒的速度向终点B运动,同时点Q从点C出发,以相同的速度沿y轴正方向向上运动,运动的时间为t秒,当点P到达点B时,点Q也停止运动,设△PQC的面积为S,求S与t间的函数关系式并直接写出t的取值范围;(3)在(2)的条件下,当点P在线段OB上时,设PQ交直线AC于点G,过P作PE⊥AC于点E,求EG的长.21.如图,在平面直角坐标系中,直线y=﹣x+3与抛物线y=﹣x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣1.动点P在抛物线上运动(不与点A、B重合),过点P作y轴的平行线,交直线AB于点Q,当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,连结PM.设点P的横坐标为m.(1)求b、c的值.(2)当点N落在直线AB上时,直接写出m的取值范围.(3)当点P在A、B两点之间的抛物线上运动时,设正方形PQMN周长为c,求c与m之间的函数关系式,并写出c随m增大而增大时m的取值范围.(4)当△PQM与y轴只有1个公共点时,直接写出m的值.22.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.23.已知:如图,抛物线y=﹣x2+bx+c与x轴、y轴分别相交于点A(﹣1,0)、B(0,3)两点,其顶点为D.(1)求这条抛物线的解析式;(2)若抛物线与x轴的另一个交点为E.求△ODE的面积;抛物线的对称轴上是否存在点P使得△PAB的周长最短.若存在请求出P点的坐标,若不存在说明理由.24.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q 作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y 轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.25.在平面直角坐标系中,已知抛物线y=ax2+bx﹣4与x轴相交于A(﹣4,0)、C(2,0)两点.与y轴相交于点B.(1)求抛物线的解析式;(2)求抛物线与y轴的交点B的坐标和抛物线顶点坐标;(3)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.26.在平面直角坐标系xOy中抛物线y=ax2﹣2ax+3(a≠0)的顶点A在第一象限,它的对称轴与x轴交于点B,△AOB为等腰直角三角形(1)写出抛物线的对称轴为直线 ;(2)求出抛物线的解析式;(3)垂直于y轴的直线L与该抛物线交于点P(x1,y1),Q(x2,y2)其中x1<x2,直线L与函数y=(x>0)的图象交于点R(x3,y3),若,求x1+x2+x3的取值范围.27.已知抛物线y=x2﹣2mx+m2﹣3(m是常数).(1)证明:无论m取什么实数,该抛物线与x轴都有两个交点;(2)设抛物线的顶点为A,与x轴两个交点分别为B,D,B在D的右侧,与y轴的交点为C.①求证:当m取不同值时,△ABD都是等边三角形;②当|m|≤,m≠0时,△ABC的面积是否有最大值,如果有,请求出最大值,如果没有,请说明理由.28.已知抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0),且与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的解析式;(2)点P是y轴正半轴上的一个动点,连结DP,将线段DP绕着点D顺时针旋转90°得到线段DE,点P的对应点E恰好落在抛物线上,求出此时点P的坐标;(3)点M(m,n)是抛物线上的一个动点,连接MD,把MD2表示成自变量n的函数,并求出MD2取得最小值时点M的坐标.29.如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,2),点B的坐标为(1,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,1),点F为该二次函数在第二象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,求此时S的值及点E的坐标.30.如图1,抛物线y=mx2﹣4mx+3m(m>0)与x轴交于A,B两点(点B在点A右侧).与y轴交点C,与直线l:y=x+1交于D、E两点,(1)当m=1时,连接BC,求∠OBC的度数;(2)在(1)的条件下,连接DB、EB,是否存在抛物线在第四象限上一点P,使得S△DBE=S△DPE?若存在,求出此时P点坐标及PB的长度;若不存在,请说明理由;(3)若以DE为直径的圆恰好与x轴相切,求此时m的值.31.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与直线l:y=kx+m(k<0)交于A(﹣1,﹣1)、B两点,与y轴交于C(0,2).(1)求抛物线的函数表达式;(2)若y轴平分∠ACB,求k的值;(3)若在x轴上有且只有一点P,使∠APB=90°,求k的值.32.如图,已知点E在x轴上,⊙E交x轴于A,B两点(点A在点B的左侧),交y轴于点C,OB=3OA=3,抛物线y=ax2+bx+c的图象过A、B、C三点,顶点为M.(1)写出A、B两点的坐标A ,B ;(2)求二次函数的关系式;(3)点P为线段BM上的一个动点,过点P作x轴的垂线PQ垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数关系式,和四边形ACPQ的面积的最大值.33.如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线y=x2+bx+c过点A和B,与y轴交于点C.(1)求点C的坐标,并画出抛物线的大致图象(要求过点A、B、C,开口方向、顶点和对称轴相对准确)(2)点Q(8,m)在抛物线y=x2+bx+c上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值;(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.34.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式.(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),点P是抛物线上第一象限上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.35.如图,顶点为D的抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于两点B、C(点B在点C的左边),点A与点E关于抛物线的对称轴对称,点B、E在直线y=kx+b(k,b为常数)上.(1)求k,b的值;(2)点P为直线AE上方抛物线上的任意一点,过点P作AE的垂线交AE于点F,点G为y轴上任意一点,当△PBE的面积最大时,求PF+FG+OG的最小值;(3)在(2)中,当PF+FG+OG取得最小值时,将△AFG绕点A按顺时方向旋转30°后得到△AF1G1,过点G1作AE的垂线与AE交于点M.点D向上平移个单位长度后能与点N重合,点Q为直线DN上任意一点,在平面直角坐标系中是否存在一点S,使以S、Q、M、N为顶点且MN为边的四边形为菱形?若存在,直接写出点S的坐标;若不存在,请说明理由.36.如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.37.已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点的坐标分别为A (0,2),B(﹣1,0),点C为线段AB的中点,现将线段BA绕点B按逆时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)、经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣1.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由.(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(﹣1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,若符合条件的Q点的个数是4个,请直接写出a的取值范围 .38.在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(1,0),B(3,0),与y轴交于C(0,3),抛物线顶点为D点.(1)求此抛物线解析式;(2)如图1,点P为抛物线上的一个动点,且在对称轴右侧,若△ADP面积为3,求点P 的坐标;(3)在(2)的条件下,PA交对称轴于点E,如图2,过E点的任一条直线与抛物线交于M,N两点,直线MD交直线y=﹣3于点F,连结NF,求证:NF∥y轴.39.如图1,正方形ABCD的一边AB在x轴的正半轴上,⊙M是正方形ABCD的外接圆,连接OD,与⊙M相交于E点,连接BE与AD交于点F,已知AB=4,(1)求证:△ODA≌△FBA;(2)如图2,当E是OD中点时,点G是过E、A、B的抛物线的顶点,连接AG,①求点E的坐标;②求证:AG是⊙M的切线.(3)如图3,连接CE,若ED+EA=3,直接写出EC+EB的值.40.如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(,);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P 作PQ∥y轴交线段OB于点Q.(1)求抛物线的解析式;(2)当PQ的长度为最大值时,求点Q的坐标;(3)点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB 上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.2019年03月08日〃子初ぐ的初中数学组卷参考答案与试题解析一.解答题(共40小题)1.已知二次函数y=ax2+bx+c图象的对称轴为y轴,且过点(1,2),(2,5).(1)求二次函数的解析式;(2)如图,过点E(0,2)的一次函数图象与二次函数的图象交于A,B两点(A点在B 点的左侧),过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D.①当CD=3时,求该一次函数的解析式;②分别用S1,S2,S3表示△ACE,△ECD,△EDB的面积,问是否存在实数t,使得S22=tS1S3都成立?若存在,求出t的值;若不存在,说明理由.【考点】HF:二次函数综合题.【分析】(1)把点(1,2),(2,5)坐标和对称轴为y轴三个条件,代入二次函数的表达式即可求解;(2)①将一次函数表达式与二次函数表达式联立并整理得:x2﹣kx﹣1=0,利用x2﹣x1===3,即可求解;②分别求出S1、S2、S3,用韦达定理化简,即可求解.【解答】解:(1)由题意得:,解得:,故:二次函数的表达式为:y=x2+1;(2)①设过点E的一次函数表达式为:y=kx+2,将一次函数表达式与二次函数表达式联立并整理得:x2﹣kx﹣1=0,设点A、B的坐标分别为(x1,y1)、(x2,y2)(x1<x2),则:x1+x2=k,x1x2=﹣1,x2﹣x1===3,解得:k=,∴该一次函数表达式为:y=x+2或y=﹣x+2;②S1=AC•OC=﹣x1y1,S2=CD•OE=(x2﹣x1)=k2+4,S3=BD•OD=x2y2,x1+x2=k,x1x2=﹣1,则:S1•S2=﹣x1x2[k2x1x2+2k(x1+x2)+4]=(k2+4)=4S2,∴t=4.【点评】本题考查的是二次函数综合运用,主要考查利用韦达定理处理复杂的数据,难度不大.2.如图,已知抛物线y=x2﹣x﹣k(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)过D点向x轴作垂线,垂足为点M,连结AD,若∠MDA=∠ABD,求点D的坐标;(3)若在第一象限的抛物线上有一点P,使得以点A,B,P为顶点的三角形与△ABC相似,请直接写出△ABC的面积.【考点】HF:二次函数综合题.【分析】(1)求出A、B的坐标,把点B坐标代入直线表达式即可求解;(2)利用△AMD∽△DMB,=,即可求解;(3)分△ABC∽△APB、△ABC∽△PAB两种情况,分别求解即可.【解答】解:(1)抛物线y=x2﹣x﹣k=(x+2)(x﹣4),令y=0,则x=﹣2或4,即点A、B的坐标分别为(﹣2,0)、(4,0),把点B坐标代入直线y=﹣x+b得:﹣×4+b=0,解得:b=,∴直线BD的表达式为:y=﹣x+,当x=﹣5时,y=3,∴D(﹣5,3),把点D的坐标代入抛物线表达式得:(﹣5+2)(﹣5﹣4)=3,k=,∴抛物线的表达式为:y=x2﹣x﹣;(2)设点D的坐标为(x,﹣x+),则:DM=﹣x+,BM=4﹣x,AM=﹣2﹣x,∵∠MDA=∠ABD,∠AMD=∠DMB,∴△AMD∽△DMB,∴=,即:(﹣x+)2=(4﹣x)(﹣2﹣x),解得:x=﹣5或4(舍去x=4),∴点D的坐标为(﹣5,3);(3)由抛物线的表达式,令x=0,则y=﹣k,∴点C的坐标为(0,﹣k),OC=k,①当△ABC∽△APB时,则∠BAC=∠PAB,设点P的坐标为(x,y),过点P作PN⊥x轴交于点N,则ON=x,PN=y,tan∠BAC=tan∠PAB,即:,∴y=kx+k,把点P(x,)代入抛物线表达式并解得:x=8或﹣2(舍去﹣2),故点P的坐标为(8,5k),∵△ABC∽△APB,∴AB2=AC•AP,即:62=,解得:k=,S△ABC=AB•OC==;②△ABC∽△PAB时,同理可得:k=,S△ABC=AB•OC==3,故:△ABC的面积为=或3.【点评】本题考查的是二次函数综合运用,涉及到三角形相似、解直角三角形等,(2)(3)的关键是通过相似确定线段间的比例关系.3.如图,已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,图象经过B(﹣3,0)、C(0,3)两点,且与x轴交于点A.(1)求二次函数y=ax2+bx+c(a≠0)的表达式;(2)在抛物线的对称轴上找一点M,使△ACM周长最短,求出点M的坐标;(3)若点P为抛物线对称轴上的一个动点,直接写出使△BPC为直角三角形时点P的坐标.【考点】HF:二次函数综合题.【分析】(1)由抛物线的对称轴及点B的坐标可求出点A的坐标,由点A,B,C的坐标,利用待定系数法即可求出二次函数的表达式;(2)连接BC,交直线x=﹣1于点M,此时△ACM周长最短,由点B,C的坐标,利用待定系数法可求出直线BC的函数表达式,再利用一次函数图象上点的坐标特征即可求出点M的坐标;(3)设点P的坐标为(﹣1,m),结合点B,C的坐标可得出PB2,PC2,BC2的值,分∠BCP=90°,∠CBP=90°,∠BPC=90°三种情况考虑,①当∠BCP=90°时,利用勾股定理可得出关于m的一元一次方程,解之可得出m的值,进而可得出点P的坐标;②当∠CBP=90°时,利用勾股定理可得出关于m的一元一次方程,解之可得出m的值,进而可得出点P的坐标;③当∠BPC=90°时,利用勾股定理可得出关于m 的一元二次方程,解之可得出m的值,进而可得出点P的坐标.综上,此题得解.【解答】解:(1)∵二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,点B的坐标为(﹣3,0),∴点A的坐标为(1,0).将A(1,0),B(﹣3,0),C(0,3)代入y=ax2+bx+c,得:,解得:,∴二次函数的表达式为y=﹣x2﹣2x+3.(2)连接BC,交直线x=﹣1于点M,如图1所示.∵点A,B关于直线x=﹣1对称,∴AM=BM.∵点B,C,M三点共线,∴此时AM+CM取最小值,最小值为BC.设直线BC的函数表达式为y=kx+d(k≠0),将B(﹣3,0),C(0,3)代入y=kx+d,得:,解得:,∴直线BC的函数表达式为y=x+3.当x=﹣1时,y=x+3=2,∴当点M的坐标为(﹣1,2)时,△ACM周长最短.(3)设点P的坐标为(﹣1,m),∵点B的坐标为(﹣3,0),点C的坐标为(0,3),∴PB2=[﹣3﹣(﹣1)]2+(0﹣m)2=m2+4,PC2=[0﹣(﹣1)]2+(3﹣m)2=m2﹣6m+10,BC2=[0﹣(﹣3)]2+(3﹣0)2=18.分三种情况考虑(如图2):①当∠BCP=90°时,BC2+PC2=PB2,∴18+m2﹣6m+10=m2+4,解得:m=4,∴点P的坐标为(﹣1,4);②当∠CBP=90°时,BC2+PB2=PC2,∴18+m2+4=m2﹣6m+10,解得:m=﹣2,∴点P的坐标为(﹣1,﹣2);③当∠BPC=90°时,PB2+PC2=BC2,∴m2+4+m2﹣6m+10=18,整理得:m2﹣3m﹣2=0,解得:m1=,m2=,∴点P的坐标为(﹣1,)或(﹣1,).综上所述:使△BPC为直角三角形时点P的坐标为(﹣1,﹣2),(﹣1,),(﹣1,)或(﹣1,4).【点评】本题考查了二次函数的性质、待定系数法求二次函数解析式、三角形的三边关系、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、两点间的距离公式、勾股定理以及解一元一次(二次)方程,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数的对称性及三角形的三边关系,找出点M所在的位置;(3)分∠BCP=90°,∠CBP=90°,∠BPC=90°三种情况,找出关于m的方程.4.定义:在平面直角坐标系xOy中,直线y=a(x﹣m)+k称为抛物线y=a(x﹣m)2+k 的关联直线.(1)求抛物线y=x2+6x﹣1的关联直线;(2)已知抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,求这条抛物线的表达式;(3)如图,顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与它的关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,连结AC、BC.当△ABC为直角三角形时,求a的值.【考点】HF:二次函数综合题.【分析】(1)根据关联直线的定义可求;(2)由题意可得a=2,c=3,设抛物线的顶点式为y=2(x﹣m)2+k,可得,可求m和k的值,即可求这条抛物线的表达式;(3)由题意可得A(1,4a)B(2,3a)C(﹣1,0),可求AB2=1+a2,BC2=9+9a2,AC2=4+16a2,分BC,AC为斜边两种情况讨论,根据勾股定理可求a的值.【解答】解:(1)∵y=x2+6x﹣1=(x+3)2﹣10∴关联直线为y=x+3﹣10=x﹣7(2)∵抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,∴a=2,c=3,可设抛物线的顶点式为y=2(x﹣m)2+k,则其关联直线为y=2(x﹣m)+k=2x﹣2m+k,∴解得∴抛物线y=2x2+3或y=2(x+1)2+1,(3)由题意:A(1,4a)B(2,3a)C(﹣1,0),∴AB2=1+a2,BC2=9+9a2,AC2=4+16a2,显然AB2<BC2且AB2<AC2,故AB不能成为△ABC的斜边,当AB2+BC2=AC2时:1+a2+9+9a2=4+16a2解得a=±1,当AB2+AC2=BC2时:1+a2+4+16a2=9+9a2解得,∵抛物线的顶点在第一象限∴a>0,即【点评】本题是二次函数综合题,直角三角形的性质,熟练掌握二次函数图象上点的坐标特征和二次函数的性质;理解坐标与图象性质,记住两点间的距离公式,注意分情况讨论思想的应用.5.已知抛物线y=﹣x2+mx+m+1与x轴交于A、B两点(点A在点B的左侧).(1)当m=2时,抛物线与y轴交于点C.①直接写出点A、B、C的坐标;②如图1,连接AC,在x轴上方的抛物线上有一点D,若∠ABD=∠ACO,求点D的坐标;③如图2,点P为抛物线位于第一象限图象上一动点,过P作PQ⊥CB,求PQ的最大值;(2)如图3,若点M为抛物线位于x轴上方图象上一动点,过点M作MN⊥x轴,垂足为N,直线MN上有一点H,满足∠HBA与∠MAB互余,试判断HN的长是否变化,若变化,请说明理由,若不变,请求出HN长.【考点】HF:二次函数综合题.【分析】(1)①先解方程﹣x2+2x+3=0得A点和B点坐标;然后计算自变量为0时的函数值得到C点坐标;②OD交y轴于E,如图2,通过证明Rt△OBE∽Rt△OCA,利用相似比得到OE=OA=1,则E(0,1),再利用待定系数法求出直线BE的解析式为y=﹣x+1,然后解方程得D点坐标;③作PK⊥x轴于K,交BC于F,如图2,易得直线BC的解析式为y=﹣x+3,设P(x,﹣x2+2x+3)(0<x<3),则F(x,﹣x+3),所以PF=﹣x2+3x,再证明∠BFK=∠PFQ=45°,所以PQ=PF=﹣x2+x,然后根据二次函数的性质解决问题;(2)先解方程﹣x2+mt+m+1=0得A(﹣1,0),B(m+1,0),延长BH交AM于G,如图3,证明Rt△BNH∽△MNA,则=,设M(t,﹣t2+mt+m+1),则N(t,0),所以=,然后根据分式的运算可得到HN=1.【解答】解:(1)①当m=2时,抛物线解析式为y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),当y=0时,y=﹣x2+2x+3=3,则C(0,3);②OD交y轴于E,如图2,∵∠OBE=∠ACO,∴Rt△OBE∽Rt△OCA,∴==,∴OE=OA=1,∴E(0,1),设直线BE的解析式为y=kx+b,把B(3,0),E(0,1)代入得,解得,∴直线BE的解析式为y=﹣x+1,解方程组得或﹣,∴D点坐标为(﹣,);③作PK⊥x轴于K,交BC于F,如图2,易得直线BC的解析式为y=﹣x+3,设P(x,﹣x2+2x+3)(0<x<3),则F(x,﹣x+3),∴PF=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,∵OB=OC=3,∴△OCB为等腰直角三角形,∴∠KBF=45°,∴∠BFK=∠PFQ=45°,∴PQ=PF=﹣x2+x=﹣(x﹣)2+,当x=时,PQ有最大值,最大值为;(2)HN的长度不变,它的长度为1.。
2020-2021中考数学专题复习二次函数的综合题含详细答案
2020-2021中考数学专题复习二次函数的综合题含详细答案一、二次函数1.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.【答案】(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317()+-或317(--. 【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-. (注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得: 13172t =,23172t =. 综上所述P 的坐标为()1,2--或()1,4-或3171,2⎛+- ⎝⎭或3171,2⎛- ⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.2.某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y (千克)与销售单价x (元)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?【答案】(1)y =﹣20x +500,(x ≥6);(2)当x =15.5时,w 的最大值为1805元;(3)当x =13时,w =1680,此时,既能销售完又能获得最大利润.【解析】【分析】(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 即可求解;(2)由题意得:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,即可求解;(3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;由50(500﹣20x )≥12000,解得:x ≤13,当x =13时,既能销售完又能获得最大利润.【详解】解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:2001530010k b k b=+⎧⎨=+⎩, 解得:20500k b =-⎧⎨=⎩, 即:函数的表达式为:y =﹣20x +500,(x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大,则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,当x =﹣2b a =312=15.5时,w 的最大值为1805元; (3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x 元时,既能销售完又能获得最大利润w ,由题意得:50(500﹣20x )≥12000,解得:x ≤13,w =﹣20(x ﹣25)(x ﹣6),当x =13时,w =1680,此时,既能销售完又能获得最大利润.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).3.已知,m ,n 是一元二次方程x 2+4x +3=0的两个实数根,且|m |<|n |,抛物线y =x 2+bx +c 的图象经过点A (m ,0),B (0,n ),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P 为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或> 【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ=2,∴QF=1. ①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t >3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=12PM×QF=12(23t t -)=21322t t -. 综上所述,S=2213 (03)22{13 (03)22t t t t t t t 或-+<<-.考点:二次函数综合题;分类讨论.4.如图,在平面直角坐标系中,点O 为坐标原点,直线y=﹣x+n 与x 轴、y 轴分别交于B 、C 两点,抛物线y=ax 2+bx+3(a≠0)过C 、B 两点,交x 轴于另一点A ,连接AC ,且tan ∠CAO=3.(1)求抛物线的解析式;(2)若点P 是射线CB 上一点,过点P 作x 轴的垂线,垂足为H ,交抛物线于Q ,设P 点横坐标为t ,线段PQ 的长为d ,求出d 与t 之间的函数关系式,并写出相应的自变量t 的取值范围;(3)在(2)的条件下,当点P 在线段BC 上时,设PH=e ,已知d ,e 是以y 为未知数的一元二次方程:y 2-(m+3)y+14(5m 2-2m+13)="0" (m 为常数)的两个实数根,点M 在抛物线上,连接MQ 、MH 、PM ,且.MP 平分∠QMH ,求出t 值及点M 的坐标.【答案】(1) y=-x 2+2x+3;(2)223(03){3(3)d t t t d t t t =-+<<=->;(3)t=1,22)和(122).【解析】【分析】(1)当x=0时代入抛物线y=ax 2+bx+3(a≠0)就可以求出y=3而得出C 的坐标,就可以得出直线的解析式,就可以求出B 的坐标,在直角三角形AOC 中,由三角形函数值就可以求出OA 的值,得出A 的坐标,再由待定系数法建立二元一次方程组求出其解就可以得出结论;(2)分两种情况讨论,当点P 在线段CB 上时,和如图3点P 在射线BN 上时,就有P 点的坐标为(t ,-t+3),Q 点的坐标为(t ,-t 2+2t+3),就可以得出d 与t 之间的函数关系式而得出结论;(3)根据根的判别式就可以求出m 的值,就可以求出方程的解而求得PQ 和PH 的值,延长MP 至L ,使LP=MP ,连接LQ 、LH ,如图2,延长MP 至L ,使LP=MP ,连接LQ 、LH ,就可以得出四边形LQMH 是平行四边形,进而得出四边形LQMH 是菱形,由菱形的性质就可以求出结论.【详解】(1)当x=0,则y=-x+n=0+n=n ,y=ax 2+bx+3=3,∴OC=3=n .当y=0,∴-x+3=0,x=3=OB ,∴B (3,0).在△AOC 中,∠AOC =90°,tan ∠CAO=33OC OA OA==, ∴OA=1,∴A (-1,0).将A (-1,0),B (3,0)代入y=ax2+bx+3,得 9330{30a b a b ++=-+=,解得:1 {2 ab=-=∴抛物线的解析式:y=-x2+2x+3;(2) 如图1,∵P点的横坐标为t 且PQ垂直于x轴∴P点的坐标为(t,-t+3),Q点的坐标为(t,-t2+2t+3).∴PQ=|(-t+3)-(-t2+2t+3)|="|" t2-3t |∴223(03) {3(3)d t t td t t t=-+<<=->;∵d,e是y2-(m+3)y+14(5m2-2m+13)=0(m为常数)的两个实数根,∴△≥0,即△=(m+3)2-4×14(5m2-2m+13)≥0整理得:△= -4(m-1)2≥0,∵-4(m-1)2≤0,∴△=0,m=1,∴ PQ与PH是y2-4y+4=0的两个实数根,解得y1=y2=2∴ PQ=PH=2,∴-t+3=2,∴t="1,"∴此时Q是抛物线的顶点,延长MP至L,使LP=MP,连接LQ、LH,如图2,∵LP=MP,PQ=PH,∴四边形LQMH是平行四边形,∴LH∥QM,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴LH=MH,∴平行四边形LQMH是菱形,∴PM⊥QH,∴点M的纵坐标与P点纵坐标相同,都是2,∴在y=-x 2+2x+3令y=2,得x 2-2x -1=0,∴x 1=1+2,x 2=1-2综上:t 值为1,M 点坐标为(1+2,2)和(1-2,2).5.如图①,在平面直角坐标系xOy 中,抛物线y=ax 2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y 轴交于点C.(1)求抛物线的表达式; (2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、 Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP 、DQ.①若点P 的横坐标为12-,求△DPQ 面积的最大值,并求此时点D 的坐标; ②直尺在平移过程中,△DPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x 2+2x+3;(2)①点D ( 31524,);②△PQD 面积的最大值为8【解析】分析:(1)根据点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I )由点P 的横坐标可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+6x+72,再利用二次函数的性质即可解决最值问题; (II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+4(t+2)x-2t 2-8t ,再利用二次函数的性质即可解决最值问题.详解:(1)将A (-1,0)、B (3,0)代入y=ax 2+bx+3,得:309330a b a b -+⎧⎨++⎩==,解得:12a b -⎧⎨⎩==,∴抛物线的表达式为y=-x 2+2x+3.(2)(I )当点P 的横坐标为-12时,点Q 的横坐标为72, ∴此时点P 的坐标为(-12,74),点Q 的坐标为(72,-94). 设直线PQ 的表达式为y=mx+n ,将P (-12,74)、Q (72,-94)代入y=mx+n ,得: 17247924m n m n ⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154m n -⎧⎪⎨⎪⎩==, ∴直线PQ 的表达式为y=-x+54. 如图②,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54), ∴DE=-x 2+2x+3-(-x+54)=-x 2+3x+74, ∴S △DPQ =12DE•(x Q -x P )=-2x 2+6x+72=-2(x-32)2+8. ∵-2<0,∴当x=32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154). (II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t ,-t 2+2t+3),点Q 的坐标为(4+t ,-(4+t )2+2(4+t )+3), 利用待定系数法易知,直线PQ 的表达式为y=-2(t+1)x+t 2+4t+3.设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3), ∴DE=-x 2+2x+3-[-2(t+1)x+t 2+4t+3]=-x 2+2(t+2)x-t 2-4t ,∴S △DPQ =12DE•(x Q -x P )=-2x 2+4(t+2)x-2t 2-8t=-2[x-(t+2)]2+8.∵-2<0,∴当x=t+2时,△DPQ 的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ 面积有最大值,面积的最大值为8.点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I )利用三角形的面积公式找出S △DPQ =-2x 2+6x+72;(II )利用三角形的面积公式找出S △DPQ =-2x 2+4(t+2)x-2t 2-8t .6.如图所示,已知平面直角坐标系xOy ,抛物线过点A(4,0)、B(1,3)(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.【答案】(1)y=-224(2)4y x x x =-+=--+,对称轴为:x=2,顶点坐标为:(2,4)(2)m 、n 的值分别为 5,-5【解析】(1) 将点A(4,0)、B(1,3) 的坐标分别代入y =-x 2+bx +c ,得:4b+c-16=0,b+c-1="3" ,解得:b="4" , c=0.所以抛物线的表达式为:24y x x =-+.y=-224(2)4y x x x =-+=--+,所以 抛物线的对称轴为:x=2,顶点坐标为:(2,4).(2) 由题可知,E 、F 点坐标分别为(4-m ,n ),(m-4,n ).三角形POF 的面积为:1/2×4×|n|= 2|n|,三角形AOP 的面积为:1/2×4×|n|= 2|n|,四边形OAPF 的面积= 三角形POF 的面积+三角形AOP 的面积=20,所以 4|n|=20, n=-5.(因为点P(m,n)在第四象限,所以n<0)又n=-2m +4m ,所以2m -4m-5=0,m=5.(因为点P(m,n)在第四象限,所以m>0)故所求m 、n 的值分别为 5,-5.7.如图,抛物线y =ax 2+bx ﹣1(a ≠0)交x 轴于A ,B (1,0)两点,交y 轴于点C ,一次函数y =x +3的图象交坐标轴于A ,D 两点,E 为直线AD 上一点,作EF ⊥x 轴,交抛物线于点F(1)求抛物线的解析式;(2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E 的坐标;若没有,请说明理由;(3)在平面直角坐标系内存在点G,使得G,E,D,C为顶点的四边形为菱形,请直接写出点G的坐标.【答案】(1)抛物线的解析式为y=13x2+23x﹣1;(2)4912,(12,72);(3)点G的坐标为(2,1),(﹣2221),221),(﹣4,3).【解析】【分析】(1)利用待定系数法确定函数关系式;(2)由函数图象上点的坐标特征:可设点E的坐标为(m,m+3),点F的坐标为(m,1 3m2+23m﹣1),由此得到EF=﹣13m2+13m+4,根据二次函数最值的求法解答即可;(3)分三种情形①如图1中,当EG为菱形对角线时.②如图2、3中,当EC为菱形的对角线时,③如图4中,当ED为菱形的对角线时,分别求解即可.【详解】解:(1)将y=0代入y=x+3,得x=﹣3.∴点A的坐标为(﹣3,0).设抛物线的解析式为y=a(x﹣x1)(x﹣x2),点A的坐标为(﹣3,0),点B的坐标为(1,0),∴y=a(x+3)(x﹣1).∵点C的坐标为(0,﹣1),∴﹣3a=﹣1,得a=13,∴抛物线的解析式为y=13x2+23x﹣1;(2)设点E的坐标为(m,m+3),线段EF的长度为y,则点F的坐标为(m,13m2+23m﹣1)∴y=(m+3)﹣( 13m2+23m﹣1)=﹣13m2+13m+4即y =-13(m ﹣12) 2+4912, 此时点E 的坐标为(12,72);(3)点G 的坐标为(2,1),(﹣21),1),(﹣4,3). 理由:①如图1,当四边形CGDE 为菱形时.∴EG 垂直平分CD∴点E 的纵坐标y =132-+=1, 将y =1带入y =x +3,得x =﹣2.∵EG 关于y 轴对称,∴点G 的坐标为(2,1);②如图2,当四边形CDEG 为菱形时,以点D 为圆心,DC 的长为半径作圆,交AD 于点E ,可得DC =DE ,构造菱形CDEG设点E 的坐标为(n ,n +3),点D 的坐标为(0,3)∴DE∵DE =DC =4,∴4,解得n 1=﹣n 2=∴点E 的坐标为(﹣2或将点E 向下平移4个单位长度可得点G ,点G 的坐标为(﹣1)(如图2)或1)(如图3)③如图4,“四边形CDGE 为菱形时,以点C 为圆心,以CD 的长为半径作圆,交直线AD 于点E ,设点E 的坐标为(k ,k +3),点C 的坐标为(0,﹣1).∴EC∵EC =CD =4,∴2k 2+8k +16=16,解得k 1=0(舍去),k 2=﹣4.∴点E 的坐标为(﹣4,﹣1)将点E 上移1个单位长度得点G .∴点G 的坐标为(﹣4,3).综上所述,点G 的坐标为(2,1),(﹣21),1),(﹣4,3).【点睛】本题考查二次函数综合题、轴对称变换、菱形的判定和性质等知识,解题的关键是学会利用对称解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.8.如图1,在矩形ABCD中,DB=6,AD=3,在Rt△PEF中,∠PEF=90°,EF=3,PF=6,△PEF(点F和点A重合)的边EF和矩形的边AB在同一直线上.现将Rt△PEF从A以每秒1个单位的速度向射线AB方向匀速平移,当点F与点B重合时停止运动,设运动时间为t秒,解答下列问题:(1)如图1,连接PD,填空:PE=,∠PFD=度,四边形PEAD的面积是;(2)如图2,当PF经过点D时,求△PEF运动时间t的值;(3)在运动的过程中,设△PEF与△ABD重叠部分面积为S,请直接写出S与t的函数关系式及相应的t的取值范围.【答案】(1)300,9+932;(233)见解析.【解析】分析:(1)根据锐角三角形函数可求出角的度数,然后根据勾股定理求出PE的长,再根据梯形的面积公式求解.(2)当PF 经过点D 时,PE ∥DA ,由EF=3,PF=6,可得∠EPD=∠ADF=30°,用三角函数计算可得(3)根据题意,分三种情况:①当0≤t <3时,③3≤t≤6时,根据三角形、梯形的面积的求法,求出S 与t 的函数关系式即可.详解:(1)∵在Rt △PEF 中,∠PEF=90°,EF=3,PF=6∴sin ∠P=1=2EF PF ∴∠P=30°∵PE ∥AD∴∠PAD=300,根据勾股定理可得所以S 四边形PEAD =12×(); (2)当PF 经过点D 时,PE ∥DA ,由EF=3,PF=6,得∠EPF=∠ADF=30°,在Rt △ADF 中,由AD=3,得;(3)分三种情况讨论:①当0≤t PF 交AD 于Q ,∵AF=t ,,∴S=12;②<3时,PF 交BD 于K ,作KH ⊥AB 于H ,∵AF=t ,∴,S △ABD =2,∵∠FBK=∠FKB,∴,KH=KF×sin600,∴S=S △ABD ﹣S △FBK=292t +③当PE 与BD 交O ,PF 交BD 于K ,∵AF=t ,∴AE=t-3,,OE=BE×tan300=3+∴S=2336-1224--++. 点睛:此题主要考查了几何变换综合题,用到的知识点有直角三角形的性质,三角函数值,三角形的面积,图形的平移等,考查了分析推理能力,分类讨论思想,数形结合思想,要熟练掌握,比较困难.9.某商场经营某种品牌的玩具,购进时的单价是3元,经市场预测,销售单价为40元时,可售出600个;销售单价每涨1元,销售量将减少10个设每个销售单价为x 元. (1)写出销售量y (件)和获得利润w (元)与销售单价x (元)之间的函数关系; (2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?【答案】(1)y=﹣10x+1000;w=﹣10x2+1300x﹣30000(2)商场销售该品牌玩具获得的最大利润是8640元.【解析】【分析】(1)利用销售单价每涨1元,销售量将减少10个即可表示出y=600﹣10(x﹣40),再利用w= y•(x﹣30)即可表示出w与x之间的关系式;(2)先将w=﹣10x2+1300x﹣30000变成顶点式,找到对称轴,利用函数图像的增减性确定在44≤x≤46范围内当x=46时有最大值,代入求值即可解题.【详解】解:(1)依题意,易得销售量y(件)与销售单价x(元)之间的函数关系:y=600﹣10(x﹣40)=﹣10x+1000获得利润w(元)与销售单价x(元)之间的函数关系为:w=y•(x﹣30)=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000(2)根据题意得,x≥14时且1000﹣10x≥540,解得:44≤x≤46w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250∵a=﹣10<0,对称轴x=65∴当44≤x≤46时,y随x的增大而增大∴当x=46时,w最大值=8640元即商场销售该品牌玩具获得的最大利润是8640元.【点睛】本题考查了二次函数的实际应用,难度较大,求解二次函数与利润之间的关系时,需要用代数式表示销售数量和销售单价,熟悉二次函数顶点式的性质是解题关键.10.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x (元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?【答案】(1)y10000x80000=-+(2)当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元【解析】解:(1)由题意,可设y=kx+b,把(5,30000),(6,20000)代入得:5k b300006k b20000+=⎧⎨+=⎩,解得:k10000b80000=-⎧⎨=⎩。
二次函数综合题经典40题(含知识点与答案解析)(可编辑修改word版)
2019年03月08日〃子初ぐ的初中数学组卷评卷人得分一.解答题(共40小题)1.已知二次函数y=ax2+bx+c图象的对称轴为y轴,且过点(1,2),(2,5).(1)求二次函数的解析式;(2)如图,过点E(0,2)的一次函数图象与二次函数的图象交于A,B两点(A点在B 点的左侧),过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D.①当CD=3时,求该一次函数的解析式;②分别用S1,S2,S3表示△ACE,△ECD,△EDB的面积,问是否存在实数t,使得S22=tS1S3都成立?若存在,求出t的值;若不存在,说明理由.2.如图,已知抛物线y=x2﹣x﹣k(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)过D点向x轴作垂线,垂足为点M,连结AD,若∠MDA=∠ABD,求点D的坐标;(3)若在第一象限的抛物线上有一点P,使得以点A,B,P为顶点的三角形与△ABC相似,请直接写出△ABC的面积.3.如图,已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,图象经过B(﹣3,0)、C(0,3)两点,且与x轴交于点A.(1)求二次函数y=ax2+bx+c(a≠0)的表达式;(2)在抛物线的对称轴上找一点M,使△ACM周长最短,求出点M的坐标;(3)若点P为抛物线对称轴上的一个动点,直接写出使△BPC为直角三角形时点P的坐标.4.定义:在平面直角坐标系xOy中,直线y=a(x﹣m)+k称为抛物线y=a(x﹣m)2+k 的关联直线.(1)求抛物线y=x2+6x﹣1的关联直线;(2)已知抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,求这条抛物线的表达式;(3)如图,顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与它的关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,连结AC、BC.当△ABC为直角三角形时,求a的值.5.已知抛物线y=﹣x2+mx+m+1与x轴交于A、B两点(点A在点B的左侧).(1)当m=2时,抛物线与y轴交于点C.①直接写出点A、B、C的坐标;②如图1,连接AC,在x轴上方的抛物线上有一点D,若∠ABD=∠ACO,求点D的坐标;③如图2,点P为抛物线位于第一象限图象上一动点,过P作PQ⊥CB,求PQ的最大值;(2)如图3,若点M为抛物线位于x轴上方图象上一动点,过点M作MN⊥x轴,垂足为N,直线MN上有一点H,满足∠HBA与∠MAB互余,试判断HN的长是否变化,若变化,请说明理由,若不变,请求出HN长.6.如图,已知抛物线经过点A(3,0),B(0,3),C(﹣1,0).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标;(3)如图1,点D是抛物线上一动点,过D作y轴的平行线DE交直线AB于点E,当线段DE=1时,请直接写出D点的横坐标;(4)如图2,当D为直线AB上方抛物线上一动点时,DF⊥AB于F,设AC的中点为M,连接BD,BM,是否存在点D,使得△BDF中有一个角与∠BMO相等?若存在,请直接写出点D的横坐标;若不存在,请说明理由.7.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.8.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,2),直线CD:y=﹣x+2与x轴交于点D.动点M在抛物线上运动,过点M作MP⊥x轴,垂足为P,交直线CD于点N.(1)求抛物线的解析式;(2)当点P在线段OD上时,△CDM的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由;(3)点E是抛物线对称轴与x轴的交点,点F是x轴上一动点,点M在运动过程中,若以C、E、F、M为顶点的四边形是平行四边形时,请直接写出点F的坐标.9.如图,在直角坐标平面内,抛物线经过原点O、点B(1,3),又与x轴正半轴相交于点A,∠BAO=45°,点P是线段AB上的一点,过点P作PM∥OB,与抛物线交于点M,且点M在第一象限内.(1)求抛物线的表达式;(2)若∠BMP=∠AOB,求点P的坐标;(3)过点M作MC⊥x轴,分别交直线AB、x轴于点N、C,若△ANC的面积等于△PMN 的面积的2倍,求的值.10.在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,顶点为D,且过点(2,﹣3a).(1)求抛物线的解析式;(2)抛物线上是否存在一点P,过点P作PM⊥BD,垂足为点M,PM=2DM?若存在,求点P的坐标;若不存在,说明理由.(3)在(2)的条件下,求△PMD的面积.11.如图,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式;(2)已知点P是抛物线上的一个动点,并且点P在第二象限内,过动点P作PE⊥x轴于点E,交线段AC于点D.①如图1,过D作DF⊥y轴于点F,交抛物线于M,N两点(点M位于点N的左侧),连接EF,当线段EF的长度最短时,求点P,M,N的坐标;②如图2,连接CD,若以C,P,D为顶点的三角形与△ADE相似,求△CPD的面积.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.13.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3与直线y=x﹣3交于点A(3,0)和点B(﹣2,n),与y轴交于点C.(1)求出抛物线的函数表达式;(2)在图1中,平移线段AC,点A、C的对应点分别为M、N,当N点落在线段AB上时,M点也恰好在抛物线上,求此时点M的坐标;(3)如图2,在(2)的条件下,在抛物线上是否存在点P(不与点A重合),使△PMC 的面积与△AMC的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.14.已知抛物线l1与l2形状相同,开口方向不同,其中抛物线l1:y=ax2﹣6ax﹣10交x轴于A,B两点(点A在点B的左侧),且AB=4,抛物线l2与l1交于点A与C(4,m).(1)求抛物线l1,l2的函数表达式;(2)当x的取值范围是 时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大;(3)直线PQ∥y轴,分别交x轴,l1,l2于点D(n,0),P,Q,当≤n≤5时,求线段PQ的最大值.15.如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.16.在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.17.已知直线y=x+4分别交x轴、y轴于A、B两点,抛物线y=x2+mx﹣4经过点A,和x轴的另一个交点为C.(1)求抛物线的解析式;(2)如图1,点D是抛物线上的动点,且在第三象限,求△ABD面积的最大值;(3)如图2,经过点M(﹣4,1)的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求OE•OF的值.18.如图,在平面直角坐标系中,直线y=+2分别交x轴、y轴于点A、B,抛物线y=﹣x2+bx+c经过点A、B.点P是x轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m.(1)点A的坐标为 .(2)求这条抛物线所对应的函数表达式.(3)点P在线段OA上时,若以B、E、F为顶点的三角形与△FPA相似,求m的值.(4)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称E、F、P三点为“共谐点”.直接写出E、F、P三点成为“共谐点”时m的值.19.如图1,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=4,直线1是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图1,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.抛物线上有一点Q,使得△PQN与△APM的面积相等,请求出点Q到直线PN的距离.20.如图抛物线y=ax2+2交x轴于点A(﹣2,0)、B,交y轴于点C;(1)求抛物线的解析式;(2)点P从点A出发,以1个单位/秒的速度向终点B运动,同时点Q从点C出发,以相同的速度沿y轴正方向向上运动,运动的时间为t秒,当点P到达点B时,点Q也停止运动,设△PQC的面积为S,求S与t间的函数关系式并直接写出t的取值范围;(3)在(2)的条件下,当点P在线段OB上时,设PQ交直线AC于点G,过P作PE⊥AC于点E,求EG的长.21.如图,在平面直角坐标系中,直线y=﹣x+3与抛物线y=﹣x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣1.动点P在抛物线上运动(不与点A、B重合),过点P作y轴的平行线,交直线AB于点Q,当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,连结PM.设点P的横坐标为m.(1)求b、c的值.(2)当点N落在直线AB上时,直接写出m的取值范围.(3)当点P在A、B两点之间的抛物线上运动时,设正方形PQMN周长为c,求c与m之间的函数关系式,并写出c随m增大而增大时m的取值范围.(4)当△PQM与y轴只有1个公共点时,直接写出m的值.22.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.23.已知:如图,抛物线y=﹣x2+bx+c与x轴、y轴分别相交于点A(﹣1,0)、B(0,3)两点,其顶点为D.(1)求这条抛物线的解析式;(2)若抛物线与x轴的另一个交点为E.求△ODE的面积;抛物线的对称轴上是否存在点P使得△PAB的周长最短.若存在请求出P点的坐标,若不存在说明理由.24.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q 作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y 轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.25.在平面直角坐标系中,已知抛物线y=ax2+bx﹣4与x轴相交于A(﹣4,0)、C(2,0)两点.与y轴相交于点B.(1)求抛物线的解析式;(2)求抛物线与y轴的交点B的坐标和抛物线顶点坐标;(3)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.26.在平面直角坐标系xOy中抛物线y=ax2﹣2ax+3(a≠0)的顶点A在第一象限,它的对称轴与x轴交于点B,△AOB为等腰直角三角形(1)写出抛物线的对称轴为直线 ;(2)求出抛物线的解析式;(3)垂直于y轴的直线L与该抛物线交于点P(x1,y1),Q(x2,y2)其中x1<x2,直线L与函数y=(x>0)的图象交于点R(x3,y3),若,求x1+x2+x3的取值范围.27.已知抛物线y=x2﹣2mx+m2﹣3(m是常数).(1)证明:无论m取什么实数,该抛物线与x轴都有两个交点;(2)设抛物线的顶点为A,与x轴两个交点分别为B,D,B在D的右侧,与y轴的交点为C.①求证:当m取不同值时,△ABD都是等边三角形;②当|m|≤,m≠0时,△ABC的面积是否有最大值,如果有,请求出最大值,如果没有,请说明理由.28.已知抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0),且与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的解析式;(2)点P是y轴正半轴上的一个动点,连结DP,将线段DP绕着点D顺时针旋转90°得到线段DE,点P的对应点E恰好落在抛物线上,求出此时点P的坐标;(3)点M(m,n)是抛物线上的一个动点,连接MD,把MD2表示成自变量n的函数,并求出MD2取得最小值时点M的坐标.29.如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,2),点B的坐标为(1,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,1),点F为该二次函数在第二象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,求此时S的值及点E的坐标.30.如图1,抛物线y=mx2﹣4mx+3m(m>0)与x轴交于A,B两点(点B在点A右侧).与y轴交点C,与直线l:y=x+1交于D、E两点,(1)当m=1时,连接BC,求∠OBC的度数;(2)在(1)的条件下,连接DB、EB,是否存在抛物线在第四象限上一点P,使得S△DBE=S△DPE?若存在,求出此时P点坐标及PB的长度;若不存在,请说明理由;(3)若以DE为直径的圆恰好与x轴相切,求此时m的值.31.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与直线l:y=kx+m(k<0)交于A(﹣1,﹣1)、B两点,与y轴交于C(0,2).(1)求抛物线的函数表达式;(2)若y轴平分∠ACB,求k的值;(3)若在x轴上有且只有一点P,使∠APB=90°,求k的值.32.如图,已知点E在x轴上,⊙E交x轴于A,B两点(点A在点B的左侧),交y轴于点C,OB=3OA=3,抛物线y=ax2+bx+c的图象过A、B、C三点,顶点为M.(1)写出A、B两点的坐标A ,B ;(2)求二次函数的关系式;(3)点P为线段BM上的一个动点,过点P作x轴的垂线PQ垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数关系式,和四边形ACPQ的面积的最大值.33.如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线y=x2+bx+c过点A和B,与y轴交于点C.(1)求点C的坐标,并画出抛物线的大致图象(要求过点A、B、C,开口方向、顶点和对称轴相对准确)(2)点Q(8,m)在抛物线y=x2+bx+c上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值;(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.34.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式.(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),点P是抛物线上第一象限上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.35.如图,顶点为D的抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于两点B、C(点B在点C的左边),点A与点E关于抛物线的对称轴对称,点B、E在直线y=kx+b(k,b为常数)上.(1)求k,b的值;(2)点P为直线AE上方抛物线上的任意一点,过点P作AE的垂线交AE于点F,点G为y轴上任意一点,当△PBE的面积最大时,求PF+FG+OG的最小值;(3)在(2)中,当PF+FG+OG取得最小值时,将△AFG绕点A按顺时方向旋转30°后得到△AF1G1,过点G1作AE的垂线与AE交于点M.点D向上平移个单位长度后能与点N重合,点Q为直线DN上任意一点,在平面直角坐标系中是否存在一点S,使以S、Q、M、N为顶点且MN为边的四边形为菱形?若存在,直接写出点S的坐标;若不存在,请说明理由.36.如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.37.已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点的坐标分别为A (0,2),B(﹣1,0),点C为线段AB的中点,现将线段BA绕点B按逆时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)、经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣1.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由.(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(﹣1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,若符合条件的Q点的个数是4个,请直接写出a的取值范围 .38.在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(1,0),B(3,0),与y轴交于C(0,3),抛物线顶点为D点.(1)求此抛物线解析式;(2)如图1,点P为抛物线上的一个动点,且在对称轴右侧,若△ADP面积为3,求点P 的坐标;(3)在(2)的条件下,PA交对称轴于点E,如图2,过E点的任一条直线与抛物线交于M,N两点,直线MD交直线y=﹣3于点F,连结NF,求证:NF∥y轴.39.如图1,正方形ABCD的一边AB在x轴的正半轴上,⊙M是正方形ABCD的外接圆,连接OD,与⊙M相交于E点,连接BE与AD交于点F,已知AB=4,(1)求证:△ODA≌△FBA;(2)如图2,当E是OD中点时,点G是过E、A、B的抛物线的顶点,连接AG,①求点E的坐标;②求证:AG是⊙M的切线.(3)如图3,连接CE,若ED+EA=3,直接写出EC+EB的值.40.如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(,);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P 作PQ∥y轴交线段OB于点Q.(1)求抛物线的解析式;(2)当PQ的长度为最大值时,求点Q的坐标;(3)点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB 上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.2019年03月08日〃子初ぐ的初中数学组卷参考答案与试题解析一.解答题(共40小题)1.已知二次函数y=ax2+bx+c图象的对称轴为y轴,且过点(1,2),(2,5).(1)求二次函数的解析式;(2)如图,过点E(0,2)的一次函数图象与二次函数的图象交于A,B两点(A点在B 点的左侧),过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D.①当CD=3时,求该一次函数的解析式;②分别用S1,S2,S3表示△ACE,△ECD,△EDB的面积,问是否存在实数t,使得S22=tS1S3都成立?若存在,求出t的值;若不存在,说明理由.【考点】HF:二次函数综合题.【分析】(1)把点(1,2),(2,5)坐标和对称轴为y轴三个条件,代入二次函数的表达式即可求解;(2)①将一次函数表达式与二次函数表达式联立并整理得:x2﹣kx﹣1=0,利用x2﹣x1===3,即可求解;②分别求出S1、S2、S3,用韦达定理化简,即可求解.【解答】解:(1)由题意得:,解得:,故:二次函数的表达式为:y=x2+1;(2)①设过点E的一次函数表达式为:y=kx+2,将一次函数表达式与二次函数表达式联立并整理得:x2﹣kx﹣1=0,设点A、B的坐标分别为(x1,y1)、(x2,y2)(x1<x2),则:x1+x2=k,x1x2=﹣1,x2﹣x1===3,解得:k=,∴该一次函数表达式为:y=x+2或y=﹣x+2;②S1=AC•OC=﹣x1y1,S2=CD•OE=(x2﹣x1)=k2+4,S3=BD•OD=x2y2,x1+x2=k,x1x2=﹣1,则:S1•S2=﹣x1x2[k2x1x2+2k(x1+x2)+4]=(k2+4)=4S2,∴t=4.【点评】本题考查的是二次函数综合运用,主要考查利用韦达定理处理复杂的数据,难度不大.2.如图,已知抛物线y=x2﹣x﹣k(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)过D点向x轴作垂线,垂足为点M,连结AD,若∠MDA=∠ABD,求点D的坐标;(3)若在第一象限的抛物线上有一点P,使得以点A,B,P为顶点的三角形与△ABC相似,请直接写出△ABC的面积.【考点】HF:二次函数综合题.【分析】(1)求出A、B的坐标,把点B坐标代入直线表达式即可求解;(2)利用△AMD∽△DMB,=,即可求解;(3)分△ABC∽△APB、△ABC∽△PAB两种情况,分别求解即可.【解答】解:(1)抛物线y=x2﹣x﹣k=(x+2)(x﹣4),令y=0,则x=﹣2或4,即点A、B的坐标分别为(﹣2,0)、(4,0),把点B坐标代入直线y=﹣x+b得:﹣×4+b=0,解得:b=,∴直线BD的表达式为:y=﹣x+,当x=﹣5时,y=3,∴D(﹣5,3),把点D的坐标代入抛物线表达式得:(﹣5+2)(﹣5﹣4)=3,k=,∴抛物线的表达式为:y=x2﹣x﹣;(2)设点D的坐标为(x,﹣x+),则:DM=﹣x+,BM=4﹣x,AM=﹣2﹣x,∵∠MDA=∠ABD,∠AMD=∠DMB,∴△AMD∽△DMB,∴=,即:(﹣x+)2=(4﹣x)(﹣2﹣x),解得:x=﹣5或4(舍去x=4),∴点D的坐标为(﹣5,3);(3)由抛物线的表达式,令x=0,则y=﹣k,∴点C的坐标为(0,﹣k),OC=k,①当△ABC∽△APB时,则∠BAC=∠PAB,设点P的坐标为(x,y),过点P作PN⊥x轴交于点N,则ON=x,PN=y,tan∠BAC=tan∠PAB,即:,∴y=kx+k,把点P(x,)代入抛物线表达式并解得:x=8或﹣2(舍去﹣2),故点P的坐标为(8,5k),∵△ABC∽△APB,∴AB2=AC•AP,即:62=,解得:k=,S△ABC=AB•OC==;②△ABC∽△PAB时,同理可得:k=,S△ABC=AB•OC==3,故:△ABC的面积为=或3.【点评】本题考查的是二次函数综合运用,涉及到三角形相似、解直角三角形等,(2)(3)的关键是通过相似确定线段间的比例关系.3.如图,已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,图象经过B(﹣3,0)、C(0,3)两点,且与x轴交于点A.(1)求二次函数y=ax2+bx+c(a≠0)的表达式;(2)在抛物线的对称轴上找一点M,使△ACM周长最短,求出点M的坐标;(3)若点P为抛物线对称轴上的一个动点,直接写出使△BPC为直角三角形时点P的坐标.【考点】HF:二次函数综合题.【分析】(1)由抛物线的对称轴及点B的坐标可求出点A的坐标,由点A,B,C的坐标,利用待定系数法即可求出二次函数的表达式;(2)连接BC,交直线x=﹣1于点M,此时△ACM周长最短,由点B,C的坐标,利用待定系数法可求出直线BC的函数表达式,再利用一次函数图象上点的坐标特征即可求出点M的坐标;(3)设点P的坐标为(﹣1,m),结合点B,C的坐标可得出PB2,PC2,BC2的值,分∠BCP=90°,∠CBP=90°,∠BPC=90°三种情况考虑,①当∠BCP=90°时,利用勾股定理可得出关于m的一元一次方程,解之可得出m的值,进而可得出点P的坐标;②当∠CBP=90°时,利用勾股定理可得出关于m的一元一次方程,解之可得出m的值,进而可得出点P的坐标;③当∠BPC=90°时,利用勾股定理可得出关于m 的一元二次方程,解之可得出m的值,进而可得出点P的坐标.综上,此题得解.【解答】解:(1)∵二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,点B的坐标为(﹣3,0),∴点A的坐标为(1,0).将A(1,0),B(﹣3,0),C(0,3)代入y=ax2+bx+c,得:,解得:,∴二次函数的表达式为y=﹣x2﹣2x+3.(2)连接BC,交直线x=﹣1于点M,如图1所示.∵点A,B关于直线x=﹣1对称,∴AM=BM.∵点B,C,M三点共线,∴此时AM+CM取最小值,最小值为BC.设直线BC的函数表达式为y=kx+d(k≠0),将B(﹣3,0),C(0,3)代入y=kx+d,得:,解得:,∴直线BC的函数表达式为y=x+3.当x=﹣1时,y=x+3=2,∴当点M的坐标为(﹣1,2)时,△ACM周长最短.(3)设点P的坐标为(﹣1,m),∵点B的坐标为(﹣3,0),点C的坐标为(0,3),∴PB2=[﹣3﹣(﹣1)]2+(0﹣m)2=m2+4,PC2=[0﹣(﹣1)]2+(3﹣m)2=m2﹣6m+10,BC2=[0﹣(﹣3)]2+(3﹣0)2=18.分三种情况考虑(如图2):①当∠BCP=90°时,BC2+PC2=PB2,∴18+m2﹣6m+10=m2+4,解得:m=4,∴点P的坐标为(﹣1,4);②当∠CBP=90°时,BC2+PB2=PC2,∴18+m2+4=m2﹣6m+10,解得:m=﹣2,∴点P的坐标为(﹣1,﹣2);③当∠BPC=90°时,PB2+PC2=BC2,∴m2+4+m2﹣6m+10=18,整理得:m2﹣3m﹣2=0,解得:m1=,m2=,∴点P的坐标为(﹣1,)或(﹣1,).综上所述:使△BPC为直角三角形时点P的坐标为(﹣1,﹣2),(﹣1,),(﹣1,)或(﹣1,4).【点评】本题考查了二次函数的性质、待定系数法求二次函数解析式、三角形的三边关系、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、两点间的距离公式、勾股定理以及解一元一次(二次)方程,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数的对称性及三角形的三边关系,找出点M所在的位置;(3)分∠BCP=90°,∠CBP=90°,∠BPC=90°三种情况,找出关于m的方程.4.定义:在平面直角坐标系xOy中,直线y=a(x﹣m)+k称为抛物线y=a(x﹣m)2+k 的关联直线.(1)求抛物线y=x2+6x﹣1的关联直线;(2)已知抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,求这条抛物线的表达式;(3)如图,顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与它的关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,连结AC、BC.当△ABC为直角三角形时,求a的值.【考点】HF:二次函数综合题.【分析】(1)根据关联直线的定义可求;(2)由题意可得a=2,c=3,设抛物线的顶点式为y=2(x﹣m)2+k,可得,可求m和k的值,即可求这条抛物线的表达式;(3)由题意可得A(1,4a)B(2,3a)C(﹣1,0),可求AB2=1+a2,BC2=9+9a2,AC2=4+16a2,分BC,AC为斜边两种情况讨论,根据勾股定理可求a的值.【解答】解:(1)∵y=x2+6x﹣1=(x+3)2﹣10∴关联直线为y=x+3﹣10=x﹣7(2)∵抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,∴a=2,c=3,可设抛物线的顶点式为y=2(x﹣m)2+k,则其关联直线为y=2(x﹣m)+k=2x﹣2m+k,∴解得∴抛物线y=2x2+3或y=2(x+1)2+1,(3)由题意:A(1,4a)B(2,3a)C(﹣1,0),∴AB2=1+a2,BC2=9+9a2,AC2=4+16a2,显然AB2<BC2且AB2<AC2,故AB不能成为△ABC的斜边,当AB2+BC2=AC2时:1+a2+9+9a2=4+16a2解得a=±1,当AB2+AC2=BC2时:1+a2+4+16a2=9+9a2解得,∵抛物线的顶点在第一象限∴a>0,即【点评】本题是二次函数综合题,直角三角形的性质,熟练掌握二次函数图象上点的坐标特征和二次函数的性质;理解坐标与图象性质,记住两点间的距离公式,注意分情况讨论思想的应用.5.已知抛物线y=﹣x2+mx+m+1与x轴交于A、B两点(点A在点B的左侧).(1)当m=2时,抛物线与y轴交于点C.①直接写出点A、B、C的坐标;②如图1,连接AC,在x轴上方的抛物线上有一点D,若∠ABD=∠ACO,求点D的坐标;③如图2,点P为抛物线位于第一象限图象上一动点,过P作PQ⊥CB,求PQ的最大值;(2)如图3,若点M为抛物线位于x轴上方图象上一动点,过点M作MN⊥x轴,垂足为N,直线MN上有一点H,满足∠HBA与∠MAB互余,试判断HN的长是否变化,若变化,请说明理由,若不变,请求出HN长.【考点】HF:二次函数综合题.【分析】(1)①先解方程﹣x2+2x+3=0得A点和B点坐标;然后计算自变量为0时的函数值得到C点坐标;②OD交y轴于E,如图2,通过证明Rt△OBE∽Rt△OCA,利用相似比得到OE=OA=1,则E(0,1),再利用待定系数法求出直线BE的解析式为y=﹣x+1,然后解方程得D点坐标;③作PK⊥x轴于K,交BC于F,如图2,易得直线BC的解析式为y=﹣x+3,设P(x,﹣x2+2x+3)(0<x<3),则F(x,﹣x+3),所以PF=﹣x2+3x,再证明∠BFK=∠PFQ=45°,所以PQ=PF=﹣x2+x,然后根据二次函数的性质解决问题;(2)先解方程﹣x2+mt+m+1=0得A(﹣1,0),B(m+1,0),延长BH交AM于G,如图3,证明Rt△BNH∽△MNA,则=,设M(t,﹣t2+mt+m+1),则N(t,0),所以=,然后根据分式的运算可得到HN=1.【解答】解:(1)①当m=2时,抛物线解析式为y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),当y=0时,y=﹣x2+2x+3=3,则C(0,3);②OD交y轴于E,如图2,∵∠OBE=∠ACO,∴Rt△OBE∽Rt△OCA,∴==,∴OE=OA=1,∴E(0,1),设直线BE的解析式为y=kx+b,把B(3,0),E(0,1)代入得,解得,∴直线BE的解析式为y=﹣x+1,解方程组得或﹣,∴D点坐标为(﹣,);③作PK⊥x轴于K,交BC于F,如图2,易得直线BC的解析式为y=﹣x+3,设P(x,﹣x2+2x+3)(0<x<3),则F(x,﹣x+3),∴PF=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,∵OB=OC=3,∴△OCB为等腰直角三角形,∴∠KBF=45°,∴∠BFK=∠PFQ=45°,∴PQ=PF=﹣x2+x=﹣(x﹣)2+,当x=时,PQ有最大值,最大值为;(2)HN的长度不变,它的长度为1.。
九年级数学二次函数专题训练含答案解析-精选5份
九年级数学上册《二次函数》专题测试题(附答案)一.选择题(共8小题,满分32分)1.若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣12.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论错误的是()A.当x>0时,y随x的增大而减小B.该函数的图象一定经过点(0,1)C.该函数图象的顶点在函数y=x2+1的图象上D.该函数图象与函数y=﹣x2的图象形状相同3.已知:抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线()A.x=﹣1B.x=1C.x=2D.x=﹣24.将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为()A.y=2(x+5)2﹣3B.y=2(x+5)2+3C.y=2(x﹣5)2﹣3D.y=2(x﹣5)2+35.二次函数y=ax2+bx+c的图象如图所示,下列结论:(1)4ac<b2;(2)abc<0;(3)2a+b<0;(4)(a+c)2<b2其中正确的个数是()A.1B.2C.3D.46.已知抛物线y=ax2+4ax﹣8与直线y=n相交于A,B两点(点A在点B左侧),AB=4,且抛物线与x轴只有一个交点,则n的值为()A.﹣8B.﹣4C.4D.87.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个整数根,其中一个根是3,则另一个根是()A.﹣5B.﹣3C.﹣1D.38.物理课上我们学习了竖直上抛运动,若从地面竖直向上抛一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示,下列结论:①小球在空中经过的路程是40m②小球抛出3s后,速度越来越快③小球抛出3s时速度为0④小球的高度h=30m时,t=1.5s其中正确的是()A.①②③B.①②C.②③④D.②③二.填空题(共8小题,满分32分)9.已知抛物线y=x2+bx+c关于直线x=2对称,设x=1,2,4时对应的函数值依次为y1,y2,y4,那么y1,y2,y4的大小关系是.(用“<”连接)10.已知抛物线y=ax2﹣2ax﹣1(a<0)(I)抛物线的对称轴为;(2)若当﹣2≤x≤2时,y的最大值是1,求当﹣2≤x≤2时,y的最小值是.11.已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x 的一元二次方程ax2﹣2ax+c=0的两根之积是.12.已知二次函数y=﹣x2+4x+5及一次函数y=﹣x+b,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=﹣x+b与新图象有4个交点时,b的取值范围是.13.将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为.14.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),则方程ax2﹣bx﹣c=0的解是.15.抛物线y=ax2+bx+tc(a<0)交x轴于点A、B,交y轴于点C(0,3),其中点B坐标为(1,0),同时抛物线还经过点(2,﹣5).(1)抛物线的解析式为;(2)设抛物线的对称轴与抛物线交于点E,与x轴交于点H,连接EC、EO,将抛物线向下平移n(n>0)个单位,当EO平分∠CEH时,则n的值为.16.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).三.解答题(共6小题,满分56分)17.已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.18.对于向上抛的物体,如果空气阻力忽略不计,有下面的关系式:h=v0t﹣gt2(h是物体离起点的高度,v0是初速度,g是重力系数,取10m/s2,t是抛出后经过的时间).杂技演员抛球表演时,以10m/s的初速度把球向上抛出.(1)球抛出后经多少秒回到起点?(2)几秒后球离起点的高度达到1.8m?(3)球离起点的高度能达到6m吗?请说明理由.19.在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.20.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?21.如图,抛物线y=﹣x2+bx+c过点A(4,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点D、N.(1)求直线AB的表达式和抛物线的表达式;(2)若DN=3DM,求此时点N的坐标;(3)若点P为直线AB上方的抛物线上一个动点,当∠ABP=2∠BAC时,求点P的坐标.22.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣2),点C(0,﹣5),顶点为点M,过点A作AB∥x轴,交y轴于点D,交二次函数y=x2+bx+c的图象于点B,连接BC.(1)求该二次函数的表达式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)若E为线段AB上一点,且BE:EA=3:1,P为直线AC上一点,在抛物线上是否存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的横坐标;若不存在,请说明理由.参考答案一.选择题(共8小题,满分32分)1.解:∵函数y=(a+1)x|a+3|﹣x+3是关于x的二次函数,∴|a+3|=2且a+1≠0,解得a=﹣5,故选:B.2.解:A.∵y=﹣(x﹣m)2+m2+1(m为常数),∴抛物线开口向下,对称轴为直线x=m,∴x>m时,y随x增大而减小,故A错误,符合题意;∵当x=0时,y=1,∴该函数的图象一定经过点(0,1),故B正确,不合题意;∵y=﹣(x﹣m)2+m2+1,∴抛物线顶点坐标为(m,m2+1),∴抛物线顶点在抛物线y=x2+1上,故C正确,不合题意;∵y=﹣(x﹣m)2+m2+1与y=﹣x2的二次项系数都为﹣1,∴两函数图象形状相同,故D正确,不合题意.故选:A.3.解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故选:C.4.解:将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为y=2(x+5)2+3,故选:B.5.解:根据图象知道抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac<b2,故(1)正确.∵抛物线开口朝下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故(2)正确;∵对称轴x=﹣>1,∴2a+b>0,故(3)错误;根据图象知道当x=1时,y=a+b+c>0,根据图象知道当x=﹣1时,y=a﹣b+c<0,∴(a+c)2﹣b2=(a+c+b)(a+c﹣b)<0,故(4)正确;故选:C.6.解:∵抛物线与x轴只有一个交点,∴a≠0且Δ=16a2﹣4a×(﹣8)=0,∴a=﹣2,∴抛物线解析式为y=﹣2x2﹣8x﹣8,∵抛物线的对称轴为直线x=﹣=﹣2,而AB平行x轴,AB=4,∴A点的横坐标为﹣4,B点的横坐标为0,当x=0时,y=﹣8,∴n的值为﹣8.故选:A.7.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴二次函数y=ax2+bx+c的图象与直线y=﹣m的一个交点的横坐标为3,∵对称轴是直线x=﹣1,∴二次函数y=ax2+bx+c的图象与直线y=﹣m的另一个交点的横坐标为﹣5,∴关于x的方程ax2+bx+c+m=0(m>0)的另一个根是﹣5,故选:A.8.解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得,∴函数解析式为,把h=30代入解析式得,,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选D.二.填空题(共8小题,满分32分)9.解:∵抛物线y=x2+bx+c的开口向上,对称轴是直线x=2,∴当x=2时取最小值,又|1﹣2|<|4﹣2|,∴y1<y4,故答案为:y2<y1<y4.10.解:(1)抛物线的对称轴为:直线x=﹣=1,故答案为:直线x=1;(2)∵抛物线y=ax2﹣2ax﹣1=a(x﹣1)2﹣a﹣1(a<0),∴该函数图象的开口向下,对称轴是直线x=1,当x=1时,取得最大值﹣a﹣1,∵当﹣2≤x≤2时,y的最大值是1,∴x=1时,y=﹣a﹣1=1,得a=﹣2,∴y=﹣2(x﹣1)2+1,∵﹣2≤x≤2,∴x=﹣2时,取得最小值,此时y=﹣2(﹣2﹣1)2+1=﹣17,故答案为:﹣17.11.解:∵二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),∴该函数的对称轴是直线x=﹣=1,∴该函数图象与x轴的另一个交点坐标为(3,0),∴关于x的一元二次方程ax2﹣2ax+c=0的两实数根是x1=﹣1,x2=3,∴两根之积为﹣3,故答案为:﹣3.12.解:如图,当y=0时,﹣x2+4x+5=0,解得x1=﹣1,x2=5,则A(﹣1,0),B(5,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+1)(x﹣5),即y=x2﹣4x﹣5(﹣1≤x≤5),当直线y=﹣x+b经过点A(﹣1,0)时,1+b=0,解得b=﹣1;当直线y=﹣x+b与抛物线y=x2﹣4x﹣5(﹣1≤x≤5)有唯一公共点时,方程x2﹣4x﹣5=﹣x+b有相等的实数解,解得b=﹣,所以当直线y=﹣x+b与新图象有4个交点时,b的取值范围为﹣<b<﹣1.故答案为:﹣<b<﹣1.13.解:将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为y=﹣(x﹣3﹣5)2﹣1+2,即y=﹣(x﹣8)2+1,故答案为:y=﹣(x﹣8)2+1.14.解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),∴方程ax2=bx+c的解为x1=﹣3,x2=1,∴ax2﹣bx﹣c=0的解是x1=﹣3,x2=1,故答案为:x1=﹣3,x2=1.15.解:(1)将点C(0,3)、B(1,0)、(2,﹣5)代入抛物线y=ax2+bx+tc中,得:a+b+c=0,c=3,4a+2b+c=﹣5;解得:a=﹣1,b=﹣2,c=3,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)抛物线向下平移n个单位后,E为(﹣1,4﹣n),C为(0,3﹣n),∴EC=,∵CO∥EH,∴当CO=CE=时,∠CEO=∠COE=∠OCH,∴3﹣n=或n﹣3=,即n=3﹣或3+.16.解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.三.解答题(共6小题,满分56分)17.解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.18.解:∵初速度为10m/s,g取10m/s2,∴h=10t﹣×10t2=10t﹣5t2,(1)当h=0时,10t﹣5t2=0,解得t=0或t=2,∴球抛出后经2秒回到起点;(2)当h=1.8时,10t﹣5t2=1.8,解得t=0.2或t=1.8,∴0.2秒或1.8秒后球离起点的高度达到1.8m;(3)球离起点的高度不能达到6m,理由如下:若h=6,则10t﹣5t2=6,整理得5t2﹣10t+6=0,Δ=(﹣10)2﹣4×5×6=﹣20<0,∴原方程无实数解,∴球离起点的高度不能达到6m.19.解:(1)∵函数图象过点(1,2),∴将点代入y=ax2+(a﹣1)x﹣1,解得a=2,∴二次函数的解析式为y=2x2+x﹣1,∴x=﹣=﹣,∴y=2×﹣﹣1=﹣,∴该二次函数的顶点坐标为(﹣,﹣);(2)函数y=ax2+(a﹣1)x﹣1的对称轴是直线x=﹣,∵(x1,y1),(x2,y2)为此二次函数图象上的两个不同点,且x1+x2=﹣2,则y1=y2,∴﹣===﹣1,∴a=﹣1,∴y=﹣x2﹣2x﹣1=﹣(x+1)2≤0,∴当x=﹣1时,函数有最大值0;(3)∵y=ax2+(a﹣1)x﹣1,∴由顶点公式得:x=﹣=﹣+,y==﹣,∵a<0且a≠﹣1,∴x<0,y>0,∴该二次函数图象的顶点在第二象限.20.解:(1)设一次函数的关系式为y=kx+b,由题图可知,函数图象过点(25,50)和点(35,30).把这两点的坐标代入一次函数y=kx+b,得,解得,∴一次函数的关系式为y=﹣2x+100;(2)根据题意,设当天玩具的销售单价是x元,由题意得,(x﹣10)×(﹣2x+100)=600,解得:x1=40,x2=20,∴当天玩具的销售单价是40元或20元;(3)根据题意,则w=(x﹣10)×(﹣2x+100),整理得:w=﹣2(x﹣30)2+800;∵﹣2<0,∴当x=30时,w有最大值,最大值为800;∴当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.21.解:(1)设直线AB的解析式为y=px+q,把A(4,0),B(0,2)代入得,,解得,∴直线AB的解析式为y=﹣x+2;把A(4,0),B(0,2)代入y=﹣x2+bx+c得,,解得;∴抛物线解析式为y=﹣x2+x+2;(2)∵MN⊥x轴,M(m,0),点D在直线AB上,点N在抛物线上,∴N(m,﹣m2+m+2),D(m,﹣m+2),∴DN=﹣m2+2m,DM=﹣m+2,∵DN=3DM,∴﹣m2+2m=3(﹣m+2),解得m=3或m=4(舍),∴N(3,2).(3)如图,作点B关于x轴的对称点B′,∴OB=OB′,B′(0,﹣2),∵∠AOB=∠AOB′=90°,OA=OA,∴△AOB≌△AOB′,∴∠OAB′=∠OAB,∴∠BAB′=2∠BAC,∵A(4,0),B′(0,﹣2),∴直线AB′的解析式为:y=x﹣2,过点B作BP∥AB′交抛物线于点P,则∠ABP=∠BAB′=2∠BAC,即点P即为所求,∴直线BP的解析式为:y=x+2,令x+2=﹣x2+x+2,解得x=2或x=0(舍),∴P(2,3).22.解:(1)将点A(3,﹣2),点C(0,﹣5)代入y=x2+bx+c,∴,解得,∴y=x2﹣2x﹣5,∴M(1,﹣6);(2)平移后的函数解析式为y=(x﹣1)2﹣6+m,∴平移后的顶点坐标为(1,m﹣6),∴抛物线的顶点在x=1的直线上,设直线CA的解析式为y=kx+b,∴,∴,∴y=x﹣5,当x=1时,y=﹣4,∴﹣4<m﹣6<﹣2,解得2<m<4;(3)存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形,理由如下:当y=﹣2时,x2﹣2x﹣5=﹣2,解得x=﹣1或x=3,∴B(﹣1,﹣2),∴AB=4,∵BE:EA=3:1,∴AE=1,∴E(2,﹣2),设P(t,t﹣5),Q(x,x2﹣2x﹣5),①当BE为平行四边形的对角线时,,解得或,∴Q(,)或(,);②当BP为平行四边形的对角线时,,解得或,∴Q(,)或(,);③当BQ为平行四边形的对角线时,,此时无解;综上所述:Q点坐标为(,)或(,)或(,)或(,).九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y1 4.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+35.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B (1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C 位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B 作BF ⊥l 于点F ∴BF =OE =∵BF +AE =OE +AE =OA =∴S △ABC =S △BCD +S △ACD =CD •BF +CD •AE ∴S △ABC =CD (BF +AE )=×2×=23.解:(1)∵抛物线y =﹣x 2+bx +c 交于A (﹣1,0)和B (2,3)两点 ∴,解得:, ∴抛物线解析式为y =﹣x 2+2x +3,设直线AB 的解析式为y =mx +n (m ≠0),则,解得,∴直线AB 的解析式为y =x +1; (2)令x =0,则y =﹣x 2+2x +3=3, ∴C (0,3),则OC =3,BC =2,BC ∥x 轴, ∴S △ABC =×BC ×OC ==3.九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4B .有最小值4C .有最大值6D .有最小值62.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( ) A .(0,2)B .(0,3)C .(0,4)D .(0,5)3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( ) A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+B .2(4)y x =+C .28y x x =+D .2164y x =-5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( ) A .22(2)1y x =-+- B .22(2)1y x =--+ C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,②320a b +>,③24b a c ac >++,④a c b >>.正确结论的个数为( ) A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( ) A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论: ①c ≥−2 ;②当x >0时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为−5,点C 横坐标的最大值为3; ④当四边形ABCD 为平行四边形时,a =12.其中正确的是( ) A .①③B .②③C .①④D .①③④10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( ) A .m 1≥或0m < B .m 1≥ C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =②方程()2110ax a x -++=至少有一个整数根③若11x a<<,则()211y ax a x =-++的函数值都是负数 ④不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________. 16.已知二次函数223y x x =--+,当12a x 时,函数值y 的最小值为1,则a 的值为_______. 17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点. (1)若(1,0)A -,则b =______. (2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______. 三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y =A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到△ACD .(1)求该抛物线的函数解析式.(2)△ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得△ACE 与△ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:△抛物线经过点()1,0A -,()5,0B ,()0,5C ,△设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,△()()21545y x x x x =-+-=-++.△该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y =∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x=++与x 轴的另一交点为D , 抛物线的对称轴为:552,1222x =-=-⨯ ()3,0C -∴ 点()2,0D -,连接,BD 交对称轴于,MMD MC ∴=,此时,MB MC MB MD BD +=+=最小,此时:BD =MBC ∴20.解:(1)对于y =x =0时,y =当y =0时,03x -=,妥得,x =3 △A (3,0),B (0,把A (3,0),B (0,2y bx c++得:+=0b c c ⎧⎪⎨=⎪⎩解得,b c ⎧=⎪⎨⎪=⎩△抛物线的解析式为:2y =(2)抛物线的对称轴为直线12b x a =-== 故设P (1,p ),Q (m ,n )①当BC 为菱形对角线时,如图,△B ,C 关于对称没对称,且对称轴与x 轴垂直,△△BC 与对称轴垂直,且BC //x 轴△在菱形BQCP 中,BC △PQ△PQ △x 轴△点P 在x =1上,△点Q 也在x =1上,当x =1时,211y△Q (1,); ②当BC 为菱形一边时,若点Q 在点P 右侧时,如图,△BC //PQ ,且BC =PQ△BC //x 轴,△令y =2y 解得,120,2x x ==△(2,C△PQ=BC=22=△PB=BC=2△迠P在x轴上,△P(1,0)△Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,△抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,△点A(﹣2,0),点B(8,0),△对称轴为直线x=3,△△ACD周长=AD+AC+CD,AC是定值,△当AD+CD取最小值时,△ACD周长能取得最小值,△点A,点B关于对称轴直线x=3对称,△连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,△0=8k ﹣8,△k =1,△直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,△点D (3,﹣5);(3)存在,△点A (﹣2,0),点C (0,﹣8),△直线AC 解析式为y =﹣4x ﹣8,如图,△△ACE 与△ACD 面积相等,△DE △AC ,△设DE 解析式为:y =﹣4x +n ,△﹣5=﹣4×3+n ,△n =7,△DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, △点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( )A .y =(2x ﹣1)2B .y =(x +1)2﹣x 2C .y =ax 2D .y =2x +3 2.若抛物线258(3)23mm y m x x -+=-+-是关于x 的二次函数,那么m 的值是( ) A .3 B .2-C .2D .2或3 3.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( )A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( )A .1,3,5a b c ==-=B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-= 5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( )A .2a ≠B .a≥0C .a=2D .a>0 6.下列函数中①31y x ;②243y x x =-;③1y x =;④225=-+y x ,是二次函数的有()A .①②B .②④C .②③D .①④ 7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( )A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( )A .a≠0,b≠0,c≠0B .a<0,b≠0,c≠0C .a>0,b≠0,c≠0D .a≠0 二、填空题9.若()2321mm y m x --=+是二次函数,则m 的值为______. 10.若22a y x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;②3y x=-;③2431y x x =-+;④2(1)y m x bx c =-++;⑤y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数.14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数;② 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________.三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数?22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m )x +8.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A2.C3.B4.D5.A6.B7.B8.D9.410.2±11.012.③13. 4,-2 414. 13215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数 18.(1)m =(2)m ≠m ≠19.①a≠0;②b=0或-1,a 取全体实数③当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y 关于x 的二次函数的是( )A .y =4xB .y =3x ﹣5C .y =D .y =2x 2+12.已知:a >b >c ,且a +b +c =0,则二次函数y =ax 2+bx +c 的图象可能是下列图象中的( )A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,。
九年级数学二次函数专项训练含答案-精选5篇
九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4 B .有最小值4 C .有最大值6 D .有最小值6 2.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5) 3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =--- 4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+ B .2(4)y x =+ C .28y x x =+ D .2164y x =- 5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( )A .22(2)1y x =-+-B .22(2)1y x =--+C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,①320a b +>,①24b a c ac >++,①a c b >>.正确结论的个数为( )A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( )A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大 9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①c ≥−2 ;①当x >0时,一定有y 随x 的增大而增大;①若点D 横坐标的最小值为−5,点C 横坐标的最大值为3;①当四边形ABCD 为平行四边形时,a =12. 其中正确的是( )A .①①B .①①C .①①D .①①① 10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =①方程()2110ax a x -++=至少有一个整数根①若11x a<<,则()211y ax a x =-++的函数值都是负数 ①不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________.16.已知二次函数223y x x =--+,当12a x时,函数值y 的最小值为1,则a 的值为_______.17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点.(1)若(1,0)A -,则b =______.(2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______.三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式 19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到①ACD .(1)求该抛物线的函数解析式.(2)①ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得①ACE 与①ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:①抛物线经过点()1,0A -,()5,0B ,()0,5C ,①设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,①()()21545y x x x x =-+-=-++.①该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y = ∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x =++与x 轴的另一交点为D ,抛物线的对称轴为:552,1222x=-=-⨯()3,0C-∴点()2,0D-,连接,BD交对称轴于,MMD MC∴=,此时,MB MC MB MD BD+=+=最小,此时:BD=MBC∴20.解:(1)对于y x=x=0时,y=当y=0时,03x-=,妥得,x=3①A(3,0),B(0,把A(3,0),B(0,2y bx c++得:+=0b cc⎧⎪⎨=⎪⎩解得,bc⎧=⎪⎨⎪=⎩①抛物线的解析式为:2y x x=-(2)抛物线的对称轴为直线12bxa=-==故设P(1,p),Q(m,n)①当BC为菱形对角线时,如图,①B ,C 关于对称没对称,且对称轴与x 轴垂直,①①BC 与对称轴垂直,且BC //x 轴①在菱形BQCP 中,BC ①PQ①PQ ①x 轴①点P 在x =1上,①点Q 也在x =1上,当x =1时,211y①Q (1,); ①当BC 为菱形一边时,若点Q 在点P 右侧时,如图,①BC //PQ ,且BC =PQ①BC //x 轴,①令y =2y 解得,120,2x x ==①(2,C①PQ=BC=22①PB=BC=2①迠P在x轴上,①P(1,0)①Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,①抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,①点A(﹣2,0),点B(8,0),①对称轴为直线x=3,①①ACD周长=AD+AC+CD,AC是定值,①当AD+CD取最小值时,△ACD周长能取得最小值,①点A,点B关于对称轴直线x=3对称,①连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,①0=8k ﹣8,①k =1,①直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,①点D (3,﹣5);(3)存在,①点A (﹣2,0),点C (0,﹣8),①直线AC 解析式为y =﹣4x ﹣8,如图,①①ACE 与①ACD 面积相等,①DE ①AC ,①设DE 解析式为:y =﹣4x +n ,①﹣5=﹣4×3+n ,①n =7,①DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, ①点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y =ax 2+bx +c 中,a >0,b <0,c <0,那么这个二次函数的图象可能是( )A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y14.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3 5.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B(1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B作BF⊥l于点F∴BF=OE=∵BF+AE=OE+AE=OA=∴S△ABC=S△BCD+S△ACD=CD•BF+CD•AE∴S△ABC=CD(BF+AE)=×2×=23.解:(1)∵抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点∴,解得:,∴抛物线解析式为y=﹣x2+2x+3,设直线AB的解析式为y=mx+n(m≠0),则,解得,∴直线AB的解析式为y=x+1;(2)令x=0,则y=﹣x2+2x+3=3,∴C(0,3),则OC=3,BC=2,BC∥x轴,∴S△ABC=×BC×OC==3.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+12.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为,点M的坐标为.(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+1解:A.根据二次函数的定义,y=4x是一次函数,不是二次函数,故A不符合题意.B.根据二次函数的定义,y=3x﹣5不是二次函数,是一次函数,故B不符合题意.C.根据二次函数的定义,y=是反比例函数,不是二次函数,故C不符合题意.D.根据二次函数的定义,y=2x2+1是二次函数,故D符合题意.故选:D.2.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)解:∵二次函数可化为y=(x﹣3)2+5,∴二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是(3,5),故选:D.4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2解:y=x2+2x﹣1=(x2+2x+1)﹣2=(x+1)2﹣2,即y=(x+1)2﹣2.故选:D.5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴当x<2时,y随着x增大而增大,∴当x=时有最大值y=﹣2(﹣2)2+2=﹣2.5,故选:C.6.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+1解:设所求的抛物线解析式为y=a(x﹣3)2+1,∵所求抛物线与函数y=的图象相同且开口方向相反,∴a=﹣,∴所求的抛物线解析式为y=﹣(x﹣3)2+1.故选:D.7.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1解:当x=﹣1时,y1=(x﹣1)2=(﹣1﹣1)2=4;当x=1时,y2=(x﹣1)2=(1﹣1)2=0;当x=2时,y3=(x﹣1)2=(2﹣1)2=1,所以y2<y3<y1.故选:C.8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.4解:根据表格数据可知:抛物线的对称轴是直线x==,∴③错误;∵抛物线与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0有两根为x1=﹣2,x2=3;故①正确;从表格可知当x=0时,y=6,∴抛物线与y轴的交点为(0,6);∴②正确;从表格可知:当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,∴抛物线开口向下,故④错误.故选:B.9.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对解:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴∠OBE=∠OCF=45°,∵BE=CF,∴△BOE≌△COF,∴OE=OF,∠BOE=∠COF,∴∠BOE+∠COE=∠COF+∠COE,即∠EOF=∠BOC=90°,且S△COE+S△COF=S△COE+S△BOE,即S四边形OECF=S△BOC=S正方形ABCD=×4×4=4,由垂线段最短可得,当OE⊥BC时,OE=BC=×4=2,△OEF面积取最小值为×2×2=2,∴结论Ⅰ和Ⅱ都对,结论Ⅲ错,故选:A.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°解:把(25,0.725),(50,0.06),(60,0.09)代入y=ax2+bx+c得:,解得,∴y=0.0001x2﹣0.008x+0.21=0.0001(x﹣40)2+0.05,∵0.0001>0,∴x=40时,y最小为0.05,∴燃气灶烧开一壶水最节省燃气的旋钮角度约为40°,故选:B.二.填空题(共6小题)11.函数是二次函数,则m的值为3.解:∵函数是二次函数,∴m2﹣7=2且m+3≠0,解得:m=3.则m的值为3.故答案为:3.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为5.解:∵y=x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴点A,B关于直线x=2对称,∵点A横坐标为﹣1,∴点B横坐标为5,故答案为:5.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=5.解:∵|2﹣a|=3,∴2﹣a=±3,解得:a=﹣1或5,又二次函数y=ax2开口向上,则a>0,故a=5.故答案为:5.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是3.解:∵点A(m,n)在抛物线y=x2﹣3x+1上,∴n=m2﹣3m+1,∴m﹣n=﹣m2+4m﹣1=﹣(m﹣2)2+3,∴当m=2时,m﹣n有最大值为3,故答案为:3.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为﹣.解:设A(x1,0),B(x2,0),令y=0,则y=﹣x2+2x+c=0,由根与系数的关系得:x1+x2=2,x1•x2=﹣c,则AB=|x1﹣x2|===2,令x=0,则y=c,∴C(0,c),∵CD∥x轴,∴点D纵坐标为c,当y=c时,则﹣x2+2x+c=c,解得:x=2,或x=0,∴D(2,c),∴CD=2,∵AB+CD=3,∴2+2=3,解得:c=﹣,故答案为:﹣.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为142.解:连接AC,过B作BH⊥AC于H,以B为圆心,BG为半径作圆,交BH于G',如图:∵四边形ABCD是矩形,∴∠EBF=90°,∵EF=10,点G是EF的中点,∴BG=EF=10=5,∴G在以B为圆心,5为半径的弧上,当G运动到G'时,S△ACG最小,此时四边形AGCD 面积的最小值,最小值即为四边形AG'CD的面积,∵AB=12=CD,BC=16=AD,∴AC=20,S△ACD=×12×16=96,∴BH==,∴G'H=BH﹣5=﹣5=,∴S△ACG'=AC•G'H=×20×=46,∴S四边形AG'CD=S△ACD+S△ACG'=46+96=142,即四边形AGCD面积的最小值是142.故答案为:142.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.解:(1)y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1;(2)开口向上,对称轴是直线x=3,顶点坐标是(3,﹣1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答:小球飞行高度达到最高时的飞行时间为2s.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?解:(1)根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:(30﹣15﹣2)×80=1040(元),。
完整版)初三数学二次函数专题训练(含标准答案)-
完整版)初三数学二次函数专题训练(含标准答案)-二次函数专题训练(含答案)一、填空题1.把抛物线y=-1/2x向左平移2个单位得抛物线,接着再向下平移3个单位,得抛物线.2.函数y=-2x+x^2图象的对称轴是x=1,最大值是1.3.正方形边长为3,如果边长增加x面积就增加y=x^2+6x+9.4.二次函数y=-2x+8x-6,通过配方化为y=a(x-2)^2-2的形为.5.二次函数y=ax+c(c不为零),当x取x1,x2(x1≠x2)时,函数值相等,则x1与x2的关系是x1+x2=-2a/c.6.抛物线y=ax^2+bx+c当b=0时,对称轴是x=0,当a,b同号时,对称轴在y轴侧,当a,b异号时,对称轴在x=-b/2a 处.7.抛物线y=-2(x+1)^2-3开口向下,对称轴是x=-1,顶点坐标是(-1,-3).如果y随x的增大而减小,那么x的取值范围是x<-1.8.若a5/2a时,函数值随x的增大而减小.9.二次函数y=ax^2+bx+c(a≠0)当a>0时,图象的开口向上;当a<0时,图象的开口向下,顶点坐标是(-b/2a,c-b^2/4a).10.抛物线y=-2(x-2)^2+2,开口向下,顶点坐标是(2,2),对称轴是x=2.11.二次函数y=-3(x-1)^2+2的图象的顶点坐标是(1,2).12.已知y=(x+1)^2-2,当x≥1时,函数值随x的增大而减小.13.已知直线y=2x-1与抛物线y=5x+k交点的横坐标为2,则k=9,交点坐标为(2,13).14.用配方法将二次函数y=x^2+x-2化成y=a(x-(-1/2))^2-9/4的形式是y=(x+1/2)^2-9/4.15.如果二次函数y=x^2-6x+m的最小值是1,那么m的值是10.二、选择题:16.在抛物线y=2x^2-3x+1上的点是(D)(3,4)17.直线y=5x/2-2与抛物线y=x^2-x的交点个数是(C)2个18.关于抛物线y=ax^2+bx+c(a≠0),下面几点结论中,正确的有(A、B、C)①当a>0时,对称轴左边y随x的增大而减小,对称轴右边y随x的增大而增大,当a<0时,情况相反。
《二次函数》经典50题含解析
《二次函数》50题一.选择题(共50小题)1.在同一平面直角坐标系中,若抛物线W1:y=x2+(2m﹣1)x+2m﹣4与抛物线W2:y=x2﹣(3m+n)x+n关于直线x=﹣1对称,则抛物线W1上的点A(0,y)在抛物线W2上的对应点A′坐标是()A.(﹣2,8)B.(﹣2,10)C.(﹣2,12)D.(﹣2,14)2.已知抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3)四点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3C.y1>y3>y2 D.y3>y2>y13.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,OB=OC,对称轴为直线x=﹣2,则下列结论:①abc>0;②a﹣c>0;③ac+b =1;④﹣4﹣c是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根.其中正确的有()A.1个B.2个C.3个D.4个4.抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,其部分图象如图所示.对于此抛物线有如下四个结论:①abc>0;②2a﹣b=0;③9a﹣3b+c=0;④若m>n>0,则x=m﹣1时的函数值小于x=n﹣1时的函数值.其中正确结论的个数是()A.1 B.2 C.3 D.45.已知二次函数y=x2﹣2x+2(其中x是自变量),当0≤x≤a时,y的最大值为2,y的最小值为1.则a的值为()A.a=1 B.1≤a<2 C.1<a≤2 D.1≤a≤26.已知抛物线y=﹣x2+bx+4经过点(﹣3,m)和(5,m)两点,则b的值为()A.﹣2 B.﹣1 C.1 D.27.已知点(﹣1,y1),(,y2),(4,y3)都在抛物线y=﹣2x2+4x+c上,则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y28.已知点A(3,y1),B(5,y2),C(﹣4,y3)均在抛物线y=3x2﹣6x+m上,下列说法中正确的是()A.y3>y1>y2B.y1>y2>y3C.y1<y2<y3D.y1>y3>y29.将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3 B.y=﹣2x2﹣3 C.y=(x﹣2)2﹣3 D.y=(x+2)2+3 10.在抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,则n的值为()A.B.C.1 D.11.抛物线y=ax2+4x+c(a>0)经过点(x0,y0),且x0满足关于x的方程ax+2=0,则下列选项正确的是()A.对于任意实数x都有y≥y0B.对于任意实数x都有y≤y0C.对于任意实数x都有y>y0D.对于任意实数x都有y<y012.如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<0;②a+b=0;③b<a+c;④4c=4+a,其中正确的个数是()A.1 B.2 C.3 D.413.已知抛物线y=ax2+bx+c(a>0)交x轴于点A(x1,0),B(x2,0),且x1<x2,点P (m,n)(n<0)在该抛物线上.下列四个判断:①b2﹣4ac≥0;②若a+c=b+3,则该抛物线一定经过点(1,3);③方程ax2+bx+c=n的解是x=m;④当m=时,△P AB的面积最大.其中判断一定正确.的序号是()A.①B.②C.③D.④14.定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的周长值与面积值相等,则这个点叫做和谐点,这个矩形叫做和谐矩形.已知点P(m,n)是抛物线y=x2+k上的和谐点,对应的和谐矩形的面积为16,则k的值为()A.﹣12 B.0 C.4 D.1615.如右图是二次函数y=ax2+bx+c(a≠0)图象的一部分,函数图象经过点(2,0),x=﹣1是对称轴,有下列结论:①2a﹣b=0;②9a﹣3b+c<0;③若(﹣2,y1),(,)是抛物线上两点,则y1<y2,④a﹣b+c=﹣9a;其中正确结论的个数是()A.1个B.2个C.3个D.4个16.直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2),关于这两个交点的说法正确的为()A.点A在第三象限,点B在第四象限B.点A在第四象限,点B在第三象限C.都在第三象限D.都在第四象限17.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1 B.2 C.3 D.418.阅读材料:坐标平面内,对于抛物线y=ax2+bx(a≠0),我们把点(﹣)称为该抛物线的焦点,把y=﹣称为该抛物线的准线方程.例如,抛物线y=x2+2x 的焦点为(﹣1,﹣),准线方程是y=﹣.根据材料,现已知抛物线y=ax2+bx(a ≠0)焦点的纵坐标为3,准线方程为y=5,则关于二次函数y=ax2+bx的最值情况,下列说法中正确的是()A.最大值为4 B.最小值为4C.最大值为3.5 D.最小值为3.519.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+2m,则m的值是()A.﹣B.﹣C.1 D.﹣或﹣20.在同一平面直角坐标系中,函数y=ax2+bx+2b与y=﹣ax+b的图象可能是()A.B.C.D.21.将抛物线y=﹣2x2﹣3向右平移2个单位长度,再向上平移1个单位长度,所得到的抛物线为()A.y=﹣2(x+2)2+2 B.y=﹣2(x﹣2)2﹣2C.y=﹣2(x+2)2﹣2 D.y=﹣2(x﹣2)2﹣522.抛物线y=x2+bx+3的对称轴为直线x=2.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在1<x<5的范围内只有一个实数根,则t的取值范围是()A.0≤t<8或t=﹣1 B.t≥0C.0<t<8 D.0≤t<823.抛物线M:y=﹣x2+4与x轴交于两点A、B(点A在点B的左侧),将抛物线M绕点B 旋转180°,得到新的抛物线M',则M'的表达式为()A.y=x2+8x﹣12 B.y=x2+8x+12 C.y=x2﹣8x﹣12 D.y=x2﹣8x+12 24.如图,抛物线y=x2+2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB,BD与y轴相交于点E,过点E的直线FG平行于x轴,与抛物线交于F,G两点,则线段FG的长为()A.1+B.3 C.2D.2+25.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a﹣2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限;其中正确的个数是()A.1个B.2个C.3个D.4个26.二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0.其中正确结论的个数是()A.1 B.2 C.3 D.427.设函数y=kx2+(4k+3)x+1(k<0),若当x<m时,y随着x的增大而增大,则m的值可以是()A.1 B.0 C.﹣1 D.﹣228.已知抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,x1、x2是关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的两根,则(x1+x2)的值为()A.0 B.﹣4 C.4 D.229.对于二次函数y=ax2+(1﹣2a)x(a>0),下列说法错误的是()A.该二次函数图象的对称轴可以是y轴B.该二次函数图象的对称轴不可能是x=1C.当x>2时,y的值随x的增大而增大D.该二次函数图象的对称轴只能在y轴的右侧30.关于二次函数y=2(x﹣2)2+5,下列说法错误的是()A.图象与y轴的交点坐标为(0,13)B.图象的对称轴在y轴的右侧C.当x>0时,y的值随x值的增大而增大D.当x=2时,函数有最小值为531.已知抛物线y=ax2﹣2ax+a2+1(a≠0).当x≥3时,y随x的增大而增大;当﹣2≤x≤0时,y的最大值为10.那么与抛物线y=ax2﹣2ax+a2+1关于y轴对称的抛物线在﹣2≤x ≤3内的函数最大值为()A.10 B.17 C.5 D.232.已知某二次函数的图象与x轴相交于A,B两点,若该二次函数图象的对称轴是直线x=3,且点A的坐标是(8,0),则AB的长为()A.5 B.8 C.10 D.1133.已知抛物线y=ax2+bx+c的图象如图所示,图象与y轴交于(0,﹣1),顶点纵坐标为﹣3,ax2+b|x|+c=k有四个不相等的实数根,则实数k满足()A.0<k<3 B.﹣3<k<0 C.﹣3<k<﹣1 D.1<k<334.如图,Rt△ABC的三个顶点A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,若斜边上的高为h,则()A.h<1 B.h=1 C.1<h<2 D.h=235.函数y=|ax2+bx|(a<0)的图象如图所示,下列说法错误的是()A.5a+3b<1 B.4a+3b<2 C.2a+b<0 D.a+2b<036.已知二次函数y=mx2+(1﹣m)x,它的图象可能是()A.B.C.D.37.小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条结论:你认为其中正确结论的个数有()(1)a<0;(2)b>0;(3)a﹣b+c>0;(4)2a+b<0.A.1个B.2个C.3个D.4个38.函数y=ax2+bx与y=ax+b在同一平面直角坐标系中的图象大致是()A.B.C.D.39.向上抛出的小球离地面的高度是其运动时间的二次函数,小甬相隔2秒依次抛出两个小球,假设两个小球出手时离地面高度相同,在各自抛出后1.2秒时达到相同的离地面最大高度.若第一个小球抛出后t秒时在空中与第二个小球离地面高度相同,则t=()A.2.2 B.2.5 C.2.6 D.2.740.对于二次函数y=kx2﹣(4k+1)x+3k+3.下列说法正确的是()①对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点;②该函数图象与x轴必有交点;③若k<0,当x≥2时,y随x的增大而减小;④若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=﹣1.A.①②③B.①②④C.②③④D.①③④41.已知二次函数y=ax2+bx﹣c的图象的对称轴为直线x=1,开口向下,且与x轴的其中一个交点是(3,0).下列结论:①4a+2b﹣c>0;②a﹣b﹣c<0;③c=3a;④5a+b﹣2c>0.正确的个数有()A.1个B.2个C.3个D.4个42.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(,0),与y轴的交点B在(0,0)和(0,﹣1)之间(不包括这两点),对称轴为直线x=.则下列结论:①x>3时,y<0;②4a+b<0;③﹣<a<0;④4ac+b2<4a.其中正确的是()A.②③④B.①②③C.①③④D.①②④43.已知抛物线y=(x﹣m)(x﹣n),其中m<n,若a,b是方程(x﹣m)(x﹣n)﹣x=0的两根,且a<b,则当(a﹣m)(b﹣n)>0时,mn的值()A.小于零B.等于零C.大于零D.与零的大小关系无法确定44.若二次函数y=﹣x2+px+q的图象经过A(1+m,n)、B(0,y1)、C(3﹣m,n)、D(m2﹣2m+5,y2)、E(2m﹣m2﹣5,y3),则y1、y2、y3的大小关系是()A.y3<y2<y1B.y3<y1<y2C.y1<y2<y3D.y2<y3<y1 45.设抛物线y=ax2+bx+c(ab≠0)的顶点为M,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1.()A.y=﹣3(x﹣1)2+1B.y=2(x﹣0.5)(x+1.5)C.y=x+1D.y=(a2+1)x2﹣4x+2(a为任意常数)46.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点(﹣1,0),下列四个结论:①如果点(﹣,y1)和(2,y2)都在抛物线上,那么y1<y2;②b2﹣4ac>0;③m(am+b)<a+b(m≠1的实数);④=﹣3;其中正确的有()A.4个B.3个C.2个D.1个47.已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a+c=1;②b2﹣4ac≥0;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的个数有()A.4 个B.3 个C.2 个D.1 个48.若二次函数y=|m|x2+nx+c的图象经过A(a,b)、B(0,y1)、C(5﹣a,b)、D(,y2)、E(3,y3),则y1、y2、y3的大小关系是()A.y2<y3<y1B.y3<y2<y1C.y1<y2<y3D.y1<y3<y2 49.如图,在平面直角坐标系中,点A在抛物线y=x2﹣4x+6上运动,过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为()A.1 B.2 C.D.50.如图,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴的负半轴交于点B,点M是对称轴上的一个动点.连接AM,BM,当|AM﹣BM|最大时,点M的坐标是()A.(1,4)B.(1,2)C.(1,﹣2)D.(1,﹣6)参考答案与试题解析一.选择题(共50小题)1.在同一平面直角坐标系中,若抛物线W1:y=x2+(2m﹣1)x+2m﹣4与抛物线W2:y=x2﹣(3m+n)x+n关于直线x=﹣1对称,则抛物线W1上的点A(0,y)在抛物线W2上的对应点A′坐标是()A.(﹣2,8)B.(﹣2,10)C.(﹣2,12)D.(﹣2,14)【解答】解:∵抛物线W1:y=x2+(2m﹣1)x+2m﹣4与抛物线W2:y=x2﹣(3m+n)x+n关于直线x=﹣1对称,∴(﹣+)=﹣1,∴m+n=﹣5,∴抛物线W1上的点A(0,y)在抛物线W2上的对应点A′坐标是(﹣2,y),∴2m﹣4=4+2(3m+n)+n,∴4m+3n=﹣8,解得m=7,∴y=2m﹣4=10,∴在抛物线W2上的对应点A′坐标是(﹣2,10),故选:B.2.已知抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3)四点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3C.y1>y3>y2D.y3>y2>y1【解答】解:抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3)四点,∴抛物线开口向上,对称轴为x==﹣1.∵|﹣1﹣(﹣2)|<|1+1|<|+1|∴y3>y2>y1,故选:D.3.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,OB=OC,对称轴为直线x=﹣2,则下列结论:①abc>0;②a﹣c>0;③ac+b =1;④﹣4﹣c是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=﹣2,∴b=4a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;∵点B到直线x=﹣2的距离大于2,∴点A到直线x=﹣2的距离大于2,即点A在(﹣4,0)的左侧,∴当x=﹣4时,y>0,即16a﹣4b+c>0,∴a﹣b+c>0,所以②正确;∵C(0,c),OB=OC,∴B(c,0),∴ac2+bc+c=0,即ac+b+1=0,所以③错误;∵点A与点B关于直线x=1对称,∴A(﹣4﹣c,0),∴﹣4﹣c是关于x的一元二次方程ax2+bx+c=0的一个根,所以④正确.故选:C.4.抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,其部分图象如图所示.对于此抛物线有如下四个结论:①abc>0;②2a﹣b=0;③9a﹣3b+c=0;④若m>n>0,则x=m﹣1时的函数值小于x=n﹣1时的函数值.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:①观察图象可知:a<0,b<0,c>0,∴abc>0,所以①正确;②∵对称轴为直线x=﹣1,即﹣=﹣1,解得b=2a,即2a﹣b=0,所以②正确;③∵抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(﹣3,0),当a=﹣3时,y=0,即9a﹣3b+c=0,所以③正确;∵m>n>0,∴m﹣1>n﹣1>﹣1,由x>﹣1时,y随x的增大而减小知x=m﹣1时的函数值小于x=n﹣1时的函数值,所以④正确;故选:D.5.已知二次函数y=x2﹣2x+2(其中x是自变量),当0≤x≤a时,y的最大值为2,y的最小值为1.则a的值为()A.a=1 B.1≤a<2 C.1<a≤2 D.1≤a≤2【解答】解:∵二次函数y=x2﹣2x+2=(x﹣1)2+1,∴抛物线的对称轴为x=1,顶点(1,1),∴当y=1时,x=1,当y=2时,x2﹣2x+2=2,x=0或2,∵当0≤x≤a时,y的最大值为2,y的最小值为1,∴1≤a≤2,故选:D.6.已知抛物线y=﹣x2+bx+4经过点(﹣3,m)和(5,m)两点,则b的值为()A.﹣2 B.﹣1 C.1 D.2【解答】解:抛物线y=﹣x2+bx+4经过点(﹣3,m)和(5,m)两点,可知函数的对称轴x=1,∴﹣=1,∴b=2;故选:D.7.已知点(﹣1,y1),(,y2),(4,y3)都在抛物线y=﹣2x2+4x+c上,则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y2【解答】解:∵抛物线y=﹣2x2+4x+c的对称轴为直线x=1,且抛物线的开口向下,∴离抛物线对称轴的水平距离越远,对应函数值越小,∵点(4,y3)离对称轴的距离最远,点(,y2)离对称轴的距离最近,∴y2>y1>y3,故选:C.8.已知点A(3,y1),B(5,y2),C(﹣4,y3)均在抛物线y=3x2﹣6x+m上,下列说法中正确的是()A.y3>y1>y2B.y1>y2>y3C.y1<y2<y3D.y1>y3>y2【解答】解:∵抛物线y=3x2﹣6x+m,∴抛物线的开口向上,对称轴是直线x=﹣=1,∴抛物线上的点离对称轴最远,对应的函数值就越大,∵点(﹣4,y3)离对称轴最远,点A(3,y1)离对称轴最近,∴y1<y2<y3.故选:C.9.将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3 B.y=﹣2x2﹣3 C.y=(x﹣2)2﹣3 D.y=(x+2)2+3 【解答】解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣2,3),又因为平移不改变二次项系数,所以所得抛物线解析式为:y=(x+2)2+3.故选:D.10.在抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,则n的值为()A.B.C.1 D.【解答】解:抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,可知函数的对称轴x==1,∴m=﹣;将点(﹣,n)代入函数解析式,可得n=2(﹣﹣1)2=;故选:A.11.抛物线y=ax2+4x+c(a>0)经过点(x0,y0),且x0满足关于x的方程ax+2=0,则下列选项正确的是()A.对于任意实数x都有y≥y0B.对于任意实数x都有y≤y0C.对于任意实数x都有y>y0D.对于任意实数x都有y<y0【解答】解:∵x0满足关于x的方程ax+2=0,∴x0=﹣,∴点(x0,y0)是二次函数y=ax2+4x+c的顶点坐标.∵a>0,∴对于任意实数x都有y≥y0.故选:A.12.如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<0;②a+b=0;③b<a+c;④4c=4+a,其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac<0,所以①正确;∵抛物线的顶点坐标为(,1),∴抛物线得对称轴为直线x=﹣=,∴b=﹣a,即a+b=0,所以②正确;∵抛物线与x轴的负半轴的交点到原点的距离小于1,∴x=﹣1时,y<0,∴a﹣b+c<0,即b>a+c,所以③错误;∵抛物线的顶点的纵坐标为1,∴=1,把b=﹣a代入得4c﹣a=4,所以④正确.故选:C.13.已知抛物线y=ax2+bx+c(a>0)交x轴于点A(x1,0),B(x2,0),且x1<x2,点P (m,n)(n<0)在该抛物线上.下列四个判断:①b2﹣4ac≥0;②若a+c=b+3,则该抛物线一定经过点(1,3);③方程ax2+bx+c=n的解是x=m;④当m=时,△P AB的面积最大.其中判断一定正确.的序号是()A.①B.②C.③D.④【解答】解:∵抛物线与x轴交于点A(x1,0),B(x2,0),且x1<x2,∴△=b2﹣4ac>0,所以①错误;若a+c=b+3,即a﹣b+c=3,则该抛物线一定经过点(﹣1,3),所以②错误;当P(m,n)为抛物线的顶点时,方程ax2+bx+c=n的解是x=m;若P(m,n)不为抛物线的顶点,则方程ax2+bx+c=n有两个不相等的实数解,所以③错误;当P点为顶点时,△P AB的面积最大.此时x=﹣=m,∵x1、x2为方程ax2+bx+c=0的两不相等的实数解,∴x1+x2=﹣,∴m=,所以④正确.故选:D.14.定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的周长值与面积值相等,则这个点叫做和谐点,这个矩形叫做和谐矩形.已知点P(m,n)是抛物线y=x2+k上的和谐点,对应的和谐矩形的面积为16,则k的值为()A.﹣12 B.0 C.4 D.16【解答】解:∵点P(m,n)是抛物线y=x2+k上的点,∴n=m2+k,∴k=n﹣m2,∴点P(m,n)是和谐点,对应的和谐矩形的面积为16,∴2|m|+2|n|=|mn|=16,∴|m|=4,|n|=4,当n≥0时,k=n﹣m2=4﹣16=﹣12;当n<0时,k=n﹣m2=﹣4﹣16=﹣20.故选:A.15.如右图是二次函数y=ax2+bx+c(a≠0)图象的一部分,函数图象经过点(2,0),x=﹣1是对称轴,有下列结论:①2a﹣b=0;②9a﹣3b+c<0;③若(﹣2,y1),(,)是抛物线上两点,则y1<y2,④a﹣b+c=﹣9a;其中正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:∵抛物线的对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,即2a﹣b=0,所以①正确;∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点坐标为(2,0),∴抛物线与x轴的另一个交点坐标为(﹣4,0),∴当x=﹣3时,y>0,即9a﹣3b+c>0,所以②错误;∵抛物线开口向下,点(﹣2,y1)到直线x=﹣1的距离比点(,)到直线x=﹣1的距离小,∴y1>y2,所以③错误;∵x=2,y=0,∴4a+2b+c=0,把b=2a代入得4a+4a+c=0,解得c=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,所以④正确.故选:B.16.直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2),关于这两个交点的说法正确的为()A.点A在第三象限,点B在第四象限B.点A在第四象限,点B在第三象限C.都在第三象限D.都在第四象限【解答】解:由抛物线y=﹣x2+3x﹣1可知抛物线开口向下,与y轴的交点为(0,﹣1),对称轴为直线x=﹣>0,∴抛物线对称轴在y轴的右侧,∴直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2)都在第四象限,故选:D.17.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,∴①的结论错误;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<<,故②的结论正确;∵点A(﹣2,y1)到对称轴的距离比点B(2,y2)到对称轴的距离远,∴y1>y2,∴③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,∴④的结论正确;故选:B.18.阅读材料:坐标平面内,对于抛物线y=ax2+bx(a≠0),我们把点(﹣)称为该抛物线的焦点,把y=﹣称为该抛物线的准线方程.例如,抛物线y=x2+2x 的焦点为(﹣1,﹣),准线方程是y=﹣.根据材料,现已知抛物线y=ax2+bx(a ≠0)焦点的纵坐标为3,准线方程为y=5,则关于二次函数y=ax2+bx的最值情况,下列说法中正确的是()A.最大值为4 B.最小值为4C.最大值为3.5 D.最小值为3.5【解答】解:根据题意得=3,﹣=5,解得a=﹣,b=2或b=﹣2,∴抛物线y=ax2+bx(a≠0)的解析式为y=﹣x2+2x或y=﹣x2﹣2x,∵y=﹣x2+2x=﹣(x﹣4)2+4,y=﹣x2﹣2x=﹣(x+4)2+4,∴二次函数y=ax2+bx有最大值4.故选:A.19.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+2m,则m的值是()A.﹣B.﹣C.1 D.﹣或﹣【解答】解:∵一条抛物线的函数表达式为y=﹣x2+4x+2m,∴这条抛物线的顶点为(2,2m+4),∴关于x轴对称的抛物线的顶点(2,﹣2m﹣4),∵它们的顶点相距6个单位长度.∴|2m+4﹣(﹣2m﹣4)|=6,∴4m+8=±6,当4m+8=6时,m=﹣,当4m+8=﹣6时,m=﹣,∴m的值是﹣或﹣.故选:D.20.在同一平面直角坐标系中,函数y=ax2+bx+2b与y=﹣ax+b的图象可能是()A.B.C.D.【解答】解:A、一次函数的图象经过一、二、四象限,则﹣a<0,即a>0,b>0,所以函数y=ax2+bx+2b的图象开口向上,对称轴x<0,与y轴的交点位于直线的上方,由ax2+bx+2b=﹣ax+b整理得ax2+(a+b)x+b=0,由于△=(a+b)2﹣4ab=(a﹣b)2≥0,则两图象有交点,故A错误;B、一次函数的图象经过一、二、四象限,则﹣a<0,即a>0,b<0,所以函数y=ax2+bx+2b开口向上,对称轴x>0,故B错误;C、一次函数的图象经过一、二、三象限,则﹣a>0,即a<0,b>0,所以函数y=ax2+bx+2b开口向下,对称轴x>0,故C错误;D、一次函数的图象经过二、三,四象限,则﹣a<0,即a>0,b<0,所以函数y=ax2+bx+2b开口向上,对称轴x>0,故D正确;故选:D.21.将抛物线y=﹣2x2﹣3向右平移2个单位长度,再向上平移1个单位长度,所得到的抛物线为()A.y=﹣2(x+2)2+2 B.y=﹣2(x﹣2)2﹣2C.y=﹣2(x+2)2﹣2 D.y=﹣2(x﹣2)2﹣5【解答】解:∵抛物线y=﹣2x2﹣3向右平移2个单位长度,∴平移后解析式为:y=﹣2(x﹣2)2﹣3,∴再向上平移1个单位长度所得的抛物线解析式为:y=﹣2(x﹣2)2﹣3+1.即y=﹣2(x﹣2)2﹣2;故选:B.22.抛物线y=x2+bx+3的对称轴为直线x=2.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在1<x<5的范围内只有一个实数根,则t的取值范围是()A.0≤t<8或t=﹣1 B.t≥0C.0<t<8 D.0≤t<8【解答】解:∵抛物线y=x2+bx+3的对称轴为直线x=2.∴﹣=2,解得:b=﹣4,∴y=x2﹣4x+3,∴一元二次方程x2+bx+3﹣t=0有实数根可以看做y=x2﹣4x+3与函数y=t只有一个交点,∵方程x2﹣4x+3﹣t=0(t为实数)在1<x<5的范围内只有一个实数根,当x=1时,y=0;当x=5时,y=8;当x=2时,y=﹣1;∴t的取值范围是0≤t<8或t=﹣1.故选:A.23.抛物线M:y=﹣x2+4与x轴交于两点A、B(点A在点B的左侧),将抛物线M绕点B 旋转180°,得到新的抛物线M',则M'的表达式为()A.y=x2+8x﹣12 B.y=x2+8x+12 C.y=x2﹣8x﹣12 D.y=x2﹣8x+12 【解答】解:∵抛物线M:y=﹣x2+4与x轴交于两点A、B(点A在点B的左侧),∴点A(﹣2,0),点B(2,0),该抛物线的顶点坐标为(0,4),∵将抛物线M绕点B旋转180°,得到新的抛物线M',∴新的抛物线M'的顶点坐标为(4,﹣4),点A关于点B的对称点为(6,0),∴新的抛物线M'的解析式为y=(x﹣4)2﹣4=x2﹣8x+12,故选:D.24.如图,抛物线y=x2+2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB,BD与y轴相交于点E,过点E的直线FG平行于x轴,与抛物线交于F,G两点,则线段FG的长为()A.1+B.3 C.2D.2+【解答】解:∵抛物线y=x2+2x﹣3=(x+3)(x﹣1),∴令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则(x+3)(x﹣1)=0,∴x=﹣3或1,∴B(1,0),∵抛物线y=x2+2x﹣3=(x+1)2﹣4,∴对称轴为x=﹣1,∵CD∥AB,∴C、D两点关于x=﹣1对称,∴D(﹣2,﹣3),设BD的解析式为y=mx+n(m≠0),则,∴,∴BD的解析式为y=x﹣1,∴E(0,﹣1),令y=﹣1,则y=x2+2x﹣3=﹣1,解得,x=﹣1,∴F(﹣1﹣,﹣1),G(﹣1+,﹣1),∴FG=(﹣1+)﹣(﹣1﹣)=2,故选:C.25.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a﹣2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限;其中正确的个数是()A.1个B.2个C.3个D.4个【解答】解:(1)当x=﹣2时,y>0,∴4a﹣2b+c>0,故本说法错误;(2)方程ax2+bx+c=0两根分别为1,3,都大于0,故本说法正确;(3)当x>2时,y随x的增大而增大,故本说法错误;(4)由图象开口向上,a>0,与y轴交于正半轴,c>0,﹣=1>0,∴b<0,∴bc<0,∴一次函数y=x+bc的图象一定过第一、三、四象限,一定不过第二象限,故本说法正确;故选:B.26.二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:由图象可知a<0,c>0,对称轴为x=﹣,∴x=﹣=﹣,∴b=3a,①正确;∵函数图象与x轴有两个不同的交点,∴△=b2﹣4ac>0,②正确;当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,∴10a﹣4b+2c>0,∴5a﹣2b+c>0,③正确;由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,∴当x=1时,a+b+c<0,∵b=3a,∴4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0,∴4b+3c<0,④错误;故选:C.27.设函数y=kx2+(4k+3)x+1(k<0),若当x<m时,y随着x的增大而增大,则m的值可以是()A.1 B.0 C.﹣1 D.﹣2【解答】解:∵k<0,∴函数y=kx2+(4k+3)x+1的图象在对称轴直线x=﹣的左侧,y随x的增大而增大.∵当x<m时,y随着x的增大而增大∴m≤﹣,而当k<0时,﹣=﹣2﹣>﹣2,所以m≤﹣2,故选:D.28.已知抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,x1、x2是关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的两根,则(x1+x2)的值为()A.0 B.﹣4 C.4 D.2【解答】解:∵抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,∴抛物线的对称轴为直线x=0,即﹣=0,∴b=0,∴25a+c=0,∵a(x﹣2)2+c=2b﹣bx,a(x﹣2)2+c=0,∴a(x﹣2)2=25a,∴(x﹣2)2=25,解得x1=7,x2=﹣3,即关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的解为x1=7,x2=﹣3.∴x1+x2=4.故选:C.29.对于二次函数y=ax2+(1﹣2a)x(a>0),下列说法错误的是()A.该二次函数图象的对称轴可以是y轴B.该二次函数图象的对称轴不可能是x=1C.当x>2时,y的值随x的增大而增大D.该二次函数图象的对称轴只能在y轴的右侧【解答】解:∵二次函数y=ax2+(1﹣2a)x(a>0),∴当a=时,该函数的对称轴是y轴,故选项A正确;该函数的对称轴为直线x=﹣=1﹣<1,当x>2时,y随x的增大而增大,故选项B、C正确;∵该函数的对称轴为x=1﹣<1,∴当a=时,x=﹣1,则此时对称轴在y轴左侧,故选项D错误;故选:D.30.关于二次函数y=2(x﹣2)2+5,下列说法错误的是()A.图象与y轴的交点坐标为(0,13)B.图象的对称轴在y轴的右侧C.当x>0时,y的值随x值的增大而增大D.当x=2时,函数有最小值为5【解答】解:A、y=2(x﹣2)2+5=2x2﹣8x+13,则图象与y轴的交点坐标为(0,13),原题说法正确,故此选项不合题意;B、对称轴为x=2,图象的在y轴的右侧,原题说法正确,故此选项不合题意;C、a=2,开口向上,对称轴为x=2,则当x>2时,y的值随x值的增大而增大,原题说法错误,故此选项符合题意;D、顶点坐标为(2,5),开口向上,则当x=2时,函数有最小值为5,原题说法正确,故此选项不合题意;故选:C.31.已知抛物线y=ax2﹣2ax+a2+1(a≠0).当x≥3时,y随x的增大而增大;当﹣2≤x≤0时,y的最大值为10.那么与抛物线y=ax2﹣2ax+a2+1关于y轴对称的抛物线在﹣2≤x ≤3内的函数最大值为()A.10 B.17 C.5 D.2【解答】解:∵抛物线y=ax2﹣2ax+a2+1(a≠0),∴对称轴为直线x=﹣=1,∵当x≥3时,y随x的增大而增大,∴a>0,且x≤1时,y随x的增大而减小,∵当﹣2≤x≤0时,y的最大值为10.,∴当x=﹣2时,y=a2+8a+1=10,∴a=1或a=﹣9(舍去),∴抛物线为y=x2﹣2x+2,∵y=x2﹣2x+2=(x﹣1)2+1,∴此抛物线关于y轴的对称的抛物线为y=(x+1)2+1,∴函数y=(x+1)2+1,∴抛物线y=(x+1)2+1在﹣2≤x≤3内,当x=3时取最大值,即y=17,故选:B.32.已知某二次函数的图象与x轴相交于A,B两点,若该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),则AB的长为()A.5 B.8 C.10 D.11【解答】解:∵某二次函数的图象与x轴相交于A,B两点,该二次函数图象的对称轴是直线x=3,且点A的坐标是(8,0),∴点B的坐标为(﹣2,0),∴AB=8﹣(﹣2)=8+2=10,故选:C.33.已知抛物线y=ax2+bx+c的图象如图所示,图象与y轴交于(0,﹣1),顶点纵坐标为﹣3,ax2+b|x|+c=k有四个不相等的实数根,则实数k满足()A.0<k<3 B.﹣3<k<0 C.﹣3<k<﹣1 D.1<k<3【解答】解:设y=ax2+b|x|+c,则函数y=ax2+b|x|+c的图象,如右图所示,∵抛物线y=ax2+bx+c的图象与y轴交于(0,﹣1),顶点纵坐标为﹣3,∴ax2+b|x|+c=k有四个不相等的实数根时,k满足﹣3<k<﹣1,故选:C.34.如图,Rt△ABC的三个顶点A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,若斜边上的高为h,则()A.h<1 B.h=1 C.1<h<2 D.h=2【解答】解:由题A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,知A、B两点关于y轴对称,记斜边AB交y轴于点D,可设A(﹣,b),B(,b),C(a,a2),D(0,b),则斜边上的高为h,故h=b﹣a2,∵△ABC是直角三角形,由其性质直角三角形斜边中线等于斜边一半,∴CD=,∴=,方程两边平方得b﹣a2=(a2﹣b)2,即h=(﹣h)2,因为h>0,所以h=1,是个定值.故选:B.35.函数y=|ax2+bx|(a<0)的图象如图所示,下列说法错误的是()A.5a+3b<1 B.4a+3b<2 C.2a+b<0 D.a+2b<0 【解答】解:由图象可知,函数函数y=ax2+bx图象的对称轴为直线x=﹣<1,∵a<0,∴2a+b<0,故C正确;∵当x=2时,函数y=ax2+bx中y<0,即4a+2b<0,当x=1时,y<1,即a+b<1∴5a+3b<1,故A正确;∵a+b<1,∴2a+2b<2∵2a+b<0,∴4a+3b<2故B正确;∵﹣>,a<0,∴b>﹣a,∴2b>﹣2a,∴a+2b>﹣a,∴a+2b>0,故D错误;故选:D.36.已知二次函数y=mx2+(1﹣m)x,它的图象可能是()A.B.C.D.【解答】解:∵二次函数y=mx2+(1﹣m)x,∴当x=0时,y=0,即该函数的图象过点(0,0),故选项A错误;该函数的顶点的横坐标为﹣=﹣,当m>0时,该函数图象开口向上,顶点的横坐标小于,故选项B正确,选项C错误;当m<0时,该函数图象开口向下,顶点的横坐标大于,故选项D错误;故选:B.37.小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条结论:你认为其中正确结论的个数有()(1)a<0;(2)b>0;(3)a﹣b+c>0;(4)2a+b<0.A.1个B.2个C.3个D.4个【解答】解:(1)如图,抛物线开口方向向下,则a<0,故结论正确;(2)如图,抛物线对称轴位于y轴右侧,则a、b异号,故b>0,故结论正确;(3)如图,当x=﹣1时,y<0,即a﹣b+c<0,故结论错误;(4)由抛物线的对称性质知,对称轴是直线x=﹣>0.结合a<0知,2a+b<0,故结论正确.综上所述,正确的结论有3个.故选:C.38.函数y=ax2+bx与y=ax+b在同一平面直角坐标系中的图象大致是()A.B.C.D.【解答】解:当a>0,b>0时,一次函数y=ax+b的图象在第一、二、三象限,二次函数y=ax2+bx的图象经过原点,顶点在y轴的左侧,故选项A、B错误;当a>0,b<0时,一次函数y=ax+b的图象在第一、三、四象限,二次函数y=ax2+bx 的图象经过原点,顶点在y轴的右侧,函数图象开口向上,函数y=ax2+bx与y=ax+b 交点在x轴上,故选项C正确;当a<0,b<0时,一次函数y=ax+b的图象在第二、三、四象限,二次函数y=ax2+bx 的图象经过原点,顶点在y轴的左侧,函数图象开口向下,故选项D错误;故选:C.39.向上抛出的小球离地面的高度是其运动时间的二次函数,小甬相隔2秒依次抛出两个小球,假设两个小球出手时离地面高度相同,在各自抛出后1.2秒时达到相同的离地面最大高度.若第一个小球抛出后t秒时在空中与第二个小球离地面高度相同,则t=()A.2.2 B.2.5 C.2.6 D.2.7【解答】解:设各自抛出后1.2秒时到达相同的最大离地高度为h,这个最大高度为h,则小球的高度y=a(t﹣1.2)2+h,由题意a(t﹣1.2)2+h=a(t﹣2﹣1.2)2+h,解得t=2.2.故第一个小球抛出后2.2秒时在空中与第二个小球的离地高度相同.故选:A.40.对于二次函数y=kx2﹣(4k+1)x+3k+3.下列说法正确的是()①对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点;②该函数图象与x轴必有交点;③若k<0,当x≥2时,y随x的增大而减小;④若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=﹣1.A.①②③B.①②④C.②③④D.①③④【解答】解:∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x ﹣3),∴对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点,故①正确;对于任何满足条件的k,该二次函数中当x=3时,y=0,即该函数图象与x轴必有交点,故②正确;∵二次函数y=kx2﹣(4k+1)x+3k+3的对称轴是直线x==2+,∴若k<0,则2+<2,该函数图象开口向下,∴若k<0,当x≥2时,y随x的增大而减小,故③正确;∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x﹣3),∴当y=0时,x1=+1,x2=3,∴若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=±1,故④错误;故选:A.41.已知二次函数y=ax2+bx﹣c的图象的对称轴为直线x=1,开口向下,且与x轴的其中一个交点是(3,0).下列结论:①4a+2b﹣c>0;②a﹣b﹣c<0;③c=3a;④5a+b﹣2c>0.正确的个数有()A.1个B.2个C.3个D.4个【解答】解:∵(3,0)关于直线x=1的对称点坐标为(﹣1,0)∴抛物线与x轴的另一个交点为(﹣1,0),∵抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b﹣c=0,故②错误;∵﹣=1,∴b=﹣2a∴a+2a﹣c=0,∴c=3a,故③正确;∵b=﹣2a,c=3a,a<0,∴4a+2b﹣c=4a﹣4a﹣3a=﹣3a>0,即4a+2b﹣c>0,故①正确;∵4a+2b﹣c>0,a﹣b﹣c=0,两式相加:5a+b﹣2c>0,故④正确,故选:C.42.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(,0),与y轴的交点B在(0,0)和(0,﹣1)之间(不包括这两点),对称轴为直线x=.则下列结论:①x>3时,y<0;②4a+b<0;③﹣<a<0;④4ac+b2<4a.其中正确的是()A.②③④B.①②③C.①③④D.①②④【解答】解:由图象可知,抛物线开口向下,则a<0,∵对称轴为直线x=,∴x=0与x=3所对应的函数值相同,∵当x=0时y<0,∴x=3时y<0,∴x>3时,y<0,∴①正确;∵x==﹣,∴b=﹣3a,∴4a+b=4a﹣3a=a<0,∴②正确;∵抛物线经过点A(,0),∴a+b+c=0,∴c=a,∵B在(0,0)和(0,﹣1)之间,∴﹣1<c<0,∴﹣1<a<0,∴﹣<a<0,∴③正确;4ac+b2﹣4a=4a×a+(﹣3a)2﹣4a=5a2+9a2﹣4a=14a2﹣4a=2a(7a﹣2),∵a<0,∴2a(7a﹣2)>0,∴4ac+b2﹣4a>0,∴④不正确;故选:B.43.已知抛物线y=(x﹣m)(x﹣n),其中m<n,若a,b是方程(x﹣m)(x﹣n)﹣x=0的两根,且a<b,则当(a﹣m)(b﹣n)>0时,mn的值()A.小于零B.等于零C.大于零D.与零的大小关系无法确定【解答】解:y=(x﹣m)(x﹣n)与x轴的交点为(m,0),(n,0),由(x﹣m)(x﹣n)﹣x=0,则y=(x﹣m)(x﹣n)与y=x的两个交点为(a,a),(b,b),如图1:当函数y=(x﹣m)(x﹣n)与x轴交点在x轴正半轴时,(m,0),(n,0)在(a,a),(b,b)点的下方,∴a<m<n<b,∴(a﹣m)(b﹣n)<0,不符合;如图2:当函数y=(x﹣m)(x﹣n)与x轴交点分别在x轴正半轴和负半轴时,此时m<a<n<b,∴(a﹣m)(b﹣n)>0,∴mn<0;如图3:当函数y=(x﹣m)(x﹣n)与x轴交点在x轴负半轴时,此时m<a<b<n,∴(a﹣m)(b﹣n)<0,不符合题意;综上所述:当(a﹣m)(b﹣n)>0时,mn<0,。
二次函数综合练习题及答案
二次函数综合练习题及答案二次函数综合练习题及答案●基础巩固1.如果抛物线y =-2x 2+mx -3的顶点在x 轴正半轴上,则m =______. 2.二次函数y =-2x 2+x -21,当x =______时,y 有最______值,为______.它的图象与x 轴______交点(填“有”或“没有”).3.已知二次函数y =ax 2+bx +c 的图象如图1所示.①这个二次函数的表达式是y =______;②当x =______时,y =3;③根据图象回答:当x ______时,y >0.24.(-2,0),(5,0)两点二次函数的表达式:______.(写出一个符合要求的即可)5.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值围是______,此时关于一元二次方程2x 2-6x +m =0的解的情况是______(填“有解”或“无解”).6.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为______(只写一个),此类函数都有______值(填“最大”“最小”).7.如图2,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m).8.若抛物线y=x 2-(2k+1)x+k 2+2,与x 轴有两个交点,则整数k 的最小值是______.9.已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,由抛物线的特征你能得到含有a 、b 、c 三个字母的等式或不等式为______(写出一个即可).10.等腰梯形的周长为60 cm ,底角为60°,当梯形腰x=______时,梯形面积最大,等于______. 11.找出能反映下列各情景中两个变量间关系的图象,并将代号填在相应的横线上. (1)一辆匀速行驶的汽车,其速度与时间的关系.对应的图象是______. (2)形的面积与边长之间的关系.对应的图象是______.(3)用一定长度的铁丝围成一个长方形,长方形的面积与其中一边的长之间的关系.对应的图象是_ _. (4)在220 V 电压下,电流强度与电阻之间的关系.对应的图象是______.xA B D12.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定围每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价______元,最大利润为______元.13.关于二次函数y =ax 2+bx +c 的图象有下列命题,其中是假命题的个数是()①当c =0时,函数的图象经过原点; ②当b =0时,函数的图象关于y 轴对称;③函数的图象最高点的纵坐标是ab ac 442;④当c >0且函数的图象开口向下时,方程ax 2+bx +c =0必有两个不相等的实根( ) A.0个 B.1个 C.2个 D.3个14.已知抛物线y =ax 2+bx +c 如图所示,则关于x 的方程ax 2+bx +c -8=0的根的情况是A.有两个不相等的正实数根 ;B.有两个异号实数根;C.有两个相等的实数根 ;D.没有实数根.15.抛物线y =kx 2-7x -7的图象和x 轴有交点,则k 的取值围是( )A.k >-47; B.k ≥-47且k ≠0; C.k ≥-47; D.k >-47且k ≠0 16.如图6所示,在一个直角三角形的部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( )A.424 m B.6 m C.15 mD.25 m图517.二次函数y =x 2-4x +3的图象交x 轴于A 、B 两点,交y 轴于点C ,△ABC 的面积为( )A.1B.3C.4D.618.无论m 为任何实数,二次函数y =x 2+(2-m )x +m 的图象总过的点是( )A.(-1,0);B.(1,0)C.(-1,3) ;D.(1,3)19.为了备战2008奥运会,中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门横梁底侧高)入网.若足球运行的路线是抛物线y =ax 2+bx +c (如图5所示),则下列结论正确的是( ) ①a <-601 ②-6010 ④0<-12a<="" p="">A.①③B.①④C.②③D.②④20.把一个小球以20 m/s 的速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系h=20t -5t 2.当h=20 m 时,小球的运动时间为() A.20 sB.2 sC.(22+2) sD.(22-2) s21.如果抛物线y=-x 2+2(m -1)x+m+1与x 轴交于A 、B 两点,且A 点在x 轴正半轴上,B 点在x 轴的负半轴上,则m 的取值围应是( ) A.m>1B.m>-1C.m<-1D.m<122.如图7,一次函数y=-2x+3的图象与x 、y 轴分别相交于A 、C 两点,二次函数y=x 2+bx+c 的图象过点c 且与一次函数在第二象限交于另一点B ,若AC ∶CB=1∶2,那么,这个二次函数的顶点坐标为( ) A.(-21,411) B.(-21,45) C.(21,411) D.(21,-411) 23.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为( ) A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.524.如图8,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=-121x 2+32x+35,则该运动员此次掷铅球的成绩是( ) A.6 mB.12 mC.8 mD.10 mxy ABCOx yOABMO图925.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图9,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( )A.2 mB.3 mC.4 mD.5 m26.求下列二次函数的图像与x 轴的交点坐标,并作草图验证.(1)y=12x 2+x+1; (2)y=4x 2-8x+4; (3)y=-3x 2-6x-3; (4)y=-3x 2-x+427.一元二次方程x 2+7x+9=1的根与二次函数y=x 2+7x+9的图像有什么关系? 试把方程的根在图像上表示出来.28.利用二次函数的图像求下列一元二次方程的根. (1)4x 2-8x+1=0; (2)x 2-2x-5=0;(3)2x 2-6x+3=0; (3)x 2-x-1=0.29.已知二次函数y=-x 2+4x-3,其图像与y 轴交于点B,与x 轴交于A, C 两点. 求△ABC 的周长和面积.●能力提升30.某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x (元)满足关系:m =140-2x .(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?31.已知二次函数y =(m 2-2)x 2-4mx +n 的图象的对称轴是x =2,且最高点在直线y =21x +1上,求这个二次函数的表达式.32.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m ?比较(1)(2)的结果,你能得到什么结论?33.当运动中的汽车撞到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某型汽车的撞击影响可以用公式I =2v 2 来表示,其中v (千米/分)表示汽车的速度; (1)列表表示I 与v 的关系.(2)当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的多少倍?34.如图7,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米. (1)建立如图所示的直角坐标系,求抛物线的表达式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少.(0,3.5)m xy35.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数的图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t 个月的利润总和S与t之间的关系).(1)根据图象你可获得哪些关于该公司的具体信息?(至少写出三条)(2)还能提出其他相关的问题吗?若不能,说明理由;若能,进行解答,并与同伴交流.36.把一个数m分解为两数之和,何时它们的乘积最大?你能得出一个一般性的结论吗?●综合探究37.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q关于x的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)?38.图中a是棱长为a的小体,图b、图c由这样的小体摆放而成,按照这样的方法继续摆放,自上而下分别叫第一层,第二层……,第n层,第n层的小形的个数记为S,解答下列问题:abcS13 6…(2)写出当n=10时,S=______;(3)根据上表中的数据,把S 作为纵坐标,n 作为横坐标,在平面直角坐标系中描出相应的各点; (4)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数的图象上,求出该函数的表达式;若不在,说明理由.nOS参考答案1.262.41 大-83 没有3.①x 2-2x ②3或-1 ③<0或>2 4. y =x 2-3x -10 5. m >29 无解 6.y =-x 2+x -1 最大 7.y =-81x 2+2x +1 16.5 8. 2 9.b 2-4ac>0(不唯一)10 . 15 cm23225 cm 211.(1)A (2)D (3)C (4)B 12. 5 625 13.B 14.C 15.B 16.D 17.B18.D 19.B 20.B 21.B 22.A 23.C 24.D25.B 〔提示:设水流的解析式为y=a(x -h)2+k,∴A(0,10),M(1,340).∴y=a(x -1)2+340,10=a+340. ∴a=-310.∴y=-310(x -1)2+340.令y=0得x=-1或x=3得B(3,0),即B 点离墙的距离OB 是3 m26.(1)没有交点;(2)有一个交点(1,0);(3)有一个交点(-1,0);(4)有两个交点( 1,0),(43,0),草图略. 27.该方程的根是该函数的图像与直线y=1的交点的横坐标.28.(1)x 1≈1.9,x 2≈0.1;(2)x 1≈3.4,x 2≈-1.4;(3)x 1≈2.7,x 2≈0.6;(4)x 1≈1.6,x 2≈-0 .6 29.令x=0,得y=-3,故B 点坐标为(0,-3).解方程-x 2+4x-3=0,得x 1=1,x 2=3.故A 、C 两点的坐标为(1,0),(3,0).所以=OB=│-3│=3. C △ABC =AB+BC+AC=2+△ABC =12AC ·OB=12×2×3=3. 30.(1)y =-2x 2+180x -2800.(2)y =-2x 2+180x -2800=-2(x 2-90x )-2800=-2(x -45)2+1250. 当x =45时,y 最大=1250.∴每件商品售价定为45元最合适,此销售利润最大,为1250元. 31.∵二次函数的对称轴x =2,此图象顶点的横坐标为2,此点在直线y =21x +1上. ∴y =21×2+1=2.∴y =(m 2-2)x 2-4mx +n 的图象顶点坐标为(2,2).∴-ab 2=2.∴-)2(242--m m=2.解得m =-1或m =2.∵最高点在直线上,∴a <0,∴m =-1.∴y =-x 2+4x +n 顶点为(2,2). ∴2=-4+8+n .∴n =-2.则y =-x 2+4x +2.32(1)依题意得鸡场面积y =-.350312x x +-∵y =-31x 2+350x =31-(x 2-50x )=-31(x -25)2+3625, ∴当x =25时,y 最大=3625,即鸡场的长度为25 m 时,其面积最大为3625m 2.(2)如中间有几道隔墙,则隔墙长为nx-50m.∴y =n x -50·x =-n 1x 2+n50x =-n 1(x 2-50x ) =-n 1(x -25)2+n 625,当x =25时,y 最大=n 625,即鸡场的长度为25 m 时,鸡场面积为n625 m 2.结论:无论鸡场中间有多少道篱笆隔墙,要使鸡场面积最大,其长都是25 m. 33(1)如下表(2)I =2·(2v )2=4×2v 2.当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的4倍.34(1)设抛物线的表达式为y =ax 2+bx +c .由图知图象过以下点:(0,3.5),(1.5,3.05).==-=?++===-.5.3,0,2.0,5.15.105.3,5.3,022c b a c b a c a b得∴抛物线的表达式为y =-0.2x 2+3.5. (2)设球出手时,他跳离地面的高度为h m ,则球出手时,球的高度为h +1.8+0.25=(h +2.05) m, ∴h+2.05=-0.2×(-2.5)2 +3.5,∴h=0.2(m).35 (1)信息:①1、2月份亏损最多达2万元.②前4月份亏盈吃平.③前5月份盈利2.5万元.④1~2月份呈亏损增加趋势.⑤2月份以后开始回升.(盈利)⑥4月份以后纯获利.…… (2)问题:6月份利润总和是多少万元?由图可知,抛物线的表达式为y=21(x -2)2-2, 当x=6时,y=6(万元)(问题不唯一).36.设m=a+b y=a ·b,∴y=a(m -a)=-a 2+ma=-(a -2m )2+42a ,当a=2m时,y 最大值为42a .结论:当两个数的和一定,这两个数为它们和的一半时,两个数的积最大. 37.(1)由题意知:p=30+x,(2)由题意知活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为L=Q -30000-400x=-10x 2 +500x=-10(x 2-50x) =-10(x -25)2+6250. 当x=25时,总利润最大,最大利润为6250元.38.(1)10 (2)55 (3)(略).(4)经猜想,所描各点均在某二次函数的图象上.设函数的解析式为S=an 2+bn+c.由题意知====++=++=++0.c ,21b ,21a ,639,324,1解得c b a c b a c b a ∴S=.21212n n +。
中考数学二次函数专题训练50题(含参考答案)
中考数学二次函数专题训练50题含答案一、单选题1.二次函数y =﹣2x 2﹣1图象的顶点坐标为( ) A .(0,0)B .(0,﹣1)C .(﹣2,﹣1)D .(﹣2,1)2.下列函数图象不属于中心对称图形的是( ) A .20222023yxB .220222023yx x C .2023y =- D .2022xy =-3.下列关系式中,属于二次函数的是( )A .22y x =-B .y =C .31y x =-D .1y x=4.若抛物线2(2)(2)=-≠y a x a 开口向上,则a 的取值范围是( ) A .2a <B .2a >C .a<0D .0a >5.已知点1(4)y -,、2(1)y -,、353y ⎛⎫⎪⎝⎭,都在函数245y x x =--+的图象上,则123y y y 、、的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .312y y y >> 6.在平面直角坐标系中,将抛物线221y x x =+-,绕原点旋转180°,所得到的抛物线的函数关系式是( ) A .221y x x =-+ B .221y x x =--- C .221y x x =-+-D .221y x x =-++7.已知二次函数2y ax bx c =++的图象经过原点和第一、二、三象限,则( ) A .0,0,0a b c >>> B .0,0,0a b c <<= C .0,0,0a b c <D .0,0,0a b c >>=8.二次函数241y mx x =-+有最小值3-,则m 等于( ) A .1B .1-C .1±D .12±9.已知点 A (−1,a ),B (1,b ),C (2,c )是抛物线 y = -2x + 2x 上的三点,则 a ,b ,c 的大小关系为( ) A .a>c>bB .b>a>cC .b>c>aD .c>a>b10.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB →BC 方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.5C.6D.25411.如图,已知直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,则①abc、①a﹣b+c、①a+b+c、①2a﹣b、①3a﹣b,其中是负数的有()A.1个B.2个C.3个D.4个12.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x+4)2+7C.y=(x﹣4)2﹣25D.y=(x+4)2﹣2513.若二次函数y=(x﹣k)2+m,当x≤2时,y随x的增大而减小,则k的取值范围是()A.k=2B.k>2C.k≥2D.k≤214.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:则方程ax2+bx+3=0的根是()A.0或4B.1或3C.-1或1D.无实根15.二次函数图像如图所示,下列结论:①0abc >,①20a b +=,①,①方程20ax bx c ++=的解是-2和4,①不等式20ax bx c ++>的解集是24-<<x ,其中正确的结论有( )A .2个B .3个C .4个D .5个16.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,有下列5个结论:①abc <0,①3a ﹣b =0,①a +b +c =0,①9a ﹣3b +c <0,①b 2﹣4ac >0.其中正确的有( )A .①①①B .①①①C .①①①D .①①17.将抛物线y=2x2向右平移1个单位后,得到的抛物线的表达式是( ) A .y=2(x+1)2B .y=2(x ﹣1)2C .y=2x2﹣1D .y=2x2+118.如图为二次函数y=ax 2+bx+c 的图象,在下列说法中:①ac <0;①2a ﹣b=0;①当x >1时,y 随x 的增大而增大;①方程ax 2+bx+c=0的根是x 1=﹣1,x 2=3;①30a c +=;①对于任意实数m ,2am bm a b +≥+总是成立的.正确的说法有( )A .2B .3C .4D .519.如图是二次函数21y ax bx c =++,反比例函数2my x=在同一直角坐标系的图象,若y 1与y 2交于点A (4,yA ),则下列命题中,假命题是( )A .当x >4时,12y y >B .当1x <-时,12y y >C .当12y y <时,0<x <4D .当12y y >时,x <020.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =12, 且经过点(2,0),下列结论正确的是( )A .abc >0B .2-4ac<0bC .a+b=1D .当x >2或x <-1时,y <0二、填空题21.写出一个函数的表达式,使它满足:①图象经过点(1,1);①在第一象限内函数y 随自变量x 的增大而减少,则这个函数的表达式为__________. 22.抛物线()269y x =-++的顶点坐标是______. 23.抛物线244y x x =+-的对称轴是直线______. 24.抛物线y =-(x -1)2-2的顶点坐标是________.25.二次函数210y ax bx a =+≠-()的图象经过点(1,1),则代数式1a b --的值为______. 26.将抛物线2yx 向左平移2个单位后,得到的抛物线的解析式是______;27.若抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4),则这条抛物线的对称轴是直线____________.28.抛物线 245y x x =-+,当34x -≤≤时,y 的取值范围是___________ 29.已知二次函数21y mx x =+-的图象与x 轴有两个交点,则m 的取值范围是______.30.如图,抛物线2=23y x x --与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点B ,C 作一条直线l . (1)ABC ∠的度数是______;(2)点P 在线段OB 上,且点P 的坐标为()2,0,过点P 作PM x ⊥轴,交直线l 于点N ,交抛物线于点M ,则线段MN 的长为______.31.如图,一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_____.32.二次函数y =2x 2的图象向左平移2个单位长度,再向下平移5个单位长度后得到的图象的解析式为_____.33.如图,直角梯形OABC 的直角顶点是坐标原点,边OA ,OC 分别在x 轴,y 轴的正半轴上.OA ①BC ,D 是BC 上一点,BD =14OA AB =3,①OAB =45°,E ,F 分别是线段OA ,AB 上的两个动点,且始终保持①DEF =45°.设OE =x ,AF =y ,则y 与x 的函数关系式为_____.34.已知某抛物线上部分点的横坐标x ,纵坐标y 的对应值如下表:那么该抛物线的顶点坐标是_____.35.已知点A(-3,m)在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点的坐标为________.36.若二次函数()22212y x m x m m =-+-+-的图象关于y 轴对称,则m 的值为:________.此函数图象的顶点和它与x 轴的两个交点所确定的三角形的面积为:________.37.二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a≠0)中的x 与y 的部分对应值如表下列结论:①ac <0; ①当x >1时,y 的值随x 值的增大而减小; ①当2x =时,5y =; ①3是方程ax 2+(b ﹣1)x+c=0的一个根. 其中正确的结论是_________(填正确结论的序号).38.如图所示,已知二次函数()20y ax bx c a =++≠的部分图象,下列结论中:0abc >①; 40a c +>②;③若t 为任意实数,则有2a bt at b -≥+; ④若函数图象经过点()2,1,则311222a b c ++=;⑤当函数图象经过()2,1时,方程210ax bx c ++-=的两根为1x ,212()x x x <,则1228x x -=-.其中正确的结论有______.39.如图,正方形ABCD 的边长为4,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 上的动点,且AE =BF =CG =DH .则四边形EFGH 面积的最小值为___.40.如图,已知二次函数2y x 2x 3=-++的图象与y 轴交于点A ,MN 是该抛物线的对称轴,点P 在射线MN 上,连结PA ,过点A 作AB AP ⊥交x 轴于点B ,过A 作AC MN ⊥于点C ,连结PB ,在点P 的运动过程中,抛物线上存在点Q ,使QAC PBA ∠∠=,则点Q 的横坐标为______.三、解答题41.已知抛物线y =x 2+(b -2)x +c 经过点M (-1,-2b ). (1)求b +c 的值.(2)若b =4,求这条抛物线的顶点坐标.42.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x ≤14)之间的函数关系式,并求出第几天时销售利润最大?43.我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“D 函数”,其图象上关于原点对称的两点叫做一对“D 点”根据该约定,完成下列各题.(1)在下列关于x 的函数中,是“D 函数”的,请在相应题目后面的括号中打“√”,不是“D 函数”的打“×”,my x=(0m ≠)(_______);31y x =-(_______);2y x =(_______).(2)若点A (1,m )与点B (n ,4-)是关于x 的“D 函数”2y ax bx c =++(0a ≠)的一对“D 点”,且该函数的对称轴始终位于直线1x =的右侧,求a ,b ,c 的值或取值范围;(3)若关于x 的“D 函数”223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=;①()()2230c b a c b a +-++<;求该“D 函数”截x 轴得到的线段长度的取值范围.44.(1)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度;(2)如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)i =1:0.75,山坡坡底C 点到坡顶D 点的距离CD =50m ,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,求居民楼AB 的高度.(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)(3)已知飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣32t2,求在飞机着陆滑行中最后4s滑行的距离.45.已知二次函数222y x x k=-+++与x轴的公共点有两个.求:()1求k的取值范围;()2当1k=时,求抛物线与x轴的公共点A和B的坐标及顶点C的坐标;()3观察图象,当x取何值时0y>?46.如图,抛物线245y x x=-++与x轴交于点A和点B,与y轴交于点C.(1)求出A、B、C三点的坐标;(2)将抛物线245y x x=-++图像x轴上方部分沿x轴向下翻折,保留抛物线与x轴的交点和x轴下方图像,得到的新图像记作M,图像M与直线y t=恒有四个交点,从左到右四个交点依次记为D,E,F,G.若以EF为直径作圆,该圆记作图像N.①在图像M上找一点P,使得PAB的面积为3,求出点P的坐标;①当图像N与x轴相离时,直接写出t的取值范围.47.如图,在△ABC 中,AB=4,D 是AB 上的一点(不与点A、B 重合),DE①BC,交AC 于点E.设△ABC 的面积为S,△DEC 的面积为S'.(1)当D是AB中点时,求SS'的值;(2)设AD=x,SS'=y,求y与x的函数表达式,并写出自变量x的取值范围;(3)根据y的范围,求S-4S′的最小值.48.如图1,在平面直角坐标系中,抛物线y=﹣38x2+34x+3与x轴交于点A和点B,A在B的左侧,与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求直线BC的解析式;(2)过P作PM①x轴,交BC于M,当PM﹣CM的值最大时,求P的坐标和PM﹣CM的最大值;(3)如图2,将该抛物线向右平移1个单位,得到新的抛物线y1,过点P作直线BC 的垂线,垂足为E,作y1对称轴的垂线,垂足为F,连接EF,请直接写出当PEF是以PF为腰的等腰三角形时,点P的横坐标.49.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B.求:(1)点A 、B 的坐标;(2)抛物线的函数表达式;(3)若点M 是该抛物线对称轴上的一点,求AM+BM 的最小值及点M 的坐标; (4)在抛物线对称轴上是否存在点P ,使得以A 、B 、P 为顶点的三角形为等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.50.如图所示,抛物线2y ax bx c =++的图象过(03)A ,,()10B -,,0(3)C ,三点,顶点为P .(1)求抛物线的解析式;(2)设点G 在y 轴上,且OGB OAB ACB ∠+∠=∠,求AG 的长;(3)若//AD x 轴且D 在抛物线上,过D 作DE BC ⊥于E ,M 在直线DE 上运动,点N 在x 轴上运动,是否存在这样的点M 、N 使以A 、M 、N 为顶点的三角形与APD △相似若存在,请求出点M 、N 的坐标.参考答案:1.B【分析】根据二次函数的解析式特点可知其图象关于y 轴对称,可得出其顶点坐标.【详解】解:①221y x =-- ,①其图象关于y 轴对称,①其顶点在y 轴上,当0x =时,1y =-,所以顶点坐标为(0,﹣1),故选择:B.【点睛】本题主要考查二次函数的顶点坐标,掌握二次函数y=ax 2+c 的图象关于y 轴对称是解题的关键.2.B【分析】分别根据一次函数图象,二次函数图象,常数函数的图象的对称性分析判断即可得解.【详解】解:A .直线20222023y x 是轴对称图形,也是中心对称图形,故本选项不符合题意;B .抛物线220222023y x x 是轴对称图形,不是中心对称图形,故本选项符合题意;C .直线2023y =-是轴对称图形,也是中心对称图形,故本选项不符合题意;D .直线2022x y =-是轴对称图形,也是中心对称图形,故本选项不符合题意. 故选:B .【点睛】本题考查了二次函数图象,一次函数图象,常数函数的图象,熟记各图形以及其对称性是解题的关键.3.A【分析】根据二次函数的定义进行解答即可.【详解】22y x =-符合二次函数的定义,故A 符合题意;y B 不符合题意; 31y x =-是一次函数,故C 不符合题意;1y x=中含自变量的代数式不是整式,不符合二次函数的定义,故D 不符合题意;故选A【点睛】本题考查了二次函数的定义,掌握二次函数的一般形式()20y ax bx c a =++≠是解题的关键.4.B【分析】根据抛物线的开口向上,可得20a ->,进而即可求得a 的取值范围.【详解】解:①抛物线2(2)(2)=-≠y a x a 开口向上,①20a ->即2a >故选B【点睛】本题考查了二次函数2y ax =图象的性质,掌握0a >时,抛物线的开口向上是解题的关键.5.C【分析】根据函数解析式求出对称轴,在根据函数的性质求解即可;【详解】解:①245y x x =--+,①函数图像的对称轴是直线422x -=-=--,图象的开口向下, ①当<2x -时,y 随x 的增大而增大, 点353y ⎛⎫ ⎪⎝⎭,关于对称轴的对称点是⎛⎫- ⎪⎝⎭317,3y , ①17413-<-<-, ①213y y y >>;故选:C .【点睛】本题主要考查了二次函数图象上点的坐标特征,掌握二次函数图象的性质是解题的关键.6.D【分析】先求出抛物线的顶点坐标,再根据旋转求出旋转后的抛物线顶点坐标,然后根据顶点式写出抛物线的解析式即可.【详解】解:①()222112y x x x =+-=+-,①抛物线的顶点坐标为()1,2--,①将抛物线221y x x =+-,绕原点旋转180︒后顶点坐标变为()1,2,1a =-,①旋转后的函数关系式为()221221y x x x =--+=-++.故选:D .【点睛】本题主要考查了求抛物线的解析式,关于原点对称的两个点的坐标特点,解题的关键是求出旋转后抛物线的顶点坐标和a 的值.7.D【详解】试题分析:由题意得,二次函数经过原点可知,,又只经过第一,二,三象限,画图可知抛物线开口向上,对称轴在轴的负半轴,综合可知,故选D.考点:二次函数的对称轴及开口方向综合问题.8.A【分析】根据二次函数的最值公式列式计算即可得解.【详解】①二次函数241y mx x =-+有最小值3-, ①41634m m-=-, 解得1m =.故选A .9.C【分析】根据二次函数的性质得到抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:①抛物线y =-x 2+2x =-(x -1)2+1,①抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,而A (-1,a )离直线x =1的距离最远,B (1,b )在直线x =1上,①b >c >a ,故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10.B【分析】易证△CFE ∽△BEA ,可得CF CE BE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【详解】若点E 在BC 上时,如图∵∠EFC +∠AEB =90°,∠FEC +∠EFC =90°,∴∠CFE =∠AEB ,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB=,BE =CE =x ﹣52,即525522x y x -=-, ∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5; 故选B . 【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.11.B【分析】根据抛物线的开口方向,对称轴,与y 轴的交点判定系数符号,及运用一些特殊点解答问题.【详解】由抛物线的开口向下可得:a <0,根据抛物线的对称轴在y 轴左边可得:a ,b 同号,所以b <0,根据抛物线与y轴的交点在正半轴可得:c > 0,直线x =-1是抛物线y = ax 2+bx +c (a ≠0)的对称轴,所以-b 2a=-1,可得b =2a ,由图知,当x =-3时y <0,即9a -3b +c < 0,所以9a -6a +c =3a +c <0,因此①abc >0;①a -b +c =a -2a +c =c -a > 0;①a +b +c = a +2a +c =3a +c < 0;①2a -b =2a - 2a = 0;①3a -b =3a - 2a = a <0所以①①小于0,故负数有2个,故答案选B.【点睛】本题主要考查了结合图形判断抛物线方程的系数,解本题的要点在于熟知抛物线的基本性质.12.C【分析】直接利用配方法进而将原式变形得出答案.【详解】y =x 2-8x -9=x 2-8x +16-25=(x -4)2-25.故选C .【点睛】此题主要考查了二次函数的三种形式,正确配方是解题关键.13.C【详解】试题分析:根据二次函数的增减性可得:当x≤k 时,y 随x 的增大而减小,则k≥2.考点:二次函数的性质14.B【分析】将(0,2)(3,-1)(4,2)代入到二次函数y =ax 2+bx +c 中,分别求出a 、b 的值,即可求出方程的解.【详解】由题意得:29311642c a b c a b c =⎧⎪++=-⎨⎪++=⎩解得:142a b c =⎧⎪=-⎨⎪=⎩①方程230ax bx ++=为2430x x -+=(1)(3)0x x --=解得:121,3x x ==故选B【点睛】本题考查二次函数抛物线与坐标轴的交点以及待定系数法函数解析式和一元二次方程求解,熟练掌握相关知识点是解题关键.15.C【详解】试题分析: ①抛物线开口向上,①0a >,①抛物线对称轴为直线2b x a =-=1,①0b <,①抛物线与y 轴交点在x 轴下方,①0c <,①0abc >,所以①正确; ①2b x a=-=1,即2b a =-,①20a b +=,所以①正确; ①抛物线与x 轴的一个交点为(﹣2,0),而抛物线对称轴为直线x=1,①抛物线与x 轴的另一个交点为(4,0),①当3x =时,0y <,①,所以①错误. ①抛物线与x 轴的两个交点为(﹣2,0),(4,0),①方程20ax bx c ++=的解是-2和4,①①正确;由图像可知:不等式20ax bx c ++>的解集是24-<<x ,①①正确.①正确的答案为:①①①①.故选C .考点:二次函数图象与系数的关系.16.B【分析】根据二次函数的图像和性质逐一进行判断即可【详解】解:①抛物线开口朝下,①a <0,①对称轴x =3-22b a=- ①b =3a <0,①3a ﹣b =0,故①正确;①抛物线与y 轴的交点在x 轴的上方,①c >0,①abc >0,故①错误;①抛物线的对称轴x =3-2,与x 轴的一个交点为(-4,0), ①抛物线与x 轴的一个交点为(1,0),①a +b +c =0,故①正确;根据图象知道当x =-3时,y =9a -3b +c >0,故①错误;根据图象知道抛物线与x 轴有两个交点,①b 2-4ac >0,故①正确.①正确答案为:①①①.故选:B【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.17.B【分析】可根据二次函数图象左加右减,上加下减的平移规律进行解答.【详解】二次函数y=2x 2的图象向右平移1个单位,得:y=2(x-1)2,故选B .【点睛】本题考查了函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.18.D【分析】根据二次函数系数与图像性质,二次函数与方程,二次函数与不等式之间的关系判断每一个结论,从而得出答案.【详解】①由图像可知,抛物线的开口向上,①a >0,①抛物线与y 轴的交点为在y 轴的负半轴上,①c <0,①ac <0,故此选项正确;①由图像可知,对称轴为x=1, ①12b x a=-=, ①-b=2a ,①2a+b=0,故此选项错误;①当x >1时,y 随x 的增大而增大,故此选项正确;①由图像可知,方程ax 2+bx+c=0的根是x 1=﹣1,且对称轴为x=1, ①1212x x +=, ①2122(1)3x x =-=--=,故此选项正确;①由①可知,12133c x x a==-⨯=-, 3c a ∴=-,30a c ∴+=,故此选项正确;①由图像可知,抛物线的顶点坐标为(1,)a b c ++,∴当x=1时,二次函数y=ax 2+bx+c 有最小值a+b+c ,∴2ax bx c a b c ++≥++,当x=m 时,则有2am bm c a b c ++≥++,∴2am bm a b +≥+,故此选项正确;①正确的说法有①①①①①共5个.故选:D .【点睛】本题考查了二次函数的图像与性质、方程、不等式之间的知识点,要掌握如何利用图像上的信息确定字母系数的范围,并记住特殊值的特殊用法,如x=1,x=-1时对应的y 值是解题的关键.19.D【分析】结合图形、利用数形结合思想解答.【详解】由函数图象可知,当x >4时,y 1>y 2,A 是真命题;当x <-1时,y 1>y 2,C 是真命题;当y 1<y 2时,0<x <4,C 是真命题;y 1>y 2时,x <0或x >4,D 是假命题;故选D .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.20.D【分析】根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a 、b 、c 的符号;根据对称轴求出b=-a ;把x=2代入函数关系式,结合图象判断函数值与0的大小关. .【详解】:①二次函数的图象开口向下,①a<0,①二次函数的图象交y 轴的正半轴于一点,①c>0,①对称轴是直线x=12,①−2b a =12, ①b=−a>0,①abc<0.故A 错误;①抛物线与x 轴有两个交点,①b 2-4ac>0, 故B 错误①b=−a ,①a+b=0,故C 错误;故答案选D【点睛】本题考查的知识点是二次函数图像与系数的关系,解题的关键是熟练的掌握二次函数图像与系数的关系.21.1y x= 【分析】根据反比例函数、一次函数以及二次函数的性质作答. 【详解】解:该题答案不唯一,可以为1y x=等. 故答案为:1y x =. 【点睛】本题考查的是反比例函数、一次函数以及二次函数的性质,熟知函数的增减性是解答此题的关键.22.()6,9-【分析】直接根据顶点式解析式写出顶点坐标即可.【详解】解:()269y x =-++的顶点为()6,9-, 故答案为:()6,9-.【点睛】本题考查了抛物线顶点式解析式的顶点坐标,解题关键是理解抛物线()()20y a x h k a =-+≠的顶点坐标为()h k ,. 23.2x =-【分析】将题目的解析式化为顶点式,即可得到该抛物线的对称轴,本题得以解决.【详解】解:①抛物线2244(2)8y x x x =+-=+-,①该抛物线的对称轴是直线2x =-,故答案为:2x =-.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.24.(1,-2)【分析】对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,. 【详解】由y =-(x -1)2-2,根据顶点式的坐标特点可知,顶点坐标为()12-,故答案为:()12-,. 【点睛】本题考查了抛物线的顶点式及顶点坐标;对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,,掌握顶点式是解题的关键.25.-1【详解】①二次函数y=ax2+bx−1(a≠0)的图象经过点(1,1),①a+b−1=1,①a+b=2,①1−a−b=1−(a+b)=1−2=−1.故答案为-1.26.()22y x =+或244y x x =++【分析】根据函数的平移规律:左加右减;上加下减即可求解.【详解】解:①抛物线2y x 向左平移2个单位,①平移后抛物线的解析式为()22y x =+故答案为:()22y x =+【点睛】本题考查了抛物线的平移变换,熟练掌握抛物线的平移规律是解题的关键. 27.x =3【分析】因为点(1,4),(5,4)的纵坐标都为4,所以可判定是一对对称点,把两点的横坐标代入公式x =122x x +求解即可.【详解】解:抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4), ①两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x =1532+=,即x =3. 故答案为:3.【点睛】本题考查抛物线与x 轴的平行线交点问题.掌握抛物线的性质,会利用关于对称轴对称的两点坐标求对称轴是解题关键.28.126y ≤≤【分析】先化为顶点式,然后根据二次函数的性质求解即可.【详解】解:①2245(2)1y x x x =-+=-+,①抛物线开口向上,对称轴为直线=2x ,函数有最小值1,当3x =-时,26y =,当=4x 时, 5.y =,①当34x -≤≤时,y 的取值范围是126y ≤≤;故答案为:126y ≤≤.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.29.14m >-且0m ≠ 【分析】根据题意可得0m ≠,且判别式0∆>,求解不等式即可.【详解】解:①二次函数21y mx x =+-的图象与x 轴有两个交点①0m ≠,且判别式240b ac ∆=->①14(1)0m ∆=-⨯⨯->,0m ≠ 解得14m >-且0m ≠ 故答案为:14m >-且0m ≠ 【点睛】此题考查了二次函数的定义以及二次函数与x 轴交点问题,掌握二次函数的定义以及性质是解题的关键.30. 45°; 2【分析】(1)分别求出A,B,C 的坐标,得到OB OC =,故可求解;(2)先求出直线l 的解析式,再得到M,N 的坐标即可求解.【详解】(1)当0y =时,2230x x --=,解得11x =-,23x =,①点A 在点B 的左侧, ①点A 坐标为()1,0-,点B 坐标为()3,0.当0x =时,=3y -,①点C 坐标为()0,3-,①OB OC =,①=45ABC ∠︒.(2)设直线l 的函数表达式为y kx b =+,根据题意得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, ①直线l 的函数表达式为3y x =-;当2x =时,31=-=-y x ,①点N 的坐标为2,1;当2x =时,22232433=--=--=-y x x ,①点M 的坐标为()2,3-;①()132=---=MN .故答案为:45°;2.【点睛】此题主要考查二次函数与一次函数综合,解题的关键是求出各点坐标. 31.m=2【分析】根据图像的旋转变化规律及二次函数的平移规律得出平移后的解析式,进而即可求值.【详解】①一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),①点O (0,0),A 1(3,0)①将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.①C 13的解析式与x 轴的坐标为(36,0)、(39,0)①C 13的解析式为:y =﹣(x -36)(x -39)当x =37时,m=y =﹣1×(﹣2)=2故答案为:2【点睛】本题主要考查二次函数的平移规律,解题的关键是得出二次函数平移后的解析式.32.y =2(x+2)2﹣5【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】由“左加右减”的原则可知,将二次函数y =2x 2的图象向左平移2个单位长度所得抛物线的解析式为:y =2(x+2)2,即y =2(x+1)2;由“上加下减”的原则可知,将抛物线y =2(x+2)2向下平移5个单位长度所得抛物线的解析式为:y =2(x+2)2﹣5,即y =2(x+2)2﹣5.故答案为:y =2(x+2)2﹣5.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.33.213y x x =【分析】首先过B 作x 轴的垂线,设垂足为M ,由已知易求得OA Rt①ABM 中,已知①OAB 的度数及AB 的长,即可求出AM 、BM 的长,进而可得到BC 、CD 的长,再连接OD ,证①ODE ①①AEF ,通过得到的比例线段,即可得出y 与x 的函数关系式.【详解】解:过B 作BM ①x 轴于M .在Rt①ABM 中,①AB =3,①BAM =45°,①AM =BM =2, ①BD =14OA ,OA ∴=,①BC =OA﹣AM =,CD =BC ﹣BD ,①D ,3OD ∴== . 连接OD ,则点D 在①COA 的平分线上,所以①DOE =①COD =45°.又①在梯形DOAB 中,①BAO =45°,①由三角形外角定理得:①ODE =①DEA ﹣45°,又①AEF =①DEA ﹣45°,①①ODE=①AEF ,①①ODE ①①AEF ,OE OD AF AE∴= 即x y =①y 与x 的解析式为:213y x =-.故答案为:213y x =-.【点睛】本题主要考查二次函数的应用,掌握相似三角形的判定及性质是解题的关键.34.(1,﹣4)【分析】根据二次函数的对称性求得对称轴,进而根据表格的数据即可得到抛物线的顶点坐标.【详解】①抛物线过点(0,﹣3)和(2,﹣3),①抛物线的对称轴方程为直线x=022+=1,①当x=1时,y=﹣4,①抛物线的顶点坐标为(1,﹣4);故答案为(1,﹣4).【点睛】本题考查了二次函数的性质,掌握二次函数的对称性是解题的关键.35.(-1,7)【详解】先根据抛物线上点的特点求出点A的坐标,再利用抛物线的对称性即可得出答案.解:把点A(-3,m)代y=x2+4x+10得,m=(-3)2+4×(-3)+10=7,①点A(-3,7),①对称轴42 22ba-=-=-,①点A(-3,7)关于对称轴x=2的对称点坐标为(-1,7).故答案为(-1,7).36.11【分析】由图象关于y轴对称可知对称轴为x=0,由此可求解m的值;代入m值后,分别求解抛物线与x 轴的两个交点以及与y 轴的交点,利用三角形面积公式计算三角形面积.【详解】①图象关于y 轴对称,①对称轴为x=0, ①()211022m b m a --=-=-=- 解得m=1,代入原方程得:21y x =-+当y=0时,210x -+=,x=±1,当x=0时,y=1,则S △=2112⨯=. 【点睛】本题考查了二次函数对称轴及其与x 、y 轴的交点.37.①①①.【详解】试题解析:①x =-1时y =-1,x =0时,y =3,x =1时,y =5,①1{35a b c c a b c -+-++===,解得1{33a b c -===,①y =-x 2+3x +3,①ac =-1×3=-3<0,故①正确;对称轴为直线x =-33212=⨯-(), 所以,当x >32时,y 的值随x 值的增大而减小,故①错误; 当x =2时,y =-4+4+3=3;故①正确.方程为-x 2+2x +3=0,整理得,x 2-2x -3=0,解得x 1=-1,x 2=3,所以,3是方程ax 2+(b -1)x +c =0的一个根,正确,故①正确.综上所述,结论正确的是①①①.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.38.①①①【分析】根据二次函数的开口方向、对称轴、顶点坐标以及二次函数与一元二次方程的关系综合进行判断即可.【详解】解:由抛物线开口向上,因此0a >, 对称轴是直线12b x a=-=-,因此a 、b 同号,所以0b >, 抛物线与y 轴的交点在负半轴,因此0c <. ,所以0abc <,故①不正确; 由对称轴12b x a=-=-可得2b a =, 由图象可知,当1x =时,0y a b c =++>,即20a a c ++>,30a c ∴+>,又0a >,40a c ∴+>,因此①正确;当=1x -时,y a b c =-+最小值,∴当()1x t t =≠-时,2a b c at bt c -+<++,即2a bt at b -<+,x t ∴=(t 为任意实数)时,有2a bt at b -≤+,因此①不正确;函数图象经过点()2,1,即421a b c ++=,而2b a =,231a b c ∴++=,311222a b c ∴++=, 因此①正确;当函数图象经过()2,1时,方程21ax bx c ++=的两根为1x ,212()x x x <,而对称轴为=1x -, 14x ∴=-,22x =,122448x x ∴-=--=-,因此①正确;综上所述,正确的结论有:①①①,故答案为:①①①.【点睛】本查二次函数的图象和性质,掌握二次函数图象的开口方向、对称轴、顶点坐标与系数a 、b 、c 的关系以及二次函数与一元二次方程的根的关系是正确判断的前提. 39.8【分析】由已知可证明①AHE ①①BEF ①①CFG ①①DGH (SAS ),再证明四边形EFGH 是正方形,设AE =x ,则AH =DG =BE =CF =4﹣x ,在Rt①EAH 中,由勾股定理得EH 2=x 2+(4﹣x )2,所以S 四边形EFGH =EH 2=2(x ﹣2)2+8,可知当x =2时,S 四边形EFGH 有最小值8,【详解】解:设AE =x ,则AE =BF =CG =DH =x ,①正方形ABCD ,边长为4,①AH =DG =BE =CF =4﹣x ,①A =①B =①C =①D =90°①①AHE ①①BEF ①①CFG ①①DGH (SAS ),①①AEH +①BEF =90°,①EFB +①GFC =90°,①FGC +①HGD =90°,①①HEF =①EFG =①FGH =90°,①EF =EH =HG =FG ,①四边形EFGH 是正方形,在Rt ①EAH 中,EH 2=AE 2+AH 2,即EH 2=x 2+(4﹣x )2,①S 四边形EFGH =EH 2=2x 2﹣8x +16=2(x ﹣2)2+8,当x =2时,S 四边形EFGH 有最小值8,故答案为:8.【点睛】本题主要考查了全等三角形的性质与判定,正方形的性质和二次函数的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.40.53【分析】通过作辅助线,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,先证明AOB 与ACP 相似,得到ABP AOC ∠∠=,再证QDA 与CAO 相似,设出点Q 的坐标,通过相似比即可求出点Q 坐标.【详解】如图,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,。
二次函数综合题经典习题(含答案)
PB ACO yQ图3二次函数综合训练题1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上. (1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)D 为直线AB 与这个二次函数图象对称轴的交点,在线段AB 上是否存在一点P ,使得四边形DCEP 是平行四边形?若存在,请求出此时P 点的坐标;若不存在,请说明理由.2、如图3,已知抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C.(1) 求这条抛物线的函数关系式. (2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t(秒) (0<t <4),△PQA 的面积记为S.① 求S 与t 的函数关系式;② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状;③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由.3、某公司推出了一种高效环保型除草剂,年初上市后,公司经历了从亏损到盈利的过程. 图4的二次函数图象(部分)反映了该公司年初以来累积利润S (万元)与时间t (月)之间的关系(即前t 个月的利润总和S 与t 之间的关系).根据图象提供信息,解答下列问题: (1)公司从第几个月末开始扭亏为盈; (2)累积利润S 与时间t 之间的函数关系式; (3)求截止到几月末公司累积利润可达30万元;(4)求第8个月公司所获利是多少元?E B A CP 图1O x yD -30 -1 -2 12 3 4 0 -1 -2 12 3 4 S(万元) 1 2 3 4 5 6 t(月)4、如图5,已知抛物线c x b x a y ++=2的顶点坐标为E (1,0),与y 轴的交点坐标为(0,1). (1)求该抛物线的函数关系式.(2)A 、B 是x 轴上两个动点,且A 、B 间的距离为AB=4,A 在B 的左边,过A 作AD ⊥x 轴交抛物线于D ,过B 作BC ⊥x 轴交抛物线于C. 设A 点的坐标为(t ,0),四边形ABCD 的面积为S.① 求S 与t 之间的函数关系式.② 求四边形ABCD 的最小面积,此时四边形ABCD 是什么四边形?③ 当四边形ABCD 面积最小时,在对角线BD 上是否存在这样的点P ,使得△PAE 的周长最小,若存在,请求出点P的坐标及这时△PAE 的周长;若不存在,说明理由.5、如图6,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2。
完整版)初中数学二次函数综合题及答案
完整版)初中数学二次函数综合题及答案二次函数题选择题:1、若y=(m-2)x^2-m是关于x的二次函数,则m=()A。
-1.B。
2.C。
-1或2.D。
m不存在2、下列函数关系中,可以看作二次函数y=ax^2+bx+c(a≠0)模型的是()A。
在一定距离内,汽车行驶的速度与行驶的时间的关系B。
我国人口自然增长率为1%,这样我国总人口数随年份变化的关系C。
矩形周长一定时,矩形面积和矩形边长之间的关系D。
圆的周长与半径之间的关系4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x^2,则抛物线的解析式是()A。
y=-(x-2)^2+2.B。
y=-(x+2)^2+2C。
y=-(x+2)^2+2.D。
y=-(x-2)^2-25、抛物线y=1/2x^2-6x+24的顶点坐标是()A。
(-6,-6)。
B。
(-6,6)。
C。
(6,6)。
D。
(6,-6)6、已知函数y=ax^2+bx+c,图象如图所示,则下列结论中正确的有()个①abc0.④2c<3bA。
1.B。
2.C。
3.D。
47、函数y=ax^2-bx+c(a≠0)的图象过点(-1,1),则b+c/a的值是()A。
-1.B。
1.C。
-2.D。
2二填空题:8、已知一次函数y=ax+c与二次函数y=ax^2+bx+c(a≠0),它们在同一坐标系内的大致图象是图中的()A。
A。
B。
B。
C。
C。
D。
D13、无论m为任何实数,总在抛物线y=x^2+2mx+m上的点的坐标是()m,m)16、若抛物线y=ax^2+bx+c(a≠0)的对称轴为直线x=2,最小值为-2,则关于方程ax^2+bx+c=-2的根为()1±√317、抛物线y=(k+1)x^2+k^2-9开口向下,且经过原点,则k=()2或-2解答题:(二次函数与三角形)1、已知:二次函数y=x^2+bx+c,其图象对称轴为直线x=1,且经过点(2,-2).1)求此二次函数的解析式.解:因为对称轴为x=1,所以顶点坐标为(1,k),其中k为最小值.又因为经过点(2,-2),所以方程组4+2b+c=k1+b+c=k解得b=-3,c=2,k=0,所以二次函数的解析式为y=x^2-3x+2.2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点E,使△XXX的面积最大,并求出最大面积.解:易得B、C两点坐标分别为(0,2)和(3,0).设点E的横坐标为x,则其纵坐标为y=x^2-3x+2.则△XXX的面积为S(x)=1/2(3-x)(x^2-3x+2-2),化简得S(x)=-1/2x^3+9/2x^2-8x+3.对S(x)求导得S'(x)=-3/2x^2+9x-8,令其等于0得x=2或4/3,代入S(x)得S(2)=4和S(4/3)=16/27,故△XXX的最大面积为4,当且仅当E的坐标为(2,-2)时取得.2、如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,4),顶点为(1,2).1)求抛物线的函数表达式;2)在抛物线上取一点P,作△ABC的高PH,交AB于点H,求证:PH=2BP.解:(1)因为抛物线与x轴交于A、B两点,所以其解析式为y=a(x-a)(x-b),其中a<1<b.因为顶点为(1,2),所以方程组a(1-a)(1-b)=2a(b-a)(b-1)=4解得a=1/2,b=3/2,所以抛物线的函数表达式为y=1/2(x-1)^2+2.2)设点P的坐标为(x,y),则PH的长度为y-4,BP的长度为x-1.根据△ABC的面积公式得4=1/2y(x-1),即y=8/(x-1).又因为P在抛物线上,所以y=1/2(x-1)^2+2.将y代入上式得x^3-3x^2+2x-8=0,解得x=2或-1±√3.当x=2时,PH=2BP成立,当x=-1±√3时,PH≠2BP不成立.故结论成立.2、设抛物线的对称轴与轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形。
二次函数练习题及答案解析
二次函数练习题及答案解析二次函数练习题及答案解析(初三数学)学好数学要多做练习、上课认真听讲、不会的题要问老师、做作业要当做考试来看待、不要在心理上抵触数学、平时多抽出一些时间来练习数学,下面是我为大家整理的二次函数练习题及答案解析,希望对您有所帮助!二次函数练习题及答案解析一、选择题:1 下列关系式中,属于二次函数的是(x为自变量)( )2 函数y=x2-2x+3的图象的顶点坐标是( )A (1,-4) B(-1,2) C (1,2) D(0,3)23 抛物线y=2(x-3)的顶点在( )A 第一象限B 第二象限C x轴上D y轴上4 抛物线的对称轴是( )A x=-2 Bx=2 C x=-4 D x=45 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( )A ab0,c0B ab0,c0C ab0,c0D ab0,c06 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( )A 一B 二C 三D 四7 如图所示,已知二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,图象交 x 轴于点A(m,0) 和点B ,且m4,那么AB 的长是( )A 4+mB mC 2m-8D 8-2m8 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是( )9 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x1,y 1) ,P 2(x2,y 2) 是抛物线上的点,P 3(x3,y 3) 是直线上的点,且-1A y110 把抛物线物线的函数关系式是( ) AC 的图象向左平移2个单位,再向上平移3个单位,所得的抛 B D二、填空题:11 二次函数y=x2-2x+1的对称轴方程是______________12 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________13 若抛物线y=x2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________14 抛物线y=x2+bx+c,经过A(-1,0) ,B(3,0) 两点,则这条抛物线的解析式为_____________15 已知二次函数y=ax2+bx+c的图象交x 轴于A 、B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________16 在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g 是常数,通常取10m/s2) 若v 0=10m/s,则该物体在运动过程中最高点距地面_________m17 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3) 的抛物线的解析式为______________18 已知抛物线y=x2+x+b2经过点,则y 1的值是_________三、解答题:19 若二次函数的图象的对称轴方程是,并且图象过A(0,-4) 和B(4,0) ,(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标; (2)求此二次函数的解析式;20 在直角坐标平面内,点O 为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交 x 轴于点A(x1,0) 、B(x2,0) ,且(x1+1)(x2+1)=-8 (1)求二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△POC 的面积21 已知:如图,二次函数y=ax2+bx+c的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0) ,点C(0,5) ,另抛物线经过点(1,8) ,M 为它的顶点(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB22 某商店销售一种商品,每件的进价为250元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是1350元时,销售量为500件,而单价每降低1元,就可以多售出200件请你分析,销售单价多少时,可以获利最大答案与解析:一、选择题1 考点:二次函数概念选A2 考点:求二次函数的顶点坐标解析:法一,直接用二次函数顶点坐标公式求法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k) ,y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2) ,答案选C3 考点:二次函数的图象特点,顶点坐标解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0) ,所以顶点在x 轴上,答案选C4 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为解析:抛物线,直接利用公式,其对称轴所在直线为答案选B5 考点:二次函数的`图象特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,答案选C 6 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,在第四象限,答案选D7 考点:二次函数的图象特征解析:因为二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,所以抛物线对称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称,因为点A(m,0) ,且m4,所以AB=2AD=2(m-4)=2m-8,答案选C8 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx 的图象开口方向向下,对称轴在y 轴左侧,交坐标轴于(0,0) 点答案选C9 考点:一次函数、二次函数概念图象及性质解析:因为抛物线的对称轴为直线x=-1,且-1-1时,由图象知,y 随x 的增大而减小,所以y 210 考点:二次函数图象的变化抛物线平移2个单位得到,再向上平移3个单位得到的图象向左答案选C二、填空题11 考点:二次函数性质解析:二次函数y=x2-2x+1,所以对称轴所在直线方程答案x=112 考点:利用配方法变形二次函数解析式解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2答案y=(x-1)2+213 考点:二次函数与一元二次方程关系解析:二次函数y=x2-2x-3与x 轴交点A 、B 的横坐标为一元二次方程x 2-2x-3=0的两个根,求得x 1=-1,x 2=3,则AB=|x2-x 1|=4答案为414 考点:求二次函数解析式解析:因为抛物线经过A(-1,0) ,B(3,0) 两点,解得b=-2,c=-3,答案为y=x2-2x-315 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-116 考点:二次函数的性质,求最大值解析:直接代入公式,答案:717 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:如:y=x2-4x+318 考点:二次函数的概念性质,求值三、解答题19 考点:二次函数的概念、性质、图象,求解析式解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20 考点:二次函数的概念、性质、图象,求解析式解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根又∵(x1+1)(x2+1)=-8 ∴x 1x 2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5) ,P(2,-9)21 解: (1)依题意:(2)令y=0,得(x-5)(x+1)=0,x 1=5,x 2=-1 ∴B(5,0)由,得M(2,9)作ME ⊥y 轴于点E ,则可得S △MCB =1522 思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(135-x)元了单个的商品的利润是(135-x-25)这时商品的销售量是(500+200x)总利润可设为y 元利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润解:设销售单价为降价x 元顶点坐标为(425,91125)即当每件商品降价425元,即售价为135-425=925时,可取得最大利润91125元九年级数学二次函数练习题一、填空题:(每空2分,共40分)1、一般地,如果,那么y叫做x的二次函数,它的图象是一条。
2023年中考数学专题《二次函数综合问题》必刷真题考点分类专练含答案解析
备战2023年中考数学必刷真题考点分类专练(全国通用)专题13二次函数综合问题一.解答题(共40小题)1.(2022•孝感)抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.(1)直接写出点B和点D的坐标;(2)如图1,连接OD,P为x轴上的动点,当tan∠PDO=时,求点P的坐标;(3)如图2,M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.【分析】(1)令y=x2﹣4x=x,求出x的值即可得出点B的坐标,将函数y=x2﹣4x化作顶点式可得出点D的坐标;(2)过点D作DE⊥y轴于点E,易得tan∠ODE=,作∠ODG=∠ODE,则点P为直线DG与x轴的交点;过点O作OG⊥DP于点G,过点G作x轴的垂线,交DE所在直线于点F,交x轴于点H,易证△ODE≌△ODG,△GDF∽△OGH,则DG=DE=2,OG =OE=4,DG:OG=DF:HG=GF:OH,设DF=t,则HG=2t,FG=4﹣2t,OH=8﹣4t,又OH=EF,则8﹣4t=2+t,解得t的值可得出点G的坐标,进而可得直线DG的解析式,令y=0即可得出点P的坐标;(3)分别过点M,Q作y轴的平行线,交直线OB于点N,K,则S1=QK(x B﹣x E),S2=MN(x B﹣x E),由点Q的横坐标为m,可表达,再利用二次函数的性质可得出结论.【解析】(1)令y=x2﹣4x=x,解得x=0或x=5,∴B(5,5);∵y=x2﹣4x=(x﹣2)2﹣4,∴顶点D(2,﹣4).(2)如图,过点D作DE⊥y轴于点E,∴DE=2,OE=4,∴tan∠ODE=,作∠ODG=∠ODE,则点P为直线DG与x轴的交点;过点O作OG⊥DP于点G,过点G作x轴的垂线,交DE所在直线于点F,交x轴于点H,∴△ODE≌△ODG(AAS),∴DG=DE=2,OG=OE=4,∵∠OHG=∠F=90°,∠OGH+∠DGF=90°,∠OGH+∠GOH=90°,∴∠DGF=∠GOH,∴△GDF∽△OGH,∴DG:OG=DF:HG=GF:OH=1:2,设DF=t,则HG=2t,FG=4﹣2t,OH=8﹣4t,∵∠DEO=∠F=∠OHG=90°,∴四边形OEFH是矩形,∴OH=EF,∴8﹣4t=2+t,解得t=,∴GH=,OH=2+t=,∴G(,﹣).∴直线DG的解析式为y=x﹣,令y=0,解得x=5,∴P(5,0).(3)∵点B(5,5)与点M关于对称轴x=2对称,∴M(﹣1,5).如图,分别过点M,Q作y轴的平行线,交直线OB于点N,K,∴N(﹣1,﹣1),MN=6,∵点Q横坐标为m,∴Q(m,m2﹣4m),K(m,m),∴KQ=m﹣(m2﹣4m)=﹣m2+5m.∵S1=QK(x B﹣x E),S2=MN(x B﹣x E),∴==﹣(m2﹣5m)=﹣(m﹣)2+,∵﹣<0,∴当m=时,的最大值为.【点评】本题属于二次函数综合题,主要考查二次函数的性质,二次函数上的坐标特征,三角形的面积和三角形相似的判定及性质,解题的关键正确表达两个三角形面积的比.2.(2022•武汉)抛物线y=x2﹣2x﹣3交x轴于A,B两点(A在B的左边),C是第一象限抛物线上一点,直线AC交y轴于点P.(1)直接写出A,B两点的坐标;(2)如图(1),当OP=OA时,在抛物线上存在点D(异于点B),使B,D两点到AC 的距离相等,求出所有满足条件的点D的横坐标;(3)如图(2),直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为m.求的值(用含m的式子表示).【分析】(1)令y=0,解方程可得结论;(2)分两种情形:①若点D在AC的下方时,过点B作AC的平行线与抛物线交点即为D1.②若点D在AC的上方时,点D1关于点P的对称点G((0,5),过点G作AC的平行线l交抛物线于点D2,D3,D2,D3符合条件.构建方程组分别求解即可;(3)设E点的横坐标为n,过点P的直线的解析式为y=kx+b,由,可得x2﹣(2+k)x﹣3﹣b=0,设x1,x2是方程x2﹣(2+k)x﹣3﹣b=0的两根,则x1x2=﹣3﹣b,推出x A•x C=x B•x E=﹣3﹣b可得n=﹣1﹣,设直线CE的解析式为y=px+q,同法可得mn=﹣3﹣q推出q=﹣mn﹣3,推出q=﹣(3+b)(﹣1﹣)﹣3=b2+2b,推出OF=b2+b,可得结论.【解析】(1)令y=0,得x2﹣2x﹣3=0,解得x=3或﹣1,∴A(﹣1,0),B(3,0);(2)∵OP=OA=1,∴P(0,1),∴直线AC的解析式为y=x+1.①若点D在AC的下方时,过点B作AC的平行线与抛物线交点即为D1.∵B(3,0),BD1∥AC,∴直线BD1的解析式为y=x﹣3,由,解得或,∴D1(0,﹣3),∴D1的横坐标为0.②若点D在AC的上方时,点D1关于点P的对称点G((0,5),过点G作AC的平行线l交抛物线于点D2,D3,D2,D3符合条件.直线l的解析式为y=x+5,由,可得x2﹣3x﹣8=0,解得x=或,∴D2,D3的横坐标为,,综上所述,满足条件的点D的横坐标为0,,.(3)设E点的横坐标为n,过点P的直线的解析式为y=kx+b,由,可得x2﹣(2+k)x﹣3﹣b=0,设x1,x2是方程x2﹣(2+k)x﹣3﹣b=0的两根,则x1x2=﹣3﹣b,∴x A•x C=x B•x E=﹣3﹣b∵x A=﹣1,∴x C=3+b,∴m=3+b,∵x B=3,∴x E=﹣1﹣,∴n=﹣1﹣,设直线CE的解析式为y=px+q,同法可得mn=﹣3﹣q∴q=﹣mn﹣3,∴q=﹣(3+b)(﹣1﹣)﹣3=b2+2b,∴OF=b2+b,∴=b+1=(m﹣3)+1=m.【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,一元二次方程的根与系数的格线等知识,解题的关键是学会构建一次函数,构建方程组确定交点坐标,学会利用参数解决问题,属于中考压轴题.3.(2022•娄底)如图,抛物线y=x2﹣2x﹣6与x轴相交于点A、点B,与y轴相交于点C.(1)请直接写出点A,B,C的坐标;(2)点P(m,n)(0<m<6)在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.(3)点F是抛物线上的动点,作FE∥AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.【分析】(1)将x=0及y=0代入抛物线y=x2﹣2x﹣6的解析式,进而求得结果;(2)连接OP,设点P(m,﹣2m﹣6),分别表示出S△POC,S△BOP,计算出S△BOC,根据S△PBC=S四边形PBOC﹣S△BOC,从而得出△PBC的函数关系式,进一步求得结果;(3)可分为▱ACFE和▱ACEF的情形.当▱ACFE时,点F和点C关于抛物线对称轴对称,从而得出F点坐标;当▱ACED时,可推出点F的纵坐标为6,进一步求得结果.【解析】(1)当x=0时,y=﹣6,∴C(0,﹣6),当y=0时,x2﹣2x﹣6=0,∴x1=6,x2=﹣2,∴A(﹣2,0),B(6,0);(2)方法一:如图1,连接OP,设点P(m,﹣2m﹣6),∴S△POC=x P==3m,S△BOP=|y P|=+2m+6),∵S△BOC==18,∴S△PBC=S四边形PBOC﹣S△BOC=(S△POC+S△POB)﹣S△BOC=3m+3(﹣+2m+6)﹣18=﹣(m﹣3)2+,∴当m=3时,S△PBC最大=;方法二:如图2,作PQ⊥AB于Q,交BC于点D,∵B(6,0),C(0,﹣6),∴直线BC的解析式为:y=x﹣6,∴D(m,m﹣6),∴PD=(m﹣6)﹣(﹣2m﹣6)=﹣+3m,∴S△PBC===﹣(m﹣3)2+,∴当m=3时,S△PBC最大=;(3)如图3,当▱ACFE时,AE∥CF,∵抛物线对称轴为直线:x==2,∴F1点的坐标:(4,﹣6),如图4,当▱ACEF时,作FG⊥AE于G,∴FG=OC=6,当y=6时,x2﹣2x﹣6=6,∴x1=2+2,x2=2﹣2,∴F2(2+2,6),F3(2﹣2,6),综上所述:F(4,﹣6)或(2+2,6)或(2﹣2,6).【点评】本题考查了二次函数及其图象性质,平行四边形的分类等知识,解决问题的关键是正确分类,画出图形,转化条件.4.(2022•广元)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.(1)求a,b满足的关系式及c的值;(2)当a=时,若点P是抛物线对称轴上的一个动点,求△ABP周长的最小值;(3)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.【分析】(1)在直线y=﹣x﹣2中,令x=0和y=0可得点A和B的坐标,代入抛物线y =ax2+bx+c(a>0)中可解答;(2)连接BC交直线x=1于点P,利用两点之间线段最短可得出此时△PAB的周长最小,从而可以解答;(3)根据a=1时,可得抛物线的解析式y=x2+x﹣2,如图2,过点Q作QF⊥x轴于F,交AB于E,则△EQD是等腰直角三角形,设Q(m,m2+m﹣2),则E(m,﹣m﹣2),表示QE的长,配方后可解答.【解析】(1)直线y=﹣x﹣2中,当x=0时,y=﹣2,∴B(0,﹣2),当y=0时,﹣x﹣2=0,∴x=﹣2,∴A(﹣2,0),将A(﹣2,0),B(0,﹣2)代入抛物线y=ax2+bx+c(a>0)中,得,,∴2a﹣b=1,c=﹣2;(2)如图1,当a=时,2×﹣b=1,∴b=﹣,∴抛物线的解析式为:y=x2﹣x﹣2=(x﹣1)2﹣,∴抛物线的对称轴是:x=1,由对称性可得C(4,0),要使△ABP的周长最小,只需AP+BP最小即可,如图1,连接BC交直线x=1于点P,因为点A与点B关于直线x=1对称,由对称性可知:AP+BP=PC+BP=BC,此时△ABP的周长最小,所以△ABP的周长为AB+BC,Rt△AOB中,AB===2,Rt△BOC中,BC===2,∴△ABP周长的最小值为2+2;(3)当a=1时,2×1﹣b=1,∴b=1,∴y=x2+x﹣2,∴A(﹣2,0),B(0,﹣2),C(1,0),∴OA=OB,∴△AOB是等腰直角三角形,∴∠OAB=45°,如图2,过点Q作QF⊥x轴于F,交AB于E,则△EQD是等腰直角三角形,设Q(m,m2+m﹣2),则E(m,﹣m﹣2),∴QE=(﹣m﹣2)﹣(m2+m﹣2)=﹣m2﹣2m=﹣(m+1)2+1,∴QD=QE=﹣(m+1)2+,当m=﹣1时,QD有最大值是,当m=﹣1时,y=1﹣1﹣1=﹣2,综上,点Q的坐标为(﹣1,﹣2)时,QD有最大值是.【点评】本题是二次函数综合题,考查了利用待定系数法求抛物线的解析式,二次函数的性质,等腰直角三角形的性质,轴对称﹣最短路线问题等知识,综合性较强,难度适中,利用方程思想,数形结合是解题的关键.5.(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.(1)求二次函数的表达式;(2)①求证:△OCD∽△A′BD;②求的最小值;(3)当S△OCD=8S△A'BD时,求直线A′B与二次函数的交点横坐标.【分析】(1)利用交点式可得二次函数的解析式;(2)①根据两角相等可证明两三角形相似;②根据△OCD∽△A′BD,得=,则=,即的最小值就是的最小值,OC为定值,所以当CD最小为2时,有最小值是;(3)根据面积的关系可得:△OCD∽△A′BD时,相似比为2:1,可得A'B=AB=1,作辅助线,构建直角三角形,根据等角的正切可得A'G和BG的长,最后再证明△A'GB ∽△QOB,可得OQ的长,利用待定系数法可得A'B的解析式,最后联立方程可得结论.【解析】(1)解:∵二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,∴二次函数的解析式为:y=(x﹣0)(x﹣4)=x2﹣2x;(2)①证明:如图1,由翻折得:∠OAC=∠A',由对称得:OC=AC,∴∠AOC=∠OAC,∴∠COA=∠A',∵∠A'DB=∠ODC,∴△OCD∽△A′BD;②解:∵△OCD∽△A′BD,∴=,∵AB=A'B,∴=,∴的最小值就是的最小值,y=x2﹣2x=(x﹣2)2﹣2,∴C(2,﹣2),∴OC=2,∴当CD⊥OA时,CD最小,的值最小,当CD=2时,的最小值为=;(3)解:∵S△OCD=8S△A'BD,∴S△OCD:S△A'BD=8,∵△OCD∽△A′BD,∴=()2=8,∴=2,∵OC=2,∴A'B=AB=1,∴BD=2﹣1=1,如图2,连接AA',过点A'作A'G⊥OA于G,延长CB交AA'于H,由翻折得:AA'⊥CH,∵∠AHB=∠BDC=90°,∠ABH=∠CBD,∴∠BCD=∠BAH,tan∠BCD=tan∠GAA',∴==,设A'G=a,则AG=2a,BG=2a﹣1,在RtA'GB中,由勾股定理得:BG2+A'G2=A'B2,∴a2+(2a﹣1)2=12,∴a1=0(舍),a2=,∴BG=2a﹣1=﹣1=,∵A'G∥OQ,∴△A'GB∽△QOB,∴=,即=,∴OQ=4,∴Q(0,4),设直线A'B的解析式为:y=kx+m,∴,解得:,∴直线A'B的解析式为:y=﹣x+4,∴﹣x+4=x2﹣2x,3x2﹣4x﹣24=0,解得:x=,∴直线A′B与二次函数的交点横坐标是.【点评】本题是二次函数的综合,考查了待定系数法求解析式,对称的性质,三角形相似的性质和判定,配方法的应用,勾股定理的应用,熟练掌握二次函数的图象及性质,数形结合是解本题的关键.6.(2022•湘潭)已知抛物线y=x2+bx+c.(1)如图①,若抛物线图象与x轴交于点A(3,0),与y轴交点B(0,﹣3),连接AB.(Ⅰ)求该抛物线所表示的二次函数表达式;(Ⅱ)若点P是抛物线上一动点(与点A不重合),过点P作PH⊥x轴于点H,与线段AB 交于点M,是否存在点P使得点M是线段PH的三等分点?若存在,请求出点P的坐标;若不存在,请说明理由.(2)如图②,直线y=x+n与y轴交于点C,同时与抛物线y=x2+bx+c交于点D(﹣3,0),以线段CD为边作菱形CDFE,使点F落在x轴的正半轴上,若该抛物线与线段CE没有交点,求b的取值范围.(Ⅱ)求出AB的解析式,设出点P坐标,表示出M点坐标,从而表示出PH和HM的长,分别列出PH=3HM和PH=时的方程,从而求得m的值,进而求得P点坐标;(2)分为b>0和b<0两种情形.当b<0时,抛物线对称轴在y轴左侧,此时求得抛物线与y轴交点,只需交点在点C的上方,就满足抛物线与线段CE没有交点,进一步求得结果,当b<0时,类似的方法求得这种情形b的范围.【解析】(1)解:(Ⅰ)由题意得,,∴,∴y=x2﹣2x﹣3;(Ⅱ)存在点P,使得点M是线段PH的三等分点,理由如下:∵B(0,﹣3),A(3,0),∴直线AB的解析式为:y=x﹣3,设点P(m,m2﹣2m﹣3),M(m,m﹣3),∴PH=﹣m2+2m+3,HM=3﹣m,当PH=3HM时,﹣m2+2m+3=3(3﹣m),化简得,m2﹣5m+6=0,∴m1=2,m2=3,当m=2时,y=22﹣2×2﹣3=﹣3,∴P(2,﹣3),当m=3时,y=32﹣2×3﹣3=0,此时P(3,0)(舍去),当PH=HM时,﹣m2+2m+3=(3﹣m),化简得,2m2﹣7m+3=0,∴m3=3(舍去),m2=,当m=时,y=()2﹣2×﹣3=﹣,∴P(,﹣),综上所述:P(2,﹣3)或(,﹣);(2)如图1,∵抛物线y=x2+bx+c过点D(﹣3,0),∴(﹣3)2﹣3b+c=0,∴c=3b﹣9,∴y=x2+bx+(3b﹣9),把x=﹣3,y=0代入y=+n得,0=+n,∴n=4,∴OC=4,∵∠COD=90°,OD=3,OC=4,∴CD=5,∵四边形CDFE是菱形,∴CE=CD=5,∴E(5,4),当﹣<0时,即b>0时,当x=0时,y=3b﹣9,∴G(0,3b﹣9),∵该抛物线与线段CE没有交点,∴3b﹣9>4,∴b>,当b<0时,当x=5时,y=25+5b+3b﹣9=8b+16,∴H(5,8b+16),∵抛物线与CE没有交点,∴8b+16<4,∴b<﹣,综上所述:b>或b<﹣.【点评】本题考查了求二次函数的解析式,一次函数解析式,菱形的性质,勾股定理等知识,解决问题的关键一是正确分类,二是数形结合.7.(2022•邵阳)如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A 在x轴上,点B在y轴上,点C(3,0)在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.【分析】(1)先分别求得点A,点B的坐标,从而利用待定系数法求函数解析式;(2)分△AOB≌△DPC和△AOB≌△CPD两种情况,结合全等三角形的性质分析求解;(3)根据点D′的运动轨迹,求得当点P,D′,C三点共线时求得CD′的最小值.【解析】在直线y=2x+2中,当x=2时,y=2,当y=0时,x=﹣1,∴点A的坐标为(﹣1,0),点B的坐标为(0,2),把点A(﹣1,0),点B(0,2),点C(3,0)代入y=ax2+bx+c,,解得,∴抛物线的解析式为y=﹣x2+x+2;(2)①当△AOB≌△DPC时,AO=DP,又∵四边形OPDE为正方形,∴DP=OP=AO=1,此时点P的坐标为(1,0),②当△AOB≌△CPD时,OB=DP,又∵四边形OPDE为正方形,∴DP=OP=OB=2,此时点P的坐标为(2,0),综上,点P的坐标为(1,0)或(2,0);(3)如图,点D′在以点P为圆心,DP为半径的圆上运动,∴当点D′′,点P,点C三点共线时,CD′′有最小值,由(2)可得点P的坐标为(1,0)或(2,0),且C点坐标为(3,0),∴CD′′的最小值为1.【点评】本题考查二次函数的应用,全等三角形的判定和性质,折叠的性质,掌握待定系数法求函数解析式,注意数形结合思想和分类讨论思想解题是关键.8.(2022•台州)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若h=1.5,EF=0.5m.①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围.(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.【分析】(1)①由顶点A(2,2)得,设y=a(x﹣2)2+2,再根据抛物线过点(0,1.5),可得a的值,从而解决问题;②由对称轴知点(0,1.5)的对称点为(4,1.5),则下边缘抛物线是由上边缘抛物线向左平移4cm得到的,可得点B的坐标;③根据EF=0.5,求出点F的坐标,利用增减性可得d的最大值为最小值,从而得出答案;(2)当喷水口高度最低,且恰好能浇灌到整个绿化带时,点D、F恰好分别在两条抛物线上,故设点D(m,﹣(m+2)2+h+0.5),F(m+3,﹣(m+3﹣2)2+h+0.5),则有﹣[(m+3﹣2)2+h+0.5]﹣[﹣(m+2)2+h+0.5]=1,从而得出答案.【解析】(1)①如图1,由题意得A(2,2)是上边缘抛物线的顶点,设y=a(x﹣2)2+2,又∵抛物线过点(0,1.5),∴1.5=4a+2,∴a=﹣,∴上边缘抛物线的函数解析式为y=﹣(x﹣2)2+2,当y=0时,0=﹣(x﹣2)2+2,解得x1=6,x2=﹣2(舍去),∴喷出水的最大射程OC为6cm;②∵对称轴为直线x=2,∴点(0,1.5)的对称点为(4,1.5),∴下边缘抛物线是由上边缘抛物线向左平移4cm得到的,∴点B的坐标为(2,0);③∵EF=0.5,∴点F的纵坐标为0.5,∴0.5=﹣(x﹣2)2+2,解得x=2±2,∵x>0,∴x=2+2,当x>2时,y随x的增大而减小,∴当2≤x≤6时,要使y≥0.5,则x≤2+2,∵当0≤x≤2时,y随x的增大而增大,且x=0时,y=1.5>0.5,∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+2,∵DE=3,灌溉车行驶时喷出的水能浇灌到整个绿化带,∴d的最大值为2+2﹣3=2﹣1,再看下边缘抛物线,喷出的水能浇灌到绿化带底部的条件是OB≤d,∴d的最小值为2,综上所述,d的取值范围是2≤d≤2﹣1;(2)当喷水口高度最低,且恰好能浇灌到整个绿化带时,点D、F恰好分别在两条抛物线上,故设点D(m,﹣(m+2)2+h+0.5),F(m+3,﹣[(m+3﹣2)2+h+0.5]),则有﹣(m+3﹣2)2+h+0.5﹣[﹣(m+2)2+h+0.5]=1,解得m=2.5,∴点D的纵坐标为h﹣,∴h﹣=0,∴h的最小值为.【点评】本题是二次函数的实际应用,主要考查了待定系数法求二次函数解析式,二次函数的性质,二次函数与方程的关系等知识,读懂题意,建立二次函数模型是解题的关键.9.(2022•眉山)在平面直角坐标系中,抛物线y=﹣x2﹣4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(﹣5,0).(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)把点A的坐标代入y=﹣x2﹣4x+c,求出c的值即可;(2)过P作PE⊥AC于点E,过点P作PF⊥x轴交AC于点H,证明△PHE是等腰直角三角形,得,当PH最大时,PE最大,运用待定系数法求直线AC解析式为y=x+5,设P(m,﹣m2﹣4m+5),(﹣5<m<0),则H(m,m+5),求得PH,再根据二次函数的性质求解即可;(3)分三种情况讨论:①当AC为平行四边形的对角线时,②当AM为平行四边形的对角线时,③当AN为平行四边形的对角线时分别求解即可.【解析】(1)∵点A(﹣5,0)在抛物线y=﹣x2﹣4x+c的图象上,∴0=﹣52﹣4×5+c∴c=5,∴点C的坐标为(0,5);(2)过P作PE⊥AC于点E,过点P作PF⊥x轴交AC于点H,如图1:∵A(﹣5,0),C(0,5)∴OA=OC,∴△AOC是等腰直角三角形,∴∠CAO=45°,∵PF⊥x轴,∴∠AHF=45°=∠PHE,∴△PHE是等腰直角三角形,∴,∴当PH最大时,PE最大,设直线AC解析式为y=kx+5,将A(﹣5,0)代入得0=5k+5,∴k=1,∴直线AC解析式为y=x+5,设P(m,﹣m2﹣4m+5),(﹣5<m<0),则H(m,m+5),∴,∵a=﹣1<0,∴当时,PH最大为,∴此时PE最大为,即点P到直线AC的距离值最大;(3)存在,理由如下:∵y=﹣x2﹣4x+5=﹣(x+2)2+9,∴抛物线的对称轴为直线x=﹣2,设点N的坐标为(﹣2,m),点M的坐标为(x,﹣x2﹣4x+5),分三种情况:①当AC为平行四边形对角线时,,解得,∴点M的坐标为(﹣3,8);②当AM为平行四边形对角线时,,解得,∴点M的坐标为(3,﹣16);③当AN为平行四边形对角线时,,解得,∴点M的坐标为(﹣7,﹣16);综上,点M的坐标为:(﹣3,8)或(3,﹣16)或(﹣7,﹣16).【点评】本题是二次函数综合题,其中涉及到二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的性质,平行四边形的判定与性质.熟知几何图形的性质利用数形结合是解题的关键.10.(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(﹣1,0)和点B.(Ⅰ)若b=﹣2,c=﹣3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y 轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.【分析】(Ⅰ)①利用待定系数法求出抛物线的解析式,即可得顶点P的坐标;②求出直线BP的解析式,设点M(m,m2﹣2m﹣3),则G(m,2m﹣6),表示出MG的长,可得关于m的二次函数,根据二次函数的最值即可求解;(Ⅱ)由3b=2c得b=﹣2a,c=﹣3a,抛物线的解析式为y=ax2﹣2a﹣3a.可得顶点P 的坐标为(1,﹣4a),点N的坐标为(2,﹣3a),作点P关于y轴的对称点P',作点N 关于x轴的对称点N',得点P′的坐标为(﹣1,﹣4a),点N'的坐标为(2,3a),当满足条件的点E,F落在直线P'N'上时,PF+FE+EN取得最小值,此时,PF+FE+EN=P'N'=5延长P'P与直线x=2相交于点H,则P'H⊥N'H.在Rt△P'HN'中,P'H=3,HN'=3a﹣(﹣4a)=7a.由勾股定理可得P'N′2=P'H2+HN2=9+49a2=25.解得a1=,a2=﹣(舍).可得点P'的坐标为(﹣1,﹣),点N′的坐标为(2,).利用待定系数法得直线P'N′的解析式为y=x﹣.即可得点E,F的坐标.【解析】(Ⅰ)①若b=﹣2,c=﹣3,则抛物线y=ax2+bx+c=ax2﹣2x﹣3,∵抛物线y=ax2+bx+c与x轴相交于点A(﹣1,0),∴a+2﹣3=0,解得a=1,∴抛物线为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点P的坐标为(1,﹣4);②当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),设直线BP的解析式为y=kx+n,∴,解得,∴直线BP的解析式为y=2x﹣6,∵直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,设点M(m,m2﹣2m﹣3),则G(m,2m﹣6),∴MG=2m﹣6﹣(m2﹣2m﹣3)=﹣m2+4m﹣3=﹣(m﹣2)2+1,∴当m=2时,MG取得最大值1,此时,点M(2,﹣3),则G(2,﹣2);(Ⅱ)∵抛物线y=ax2+bx+c与x轴相交于点A(﹣1,0),∴a﹣b+c=0,又3b=2c,b=﹣2a,c=﹣3a(a>0),∴抛物线的解析式为y=ax2﹣2a﹣3a.∴y=ax2﹣2a﹣3a=a(x﹣1)2﹣4a,∴顶点P的坐标为(1,﹣4a),∵直线x=2与抛物线相交于点N,∴点N的坐标为(2,﹣3a),作点P关于y轴的对称点P',作点N关于x轴的对称点N',得点P′的坐标为(﹣1,﹣4a),点N'的坐标为(2,3a),当满足条件的点E,F落在直线P'N'上时,PF+FE+EN取得最小值,此时,PF+FE+EN=P'N'=5.延长P'P与直线x=2相交于点H,则P'H⊥N'H.在Rt△P'HN'中,P'H=3,HN'=3a﹣(﹣4a)=7a.∴P'N′2=P'H2+HN2=9+49a2=25.解得a1=,a2=﹣(舍).∴点P'的坐标为(﹣1,﹣),点N′的坐标为(2,).∴直线P'N′的解析式为y=x﹣.∴点E(,0),点F(0,﹣).【点评】此题是二次函数综合题,主要考查了待定系数法,两点间的距离公式,轴对称求最小值问题,勾股定理等,利用待定系数法求出直线解析式是解本题的关键.。
二次函数测试题及答案
二次函数测试题及答案一、选择题(每小题 3 分,共 30 分)1、二次函数 y = x²+ 2x 3 的图象的顶点坐标是()A (-1,-4)B (1,-4)C (-1,4)D (1,4)答案:A解析:对于二次函数 y = ax²+ bx + c 的顶点坐标公式为(b/2a, (4ac b²)/4a),在函数 y = x²+ 2x 3 中,a = 1,b = 2,c =-3,所以顶点横坐标为 b/2a =-2/(2×1) =-1,纵坐标为(4ac b²)/4a = 4×1×(-3) 2²/(4×1) =(-12 4)/4 =-16/4 =-4,所以顶点坐标为(-1,-4)。
2、抛物线 y =-2(x 1)²+ 3 的开口方向、对称轴和顶点坐标分别是()A 开口向下,对称轴为 x =-1,顶点坐标为(1,3)B 开口向下,对称轴为 x = 1,顶点坐标为(1,3)C 开口向上,对称轴为 x =-1,顶点坐标为(-1,3)D 开口向上,对称轴为 x = 1,顶点坐标为(-1,3)答案:B解析:在抛物线 y = a(x h)²+ k 中,当 a < 0 时,开口向下,对称轴为 x = h,顶点坐标为(h,k)。
在抛物线 y =-2(x 1)²+ 3 中,a =-2 < 0,所以开口向下,对称轴为 x = 1,顶点坐标为(1,3)。
3、把抛物线 y = x²向左平移 1 个单位,然后向上平移 3 个单位,则平移后抛物线的解析式为()A y =(x 1)²+ 3B y =(x + 1)²+ 3C y =(x 1)² 3D y =(x + 1)² 3答案:B解析:抛物线平移遵循“上加下减,左加右减”的原则。
抛物线 y =x²向左平移 1 个单位得到 y =(x + 1)²,然后向上平移 3 个单位得到y =(x + 1)²+ 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数最新综合题练习50道一.解答题(共50小题)1.如图,已知二次函数y=﹣x2+bx+c的图象经过点C(0,3),与x轴分别交于点A、点B(3,0).点D(n,y1)、E(n+t,y2)、F(n+4,y3)都在这个二次函数的图象上,其中0<t<4,连接DE、DF、EF,记△DEF的面积为S.(1)求二次函数y=﹣x2+bx+c的表达式;(2)若n=0,求S的最大值,并求此时t的值;(3)若t=2,当n不同数值时,S的值是否变化?如不变,求该定值;如变化,试用含n的代数式表示S.2.抛物线y=x2+(2t﹣2)x+t2﹣2t﹣3与x轴交于A、B两点(A在B左侧),与y轴交于点C.(1)如图1,当t=0时,连接AC、BC,求△ABC的面积;(2)如图2,在(1)的条件下,若点P为在第四象限的抛物线上的一点,且∠PCB+∠CAB=135°,求P点坐标;(3)如图3,当﹣1<t<3时,若Q是抛物线上A、C之间的一点(不与A、C 重合),直线QA、QB分别交y轴于D、E两点.在Q点运动过程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,请说明理由.3.如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴分别交于点A,点B,抛物线y=ax2+bx+c(a≠0)经过A,B与点C(﹣1,0).(1)求抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x 轴的垂线,垂足为D,交线段AB于点E.设点P的横坐标为m.①求△PAB的面积y关于m的函数关系式,当m为何值时,y有最大值,最大值是多少?②若点E是垂线段PD的三等分点,求点P的坐标.4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为;(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y 轴交于点A(0,5),与x轴交于点E,B.(1)求二次函数y=ax2+bx+c的解析式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P 在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A,E,N,M为顶点的四边形是平行四边形,且AE为其一边,求点M,N的坐标.6.如图①,直线y=kx+2与坐标轴交于A、B两点,OA=4,点C是x轴正半轴上的点,且OC=OB,过点C作AB的垂线,交y轴于点D,抛物线y=ax2+bx+c 过A、B、C三点.(1)求抛物线函数关系式;(2)如图②,点P是射线BA上一动点(不与点B重合),连接OP,过点O作OP的垂线交直线CD于点Q.求证:OP=OQ;(3)如图③,在(2)的条件下,分别过P、Q两点作x轴的垂线,分别交x轴于点E、F,交抛物线于点M、N,是否存在点P的位置,使以P、Q、M、N 为顶点的四边形为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.7.如图,已知抛物线L1:y=x2﹣x﹣,L1交x轴于A,B(点A在点B左边),交y轴于C,其顶点为D,P是L1上一个动点,过P沿y轴正方向作线段PQ ∥y轴,使PQ=t,当P点在L1上运动时,Q随之运动形成的图形记为L2.(1)若t=3,求点P运动到D点时点Q的坐标,并直接写出图形L2的函数解析式;(2)过B作直线l∥y轴,若直线l和y轴及L1,L2所围成的图形面积为12,求t的值.8.已知二次函数y=ax2+bx+c的图象对称轴为x=,图象交x轴于A,B,交y轴于C(0,﹣3),且AB=5,直线y=kx+b(k>0)与二次函数图象交于M,N(M 在N的右边),交y轴于P.(1)求二次函数图象的解析式;(2)若b=﹣5,且△CMN的面积为3,求k的值;(3)若b=﹣3k,直线AN交y轴于Q,求的值或取值范围.9.如图,函数y=2x的图象与函数y=ax2﹣3(a≠0)的图象相交于点P(3,k),Q两点.(1)a=,k=;(2)当x在什么范围内取值时,2x>ax2﹣3;(3)解关于x的不等式:|ax2﹣3|>1.10.如图,平面直角坐标系中,二次函数y=x2﹣2x﹣3的部分图象与x轴交于点A、B(A在B的左边),与y轴交于点C,连接BC,D为顶点(1)求∠OBC的度数;(2)在x轴下方的抛物线上是否存在一点Q,使△ABQ的面积等于5?如存在,求Q点的坐标,如不存在,说明理由;(3)点P是第四象限的抛物线上的一个动点(不与点D重合),过点P作PF⊥x 轴交BC于点F,求线段PF长度的最大值.11.如图,已知抛物线过点A(3,0),B(﹣1,0),C(0,3),连接AC,点M 是抛物线AC段上的一点,且CM∥x轴.(1)求抛物线的解析式;(2)求∠CAM的正切值;(3)点Q在抛物线上,且∠BAQ=∠CAM,求点Q的坐标.12.如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点B、C;抛物线y=﹣x2+bx+c经过B、C两点,与x轴交于另一点A.设P(x,y)是在第一象限内抛物线上的一个动点,过点P作直线k⊥x轴于点M,交直线BC 于点N.(1)求该抛物线所对应的函数关系式;(2)连接PC、ON,若以P、C、O、N四点能围成平行四边形时,求此时点P坐标;(3)是否存在以P、C、N为顶点的三角形与△BNM相似?若存在,求出点N 坐标;若不存在,请说明理由.13.如图,抛物线y=ax2+bx+c经过点A(2,﹣3),且与x轴交点坐标为(﹣1,0),(3,0)(1)求抛物线的解析式;(2)在直线AB下方抛物线上找一点D,求出使得△ABD面积最大时点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N 为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.14.如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标;(3)当t≤x≤t+1时,求y=ax2+bx+c的最大值.15.在平面直角坐标系中,抛物线交x轴于A,B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,﹣3).(1)求这个抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使点P到A、C两点间的距离之和最小.若存在,求出点P的坐标;若不存在,请说明理由;(3)点Q是直线BC下方抛物线上的一点,当△BCQ的面积最大时求Q点的坐标;(4)如果在x轴上方平行于x轴的一条直线交抛物线于M,N两点,以MN为直径作圆恰好与x轴相切,求此圆的直径.16.如图,抛物线y=﹣x2+bx+3与x轴交于点A,B,点B的坐标为(1,0).(1)求抛物线的解析式及顶点坐标;(2)若P(0,t)(t<﹣1)是y轴上一点,Q(5,0),将点Q绕着点P逆时针方向旋转90°得到点E.①用含t的式子表示点E的坐标;②当点E恰好在该抛物线上时,求t的值.17.如图,抛物线y=ax2﹣3ax﹣10a交x轴于A、B两点(A左B右),交y轴正半轴于C点,连AC,tan∠CAB=,(1)求抛物线解析式;(2)点P是第三象限内抛物线上一点,过C作x轴平行线交抛物线于D,连DP、BP,分别交y轴于E、F,设P点横坐标为p,线段EF长为m,求出m与自变量p之间的函数关系式;(3)在(2)条件下,当tan∠DPB=时,求P点坐标.18.如图所示,平面直角坐标系中,O为坐标原点,二次函数y=x2﹣bx+c(b>0)的图象与x轴交于A(﹣1,0)、B两点,与y轴交于点C;(1)求c与b的函数关系式;(2)点D为抛物线顶点,作抛物线对称轴DE交x轴于点E,连接BC交DE于F,若AE=DF,求此二次函数解析式;(3)在(2)的条件下,点P为第四象限抛物线上一点,过P作DE的垂线交抛物线于点M,交DE于H,点Q为第三象限抛物线上一点,作QN⊥ED于N,连接MN,且∠QMN+∠QMP=180°,当QN:DH=15:16时,连接PC,求tan ∠PCF的值.19.如图,抛物线y=ax2+x+c与x轴交于A,B两点,A点坐标为(﹣3,0),与y轴交于点C,点C坐标为(0.﹣6),连接BC,点C关于x轴的对称点D,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l 交抛物线于点Q,交直线BD于点M.(1)求二次函数解析式;(2)点P在x轴上运动,若﹣6≤m≤2时,求线段MQ长度的最大值.(3)点P在x轴上运动时,N为平面内一点,使得点B、C、M、N为顶点的四边形为菱形?如果存在,请直接写出点N坐标;不存在,说明理由.20.在平面直角坐标系xOy中,抛物线y=ax2﹣2x(a≠0)与x轴交于点A,B(点A在点B的左侧).(1)当a=﹣1时,求A,B两点的坐标;(2)过点P(3,0)作垂直于x轴的直线l,交抛物线于点C.①当a=2时,求PB+PC的值;②若点B在直线l左侧,且PB+PC≥14,结合函数的图象,直接写出a的取值范围.21.在平面直角坐标系中,抛物线y1=ax2﹣2amx+am2﹣m+1(a<0)的顶点为点P.(1)写出顶点坐标(含有m的式子表示);(2)抛物线与x轴分别交于点(x1,0)、(x20),若x1•x2<0,且知m=﹣1,则求a的取值范围;(3)已知点P在直线y2=kx+b上运动,y1与y2交于另一点A,过点A作x轴平行线交抛物线于另一点B:①求直线y2解析式;=1,且m≤x≤时,y1≥x﹣3恒成立,求m的最小值.②当S△PAB22.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,C在x 轴的正半轴上,已知A(0,8)、C(10,0),作∠AOC的平分线交AB于点D,连接CD,过点D作DE⊥CD交OA于点E.(1)求点D的坐标;(2)求证:△ADE≌△BCD;(3)抛物线y=x2﹣x+8经过点A、C,连接AC.探索:若点P是x轴下方抛物线上一动点,过点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP的长度有最大值?若存在,求出点P的坐标;若不存在,请说明理由.23.在平面直角坐标系中,抛物线C1:y=ax2+4x+4a(0<a<2).(1)当C1与x轴只有一个公共点时,求此时C1的解析式:(2)如图①,若A(1,y A),B(0,y B),C(﹣1,y C)三点均在C1上,连接BC,作AE∥BC交抛物线C1于E,求点E到y轴的距离;(3)若a=1,将抛物线C1先向右平移3个单位长度,再向下平移2个单位长度得到抛物线C2,如图②,抛物线C2与x轴相交于点M,N(点M在点N的左侧),抛物线C2的对称轴交x轴于点F,过点F的直线l与抛物线C2相交于点P,Q(点P在第四象限),且S△FMQ﹣S△FNP=,求直线l的解析式.24.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点G,如图,当点G运动到某位置时,以AG,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点G的坐标;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.25.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M 点的坐标和△ANM周长的最小值;若不存在,请说明理由.26.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)抛物线的对称轴上是否存在一点M,使△ACM的周长最小?若存在,请求出M点的坐标,若不存在,请说明理由.(3)设抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时.满足S =8,并求出此时P点的坐标.△PAB27.已知抛物线y=﹣x2+2kx﹣k2+k+3(k为常数)的顶点纵坐标为4.(1)求k的值;(2)设抛物线与直线y=﹣(x﹣3)(m≠0)两交点的横坐标为x1,x2,n=x1+x2﹣2,若A(1,a),B(b,)两点在动点M(m,n)所形成的曲线上,求直线AB的解析式;(3)将(2)中的直线AB绕点(3,0)顺时针旋转45°,与抛物线x轴上方的部分相交于点C,请直接写出点C的坐标.28.如图,抛物线y=ax2+bx+c与x轴交于A,B(1,0)两点,与y轴交于点C,直线y=x﹣2经过A,C两点,抛物线的顶点为D.(1)求抛物线的解析式及顶点D的坐标;(2)在直线AC上方的抛物线上存在一点P,使△PAC的面积最大,请直接写出P点坐标及△PAC面积的最大值;(3)在y轴上是否存在一点G,使得GD+GB的值最小?若存在,求出点G的坐标;若不存在,请说明理由.29.如图,抛物线y=ax2+2x﹣3a经过A(1,0)、B(b,0)、C(0,c)三点.(1)求b,c的值;(2)在抛物对称轴上找一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.30.在平面直角坐标系xOy中,抛物线y=mx2﹣4mx+4m+5的顶点为A.(1)求点A的坐标;(2)将线段OA沿x轴向右平移2个单位得到线段OˊAˊ.①直接写出点Oˊ和Aˊ的坐标;②若抛物线y=mx2﹣4mx+4m+5与四边形AOOˊAˊ有且只有两个公共点,结合函数的图象,求m的取值范围.31.如图(1),抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(t,0)(t>0)两点,与y轴交于点C(0,﹣3),若抛物线的对称轴为直线x=1,(1)求抛物线的函数解析式;(2)若点D是抛物线BC段上的动点,且点D到直线BC的距离为,求点D 的坐标;(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0,﹣1),点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.32.如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(﹣2,0)、B(4,0)、C(0,﹣8),与直线y=x﹣4交于B,D两点(1)求抛物线的解析式并直接写出D点的坐标;(2)点P为直线BD下方抛物线上的一个动点,试求出△BDP面积的最大值及此时点P的坐标;(3)点Q是线段BD上异于B、D的动点,过点Q作QF⊥x轴于点F,交抛物线于点G,当△QDG为直角三角形时,直接写出点Q的坐标.33.已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式及直线BC与x轴的交点D的坐标;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.34.如图1,在平面直角坐标系中,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求直线AC的解析式;(2)如图2,点E(a,b)是对称轴右侧抛物线上一点,过点E垂直于y轴的直线与AC交于点D(m,n).点P是x轴上的一点,点Q是该抛物线对称轴上的一点,当a+m最大时,求点E的坐标,并直接写出EQ+PQ+PB的最小值;(3)如图3,在(2)的条件下,连结OD,将△AOD沿x轴翻折得到△AOM,再将△AOM沿射线CB的方向以每秒3个单位的速度沿平移,记平移后的△AOM为△A′O'M',同时抛物线以每秒1个单位的速度沿x轴正方向平移,点B 的对应点为B'.△A'B'M'能否为等腰三角形?若能,请求出所有符合条件的点M'的坐标;若不能,请说明理由.35.如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系图象如图2所示,请回答:(1)线段BC的长为cm.(2)当运动时间t=2.5秒时,P、Q之间的距离是cm.36.如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与轴相交于A、B两点(B点在A点的右侧),与轴交于C点.(1)A点的坐标是;B点坐标是;(2)直线BC的解析式是:;(3)点P是直线BC上方的抛物线上的一动点(不与B、C重合),是否存在点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积,若不存在,试说明理由;(4)若点M在x轴上,点N在抛物线上,以A、C、M、N为顶点的四边形是平行四边形时,请直接写出点M点坐标.37.如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(0,﹣2),并与x轴交于点C,点M是抛物线对称轴l上任意一点(点M,B,C三点不在同一直线上)(1)求该抛物线所表示的二次函数的表达式;(2)若△MCB为直角三角形,请求出点M的坐标;(3)在抛物线上找出点P,使得以M、C、B、P为顶点的四边形为平行四边形,并直接写出点P的坐标.38.如图1,抛物线y=x2+bx+c与x轴交于A(1,0)、B(4,0),与y轴交于点C(1)求抛物线的解析式;(2)抛物线上一点D,满足S=S△OAC,求点D的坐标;△DAC(3)如图2,已知N(0,1),将抛物线在点A、B之间部分(含点A、B)沿x轴向上翻折,得到图T(虚线部分),点M为图象T的顶点.现将图象保持其顶点在直线MN上平移,得到的图象T1与线段BC至少有一个交点,求图象T1的顶点横坐标的取值范围.39.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和点B,与y 轴交于点C,点C关于抛物线对称轴的对称点为点D,抛物线顶点为H(1,2).(1)求抛物线的解析式;=3,(2)点P为直线AD上方抛物线的对称轴上一动点,连接PA,PD.当S△PAD 若在x轴上存在一动点Q,使PQ+QB最小,求此时点Q的坐标及PQ+QB的最小值;(3)若点E为抛物线上的动点,点G,F为平面内的点,以BE为边构造以B,E,F,G为顶点的正方形,当顶点F或者G恰好落在y轴上时,求点E的横坐标.40.在平面直角坐标系中,抛物线y=ax2+bx﹣3与x轴交于A,B两点(A在B 的左侧),与y轴交于点C,点B的坐标为(3,0),且CO=3OA.(1)求抛物线的解析式;(2)P点为对称轴右侧第四象限抛物线上的点连接BC、PC、PB,设P的横坐标为t,△PBC的面积为S求S与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,线段BP绕B顺时针旋转90°,得到对应线段BN,点P 的对应点为点N,在对称轴左侧的抛物线上取一点Q,射线BQ与射线PC交于点H,若点N在y轴上,且HQ=PQ,求点Q的坐标.41.抛物线y=x2+mx+n过点(﹣1,8)和点(4,3)且与x轴交于A,B两点,与y轴交于点C(1)求抛物线的解析式;(2)如图1,AD交抛物线于D,交直线BC于点G,且AG=GD,求点D的坐标;(3)如图2,过点M(3,2)的直线交抛物线于P,Q,AP交y轴于点E,AQ 交y轴于点F,求OE•OF的值.42.如图,二次函数y=x2﹣m2(m>0且为常数)的图象与x轴交于点A、B(A 在B左侧),与y轴交于C.(1)求A,B,C三点的坐标(用含m的式子表示);(2)若∠ACB=90°,求m的值.43.阅读下列材料:某同学遇到这样一个问题:在平面直角坐标系xOy中,已知直线l:y=﹣x,点A (1,t)在抛物线y=x2﹣4x+5上,求点A到直线l的距离d.如图1,他过点A作AB⊥l于点B,AD∥y轴分别交x轴于点C,交直线l于点D.他发现OC=CD,∠ADB=45°,可求出AD的长,再利用Rt△ABD求出AB的长,即为点A到直线l的距离d.请回答:(1)图1中,AD=,点A到直线l的距离d=.参考该同学思考问题的方法,解决下列问题:在平面直角坐标系xOy中,点M是抛物线y=x2﹣4x+5上的一动点,设点M到直线l的距离为d.(2)如图2,①l:y=﹣x,d=,则点M的坐标为;②l:y=﹣x,在点M运动的过程中,求d的最小值;(3)如图3,l:y=2x﹣7,在点M运动的过程中,d的最小值是.44.如图1,已知抛物线y=﹣x2+mx+m﹣2的顶点为A,且经过点B(3,﹣3).(1)求顶点A的坐标(2)若P是抛物线上且位于直线OB上方的一个动点,求△OPB的面积的最大值及比时点P的坐标;(3)如图2,将原抛物线沿射线OA方向进行平移得到新的抛物线,新抛物线与射线OA交于C,D两点,请问:在抛物线平移的过程中,线段CD的长度是否为定值?若是,请求出这个定值;若不是,请说明理由.45.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)求出四边形ABPC的面积最大时的P点坐标和四边形ABPC的最大面积;(3)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.46.如图①,作法平面直角坐标系中,二次函数y=ax2﹣6ax的图象经过点D(2,1).(1)求该函数表达式及顶点坐标;(2)将该二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个如图②所示的新图象,请补全新图象对应的函数表达式:y=,(x<0或),y=,(0≤x≤6)(3)已知点E的坐标为(4,1),P是图②图象上一点,其横坐标为m,连接PD、PE,当△PDE的面积为1时,直接写出m的值.47.已知函数y=a n x2+b n x(a n<0,b n>0,n为正整数)的图象的顶点为B n,与x 轴的一个交点为A n,点O为坐标原点.(1)当n=1时,函数y=a1x2+b1x的图象的对称轴与函数y=﹣x2的图象交于点C1,且四边形OB1A1C1为正方形,求a1、b1的值.(2)当n=2时,函数y=a2x2+b2x的图象的对称轴与函数y=a1x2+b1x的图象交于点C2,且四边形OB2A2C2为正方形,求a2、b2的值.(3)以此类推,可得a3=﹣,b3=2,一般地,若函数y=a n x2+b n x的对称轴与函x2+b n﹣1x的图象交于点C n,且四边形OB n A n C n为正方形,求a n、b n的值.数a n﹣148.已知抛物线C1:y=ax2过点(2,2)(1)直接写出抛物线的解析式;(2)如图,△ABC的三个顶点都在抛物线C1上,且边AC所在的直线解析式为y=x+b,若AC边上的中线BD平行于y轴,求的值;(3)如图,点P的坐标为(0,2),点Q为抛物线上C1上一动点,以PQ为直径作⊙M,直线y=t与⊙M相交于H、K两点是否存在实数t,使得HK的长度为定值?若存在,求出HK的长度;若不存在,请说明理由.49.如图所示,已知二次函数y=ax2+bx+c(a≠0)的顶点是(1,4),且图象过点A(3,0),与y轴交于点B.(1)求二次函数y=ax2+bx+c的解析式;(2)求直线AB的解析式;(3)在直线AB上方的抛物线上是否存在一点C,使得S=.如果存在,请△ABC求出C点的坐标;如果不存在,请说明理由.50.已知直线l:y=﹣2,抛物线C:y=ax2﹣1经过点(2,0)(1)求a的值;(2)如图①,点P是抛物线C上任意一点,过点P作直线l的垂线,垂足为Q.求证:PO=PQ;(3)请你参考(2)中的结论解决下列问题1.如图②,过原点作直线交抛物线C于A,B两点,过此两点作直线l的垂线,垂足分别为M,N,连接ON,OM,求证:OM⊥ON;2.如图③,点D(1,1),使探究在抛物线C上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标,若不存在,请说明理由.二次函数最新综合题练习50道参考答案与试题解析一.解答题(共50小题)1.如图,已知二次函数y=﹣x2+bx+c的图象经过点C(0,3),与x轴分别交于点A、点B(3,0).点D(n,y1)、E(n+t,y2)、F(n+4,y3)都在这个二次函数的图象上,其中0<t<4,连接DE、DF、EF,记△DEF的面积为S.(1)求二次函数y=﹣x2+bx+c的表达式;(2)若n=0,求S的最大值,并求此时t的值;(3)若t=2,当n不同数值时,S的值是否变化?如不变,求该定值;如变化,试用含n的代数式表示S.【解答】解:(1)将点B(3,0),C(0,3)代入y=﹣x2+bx+c,得:,解得:,∴二次函数的表达式为y=﹣x2+2x+3.(2)当n=0时,点D的坐标为(0,3),点E的坐标为(t,﹣t2+2t+3),点F 的坐标为(4,﹣5).设直线DF的函数表达式为y=kx+a(k≠0),将D(0,3),F(4,﹣5)代入y=kx+a,得:,解得:,∴直线DF的函数表达式为y=﹣2x+3.过点E作EQ∥y轴,交直线DF于点Q,如图1所示.∵点E的坐标为(t,﹣t2+2t+3),∴点Q的坐标为(t,﹣2t+3),∴EQ=﹣t2+2t+3﹣(﹣2t+3)=﹣t2+4t,∴S=EQ•(x F﹣x D)=﹣2t2+8t=﹣2(t﹣2)2+8.∵﹣2<0,∴当t=2时,S取最大值,最大值为8.(3)当n取不同数值时,S的值不变.过点DM∥y轴,过点F作FM∥x轴,交直线DM于点M,过点E作EN⊥FM于点N,交直线DF于点G,如图2所示.当t=2时,点D的坐标为(n,﹣n2+2n+3),点E的坐标为(n+2,﹣n2﹣2n+3),点F的坐标为(n+4,﹣n2﹣6n﹣5),∴点M的坐标为(n,﹣n2﹣6n﹣5),点N的坐标为(n+2,﹣n2﹣6n﹣5),∴DM=8n+8,EN=4n+8,MN=2,NF=2,∴S=S梯形DMNE +S△ENF﹣S△DMF,=MN•(DM+EN)+NF•EN﹣DM•MF,=12n+16+4n+8﹣16n﹣16,=8.∴当n取不同数值时,S的值永远为8.2.抛物线y=x2+(2t﹣2)x+t2﹣2t﹣3与x轴交于A、B两点(A在B左侧),与y轴交于点C.(1)如图1,当t=0时,连接AC、BC,求△ABC的面积;(2)如图2,在(1)的条件下,若点P为在第四象限的抛物线上的一点,且∠PCB+∠CAB=135°,求P点坐标;(3)如图3,当﹣1<t<3时,若Q是抛物线上A、C之间的一点(不与A、C 重合),直线QA、QB分别交y轴于D、E两点.在Q点运动过程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,请说明理由.【解答】解:(1)将t=0代入抛物线解析式得:y=x2﹣2x﹣3.当x=0时,y=x2﹣2x﹣3=﹣3,∴点C的坐标为(0,﹣3);当y=0时,有x2﹣2x﹣3=0,解得:x1=3,x2=﹣1,∴点B的坐标为(3,0),点A的坐标为(﹣1,0).=AB•OC=×[3﹣(﹣1)]×3=6.∴S△ABC(2)由(1)知:B(3,0),C(0,﹣3),∴OB=OC,∴∠ABC=45°,∴∠ACB+∠CAB=135°.又∵∠PCB+∠CAB=135°,∴∠ACB=∠PCB.在图2中,过B作BM∥y轴,交CP延长线于M.∴∠ABC=∠MBC.在△ABC和△MBC中,,∴△ABC≌△MBC(ASA),∴AB=MB=4,∴点M的坐标为(3,﹣4),∴直线CM解析式为:y=﹣x﹣3(利用待定系数法可求出该解析式).联立直线CM及抛物线的解析式成方程组,得:,解得:(舍去),,∴点P的坐标为(,﹣).(3)当y=0时,有x2+(2t﹣2)x+t2﹣2t﹣3=0,即[x+(t﹣3)]•[x+(t+1)]=0,解得:x1=﹣t+3,x2=﹣t﹣1,∴点A的坐标为(﹣t﹣1,0),点B的坐标为(﹣t+3,0).当x=0时,y=x2+(2t﹣2)x+t2﹣2t﹣3=t2﹣2t﹣3,∴点C的坐标为(0,t2﹣2t﹣3).设直线AQ的解析式为:y=k1x+b1,直线BQ的解析式为:y=k1x+b2.∴点D的坐标为(0,b1),点E的坐标为(0,b2),∴CD=(t2﹣2t﹣3)﹣b1,CE=b2﹣(t2﹣2t﹣3).∵y=k1x+b1,y=x2+(2t﹣2)x+t2﹣2t﹣3,∴x2+(2t﹣2﹣k1)x+t2﹣2t﹣3﹣b1=0,∴x A•x Q=t2﹣2t﹣3﹣b1①.同理:x B•x Q=t2﹣2t﹣3﹣b2②.由②÷①,得:==﹣,∴=﹣=2,∴=﹣2,∴t=.3.如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴分别交于点A,点B,抛物线y=ax2+bx+c(a≠0)经过A,B与点C(﹣1,0).(1)求抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x 轴的垂线,垂足为D,交线段AB于点E.设点P的横坐标为m.①求△PAB的面积y关于m的函数关系式,当m为何值时,y有最大值,最大值是多少?②若点E是垂线段PD的三等分点,求点P的坐标.【解答】解:(1)∵直线y=﹣x+3与x轴,y轴分别交于点A,点B,∴A(3,0),B(0,3),把A(3,0),B(0,3),C(﹣1,0)代入y=ax2+bx+c得,,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)①∵点P的横坐标为m,∴P(m,﹣m2+2m+3),∵PD⊥x轴,∴E(m,﹣m+3),∴PE=﹣m2+2m+3+m﹣3=﹣m2+3m,∴y=(﹣m2+3m)•m+(﹣m2+3m)(3﹣m),∴y关于m的函数关系式为:y=﹣3m2+6m,∵y=﹣3m2+6m=﹣3(m﹣1)2+3,∴当m=1时,y有最大值,最大值是3;②当PE=2ED时,即﹣m2+3m=2(﹣m+3),解得:m=2或m=3(不会题意舍去),当2PE=ED时,即﹣2m2+6m=﹣m+3,整理得,2m2﹣7m+3=0,此方程无实数根,∴P(2,3).4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(m,2m﹣5);(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.【解答】解:(1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴抛物线的顶点坐标为(m,2m﹣5).故答案为:(m,2m﹣5).(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示.∵AB∥x轴,且AB=4,∴点B的坐标为(m+2,4a+2m﹣5).∵∠ABC=135°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,4a+2m﹣5﹣t).∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=﹣,=AB•CD=﹣.∴S△ABC(3)∵△ABC的面积为2,∴﹣=2,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.综上所述:m的值为或10+2.5.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y 轴交于点A(0,5),与x轴交于点E,B.(1)求二次函数y=ax2+bx+c的解析式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P 在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A,E,N,M为顶点的四边形是平行四边形,且AE为其一边,求点M,N的坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=﹣1,y=﹣(x﹣2)2+9=﹣x2+4x+5,(2)当y=0时,﹣x2+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直线AB的解析式为y=﹣x+5;设P(x,﹣x2+4x+5),∴D(x,﹣x+5),∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,∵AC=4,=×AC×PD=2(﹣x2+5x)=﹣2x2+10x,∴S四边形APCD∴当x=﹣=时,∴即:点P(,)时,S=,四边形APCD最大(3)如图,过M作MH垂直于对称轴,垂足为H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,∴MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+OE2=26∵MN=AE∴MN2=AE2,∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴1+(b+2)2=26,∴b=3,或b=﹣7,∴10+b=13或10+b=3∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3).6.如图①,直线y=kx+2与坐标轴交于A、B两点,OA=4,点C是x轴正半轴上的点,且OC=OB,过点C作AB的垂线,交y轴于点D,抛物线y=ax2+bx+c 过A、B、C三点.(1)求抛物线函数关系式;(2)如图②,点P是射线BA上一动点(不与点B重合),连接OP,过点O作OP的垂线交直线CD于点Q.求证:OP=OQ;(3)如图③,在(2)的条件下,分别过P、Q两点作x轴的垂线,分别交x轴于点E、F,交抛物线于点M、N,是否存在点P的位置,使以P、Q、M、N 为顶点的四边形为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.【解答】解:(1)∵OA=4∴点A(﹣4,0)∵直线y=kx+2与坐标轴交于A、B两点,。