华师大版七年级数学上册练习题.docx
华东师大版数学七年级上册2.1《有理数》综合练习1
2.1 有理数一、基础训练1.如果气温上升3度记作+3度,下降5度记作-5度,那么下列各量分别表示什么?(1)+5度;(2)-6度;(3)0度.2.向东走-8米的意义是()A.向东走8米B.向西走8米C.向西走-8米D.以上都不对3.下列语句:(1)所有整数都是正数;(2)分数是有理数;(3)所有的正数都是整数;(4)在有理数中,除了负数就是正数,其中正确的语句个数有()A.1个B.2个C.3个D.4个4.下列说法中,正确的是()A.正整数、负整数统称整数B.正分数、负分数统称有理数C.零既可是正整数,也可以是负分数D.所有的分数都是有理数5.下列各数是负数的有哪些?-13,-0,-(-2),+2,3,-0.01,-0.21,5%,-(+2)6.下列各数中,哪些属于正数集、负数集、非负数集、整数集、分数集,有理数集?-1,-3.14156,-13,-5%,-6.3,2006,-0.1,30000,200%,0,-0.010017.已知A、B、C三个数集,每个数集中所包含的数都写在各自的大括号内,•请把这些数填在如图所示圆内相应的位置,A={-2,-3,-8,6,7};B={-3,-5,1,2,6};C={-1,-3,-8,2,5).ABC8.某水库的平均水位为80米,在此基础上,若水位变化时,把水位上升记为正数;水库管理员记录了3月~8月水位变化的情况(单位:米):-5,-4,0,+3,+6,+8.试问这几个月的实际水位是多少米?二、递进演练1.(宜昌市中考·课改卷)如果收入15•元记作+•15•元,•那么支出20•元记作________元.2.(吉林省中考·课改卷)某食品包装袋上标有“净含量385±5”,•这包食品的合格净含量范围是______克~300克.3.下列说法正确的是()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数4.下列不是具有相反意义的量是()A.前进5米和后退5米B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克D.超过5克和不足2克5.下列说法正确的是()。
最新华东师大版七年级数学上册全册课时练习(一课一练,附详细解析过程)
华东师大版七年级数学上册全册课时练习数学伴我们成长人类离不开数学 (2)人人都能学会数学 (5)2.1.1正数和负数 (6)2.1.2有理数 (10)2.2 数轴 (14)2.3 相反数 (16)2.4 绝对值 (19)2.5 有理数的大小比较 (21)2.6.1有理数的加法法则 (25)2.6.2有理数加法的运算律 (28)2.7 有理数的减法 (32)2.8 有理数的加减混合运算 (34)2.9.1有理数的乘法法则 (36)2.9.2有理数的乘法运算律 (39)2.10有理数的除法 (43)2.11有理数的乘方 (46)2.12科学记数法 (48)2.13有理数的混合运算 (50)2.14近似数 (55)2.15 用计算器进行运算 (58)3.1列代数式 (60)3.2 代数式的值 (65)3.3 整式 (67)3.4 整式的加减 (69)4.1生活中的立体图形 (73)4.2 立体图形的视图 (77)4.3立体图形的表面展开图 (80)4.4平面图形 (83)4.5.1 点和线 (88)4.5.2 线段的长短比较 (91)4.6 1. 角 (94)4.6 2. 角的比较和运算 (98)4.6 3. 余角和补角 (103)5.1.1对顶角 (109)5.1.2垂线 (113)5.1.3 同位角、内错角、同旁内角 (116)5.2.1 平行线 (119)5.2.2平行线的判定 (122)5.2.3平行线的性质 (126)数学伴我们成长人类离不开数学一、选择题1.李叔叔家客厅长6米,宽4.8米,计划在地面铺上方砖.为了美观,李叔叔想使地面都是整块方砖,请你帮忙选择一种方砖,你的选择是( )A.边长50厘米的B.边长60厘米的C.边长100厘米的D.以上都不选2.如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的.每个骰子的六个面的点数分别是1到6,其中可以看见7个面,其余11个面是看不见的,则看不见的面上的点数总和是( )A.41B.40C.39D.383.已知世运会、亚运会、奥运会分别于2009年、2010年、2012年举办过.若这三项运动会均每四年举办一次,则这三项运动会均不举办的年份是( )A.2070年B.2071年C.2072年D.2073年二、填空题4.某种商品每件的进价为180元,按标价的九折销售时,利润率为20%,这种商品每件标价是________元.5.假设2019年8月3日是星期六,则2019年8月18日是星期________.6.如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽分别为2和1的长方形.现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片________张才能用它们拼成一个新的正方形.三、解答题7.(8分)为了学生的卫生安全,学校给每个住宿生配一个水杯,每只水杯3元,友谊商城打九折;中百商厦“买8送1”,学校想买180只水杯,请你当“参谋”,算一算:到哪家购买较合算?请写出你的理由.8.(8分)2019年5月1日小明和爸爸一起去旅游,在火车站看到如表所示的列车时刻表:2019年5月1日××次列车时刻表始发点发车时间终点站到站时间A站上午8:20 B站次日12:20小明的爸爸用手机上网找到了以前同一车次的时刻表如下:2006年12月15日××次列车时刻表始发点发车时间终点站到站时间A站[来源:数理化网]下午14:30 B站第三日8:30比较了两张时刻表后,小明的爸爸提出了如下两个问题,请你帮小明解答:(1)现在该次列车的运行时间比以前缩短了多少小时?(2)若该次列车提速后的平均时速为每小时200千米,那么,该次列车原来的平均时速为多少?(结果四舍五入到个位)9.(10分)你玩过火柴吗?如图,用火柴棒搭正方形,所搭正方形个数n与火柴棒根数s之间有一定的关系:将下面表格补充完整并解答后面的问题:正方形个数n 1 2 3 4 5 6 …n火柴棒根数s求搭10个正方形,需要多少根火柴棒?答案1.【解析】选B.6米=600厘米,4.8米=480厘米.选项A:600÷50=12,480÷50=9.6,客厅宽不是方砖边长的整数倍,这种方砖不合适;选项B:600÷60=10,480÷60=8,客厅长和宽都是方砖边长的整数倍,这种方砖可以;选项C:600÷100=6,480÷100=4.8,客厅宽不是方砖边长的整数倍,这种方砖不合适.2.【解析】选C.三个骰子18个面上的数字的总和为:3×(1+2+3+4+5+6)=3×21=63,看得见的7个面上的数字的和为:1+2+3+5+4+6+3=24,所以看不见的面上的点数总和是63-24=39.3.【解析】选B.由于这三项运动会均每四年举办一次,所以只要每个选项与2009,2010,2012的差有一个是4的倍数,则能在这一年举办此项运动会,否则这三项运动会均不在这一年举办.因为选项B中,2071-2009=62,2071-2010=61,2071-2012=59,均不是4的倍数,所以这三项运动会均不在2071年举办.4.【解析】180×(1+20%)÷90%=240(元).答案:2405.【解析】2019年8月3日至2019年8月18日经过了15天,15÷7=2……1,所以2019年8月18日是星期日.答案:日6.【解析】本题可以动手操作,画也行,用纸片拼也行,应该取丙类纸片4张.答案:47.【解析】到中百商厦买合算.因为到友谊商城需花费:180×3×90%=486(元),到中百商厦只需买160只,就送20只,所以需花费:160×3=480(元).因为486元>480元,所以到中百商厦买合算.8.【解析】(1)原来该次列车所用时间=2×24+8.5-14.5=42(小时).现在该次列车的运行时间=24+12-8=28(小时),42-28=14(小时),所以缩短了14小时.(2)28×200÷42≈133(千米).答:(1)现在该次列车的运行时间比以前缩短了14小时,(2)原来的平均时速约为每小时133千米.9.【解析】前三个空可通过直接数得出n=1时,s=4;n=2时,s=7;n=3时,s=10.比较4,7,10,可看出后一个数比前一个数大3,故n=4时,s=13;n=5时,s=16;n=6时,s=19.观察填入的数据可看出正方形个数×3+1即为火柴棒根数,故当正方形个数为n 时,s=3n+1,所以n=10时,s=3×10+1=31.答:需要31根火柴棒.人人都能学会数学1.一件衣服的标价200元,若以6折销售,仍可获利20%,则这件衣服的进价是( )元。
第2章 整式及其加减 数学华师大版(2024)七年级上册同步练习(含解析)
整式及其加减一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.某种品牌的彩电降价30%以后,每台售价为a 元,则该品牌彩电每台原价为( )B. C.D.4.下列说法正确的是( )系数为C.2是单项式,其次数是1D.多项式是三次四项式5.把多项式合并同类项后,所得的多项式为( )A.二次二项式B.二次三项式C.一次二项式D.一次三项式6.三角形的周长为三边的长为( )7.设,,若x 取任意有理数,则的值( )A.大于0B.等于0C.小于0D.无法确定8.按如图所示的运算程序,能使输出的结果为的是( )A.,B.,125x y xy -55y x 333x y -πx 1-222a ab xy ---22225476x x x x x x -++--+(a a >a --+2+2231A x x =--232B x x =--A B -3x =3y =4x =-2y =-C.,D.,9.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n (n 是正整数)个图案中由( )个基础图形组成.A. B. C. D.10.将两边长分别为a 和b 的正方形纸片按图(1)、图(2)两种方式置于长方形ABCD 中,(图(1)、图(2)中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图(1)中阴影部分的周长为,图(2)中阴影部分的周长为,则的值为( )A.0B.C.D.二、填空题(每小题4分,共20分)11.在多项式12.把多项式按字母a 升幂排列后,第二项是______.13.当时,的值为__________.14.石家庄地铁3号线正式通车当天,某列地铁在市二中站到站前,原有人,到站时下去了人,又上来了一些人,此时地铁上共有人.在市二中站上地铁的是______人._______.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)解答下列各题:()a b >1C x =2x =4y =4x =2y =31n -31n +41n -4n2C 12C C -a b -22a b -22b a-222123a b a b -+223331a b a b ab ---2y =()22222(3322)1x y xy x y xy xy +---+()3a b +()2a b +()85a b -b a b a c -+--+=(1)化简:.(2)先化简,再求值:,其中.17.(8分)小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m ,n 的代数式表示地面的总面积;(2)已知,且客厅面积是卫生间面积的8倍,如果铺1平方米地面的平均费用为200元,那么小王铺地砖的总费用为多少元?18.(10分)已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比还多1岁,求:(1)这三名同学的年龄的和.(2)小红比小华大几岁.19.(10分)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价48元,乒乓球每盒定价12元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球x 盒(不小于5盒).问:(1)用代数式表示甲、乙两店购买所需的费用;(2)当需要40盒乒乓球时,通过计算,说明此时去哪家购买较为合算;(3)当需要40盒乒乓球时,你能给出一种更为省钱的方法吗?试写出你的购买方法和所需费用.20.(12分)今年秋季,斗门土特产喜获丰收,某土特产公司组织10辆汽车装运甲,乙,丙三种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一士特产,且必须装满,设装运甲种士特产的汽车有x 辆,装运乙种特产的汽车有y 辆,根据下表提供的信息,解答以下问题:()222162242xy x x xy xy ⎡⎤----⎢⎥⎣⎦()()()222243645x x x x --+-+-3x =1.5n =(2)用含有x ,y 的式子表示这10辆汽车共装运土特产的数量;(3)求销售完装运的这批土特产后所获得的总利润(用含有x ,y 的式子表示).21.(12分)小语家新买了一套商品房,其建筑平面图如图所示,其中(单位:米).(2)当,时,求出小语家这套住房的具体面积.(3)地面装修要铺设地砖或地板,小语家对各个房间的装修都提出了具体要求,明确了选用材料的品牌以及规格、品质要求.现有两家公司按照要求拿出了装修方案,两个方案中选用的材料品牌、规格、品质完全一致,但报价不同;甲公司:客厅地面每平方米元,书房和卧室地面每平方米元,厨房地面每平方元,卫生间地面每平方米元;乙公司:全屋地面每平方米元;请你帮助小语家测算一下选择哪家公司比较合算,请说明理由.5a =240220180150210b a <4b =答案以及解析1.答案:D解析:设该品牌彩电每台原价为x 元,则故选D.解析:C 选项中的与是同类项,其余A 、B 、D 中的单项式与都不是同类项,故选:C.4.答案:D B.单项式系数为,故不正确;C.2是单项式,其次数是0,故不正确;D.多项式是三次四项式,正确;故选D.5.答案:A解析:,所以所得的多项式为二次二项式.6.答案:C解析:由题意得第三边的长为.7.答案:A解析:因为,,所以,则的值大于0.故选A.8.答案:C解析:A 选项,故将x 、y 代入,输出结果为15,不符合题意;0y ≥x =55y x 5xy -5xy -πx -π-222a ab xy ---22222547637x x x x x x x -++--+=--11111(4)2242424a a a a a a a ---=--+=+2231A x x =--232B x x =--22223132110A B x x x x x -=---++=+≥>A B -22x y +B 选项,故将x 、y 代入,输出结果为20,不符合题意;C 选项,故将x 、y 代入,输出结果为12,符合题意;D 选项,故将x 、y 代入,输出结果为20,不符合题意,故选C.9.答案:B解析:第1个图案由4个基础图形组成,,第2个图案由7个基础图形组成,,第3个图案由10个基础图形组成,,,第个图案由个基础图形组成.故选B.10.答案:A 解析:由题意知.因为四边形ABCD 是长方形,所以,,所以.同理,,故.故选A.11.答案:解析:∵在多项式中,次数最高的项是,其系数为∴多项式最高次项的系数为12.答案:解析:多项式按字母a 升幂排列是:,第二项是,故答案为:.13.答案:解析:.0y ≤22x y -0y ≥22x y +0y ≥22x y +431=+7=32+1⨯10331=⨯+⋯n 31n +1C BC CD b AD a a b a AB a =+-+-+-++-AB CD =AD BC =1222C AD AB b AD a a b a AB a AD AB b =+-+-+-++-=+-2222C BC b AB a a b a AD a CD AD AB b =-+-+-++-+=+-120C C -=13-222123a b a b ab -+2213a b -222123a b a b ab -+3ab -223331a b a b ab ---32231+3ab a b a b ---∴3ab -3ab -1-()()2222233221x y xy x y xy xy +---+222262632131x y xy x y xy xy xy =+-+-+=+当时,原式.14.答案:/解析:根据题意,得即在市二中站有人上地铁.故答案为:.15.答案:解析:∵,∴,,,.故答案为:.16.答案:(1)(2)12解析:(1).(2),当时,原式.17.答案:(1)地面的总面积为(2)小王铺地砖的总费用为9000元解析:(1)地面的总面积平方米;x =2y =132113⎛⎫=⨯-⨯+=- ⎪⎝⎭()64a b -()46b a -+()()()8532a b a b a b --+++8532a b a b a b =---++64a b =-()64a b -()64a b -2a-21012a b c -<<-<<<<<0c b ->0a b -<0a c +>b a b a c-+--+()()c b a b a c ----+=c b a b a c--+--=2a =-2a -25xy x-()222162242xy x x xy xy ⎡⎤----⎢⎥⎣⎦()222622xy x x xy xy =--+-()226xy x xy =-+25xy x =-()()()222243645x x x x --+-+-222243318420x x x x =---++-2336x x =--3x =233336279612=⨯-⨯-=--=6218m n ++263423(6218)n m m n =++⨯+⨯=++(2)当时,,根据题意,得,铺1平方米地砖的平均费用为200元,铺地砖的总费用为:(元).答:铺地砖的总费用为9000元.18.答案:(1)岁(2)岁解析:(1)由题意,可知小红的年龄为岁,小华的年龄为岁,则这三名同学的年龄的和为(岁).答:这三名同学的年龄的和是岁.(2)由题意,得(岁).答:小红比小华大岁.19.答案:(1)甲元;乙元(2)乙店合算(3)先在甲店购买5副球拍,送5盒乒乓球240元,另外35盒乒乓球在乙店购买需378元,共需618元解析:(1)甲店购买需付款:元;乙店购买需付款:元.(2)当时,甲店需:(元);乙店需:(元).∴乙店购买合算.(3)由(2)知:1.5n =23n =68324m =⨯= ∴()()2006218200243189000m n ++=⨯++=(45)m -(3)m -(24)m -1(24)12m ⎡⎤-+⎢⎥⎣⎦1(24)[(24)1]24(21)(45)2m m m m m m m +-+-+=+-+-+=-(45)m -1(24)(24)124(21)(3)2m m m m m ⎡⎤---+=---+=-⎢⎥⎣⎦(3)m -()12180x +()10.8216x +()()48551212180x x ⨯+-⨯=+()4890%51290%10.8216x x ⨯⨯+⨯⨯=+40x =1240180660⨯+=10.840216648⨯+=先在甲店购买5副球拍,送5盒乒乓球元,另外35盒乒乓球在乙店购买需元,共需618元.20.答案:(1)(2)吨(3)元解析:(1)由题意得,装运丙种土特产的车辆数为:(辆).故答案为:.(2)根据题意得,.即这10辆汽车共装运土特产的数量为吨.(3)根据题意得,.即销售完装运的这批土特产后所获得的总利润为元.21.答案:(1)(2)90平方米(3)选择乙公司比较合算.理由见解析解析:(1)由题意可得:这套住房的建筑总面积是:平方米,即这套住房的建筑总面积是平方米.故答案为:;(2)当,时,(平方米).答:小语家这套住房的具体面积为90平方米;(3)选择乙公司比较合算.理由如下:甲公司的总费用:(元),10x y --548240⨯=129035378⨯⨯=%()10x y --()6023x y --()9600056006900x y --(10)x y --436(10)x y x y ++--436066x y x y =++--6023x y =--(6023)x y --10004900316006(10)x y x y ⨯+⨯+⨯--400027009600096009600x y x y=++--9600056006900x y =--(9600056006900)x y --(11515)a b ++(245)(511)(32)(41)(11515)a b a b ++⨯+-+⨯++⨯-=++(11515)a b ++(11515)a b ++5a =4b =11515115541555201590a b ++=⨯+⨯+=++=4240(55)220218092206150a ab a ⨯++⨯+⨯+⨯+⨯960110011003601980900a ab a =+++++(242011002880)a b =++乙公司的总费用:(元),(元),,,,,所以选择乙公司比较合算.(11515)210(231010503150)a b a b ++⨯=++242011002880(231010503150)(11050270)a b a b a b ∴++-++=+-2a b >> 50100b ∴>110220a >110502700a b ∴+->。
华东师大版数学七年级上册--第一章--有理数---单元自测题
华东师大版数学七年级上册第一章 有理数 单元自测题(2024-2025学年)一、选择题:1.-2的绝对值是( )A .-2B .2C .−12D .122.下面四个数中,最小的数为( )A .|−4|B .−2C .0D .−12 3.一天早晨的气温是−7℃,中午上升了10℃,半夜又下降了8℃,半夜的气温是( )A .−9℃B .−5℃C .5℃D .11℃4. -(-2)的相反数是 ( )A. -2B. 12C.−12D. 2()315.,0.3532153....A B C D --- 下列各数中:+6,-1.5,- , 2, , ,负数有( ) 2个 3个 4个 5个 6.如果a 与−3互为相反数,那么a 等于( )A. −3B. 3C. −13D. 13 7. 检测4袋茶叶的质量,超过标准的克数记为正数,不足的克数记为负数,从重量的角度来看,最接近标准的那一袋是( )A. +3B. −0.3C. +0.2D. −3.68. 我国科学家成功研制的量子计算原型机“祖冲之二号”,求解“量子随机线路取样”任务的速度比目前全球最快的超级计算机快1000万倍以上,其中1000万用科学记数法表示为 ( )A. 1000×10⁴B. 1×10³C.1×10⁷D. 1×10¹²9.已知下列说法:①绝对值等于它本身的数有无数个;①倒数等于它本身的数只有1;①相反数等于它本身的数是0;①平方等于它本身的数有三个.其中正确的说法有()A.1 个B.2 个C.3 个D.4 个10.数轴上点A表示的数是−2,将点A在数轴上平移8个单位长度得到点B.则点B表示的数是()A.−4B.−4或6C.−10D.6或−10 11.a、b互为倒数,x、y互为相反数且y≠0,那么代数式:2014(x+y)−ab−xy 的值为()A.2B.1C.−1D.012.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;①|b|<|a|;①ab>0;①a−b>a+b.A.①①B.①①C.①①D.①①二、填空题:13.比较大小:|−23|34.(填“>”“<”或“=”)14.我市某天的最高气温是6℃,最低气温是−3℃,则这天的日温差是______℃.15.有理数a,b在数轴上对应的点如图所示,下列四个结论:①ab<0;②a+b>0;③a<|b|;④a−b>0.其中正确的结论是______.(把所有正确的结论的序号都填上)16.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为______米.17.台湾是我国最大的岛屿,总面积为35989.76平方千米,这个数据用科学记数法表示 平方千米(精确到万位)18.一个点从数轴上表示2的点开始,先向右移动1个单位长度,再向左移动6个单位长度,此时这个点表示的数是 .三、解答题:19.计算:(1)(−3)÷(−134)×0.75÷(−37)×(−6)(2)(−15)×(−0.1)÷125×(−10);20.出租车司机小飞某天上午营运全是在南北走向的某条大街上进行的,如果规定向南为正,向北为负,他这天上午的行程是(单位:千米):−5,−7,+10,−12,+15,+8,+3,−15,+12,−13.(1)将最后一名乘客送达目的地时,小张距上午出发点的距离是多少千米?在出发点的什么方向?(2)若汽车耗油量为0.6升/千米,出车时,邮箱有油67.4升,若小张将最后一名乘客送达目的地,再返回出发地,问小张今天下午是否需要加油?若要加油至少需要加多少才能返回出发地?若不用加油,请说明理由.21.解答下列问题:(1)在数轴上表示下列各数:−5,3,5,3.5,−212,−1;(2)利用数轴比较上面各数的大小,并用“<”连接.22.操作与探索:(1)如图,写出数轴上点A,B,C,D表示的数.(2)请你自己画出数轴并表示有理数:−5,3.2(3)如图,观察数轴,回答下列问题:①大于−3并且小于3的整数有哪几个?①在数轴上表示到−1的点的距离等于2个单位长度的点表示的数是什么?。
华师大七年级上数学各单元试卷及答案
第一章 走进数学世界略第二章 有理数单元测试题一.判断题:1.有理数可分为正有理数与负有理数 . () 2.两个有理数的和是负数,它们的积是正数,则这两个数都是负数. () 3.两个有理数的差一定小于被减数. () 4.任何有理数的绝对值总是不小于它本身. ( )5.若0<ab ,则b a b a -=+;若0>ab ,则b a b a +=+ . ( )二.填空题:1.最小的正整数是 ,最大的负整数是 ,绝对值最小的数是 .2.绝对值等于2)4(-的数是 ,平方等于34的数是 ,立方等于28-的数是 .3.相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 ,立方等于本身的数是 .4.已知a 的倒数的相反数是715,则a = ;b 的绝对值的倒数是312,则b = . 5.数轴上A 、B 两点离开原点的距离分别为2和3,则AB 两点间的距离为 . 6.若222)32(,)32(,32⨯-=⨯-=⨯-=c b a ,用“<”连接a ,b ,c 三数: .7.绝对值不大于10的所有负整数的和等于 ;绝对值小于2002的所有整数的积等于 .三.选择题:1.若a ≤0,则2++a a 等于 ( )A .2a +2B .2C .2―2aD .2a ―22.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1, p 是数轴到原点距离为1的数,那么122000++++-m abcdb a cd p 的值是 ( ). A .3 B .2 C .1 D .03.若01<<-a ,则2,1,a aa 的大小关系是 ( ). A .21a a a << B .21a a a<< C .a a a <<21 D .a a a 12<< 4.下列说法中正确的是 ( ).A. 若,0>+b a 则.0,0>>b aB. 若,0<+b a 则.0,0<<b aC. 若,a b a >+则.b b a >+D. 若b a =,则b a =或.0=+b a5.cc b b a a ++的值是 ( ) A .3± B .1±C .3±或1±D .3或16.设n 是正整数,则n )1(1--的值是 ( )A .0或1B .1或2C .0或2D .0,1或2四.计算题1.[]24)3(2611--⨯--2.23.013.0)211653(1⨯⎥⎦⎤⎢⎣⎡+--÷3.%).25()215(5.2425.0)41()370(-⨯-+⨯+-⨯-4.22320012003)21(24)23(3)5.0(292)1(-⨯÷-÷⎥⎦⎤⎢⎣⎡-⨯--⨯+÷-五、2++b a 与4)12(-ab 互为相反数,求代数式++-+b a ab ab b a 33)(21的值.六、 a 是有理数,试比较2a a 与的大小.七.32-12=8×152-32=8×272-52=8×392-72=8×4……观察上面的一系列等式,你能发现什么规律?用代数式表示这个规律,并用这个规律计算20012-19992的值.第三章 整式的加减单元测试题(一)一、填空题:(每小题3分,共24分)1.代数式-7,x,-m,x 2y,2x y , -5ab 2c 3, 1y 中,单项式有______个,其中系数为1 的有_____.系数为-1的有_____,次数是1的有________.2.把4x 2y 3,-3x 2y 4,2x,-7y 3,5 这几个单项式按次数由高到低的顺序写出是_________.3.当5-│x+1│取得最大值时,x=_____,这时的最大值是_______.4.不改变2-xy+3x 2y-4xy 2的值,把前面两项放在前面带有“+”号的括号里, 后面两项放在前面带有“-”号的括号里,得_______.5.五个连续奇数中,中间的一个为2n+1,则这五个数的和是_________.6.某音像社对外出租光盘的收费方法是:每张光盘在租出后的头两天每天收0. 8元,以后每天收0.5元,那么一张光8.设M=3a 3-10a 2-5,N=-2a 3+5-10a,P=7-5a-2a 2,那么M+2n-3P=_________.M-3N+2P=_______.二、选择题:(每小题3分,共24分)9.下列判断中,正确的个数是( )①在等式x+8=8+x 中,x 可以是任何数;②在代数式18x +中,x 可以是任何数; ③代数式x+8的值一定大于8;④代数式x+8的相反数是x-8A.0个B.1个C.2个D.3个10.一种商品单价为a 元,先按原价提高5%,再按新价降低5%,得到单价b 元,则a 、b 的大小关系为( )A.a>bB.a=bC.a<bD.无法确定11.若x<y<z,则│x-y │+│y-z │+│z-x │的值为( )A.2x-2zB.0C.2x-2yD.2z-2x12.对于单项式-23x 2y 2z 的系数、次数说法正确的是( )A.系数为-2,次数为8B.系数为-8,次数为5C.系数为-23,次数为4D.系数为-2,次数为713.下列说法正确的有( )①-1999与2000是同类项 ②4a 2b 与-ba 2不是同类项③-5x 6与-6x 5是同类项 ④-3(a-b)2与(b-a)2可以看作同类项A.1个B.2个C.3个D.4个14.已知x 是两数,y 是一位数,那么把y 放在x 的左边所得的三位数是( )A.yxB.x+yC.10y+xD.100y+x15.如果m 是三次多项式,n 是三次多项式,则m+n 一定是( )A.六次多项式B.次数不高于三的整式C.三次多项式D.次数不低于三的多项式16.若2ax 2-3b x+2=-4x 2-x+2对任何x 都成立,则a+b 的值为( ) A.-2 B.-1 C.0 D.1三、解答题:(共52分)17.如果单项式2a mx y 与235a nxy --是关于x 、y 的单项式,且它们是同类项. (1)求2002(722)a -的值. (2)若2a mx y 235a nxy --=0,且xy ≠0,求2003(25)m n -的值.(8分)18.先化简再求值(12分)(1)5x-{2y-3x+[5x-2(y-2x)+3y]},其中x=11,26y-=-.(2)已知A=x2+4x-7,B=-12x2-3x+5,计算3A-2B.(3)已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值.(4)若3x2-x=1,求6x3+7x2-5x+1994的值.19.某同学做一道数学题,误将求“A-B”看成求“A+B”, 结果求出的答案是3x2-2x+5.已知A=4x2-3x-6,请正确求出A-B.(8分)20.探索规律(8分)(1)计算并观察下列每组算式:88____55____1212____,,79____46____1113____⨯=⨯=⨯=⎧⎧⎧⎨⎨⎨⨯=⨯=⨯=⎩⎩⎩(2)已知25×25=625,那么24×26=__________.(3)从以上的过程中,你发现了什么规律,你能用语言叙述这个规律吗?你能用代数式表示设这个规律吗?21. (8分)有理数a、b、c在数轴上对应点为A、B、C,其位置如图所示, 试去掉绝对值符号并合并同类项: │c│-│c+b│+│a-c│+│b+a│.22.某移动通讯公司开设了两种通讯业务:“全球通”使用者缴50元月租费, 然后每通话1分钟再付话费0.4元;“快捷通”不缴月租费,每通话1分钟,付话费0,6 元(本题的通话均指市内通话).若一个月内通话x分钟,两种方式的费用分别为y1 元和y2元.(8分)(1)用含x的代数式分别表示y1和y2,则y1=________,y2=________.第三章 整式的加减单元测试题(二)一、选择题(20分)1.下列说法中正确的是( ).A .单项式223x y -的系数是-2,次数是 2B .单项式a 的系数是0,次数也是0C .532ab c 的系数是1,次数是10D .单项式27a b -的系数是17-,次数是3 2.若单项式421m a b -+与272m m a b +-是同类项,则m 的值为( ).A .4B .2或-2C .2D .-23.计算(3a 2-2a +1)-(2a 2+3a -5)的结果是( ).A .a 2-5a +6B .7a 2-5a -4C .a 2+a -4D .a 2+a +64.当23,32a b ==时,代数式2[3(2)1]b a a --+的值为( ). A .269 B .1113 C .2123D .13 5.如果长方形周长为4a ,一边长为a +b,,则另一边长为( ).A .3a -bB .2a -2bC .a -bD .a -3b6.一个两位数,十位数字是a ,个位数字是b ,则这个两位数可表示为( ).A .abB .10a +bC .10b +aD .a +b7.观察右图给出的四个点阵,s 表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n 个点阵中的点的个数s 为( ).( ).A .3n -2B .3n -1C .4n +1D .4n -38. 长方形的一边长为2a+b,另一边比它大a -b ,则周长为( )A.10a+2bB.5a+bC.7a+bD.10a -b9. 两个同类项的和是( )A.单项式B.多项式C.可能是单项式也可能是多项式D.以上都不对10、如果A 是3次多项式,B 也是3次多项式, 那么A +B 一定是( )(A )6次多项式。
七年级数学上册《第五章 平行线的性质》同步练习题及答案(华东师大版)
七年级数学上册《第五章平行线的性质》同步练习题及答案(华东师大版)班级姓名学号一、选择题1.如图,已知直线a∥b,∠1=60°,则∠2的度数是( )A.45°B.55°C.60°D.120°2.一条公路两次转弯后又回到到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么∠C应是( )A.40°B.140°C.100°D.180°3.如图,已知直线AB∥CD,当点E在直线AB与CD之间时,下列关系式成立的是( )A.∠BED=∠ABE+∠CDEB.∠BED=∠ABE-∠CDEC.∠BED=∠CDE-∠ABED.∠BED=2∠CDE-∠ABE4.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有( )A.4个B.3个C.2个D.1个5.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A.14°B.15°C.16°D.17°6.如图,DE∥AB,∠CAE=13∠CAB,∠CDE=75°,∠B=65°则∠AEB是 ( )A.70°B.65°C.60°D.55°7.如果∠α与∠β的两边分别平行,∠α与∠β的3倍少36°,则∠α的度数是( )A.18°B.126°C.18°或126°D.以上都不对8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A.2个B.3个C.4个D.5个二、填空题9.如图,a∥b,若∠1=46°,则∠2= °.10.如图,已知l1∥l2,直线l与l1,l2相交于C,D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=________°.11.已知一副三角板如图1摆放,其中两条斜边互相平行,则图2中∠1=________.12.如图,DB平分∠ADE,DE∥AB,∠CDE=80°,则∠ABD= ,∠A= .13.如图,直线l1∥l2,∠A=125°,∠B=105°,则∠1+∠2= °.14.如图1是长方形纸袋,∠DEF=a,将纸袋沿EF折叠成图2,在沿BF折叠成图3,用表示图3中∠CFE的大小为_________三、解答题15.如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.16.如图,已知AB∥CD,∠1:∠2:∠3=1:2:3.求证:BA平分∠EBF.下面给出证法1.证法1:设∠1、∠2、∠3的度数分别为x,2x,3x.∵AB∥CD∴2x+3x=180°,解得x=36°∴∠1=36°,∠2=72°,∠3=108°∵∠EBD=180°∴∠EBA=72°∴BA平分∠EBF请阅读证法1后,找出与证法1不同的证法2,并写出证明过程.17.如图,AB∥CD,若∠ABE=120°,∠DCE=35°,求∠BEC的度数.18.如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.答案1.C2.B3.A4.A.5.C6.B7.C8.D9.答案为:46.10.答案为:20.11.答案为:15°.12.答案为:50°,80°.13.答案为50.14.答案为:180°﹣3α.15.解:(1)平行因为∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义) 所以∠1=∠CDB所以AE∥FC( 同位角相等两直线平行)(2)平行因为AE∥CF所以∠C=∠CBE(两直线平行, 内错角相等)又∠A=∠C所以∠A=∠CBE所以AF∥BC(两直线平行,内错角相等)(3) 平分因为DA平分∠BDF所以∠FDA=∠ADB因为AE∥CF,AD∥BC所以∠FDA=∠A=∠CBE,∠ADB=∠CBD所以∠EBC=∠CBD.16.证明:∵AB∥CD∴∠2+∠3=180°∵∠1:∠2:∠3=1:2:3∴设∠1=x°,∠2=2x°,∠3=3x°∴2x+3x=180解得:x=36∴∠1=36°,∠2=72°∴∠EBA=180°-36°-72°=72°∴BA平分∠EBF.17.解:如图,延长BE交CD的延长线于点F∵AB∥CD[已知]∴∠ABE+∠EFC=180°[两直线平行,同旁内角互补]又∵∠ABE=120°,[已知]∴∠EFC=180°﹣∠B=180°﹣120°=60°,[两直线平行,同旁内角互补] ∵∠DCE=35°∴∠BEC=∠DCE+∠EFC=35°+60°=95°18.解:(1)∵AE∥OF∴∠FOB=∠A=30°∵OF平分∠BOC∴∠COF=∠FOB=30°∴∠DOF=180°﹣∠COF=150°;(2)∵OF⊥OG∴∠FOG=90°∴∠DOG=∠DOF﹣∠FOG=150°﹣90°=60°∵∠AOD=∠COB=∠COF+∠FOB=60°∴∠AOD=∠DOG ∴OD平分∠AOG.。
华东师大版七年级数学上册第2章第13节《有理数的混合运算》课后同步练习题(附答案)
2.13 有理数的混合运算第1课时 有理数混合运算的顺序1. 熟练掌握有理数混合运算的法则.2. 能熟练地进行有理数加、减、乘、除、乘方的混合运算.1. 加法和减法叫做第________级运算;乘法和除法叫做第________级运算;乘方和开方(今后将会学到)叫做第________级运算.2. 有理数混合运算的运算顺序规定如下:(1)先算________,再算________,最后算________; (2)同级运算,按照________的顺序进行;(3)如果有括号,就先算________里的,再算________里的,最后算________里的. 3. 进行分数的乘除运算,一般要把带分数化为________,把除法转化为________. 4. 计算:(-4×2.5)3的结果为( ). A. 1000 B. -1000 C. 30 D. -305. 计算:-2×52-(-2×52)的结果为( ). A. 0 B. -100 C. 100 D. -406. 计算:15×(-5)÷(-15)×5的结果为( ).A. 1B. 25C. -5D. 35 7. 计算:(1)(-21)-(-13)-|+5|+|-9|; (2)(-7)×(-6)-54÷(-6).8.计算:-24÷(-2)2的结果是( ).A. 4B. -4C. 2D. -2 9. 如果||a -1=0,2008(b+3)=1,那么ba-1的值是( ).A. -4B. -5C. -6D. 2 10. 计算:-102+(-10)2-103÷(-10)3=________. 11. 计算:(1)-2-23×⎝⎛⎭⎫123;(2)-22÷⎝⎛⎭⎫-152×||-5×(-0.1)3; (3)32-(-5)2×⎝⎛⎭⎫-252-23; (4)15-2×42+(-2×4)2.12. (1)在玩“24点”游戏时,“3、3、7、7”列式并计算为:7×(3+37)=7×3+3=24 是依据运算律 . (2)小明抽到以下4张牌:请你帮他写出运算结果为24的一个算式: . (3)如果、表示正,、表示负,请你用(2)中的4张牌表示的数写出运算结果为24的一个算式: .13. 如图,在宽为30m ,长为40m 的矩形地面上修建两条都是1m 的道路,余下部分种植花草,那么,种植花草的面积为 m 2.14. (2011•绍兴县)欢欢发烧了,妈妈带她去看医生,结果测量出体温是39.2℃,用了退烧药后,以每15分钟下降0.2℃的速度退烧,则两小时后,欢欢的体温是 ℃.A 、-1.1B 、-1.8C 、-3.2D 、-3.9第2课时 有理数的混合运算1. 进一步掌握有理数的混合运算.2. 在运算过程中,能合理使用运算律简化运算.1. 计算-23-()-23+()+32-()-32-()32的结果是( ). A. 27 B. 9C. -27D. -92. 以下四个有理数运算的式子中:①(2+3)+4=2+(3+4);②(2-3)-4=2-(3-4);③(2×3)×4=2×(3×4);④2÷3÷4=2÷(3÷4).正确的运算式子有( ) A 、1个 B 、2个 C 、3个 D 、4个3. 已知四个式子:(1)|7453|--;(2)|74||53|---;(3)|74|53---;(4))74(53---,它们的值从小到大的顺序是( )A.(4)<(3)<(2)<(1)B.(3)<(4)<(2)<(1) B.(2)<(4)<(3)<(1) D.(3)<(2)<(4)<(1)4. 计算:-32÷(-3)2+3×(-6)=_____________.5. 已知|a +1|+(b -2)2=0,则(a +b )2 008+a 57=________.6. 计算:(1)(-1.5)+414+2.75+⎝⎛⎭⎫-512; (2)4-5×⎝⎛⎭⎫-123; (3)(-10)2÷5×⎝⎛⎭⎫-25; (4)5×(-6)-(-4)2÷(-8).7. 计算:(注意使用简便方法)(1)⎣⎡⎦⎤(+49)-⎝⎛⎭⎫-136÷⎝⎛⎭⎫-172; (2)13×23+0.34×27+13×13+57×0.34;(3)⎝⎛⎭⎫-2467÷6; (4)⎝⎛⎭⎫79-56+736×36-5.45×6+1.45×6.8. 自然数中有许多奇妙而有趣的现象,很多秘密等着我们取探索!比如:对任意一个3的倍数的正整数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数上的数字再立方,求和,多次重复这种操作运算,运算结果最终会得到一个固定不变的数Q ,它会掉入一个数字“陷阱”.永远也别想逃出来,没有一个自然数能逃出它的“魔掌”.那么最终掉入“陷阱”的这个固定不变的数Q 等于 .9. 小丽家要买节能灯,于是到家电商场做调查,得到如下数据:这三种节能灯的照明效果相当.如果仅考虑费用(节能灯费用与耗电费用之和,用电度数=功率(W )×时间(h )÷1000,假设电费为0.60元/度)支出,小丽应选( ) A 、节能灯3 B 、节能灯2 C 、节能灯1 D 、任一种10.如图是一个流程图,图中“结束”处的计算结果是 .11.从集合-3,-2,-1,4,5中取出三个不同的数,可能得到的最大乘积填在□中,可-能得到的最小乘积填在〇中并将下式计算的结果写在等号右边的横线上.-(□)÷〇= .12.如图,是一个数值转换机.若输入数3,则输出数是 .13.14.某企业向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率高于 .2.13 有理数的混合运算第1课时1. 一 二 三2. (1)乘方 乘除 加减 (2)从左至右 (3)小括号 中括号 大括号3. 假分数 乘法4. B5. A6. B7. (1)-4 (2)51 (3)19 (4)-80 8. B 9. A 10. 111. (1)-3 (2)0.5 (3)-3 (4)47 12. 解:(1)分配律;(2)⎪⎭⎫ ⎝⎛-⨯7447;(3)⎪⎭⎫⎝⎛---⨯-4747. 13. 解析:由题意知:种植花草的面积为30×40-1×30-1×40+1×1=1131m 2.14. 解:由题意可得,39.2-2×60÷15×0.2=39.2-120÷15×0.2=39.2-8×0.2=39.2-1.6=37.6. 故答案为:37.6℃. 15.C第2课时1. B2. B3. D4. D5. -196. 07. (1)-18 (2)-15 (3)0 (4)-23 (5)458(6)3115 (7)-8 (8)-288.153 9. B. 解析:节能灯1的总费用为:100×1000÷1000×0.6+1.5=61.5元;节能灯2的总费用为:30×1000÷1000×0.6+14=32元;节能灯3的总费用为:20×5000÷1000×0.6+25=85元.故选B . 10. -32 11. 21-12. 65. 13.314. 解析:因为向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率是(1065.6-1000)÷1000×100%=6.56%,则年利率高于6.56%.。
华师大版 七年级上 数学 2.6.2 有理数的加法运算律 习题
运算律的应用
合理运用运算 律简化计算, 有哪些方法?
计算: 1 1 2 1 3 -3 )+ -3 ) + ( - 5 )+ -7 ) ( (2 ) + ( ( 3 2 3 2 4 ①
1 2 3 2 - 2.53) + - ) + ( ) + - 1 )+ ( ) + (+ 2.53) + ( ( (+ 1.6) ② ( 2 3 5 3
习题
2.6.2 有理数加 法的运算律
快乐检测,提高能力
判断题
(1) 若两个数的和是0,则这两个数都是0; (×) (2) 任何两数相加,和不小于任何一个加数 (×)
(3) a+b+c+d=(a+c)+(b+d) (∨)
(4) 某天早上的气温是-10C,中午上升了50C,则中午的 气温是-60C (×)
随堂检测
1. 计算: 5 (-5)+9+(-6)+7 = ____
0 2. 绝对值小于5的所有整数的和为_ _ ____
3. 在括号里填写每步运算的根据:
(-8)+(-5)+8 加法交换律 加法结合律
=(-8)+8+(-5)
=〔(-8)+8〕+(-5)
(
(
)
)
=0+(-5
能“凑0”或“凑整”的结合相 加 同分母结合相加
计算
(1)16+(-25)+24+(-35)
1 1 1 ( 2) 1 ( ) + + +( - ) 2 3 6 1 3 3 2 - 2 )+ -8 ) (3) 3 5 + ( + ( 4 5 4 5
华师大版初中七年级(上)数学全套训练题含答案(共43页)
华师大版初中七年级(上)数学全套训练题第1单元 走进数学世界课标要求1.能用数学知识解决身边的一些问题.2.学会从数学的角度去思考,用数学支持自己的结论.典型例题例1 按规律填数:2、7、12、17、___、_____.解:分析,题目中给出的四个数后面的数都比前面的数大5,根据这个规律可知后面的空应填数字22和27.例2 甲、乙、丙三人到李老师家里学钢琴,甲每3天去一次,乙每4天去一次,丙每6天去一次,如果8月3日他们三人在李老师家碰面,那么下一次他们在李老师家碰面的时间是_________.解:根据数学知识,取出3、4、6的最小公倍数(12)即可.3+12=15,所以,下一次他们见面的时间是:8月15日.例3 如图,在六边形的顶点出分别标上数1,2,3,4,5,6,使任意三个相邻顶点的三数之和都大于9.解:要使任意三数之和都大于9,那么1相邻的数只能是4和6,其余依此类推可得其顺序为:1,6,3,2,5,4.例4 三阶幻方(九宫图)是流传于我国古代数学中的一种游戏.最简单的九宫图如图,对这样的幻方多做一些钻研和探索,你将获得更多的启示.比如:九宫图中的九个方格是否可以填其他的数?如5,10,15,20,25,30,35,40,45,如果可以又该怎样填写?解:可以从九宫图的填法中得到答案. 相应的数分别是:10、35、30、45、25、5、 20、15、40.例5 五位老朋友a,b,c,d,e 去公园去约会,他们见面后都要和对方握手以示问候,已知a 握了4次,b 握了1次,d 握了3次,e 握了2次,那么到现在为止,c 握了几次?解:a 和 b 、c 、d 、e 都握了共4次,b 只握1次,那他只和a 握过, d 和a,c,e 握了3次,e 和a,d 握2次 ,所以到目前为止,c 握了2次.强化练习1.运用加、减、乘、除四种运算,如何由三个5和一个1得到24(每个数只能用一次).2.观察已有数的规律,在( )内填入恰当的数.11 11 2 11 3 3 11 4 6 4 11 ( ) ( ) ( ) ( ) 13.现栽树12棵,把它栽成三排,要求每排恰好为5棵,如图所示的就是一种符合条件的栽法,请你再给出三种不同的栽法(画出图形即可).[说明]:动手操作题是让学生在实际操作的基础上设计有关的问题,有利于培养学生的创新能力和实践能力,就本题而言,答案不止三种,不在交点处的点可平移,因此可得到多个答案.(请同学们自己做).4. 一种圆筒状包装的保鲜膜,如图,其规格为“20cm ×60m ”,经测量这筒保鲜膜的内径ø1,外径ø2的长分别为3.2cm 、4.0cm,则该种保鲜膜的厚度为多少cm ?5. 李刚同学设计了四种正多边形的瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是① ② ③ ④ ( )A. ①②④B. ②③④C. ①③④D. ①②③单元检测一、填空题1. 如图所示,图中共有____个三角形、______个正方形.2. 按规律填数:1,14,2,15,3,16,( ),( ).3. 若a ⊙b=4a-2b+ ab,则 ⊙ =________. 4.如果12345679×27=333333333,那么12345679×9=______.5. 要从一张长为40cm,宽为20cm 的矩形纸片中剪出长为长为18cm,宽为12cm 的矩形制片,最多能剪出____ 张6.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20另一台亏损20%,则本次买卖中商场( )A.不赔不赚B.赚160元C.赚80元D.赔80元7. 18º,75º,90º,120º,150º这些角中,不能用一幅三角板拼出来的是_________.8. 观察下列等式;9-1=8;16-4=12;25-9=16;36-16=20,….这些等式反映了自然数之间的某种规律,设n(n ≥1)表示自然数,用关于n 的等式表示这个规律是________.二、选择题9. 某商品的进价是110元,销售价是132元,则此商品的利润率是( )A .15% B.20% C.25% D.10%10. 找出“3,7,15,( ),63”的规律,括号理应填( )A.46B.27C.30D.3111. 把长方形的长去掉4厘米后,余下的是一个面积为64平方厘米的正方形,则原来长方形的面积为( )A.77平方厘米B.80平方厘米C.96平方厘米D. 100平方厘米12. 火车票上的车次号有两个意义:一是数字越小表示车速越快,1∽98次为特快列车,101∽198为直快列车,301∽398为普快列车,401∽ 498为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )A.20B.119C.120D.31913. 将正偶数按下表排成5列:121512第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24第4行 32 30 28 26……根据上面的排列规律,则2000应在( )A.第125行,第1列B. 第125行,第2列C. 第250行,第1列D. 第250行,第2列14. 在一列数1,2,3,4,…,1000中,数字0共出现了( )A.182次B.189次C.192次D.194次15. 将一正方形纸片按图5中⑴、⑵的方式依次对折后,再沿⑶中的虚线裁剪,最后将⑷中的纸片打开铺平,所得图案应该是下面图案中的( )A B C D16. 法国的“小九九”从“一一得一” 到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.右面两个图框是用法国“小九九”计算78和89的两个示例.若用法国“小九九”计算79,左右手依次伸出手指的个数是( )A 、2,3B 、3,3C 、2,4D 、3,4三、解答题17. 在( )内填上“+”或“–”或“÷”或“×”,使等式成立.4( )6( )3( )10 = 2418. 过四边形一个顶点的对角线可以把四边形分成两个三角形,过五边形一个顶点的对角线把它分成_____个三角形,n 边形呢?_____________19. 小明早上起床,叠被用3分,刷牙洗脸用4分,烧开水用10分,吃早饭用7分,洗碗用1分,整理书包用2分,冲牛奶用1分,请帮小明安排一下时间.20. 木匠有一矩形木板,但右上角已缺损一块,尺寸如图所示,你能把它拼成一个正方形桌面吗?21. 如果依次用x 1 ,x 2 ,x 3 ,x 4 表示图(1),(2),(3),(4)中三角形的个数,那么x 1 =3,x 2 =8,x 3 =15,x 4 =24.如果按照上述规律继续画图,那么x n 与n 之间的关系如何?22. 如图所示,菱形公园内有四个景点,请你用两种不同的方法,按下列要求设计成四个部11122分.(1)用直线分割;(2)每个部分内各有一个景点;(3)各部分的面积相等(可用铅笔画,只要求画图正确,不写画法)23. 我们与数学交朋友×友=我我我我我我我我我,其中每个汉字代表自然数1∽9中的一个,且互不重复,那么其中的“友”代表的数是什么?.24. 用四块如图(1)所示的瓷砖拼成一个正方形图案,使拼成的图案成一个轴对称图形(如图2),请你分别在图(3)、图(4)中各画一种与图(2)不同的拼法,要求两种拼法各不相同,且其中至少有一个图形既是中心对称图形,又是轴对称(3) (4) 25.某超市推出如下优惠方案:①一次性购物不超过100元,不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律8折.王波两次购物分别付款80元、252元,如果王波一次性购买与上两次相同的商品,则应付款多少元?26.观察右面的图形(每个正方形的边长均为1)和相应等式,控究其中的规律:①211211-=⨯②322322-=⨯ ③433433-=⨯ ④544544-=⨯ ……⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:⑵猜想并写出与第n 个图形相对应的等式.第一单元参考答案强化练习:1.解:5×(5 -1÷5 ) = 24 ; 2.解:经观察可得所填的数应为:5 , 10 ,10 ,5 ;3.略 ; 4. 利用圆筒的体积相等列等式。
华东师大版七年级数学上册《第二章整式及其加减》单元测试卷带答案
华东师大版七年级数学上册《第二章整式及其加减》单元测试卷带答案(测试时间:90分钟;试卷满分:100分)一、选择题(每小题3分,共24分)1.下列叙述中,正确的是( )A.0是单项式B.单项式23xy的次数是5C.单项式-2x 2y5的系数为-2 D.多项式3a3b+2a2是六次二项式2.用代数式表示“a的平方与b的平方的差”,正确的是( )A.(a-b)2B.a2-b2C.a-b2D.a-2b3.(2024·湘潭模拟)下列计算正确的是( )A.5-(-1)=4B.(-2)4=-16C.2a2-a=2aD.3x-(-2y+4)=3x+2y-44.当x=1时,整式ax3+bx+1的值为2 023,则当x=-1时,整式ax3+bx-2的值是( )A.2 024B.-2 024C.2 022D.-2 0225.若单项式a3m b9-n与78a6b2n的和仍是单项式,则m-n的值是( )A.1B.5C.-5D.-16.观察下列关于x的单项式,探究其规律:-x,3x2,-5x3,7x4,-9x5,11x6……按照此规律,第2 025个单项式是( )A.-2 025x2 025B.4 049x2 025C.-4 049x2 025D.4 051x2 0257.(2024·包头模拟)甲、乙两店卖豆浆,每杯售价均相同.已知甲店的促销方式为每买2杯,第1杯原价,第2杯半价;乙店的促销方式为每买3杯,第1,2杯原价,第3杯免费.若东东想买12杯豆浆,则下列所花的钱最少的方式是( )A.在甲店买12杯B.在甲店买8杯,在乙店买4杯C.在甲店买6杯,在乙店买6杯D.在乙店买12杯8.有依次排列的3个整式:x,x+6,x-3,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串,例如:x,6,x+6,-9,x-3,我们称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推,通过实际操作,得到以下结论:①整式串2为:x,6-x,6,x,x+6,-x-15,-9,x+6,x-3;②整式串3的所有整式的和比整式串2的所有整式的和小3;③整式串5共65个整式;④整式串2 024的所有整式的和为3x-6 069;上述四个结论正确的有( )A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.(2024·郴州模拟)单项式-5a2b(m+2)与3a n+5b是同类项,那么m-n=.10.多项式13x|m|-(m+4)x-11是关于x的四次三项式,则m的值是.11.(2024·长沙模拟)已知关于x的多项式(4x2-3x+5)-(2mx2-x+1)化简后不含x2项,则m的值是.12.如果x=5时,代数式ax5+bx-7的值为9,那么x=-5时,代数式a2x5+b2x+7的值为.13.已知三个有理数a,b,c,其积是负数,其和是正数,当x=|a|a +|b|b+|c|c时,代数式x2 025-2x+2的值为.14.(2024·台州模拟)如图所示,未来公园的广场背景墙上有一系列用灰砖和白砖铺成的图案,图①有1块灰砖,8块白砖;图②有4块灰砖,12块白砖;以此类推.若某个图案中有49块灰砖,则此图案中有块白砖.三、解答题(共52分)15.(6分)计算:(1)3m-3n-2m+n;(2)(8x-7y)-(4y-5x).16.(8分)先化简,再求值.(1)4(3a2b-ab2)-2(-ab2+3a2b),其中a是1的相反数,b是2的倒数;(2)3(x-2y)+5(x+2y-1)-2,其中2x+y=3.17.(8分)(2024·苏州期末)已知代数式A=3x2+3xy+2y,B=x2-xy+x.(1)计算A-3B;(2)当x=-1,y=3时,求A-3B的值;(3)若A-3B的值与x的取值无关,求y的值.18.(8分)有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a +1 0,2-b a -c ; (2)|b -c |= ; (3)化简:|c -3|+|c -b |-|b +1|.19.(10分)近年来,电商多选择在11月11日促销.今年的促销期间,某电商客服在为买家包装商品时用到长、宽、高分别为a 厘米、b 厘米、c 厘米的箱子,并发现有如图所示的甲、乙两种打包方式(打包带不计接头处的长).回答下列问题:(1)用含a ,b ,c 的式子表示甲、乙两种打包方式所用的打包带的长度: 甲需要 厘米,乙需要 厘米;(2)当a =50厘米,b =40厘米,c =30厘米时,直接写出甲、乙两种打包方式所用的打包带的长度:甲需要 厘米,乙需要 厘米;(3)当a >b >c 时,两种打包方式中,哪种方式节省打包带?并说明你的理由.20.(12分)观察下列等式.11×2=1-12,12×3=12-13,13×4=13-14将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.(1)猜想并写出:1n (n+1)= .(2)直接写出下列各式的计算结果:①11×2+12×3+13×4+…+12022×2023=;②11×2+12×3+13×4+…+1n(n+1)=.(3)探究并计算:①11×3+13×5+15×7+…+12021×2023.②11×3-12×4+13×5-14×6+15×7-…+12021×2023-12022×2024.【附加题】(10分)某市居民使用自来水按如下标准缴费(水费按月缴纳):用户月用水量单价不超过12 m3的部分a元/m3超过12 m3但不超过20 m3的部分1.5a元/m3超过20 m3的部分 2a元/m3(1)当a=2时,某户一个月用了15 m3的水,求该户这个月应缴纳的水费.(2)设某户月用水量为28 m3,该户应缴纳的水费为元.(3)当a=2时,甲,乙两户一个月共用水40 m3,已知甲户缴纳的水费超过了24元,设甲户这个月用水x m3,试求甲,乙两户一个月共缴纳的水费(用含x的式子表示).参考答案一、选择题(每小题3分,共24分)1.下列叙述中,正确的是(A)A.0是单项式B.单项式23xy的次数是5C.单项式-2x 2y5的系数为-2 D.多项式3a3b+2a2是六次二项式2.用代数式表示“a的平方与b的平方的差”,正确的是(B)A.(a-b)2B.a2-b2C.a-b2D.a-2b3.(2024·湘潭模拟)下列计算正确的是(D)A.5-(-1)=4B.(-2)4=-16C.2a2-a=2aD.3x-(-2y+4)=3x+2y-44.当x=1时,整式ax3+bx+1的值为2 023,则当x=-1时,整式ax3+bx-2的值是(B)A.2 024B.-2 024C.2 022D.-2 0225.若单项式a3m b9-n与78a6b2n的和仍是单项式,则m-n的值是(D)A.1B.5C.-5D.-16.观察下列关于x的单项式,探究其规律:-x,3x2,-5x3,7x4,-9x5,11x6……按照此规律,第2 025个单项式是(C)A.-2 025x2 025B.4 049x2 025C.-4 049x2 025D.4 051x2 0257.(2024·包头模拟)甲、乙两店卖豆浆,每杯售价均相同.已知甲店的促销方式为每买2杯,第1杯原价,第2杯半价;乙店的促销方式为每买3杯,第1,2杯原价,第3杯免费.若东东想买12杯豆浆,则下列所花的钱最少的方式是(D)A.在甲店买12杯B.在甲店买8杯,在乙店买4杯C.在甲店买6杯,在乙店买6杯D.在乙店买12杯8.有依次排列的3个整式:x,x+6,x-3,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串,例如:x,6,x+6,-9,x-3,我们称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推,通过实际操作,得到以下结论:①整式串2为:x,6-x,6,x,x+6,-x-15,-9,x+6,x-3;②整式串3的所有整式的和比整式串2的所有整式的和小3;③整式串5共65个整式;④整式串2 024的所有整式的和为3x-6 069;上述四个结论正确的有(D)A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.(2024·郴州模拟)单项式-5a2b(m+2)与3a n+5b是同类项,那么m-n=2.10.多项式13x|m|-(m+4)x-11是关于x的四次三项式,则m的值是4.11.(2024·长沙模拟)已知关于x的多项式(4x2-3x+5)-(2mx2-x+1)化简后不含x2项,则m的值是2.12.如果x=5时,代数式ax5+bx-7的值为9,那么x=-5时,代数式a2x5+b2x+7的值为-1.13.已知三个有理数a,b,c,其积是负数,其和是正数,当x=|a|a +|b|b+|c|c时,代数式x2 025-2x+2的值为1.14.(2024·台州模拟)如图所示,未来公园的广场背景墙上有一系列用灰砖和白砖铺成的图案,图①有1块灰砖,8块白砖;图②有4块灰砖,12块白砖;以此类推.若某个图案中有49块灰砖,则此图案中有32块白砖.三、解答题(共52分)15.(6分)计算:(1)3m-3n-2m+n;(2)(8x-7y)-(4y-5x).【解析】(1)原式=(3-2)m+(-3+1)n=m-2n;(2)原式=8x-7y-4y+5x=13x-11y.16.(8分)先化简,再求值.(1)4(3a2b-ab2)-2(-ab2+3a2b),其中a是1的相反数,b是2的倒数;(2)3(x-2y)+5(x+2y-1)-2,其中2x+y=3.【解析】(1)原式=12a2b-4ab2+2ab2-6a2b=6a2b-2ab2;因为a是1的相反数,b是2的倒数所以a=-1,b=12所以原式=6×(-1)2×12-2×(-1)×(12)2=3+12=72;(2)原式=3x-6y+5x+10y-5-2=8x+4y-7;当2x+y=3时,原式=4(2x+y)-7=4×3-7=12-7=5.17.(8分)(2024·苏州期末)已知代数式A=3x2+3xy+2y,B=x2-xy+x.(1)计算A-3B;(2)当x=-1,y=3时,求A-3B的值;(3)若A-3B的值与x的取值无关,求y的值.【解析】(1)因为A=3x2+3xy+2y,B=x2-xy+x所以A-3B=(3x2+3xy+2y)-3(x2-xy+x)=3x2+3xy+2y-3x2+3xy-3x=6xy+2y-3x;(2)当x=-1,y=3时,A-3B=6xy+2y-3x=6×(-1)×3+2×3-3×(-1)=-18+6+3=-9;(3)A-3B=6xy+2y-3x=(6y-3)x+2y因为A-3B的值与x的取值无关所以6y-3=0,解得y=1.218.(8分)有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a+10,2-b a-c;(2)|b-c|=;(3)化简:|c-3|+|c-b|-|b+1|.【解析】(1)由题意得,-3<a<-2,-1<b<0,1<c<2所以a+1<0,2-b>0>a-c.答案:<>(2)因为b-c<0,所以|b-c|=-(b-c)=c-b.答案:c-b(3)因为-3<a<-2,-1<b<0,1<c<2,所以c-3<0,c-b>0,b+1>0所以|c-3|+|c-b|-|b+1|=3-c+c-b-(b+1)=2-2b.19.(10分)近年来,电商多选择在11月11日促销.今年的促销期间,某电商客服在为买家包装商品时用到长、宽、高分别为a厘米、b厘米、c厘米的箱子,并发现有如图所示的甲、乙两种打包方式(打包带不计接头处的长).回答下列问题:(1)用含a ,b ,c 的式子表示甲、乙两种打包方式所用的打包带的长度: 甲需要 厘米,乙需要 厘米;(2)当a =50厘米,b =40厘米,c =30厘米时,直接写出甲、乙两种打包方式所用的打包带的长度:甲需要 厘米,乙需要 厘米;(3)当a >b >c 时,两种打包方式中,哪种方式节省打包带?并说明你的理由. 【解析】(1)2×2(a +c )+2(b +c )=(4a +2b +6c )厘米,2(a +c )+2×2(b +c )=(2a +4b +6c )厘米 所以甲需要(4a +2b +6c )厘米,乙需要(2a +4b +6c )厘米; 答案:(4a +2b +6c ) (2a +4b +6c )(2)当a =50厘米,b =40厘米,c =30厘米时,4a +2b +6c =4×50+40×2+6×30=460厘米,2×50+4×40+30×6=440厘米 所以甲需要460厘米,乙需要440厘米; 答案:460 440(3)乙种节省,理由如下:(4a +2b +6c )-(2a +4b +6c )=4a +2b +6c -2a -4b -6c =2a -2b 因为a >b >c ,所以2a -2b >0 所以(4a +2b +6c )-(2a +4b +6c )>0 所以乙种打包方式更节省. 20.(12分)观察下列等式.11×2=1-12,12×3=12-13,13×4=13-14将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.(1)猜想并写出:1n (n+1)= .(2)直接写出下列各式的计算结果: ①11×2+12×3+13×4+…+12 022×2 023= ;②11×2+12×3+13×4+…+1n (n+1)= .(3)探究并计算: ①11×3+13×5+15×7+…+12 021×2 023.②11×3-12×4+13×5-14×6+15×7-…+12 021×2 023-12 022×2 024.【解析】(1)1n (n+1)=1n -1n+1.答案:1n -1n+1(2)①11×2+12×3+13×4+…+12 022×2 023=1-12+12-13+…+12 022-12 023=1-12 023=2 0222 023.②11×2+12×3+13×4+…+1n (n+1)=1-12+12-13+…+1n -1n+1=1-1n+1=n n+1.答案:①2 0222 023②nn+1(3)①11×3+13×5+15×7+…+12 021×2 023=12(1-13+13-15+15-17+…+12 021-12 023)=12(1-12 023)=1 0112 023.②11×3-12×4+13×5-14×6+15×7-…+12 021×2 023-12 022×2 024 =(11×3+13×5+…+12 021×2 023)- (12×4+14×6+…+12 022×2 024)=12(1-13+13-15+…+12 021-12 023)-12(12-14+14-16+…+12 022-12 024)=12(1-12 023)-12(12-12 024)=1 0112 023-1 0114 048=2 025×1 0112 023×4 048.【附加题】(10分)某市居民使用自来水按如下标准缴费(水费按月缴纳):用户月用水量单价不超过12 m3的部分a元/m3超过12 m3但不超过20 m3的部分1.5a元/m3超过20 m3的部分 2a元/m3(1)当a=2时,某户一个月用了15 m3的水,求该户这个月应缴纳的水费.(2)设某户月用水量为28 m3,该户应缴纳的水费为元.(3)当a=2时,甲,乙两户一个月共用水40 m3,已知甲户缴纳的水费超过了24元,设甲户这个月用水x m3,试求甲,乙两户一个月共缴纳的水费(用含x的式子表示).【解析】(1)12×2+(15-12)×1.5×2=24+9=33(元)所以该户这个月应缴纳的水费为33元;(2)12a+(20-12)×1.5a+(28-20)×2a=12a+12a+16a=40a(元).答案:40a(3)因为12×2=24所以x>12当12<x≤20时,甲用水量超过12 m3但不超过20 m3,乙用水量超过20 m3所以12×2+(x-12)×1.5×2+12×2+(20-12)×2×1.5+(40-x-20)×2×2=24+3x-36+24+24+80-4x= (116-x)元;当20<x<28时,甲的用水量超过20 m3,乙的用水量超过12 m3但不超过20 m3所以12×2+(20-12)×1.5×2+(x-20)×2×2+12×2+(40-x-12)×2×1.5=24+24+4x-80+24+84-3x= (x+76)元当28≤x≤40时,甲的用水量超过20 m3,乙的用水量不超过12 m3所以12×2+(20-12)×1.5×2+(x-20)×2×2+(40-x)×2=24+24+4x-80+80-2x=(2x+48)元; 综上所述,当12<x≤20时,甲,乙两户一个月共缴纳的水费为(116-x)元;当20<x<28时,甲,乙两户一个月共缴纳的水费为(x+76)元;当28≤x≤40时,甲,乙两户一个月共缴纳的水费为(2x+48)元.。
华东师大版七年级数学上册第三章 整式的加减 专题训练试题(含答案)
华东师大版七年级数学上册第三章 整式的加减 专题训练试题专题(一) 整式的化简与求值1.已知有理数a ,b ,c 在数轴上的位置如图所示,化简|a +b|-|c -b|的结果是( )A .a +cB .c -aC .-a -cD .a +2b -c2.有理数a ,b 在数轴上的位置如图所示,则化简式子|a +b|+a 的结果是______.3.若多项式2x 2+3x +7的值为10,则多项式6x 2+9x -7的值为______. 4.已知xy =-1,x +y =12,那么y -(xy -4x -3y)的值等于______.5.计算:(1)6a 2+4b 2-4b 2-7a 2;(2)(8a -7b)-(4a -5b);(3)-12(x 2y -2xy 2-x 2)-13(-x 2-x 2y -xy 2);(4)2(x 3-2y 2)-(x -2y)-(x -3y 2+2x 3);(5)3x 2-[5x -(12x -3)+3x 2].6.已知A =x 2-2x +1,B =2x 2-6x +3.求:(1)A +2B ; (2)2A -B.7.先化简,再求值:(1)14(-4x 2+2x -8)-(12x -1),其中x =12;(2)(-2ab +3a)-2(2a -b)+2ab ,其中a =3,b =1;(3)2(a 2b -ab 2)-3(a 2b -1)+2ab 2+1,其中a =2,|b +1|=0.8.若单项式3x 2y 5与-2x1-a y 3b -1是同类项,求下面代数式的值:5ab 2-[6a 2b -3(ab 2+2a 2b)].9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=______;(2)因为b_____0,-b_____0,所以|b|=_____;|-b|=_____;(3)因为1+a_____0,所以|1+a|=_____;(4)因为1-b <_____,所以|1-b|=_____=_____;(5)因为a+b>0,所以|a+b|=_____;(6)因为a-b _____0,所以|a-b|=_____=_____.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.13.有一道题“先化简,再求值:17x 2-(8x 2+5x )-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2 020.”小明做题时把“x =2 020”错抄成了“x =-2 020”.但他计算的结果却是正确的,请你说明这是什么原因?14.已知一个两位数,其十位数字是a ,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?专题(二) 整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2 019的值是( )A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 019的结果的个位数字是( )A.0 B.1 C.7 D.83.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6 D.3n+34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是( )A.1 009+1 010+…+3 026=2 0172B.1 009+1 010+…+3 027=2 0182C.1 010+1 011+…+3 028=2 0192D.1 010+1 011+…+3 029=2 02025.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_____.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是_____粒.7.按规律写出空格中的数:-2,4,-8,16,_____,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是_____.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是_____.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为_____.11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第 2 019个图形中共有_____个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2 019,2 020个单项式.参考答案专题(一) 整式的化简与求值1.已知有理数a ,b ,c 在数轴上的位置如图所示,化简|a +b|-|c -b|的结果是(A )A .a +cB .c -aC .-a -cD .a +2b -c2.有理数a ,b 在数轴上的位置如图所示,则化简式子|a +b|+a 的结果是-b .3.若多项式2x 2+3x +7的值为10,则多项式6x 2+9x -7的值为2. 4.已知xy =-1,x +y =12,那么y -(xy -4x -3y)的值等于3.5.计算:(1)6a 2+4b 2-4b 2-7a 2; 解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)(8a -7b)-(4a -5b); 解:原式=8a -7b -4a +5b =4a -2b.(3)-12(x 2y -2xy 2-x 2)-13(-x 2-x 2y -xy 2);解:原式=-12x 2y +xy 2+12x 2+13x 2+13x 2y +13xy 2=-16x 2y +56x 2+43xy 2.(4)2(x 3-2y 2)-(x -2y)-(x -3y 2+2x 3); 解:原式=2x 3-4y 2-x +2y -x +3y 2-2x 3=-y 2-2x +2y.(5)3x 2-[5x -(12x -3)+3x 2].解:原式=3x 2-(5x -12x +3+3x 2)=3x 2-5x +12x -3-3x 2=-92x -3.6.已知A =x 2-2x +1,B =2x 2-6x +3.求:(1)A +2B ; (2)2A -B.解:(1)A +2B =x 2-2x +1+2(2x 2-6x +3) =x 2-2x +1+4x 2-12x +6 =5x 2-14x +7.(2)2A -B =2(x 2-2x +1)-(2x 2-6x +3) =2x 2-4x +2-2x 2+6x -3 =2x -1.7.先化简,再求值:(1)14(-4x 2+2x -8)-(12x -1),其中x =12; 解:原式=-x 2+12x -2-12x +1=-x 2-1.当x =12时,原式=-(12)2-1=-54.(2)(-2ab +3a)-2(2a -b)+2ab ,其中a =3,b =1;解:原式=-2ab+3a-4a+2b+2ab=-a+2b.当a=3,b=1时,原式=-3+2=-1.(3)(安阳期末)2(a2b-ab2)-3(a2b-1)+2ab2+1,其中a=2,|b+1|=0.解:原式=2a2b-2ab2-3a2b+3+2ab2+1=-a2b+4.因为a=2,|b+1|=0,即b=-1,所以原式=-22×(-1)+4=4+4=8.8.若单项式3x2y5与-2x1-a y3b-1是同类项,求下面代数式的值:5ab2-[6a2b-3(ab2+2a2b)].解:因为3x2y5与-2x1-a y3b-1是同类项,所以1-a=2,3b-1=5.解得a=-1,b=2.原式=5ab2-(6a2b-3ab2-6a2b)=5ab2-6a2b+3ab2+6a2b=8ab2.当a=-1,b=2时,原式=8×(-1)×22=-8×4=-32.9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.解:原式=-3a2+8ab-3b2=-3(a2+b2)+8ab,因为a2+b2=6,ab=-2,所以原式=-3×6+8×(-2)=-34.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b <0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b <0,所以|a-b|=-(a-b)=b-a.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.解:由数轴知,a<b<0<c,且|b|<|c|,所以b+c>0,a-c<0,a+b<0.所以原式=2(b+c)-[-3(a-c)]-[-4(a+b)]=2b+2c+3(a-c)+4(a+b)=2b+2c+3a-3c+4a+4b=6a+6b-c.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.解:2mx2-x2+5x+8-(7x2-3y+5x)=2mx2-x2+5x+8-7x2+3y-5x=(2m-8)x2+3y+8.因为此多项式的值与x无关,所以2m-8=0,解得m=4.m2-[2m2-(5m-4)+m]=m2-(2m2-5m+4+m)=-m2+4m-4,当m=4时,原式=-42+4×4-4=-4.13.有一道题“先化简,再求值:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3,其中x=2 020.”小明做题时把“x=2 020”错抄成了“x=-2 020”.但他计算的结果却是正确的,请你说明这是什么原因?解:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3=17x2-8x2-5x-4x2-x+3+5x2+6x-1-3=10x2-1.因为当x=2 020和x=-2 020时,x2的值不变,所以他计算的结果是正确的.14.已知一个两位数,其十位数字是a ,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a +b.(2)(10a +b)+(10b +a)=11a +11b =11(a +b),因为a ,b 都是整数,所以a +b 也是整数.所以这两个数的和能被11整除.(10a +b)-(10b +a)=10a +b -10b -a =9a -9b =9(a -b),(10b +a)-(10a +b)=10b +a -10a -b =9b -9a =9(b -a),因为a ,b 都是整数,所以a -b ,b -a 也是整数.所以这两个数的差一定是9的倍数.专题(二) 整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2 019的值是(D )A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 019的结果的个位数字是(A )A .0B .1C .7D .83.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为(D )A .3nB .6nC .3n +6D .3n +34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是(C ) A .1 009+1 010+…+3 026=2 0172 B .1 009+1 010+…+3 027=2 0182 C .1 010+1 011+…+3 028=2 0192 D .1 010+1 011+…+3 029=2 02025.归纳“T ”字形,用棋子摆成的“T ”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n 个“T ”字形需要的棋子个数为3n +2.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是(2n+1)粒.7.按规律写出空格中的数:-2,4,-8,16,-32,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是13a+21b.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第 2 019个图形中共有6058个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2 019,2 020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2 019个单项式是-4 037x2 019,第2020个单项式是4 039x2 020.。
华师大版七年级数学上册练习卷(八)-整式、同类项及合并.docx
(整式、同类项及合并)一、填空题:(每题 2 分,共 24 分)1、单项式-3xy3的系数是_____。
2、多项式 2x-1 的项有_____,_____。
3、多项式 3x2-x 是___次___项式。
4、计算:3x2y-(-2x2y)=_____。
5、把多项式 1-2x-x3+4x2按 x 的降幂排列是_____。
6、多项式 3x2+2x-1 中,一次项是_____。
7、在多项式 3x-2y+3y-2x+5 中,与 3x 是同类项的是_____。
8、请任意写出 2abc2的两个同类项是_______。
9、把 (a+b) 当作一个因式,则 3 (a+b)-5 (a+b)=_____。
10、如果 2x2y 与 3x n y是同类项,那么 n=_____。
11、写出一个系数为-3,只含字母 x、y 的 3 次单项式:______。
12、若 3a3b n-5a m b4所得的差是单项式,则这个单项式为_________。
二、选择题:(每题 3 分,共 18 分)1、下列代数式中,是单项式的是()A、B、C、-2 D、1-a2、对于整式 3x-5,下列说法不正确的是()A、是二项式B、是二次式C、是一次二项式D、是多项式3、下列单项式中,与-3a2b 为同类项的是()A、-3a2bB、-ba3C、2ab0D、3a2b24、下列各组式子中,是同类项的是()A、-3 与 2B、2x3y2与3x2y3C、2x与x2D、2x与3y5、下列运算中,正确的是()A、4+5a=9aB、6xy-x=6yC、2x2+3x=5x3D、2a2b-2ba2=06、若 3xy2m-1是四次单项式,则 m 的值是()A、4B、2C、-4D、-2三、将下列多项式按字母 x 的升幂排列:(每题 5 分,共 10 分)1、x-2-3x22、-2xy+x2+y2四、合并同类项:(每题 5 分,共 30 分)1、-3a+5a-6a 2、0.7a2b+0.3ba23、-3ab+5ab-2ba 4、4x2-3x+7-3x2+4x-55、4a2b-3a2b+a2b 6、4xy-x2+2x2-5xy-3x2五、先合并同类项,再求各多项式的值。
华东师大版七年级上册数学第二章测试题
一、选择题(本大题共10小题,共20分)1.35的倒数是()A.53B.35C.-35 D.-532.计算8÷(-15)的结果是()A.-40 B.85 C.40 D.-853.(-1)2023等于()A.1B.-1C.2023D.-20234.2022年3月11日,新华社发文总结2021年中国取得的科技成就.主要包括:北斗全球卫星导航系统平均精度2~3米;中国高铁运营里程超40000000米;“奋斗者”号载人潜水器最深下潜至10909米;中国嫦娥五号带回月壤质量为1731克.其中数据40000000用科学记数法表示为()A .0.4×108B .4×107C .4.0×108D .4×1065.(-78)×(-0.25)×(-4)×(+117)=[(-78)×(+117)]×[(-0.25)×(-4)],这是为了运算简便而使用了()A.乘法交换律B.乘法结合律C.乘法交换律和结合律D.以上都不对6.(-25)×(-25)×(-25)×(-25)×(-25)用乘方的形式表示为()A.-255 B.(-25)5 C.-(25)5 D.(-25)47.下列运算正确的是()A.(-2)3=8 B.(-12)318 C.-22=4 D.(-2)3=-68.若一个数的立方等于它本身,则这个数是()A.1B.-1或1C.0D.-1或1或09.a,b,c为非零有理数,则它们的积必为正数的是()A.a>0,b,c同号B.b>0,a,c异号C.c>0,a,b异号D.a,b,c同号10.利用分配律计算(-1089)×9,正确的是()A.(-11-89)×9=-11×9-89×9B.(-10-89)×9=-10×9-89×9C.(10-89)×9=10×9-89×9D.-(10-89)×9=-(10×9-89×9)二、填空题(本大题共2小题,共10分)1.计算:8÷(-32)=;2.一个整数8150…0用科学记数法表示为8.15×109,则原数中“0”的个数为.3.由四舍五入法得到的近似数3.84×105精确到位.4.比较大小:-42(-2)4.5.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a ,b ,c 三个数的积为.三、解答题(共30分)1.计算:;(2)-(-0.2)32.计算(-24)×(-23+34+112)3.计算191819×(-38)4.计算:-81÷214-(-94)×(-16);5.计算-14-16×[3-(-2)2].6.-28×(-0.125)+(-28)×18-28×(-47).7.[-512-(-112)+216×(-48)-(-1)3].8..计算2-8÷(-2)3×(-12)×|-23|+(-1)20219、某为了加强校园周边治安综合治理,警察巡逻车从出发在学校旁边的一条南北方向的公路上执行治安巡逻,如果规定向南为正,向北为负一天中七次行驶记录如下.(单位:k)第一次第二次第三次第四次第五次第六次第七次−4+7−9+8+6−5−2(1)求下班时距出发地地多远?(2)在第几次记录时距地最远?(3)若每千米耗油0.3升,问共耗油多少升?10..已知a,b,c为有理数,且它们的对应点在数轴上的位置如图G-1-5所示.(1)试判断a,b,c的正负性.(2)在数轴上标出a,b,c的相反数的对应点的位置.(3)根据数轴化简:①|a|=;②|b|=;③|c|=;④|-a|=;⑤|-b|=;⑥|-c|=.(4)若|a|=3.5,|b|=2.5,|c|=5,求a,b,c的值.11.【概念学习】现规定:求若干个相同的有理数(均不等于0)的商的运算叫做除方,比如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等,类比有理数的乘方,我们把2÷2÷2写作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)写作(-3)④,读作“(-3)的圈4次方”.一般地,把(a≠0)写作a,读作“a的圈n次方”.【初步探究】(1)直接写出计算结果:2②=;(-12)③=.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(2)试一试:仿照上面的算式,把下列除方运算直接写成幂的形式:(-3)⑤=,(15)⑥=.(3)算一算:122÷(-13)④×(-2)⑥-(-13)⑥÷33.第3页,共3页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学练习题
命题人:刘宇新 时间:2015-12-22
一、选择题(3×10分)
1.若2a m b 2m+n 与4a n+1b 11的和仍是一个单项式,则m,n 的的值分别为( )
A.m=3 .n=3
B.m=3 n=4
C.m=4 n=3
D.m=-2 n=3
2.-[x-(2y-3x)]去括号后的结果为( )
A.-x+2y-3x
B.-x-2y+3x
C.-x-2y-3x
D.-x+2y+3x
3.若M=2a 2b,N=3ab 2,P= -4a 2b,则下列各式中正确的是( )
A.M+N=5a 3b 3
B.N+P=-ab
C.M+P=-2a 2b
D.M-P=2a 2b
4.多项式x 2-x+5减去3x 2+3的结果为( )
A.4x 2-x+8
B.2x 2-x+2
C.-2x 2-x+2
D.-2x 2+x+8
5.如果甲数为a,甲数比乙数多10%,那么乙数是( ) A.110%a + B.(1-10%)a C.110%
a - D.(1+10%)a 6.已知a 是两位数,
b 是一位数,把a 写在b 的后面,就成为一个三位数,这个三位数
可表示成( )
A.10b+a
B.ba
C.100b+a
D.b+10a
7.如图所示,陀螺是由下面那两个几何体组合而成的( )
A.长方形和圆锥
B.长方形和三角形
C.圆和三角形
D.圆柱和圆锥
8.若一个数的相反数是正数,则下面说法正确的是( )
A.这个数小于它的倒数
B.这个数大于它的相反数
C.这个数小于它的平方
D.这个数大于它的立方
9.平面上的三点可以确定直线( )
A.4条
B.3条
C.3条或1条
D.1条
10已知平面上有三个点,经过其中的任意两个点画直线,最后能把这个平面分成( )
A.4部分
B.5部分
C.6部分
D.7部分
二、填空题
1.大于122-而小于213
的所有整数的和是 。
2.三年总期储蓄的月利率为P%,存入1000元到期后的利息为 。
3.已知线段AB,在AB 的延长线上取一点C 使AC=2BC,在AB 的反向延长线
上取一点D,使DA=2AB,那么线段AC是线段DB的倍。
4.一件商品的进价为a元,将进价提高100%后标价,在搞标价打七折销售,则这件
商品销售后的利润为元。
5.已知2x4y n-1与-1
3
x m-1y5是同类项,则m= .n= .
6.如果a b分别为倒数,c d互为相反数,y的绝对值为1,则c+d+y2-aby的值是。
7.已知a2-ab=2,4ab-3b2=-3,则a2-13ab+9b2-5的值为。
8.若(2x3-8x2+x+1)+(3x3+2mx2-5x+3)不含二次项,则有理数m的值
为。
9.已知点A.B.C在一条直线上,AB=5cm,BC=4cm,则线段Ac的长
为。
10.已知等式ab+a=2008,ab+b=2007,如果a和b分别代表一个整数,那么
a-b= 。
11若m.n互为倒数,则mn2-(n-1)的值为。
12.在-13与23之间插入三个倒数,使这五个数中每相邻的两个数之间的距离相等,
则这三个数的和是。
13.从哈尔滨开往A市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不
相同,那么有种不同的票价。
14.如图线段AB=8.AP=5.OB=6.则op= 。
三、化简求值(6×3分)
(1)(2x4-5x3-4x+1)-(3x3+5x2-4x-3)-2(x4-4x3-1)其中x=-
2 3
(2)3(x-y)2-4(x-y)+7(x-y)+6(x-y)2其中x=5,y=3
(3)已知︱a+2︱+(b+1)2=0 求代数式5ab2-4a2b+[3a2b-(4ab2-a2b)]的值
四、如图线段AD=6cm,线段AC=BD=4cm,E.F分别是线段AB,CD的中点,求线段EF的长。
五、(9分)本市要建一条公路,其中的一段经过公开招标,由某建筑公司中标,在建筑过
程中,该公司为了保证质量提前完工,投入了甲乙丙三个工程队约同时施工,经过一段
时间后,甲工程队筑路akm乙工程队所筑的路是甲工程队的2
3
多18km,丙工程队所筑的
路是甲工程队的2倍少3km请问甲.乙.丙三个工程队共筑路多少千米。
若该段高速公路长为1200km,当a等于300时,他们完成任务了吗?
六、如图是一个棱柱的平面展开图,每个面上都标上了字母,请根据要求回答下列问题。
(8
分)
(1)如果A面在棱柱的下面,那么上面那个是哪个面?
(2)如果从前面看是面F,从左面看是面B,
那么从上面看是哪个面?
(3)如果从后面看是面D,从右面看是面C,那么从上面看是哪个面?
-780
初中数学试卷
桑水出品。