线性规划习题精讲

合集下载

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

在经济管理、交通运输、工农业生产等领域都有着广泛的应用。

下面我们通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。

一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。

其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。

二、线性规划问题的求解方法常见的求解线性规划问题的方法有图解法和单纯形法。

1、图解法适用于只有两个决策变量的线性规划问题。

步骤如下:画出直角坐标系。

画出约束条件所对应的直线。

确定可行域(满足所有约束条件的区域)。

画出目标函数的等值线。

移动等值线,找出最优解。

例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10 \\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件对应的直线:$x + 2y = 8$,$2x + y =10$,以及$x = 0$,$y = 0$。

课件8:3.3.2 简单的线性规划问题

课件8:3.3.2 简单的线性规划问题

解:设投资人分别用 x 万元、y 万元投资甲、乙两个项目,
x+y≤10, 由题意知x0≥.30x,+0.1y≤1.8,
y≥0.
目标函数 z=x+0.5y.
上述不等式组表示的平面区域如图所示,阴影部分(含边界)即
可行域.
作直线 l0:x+0.5y=0,并作平行于直线 l0 的一组直线 x+0.5y =z,z∈R,与可行域相交,其中有一条直线经过可行域上的 M 点且与直线 x+0.5y=0 的距离最大,这里 M 点是直线 x+y= 10 和 0.3x+0.1y=1.8 的交点. 解方程组x0+.3xy+=01.01,y=1.8, 得xy==46,,
解:设此工厂应生产甲、乙两种产品 x kg、y kg,利润 z 万元,
9x+4y≤360, 4x+5y≤200, 则依题意可得约束条件:3x+10y≤300, x≥0, y≥0.
利润目标函数为 z=7x+12y.
作出不等式组所表示的平面区域,即可行域(如下图).
作直线l:7x+12y=0,把直线l向右上方平移至l1位置时,直 线l经过可行域上的点M时,此时z=7x+12y取最大值.
【答案】6
9 5
题型三 线性规划的实际应用 例3:某投资人打算投资甲、乙两个项目,根据预测,甲、乙 项目可能的最大盈利率分别为100%和50%,可能的最大亏损 率分别为30%和10%,投资人计划投资金额不超过10万元,要 求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两 个项目各投资多少万元,才能使可能的盈利最大?
解方程组x7+x+2y1=0y3=,17, 得 M(1,1). 故当 x=1,y=1 时,zmin=8.
2x+y≥4, 变式训练 1:设 x,y 满足x-y≥-1, 则 z=x+y( )

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述我们考虑一个典型的线性规划问题,假设有一个工厂需要生产两种产品:产品A和产品B。

工厂有两个生产车间:车间1和车间2。

生产产品A需要在车间1和车间2进行加工,而生产产品B只需要在车间2进行加工。

每一个车间的加工时间和加工费用都是不同的。

我们的目标是找到最佳的生产计划,使得总的加工时间和加工费用最小。

二、问题分析1. 定义变量:- x1:在车间1生产产品A的数量- x2:在车间2生产产品A的数量- y:在车间2生产产品B的数量2. 定义目标函数:目标函数是最小化总的加工时间和加工费用。

假设车间1生产产品A的加工时间为t1,车间2生产产品A的加工时间为t2,车间2生产产品B的加工时间为t3,车间1生产产品A的加工费用为c1,车间2生产产品A的加工费用为c2,车间2生产产品B的加工费用为c3,则目标函数可以表示为:Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y3. 约束条件:- 车间1生产产品A的数量不能超过车间1的生产能力:x1 <= capacity1- 车间2生产产品A的数量不能超过车间2的生产能力:x2 <= capacity2- 车间2生产产品B的数量不能超过车间2的生产能力:y <= capacity2 - 产品A的总需求量必须满足:x1 + x2 >= demandA- 产品B的总需求量必须满足:y >= demandB4. 线性规划模型:综上所述,我们可以建立如下的线性规划模型:最小化 Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y满足约束条件:- x1 <= capacity1- x2 <= capacity2- y <= capacity2- x1 + x2 >= demandA- y >= demandB- x1, x2, y >= 0三、数据和解决方案为了展示如何求解该线性规划问题,我们假设以下数据:- 车间1的生产能力为100个产品A- 车间2的生产能力为150个产品A和100个产品B- 产品A的总需求量为200个- 产品B的总需求量为80个- 车间1生产产品A的加工时间为2小时,加工费用为10元/个- 车间2生产产品A的加工时间为1小时,加工费用为8元/个- 车间2生产产品B的加工时间为3小时,加工费用为15元/个根据以上数据,我们可以得到线性规划模型如下:最小化 Z = 2 * x1 + 1 * x2 + 3 * y + 10 * x1 + 8 * x2 + 15 * y满足约束条件:- x1 <= 100- x2 <= 150- y <= 100- x1 + x2 >= 200- y >= 80- x1, x2, y >= 0接下来,我们可以使用线性规划求解器来求解该问题。

线性规划经典例题

线性规划经典例题

线性规划经典例题【题目描述】某公司生产两种产品A和B,每天的生产时间为8小时。

产品A和B的生产时间分别为2小时和3小时。

产品A和B的利润分别为每一个单位的利润为5元和4元。

公司希翼最大化每天的利润。

已知产品A和B的生产过程中,每一个单位所需的原材料分别为2个和3个。

公司每天可用的原材料数量为12个。

请问公司应该如何安排每天的生产计划,以获得最大利润?【解题思路】这是一个典型的线性规划问题,我们可以通过建立数学模型来求解。

首先,我们定义决策变量:x表示每天生产的产品A的数量,y表示每天生产的产品B的数量。

然后,我们需要确定目标函数和约束条件。

【目标函数】公司的目标是最大化每天的利润,即最大化目标函数Z:Z = 5x + 4y【约束条件】1. 生产时间约束:产品A和B的生产时间不能超过每天的生产时间,即:2x + 3y ≤ 82. 原材料约束:产品A和B的生产过程中所需的原材料数量不能超过每天可用的原材料数量,即:2x + 3y ≤ 123. 非负约束:产品A和B的数量不能为负数,即:x ≥ 0y ≥ 0【求解过程】我们可以使用线性规划的求解方法来求解该问题。

首先,我们需要将目标函数和约束条件转化为标准的线性规划形式。

将目标函数Z = 5x + 4y转化为标准形式:Z = 5x + 4y + 0将约束条件2x + 3y ≤ 8转化为标准形式:2x + 3y + s1 = 8,其中s1 ≥ 0将约束条件2x + 3y ≤ 12转化为标准形式:2x + 3y + s2 = 12,其中s2 ≥ 0将约束条件x ≥ 0转化为标准形式:-x + 0y + s3 = 0,其中s3 ≥ 0将约束条件y ≥ 0转化为标准形式:0x - y + s4 = 0,其中s4 ≥ 0得到线性规划的标准形式为:Max Z = 5x + 4y + 02x + 3y + s1 = 82x + 3y + s2 = 12-x + 0y + s3 = 00x - y + s4 = 0x ≥ 0y ≥ 0s1 ≥ 0s2 ≥ 0s3 ≥ 0s4 ≥ 0【求解结果】通过线性规划求解器,我们可以得到最优解:x = 2,y = 2,Z = 5(2) + 4(2) = 18因此,公司应该每天生产2个产品A和2个产品B,以获得最大利润18元。

线性规划题及答案

线性规划题及答案

线性规划题及答案引言概述:线性规划是运筹学中的一种数学方法,用于寻觅最优解决方案。

在实际生活和工作中,线性规划问题时常浮现,通过对问题进行建模和求解,可以得到最优的决策方案。

本文将介绍一些常见的线性规划题目,并给出详细的答案解析。

一、生产规划问题1.1 生产规划问题描述:某工厂生产两种产品A和B,产品A每单位利润为100元,产品B每单位利润为150元。

每天工厂有8小时的生产时间,产品A每单位需要2小时,产品B每单位需要3小时。

问工厂每天应该生产多少单位的产品A 和产品B,才干使利润最大化?1.2 生产规划问题答案:设产品A的生产单位为x,产品B的生产单位为y,则目标函数为Max Z=100x+150y,约束条件为2x+3y≤8,x≥0,y≥0。

通过线性规划方法求解,得出最优解为x=2,y=2,最大利润为400元。

二、资源分配问题2.1 资源分配问题描述:某公司有两个项目需要投资,项目A每万元投资可获得利润2万元,项目B每万元投资可获得利润3万元。

公司总共有100万元的投资额度,问如何分配投资额度才干使利润最大化?2.2 资源分配问题答案:设投资项目A的金额为x万元,投资项目B的金额为y万元,则目标函数为Max Z=2x+3y,约束条件为x+y≤100,x≥0,y≥0。

通过线性规划方法求解,得出最优解为x=40,y=60,最大利润为240万元。

三、运输问题3.1 运输问题描述:某公司有两个仓库和三个销售点,每一个销售点的需求量分别为100、150、200,每一个仓库的库存量分别为80、120。

仓库到销售点的运输成本如下表所示,问如何安排运输方案使得总成本最小?3.2 运输问题答案:设从仓库i到销售点j的运输量为xij,则目标函数为Min Z=∑(i,j) cij*xij,约束条件为每一个销售点的需求量得到满足,每一个仓库的库存量不超出。

通过线性规划方法求解,得出最优的运输方案,使得总成本最小。

四、投资组合问题4.1 投资组合问题描述:某投资者有三种投资标的可选择,预期收益率和风险如下表所示。

简单的线性规划问题 课件

简单的线性规划问题 课件
(1)求u=x2+y2的最大值与最小值; (2)求v=x-y 5的最大值与最小值.
[解析] 画出满足条件的可行域如图所示,
(1)x2+y2=u表示一组同心圆(圆心为原点O),且对同一圆上的点x2+y2的值 都相等,由图可知:当(x,y)在可行域内取值时,当且仅当圆O过C点时, u最大,过(0,0)时,u最小.又C(3,8),所以u最大值=73,u最小值=0.
A.-4
B.6
C.10
D.17
[解析] 由线性约束条件画出可行域(如图中阴影部分).
当直线2x+5y-z=0过点A(3,0)时,zmin=2×3+5×0=6,故选B. [答案] B
x -y+1≥0, (2)(高考全国Ⅲ卷)若 x,y 满足约束条件 x-2y≤0,
x +2y-2≤0,
y 的最大值为________.
简单的线性规划问题
线性规划中的基本概念
名称
意义
线性约束条件 由x,y的 二元一次不等式(或方程)组成的不等式组
目标函数 欲求 最大值 或 最小值所涉及的变量x,y的解析式
线性目标函数
目标函数是关于x,y的_二__元__一__次__解__析__式____
可行解
满足 线性约束条件 的解(x,y)
名称
探究三 已知目标函数的最值求参数
[典例3] 若实数x,y满足不等式组 xy--12≤≤00,, x+2y-a≥0,
目标函数t=x
-2y的最大值为2,则实数a的值是________.
[解析] 如图, x=2,
由x+2y-a=0.
x=2, 得y=a-2 2, 代入x-2y=2中,解得a=2.
[答案] 2
则 z=x+
[解析] 由题意画出可行域(如图所示), 其中A(-2,-1),B 1,12 ,C(0,1),由z=x +y知y=-x+z,当直线y=-x+z过点 B1,12时,z取最大值32.

线性规划经典例题

线性规划经典例题

线性规划经典例题引言概述:线性规划是一种数学优化方法,被广泛应用于经济、管理、工程等领域。

本文将介绍几个经典的线性规划例题,通过这些例题的详细阐述,匡助读者更好地理解线性规划的原理和应用。

一、背包问题1.1 背包问题的定义和目标1.2 线性规划模型的建立1.3 求解背包问题的方法二、产销平衡问题2.1 产销平衡问题的背景和目标2.2 线性规划模型的建立2.3 求解产销平衡问题的方法三、投资组合问题3.1 投资组合问题的定义和目标3.2 线性规划模型的建立3.3 求解投资组合问题的方法四、生产计划问题4.1 生产计划问题的背景和目标4.2 线性规划模型的建立4.3 求解生产计划问题的方法五、运输问题5.1 运输问题的定义和目标5.2 线性规划模型的建立5.3 求解运输问题的方法正文内容:一、背包问题1.1 背包问题是指在给定的一组物品中,选择一些物品放入背包中,使得背包的总分量不超过限定值,同时使得背包中物品的总价值最大化。

1.2 线性规划模型可以通过引入决策变量和约束条件来描述背包问题。

决策变量表示选择放入背包的物品,约束条件包括背包总分量不超过限定值以及每一个物品的数量限制。

1.3 求解背包问题可以使用线性规划的求解算法,如单纯形法或者内点法。

通过对目标函数和约束条件进行线性化处理,可以将背包问题转化为标准的线性规划问题进行求解。

二、产销平衡问题2.1 产销平衡问题是指在给定的一组产品和市场需求的情况下,确定各个产品的生产量和销售量,使得总利润最大化。

2.2 线性规划模型可以通过引入决策变量和约束条件来描述产销平衡问题。

决策变量表示各个产品的生产量和销售量,约束条件包括生产能力限制和市场需求限制。

条件进行线性化处理,可以将产销平衡问题转化为标准的线性规划问题进行求解。

三、投资组合问题3.1 投资组合问题是指在给定的一组投资标的中,确定各个标的的投资金额,使得投资组合的风险最小或者收益最大。

3.2 线性规划模型可以通过引入决策变量和约束条件来描述投资组合问题。

高考线性规划必考题型非常全)

高考线性规划必考题型非常全)

线性规划专题一、命题规律讲解1、 求线性(非线性)目标函数最值题2、 求可行域的面积题3、 求目标函数中参数取值范围题4、 求约束条件中参数取值范围题5、 利用线性规划解答应用题一、线性约束条件下线性函数的最值问题线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标(),x y 即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即简单线性规划的最优解。

例1 已知4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,2z x y =+,求z 的最大值和最小值例2已知,x y 满足124126x y x y x y +=⎧⎪+≥⎨⎪-≥-⎩,求z=5x y -的最大值和最小值二、非线性约束条件下线性函数的最值问题高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。

它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。

例3 已知,x y 满足,224x y +=,求32x y +的最大值和最小值例4 求函数4y x x=+[]()1,5x ∈的最大值和最小值。

三、线性约束条件下非线性函数的最值问题这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。

它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。

例5 已知实数,x y 满足不等式组10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,求22448x y x y +--+的最小值。

【教学随笔】线性规划典型题例解析

【教学随笔】线性规划典型题例解析

线性规划典型题例归类解析简单的线性规划”是在学习了直线方程的基础上, 介绍直线方程的一个简单应用,考中占有一席之地,既有考查线性规划自身理论系统知识的试题, 究实际应用问题的试题,同时也有与其它知识相结合的交汇性试题 题型进行分类解析.一、求约束条件下的平面区域的面积r x+y — 2>0例1在平面直角坐标系中,不等式组 \ x — y+2 >0,表示的平面区域的面积是I x < 2(A)4W(B)4(C)2 羽(D)2分析:先根据约束条件作出平面区域,然后根据区域的图形特征求面积 解:由条件作图可知可行域为△ABC ,求出各个交点坐标为 A(2 ,4)、0)、C(0, 2),贝y S^ABC = 1|AB | • |OB| = 14-2 = 4,故选择 B.面积;如果平行区域不是一个三角形,可将区域划分为几个易求面积三角 形.二、求解与约束条件下与平面区域相关的距离问题I X A 1例2已知1 x — y+1 w 0 ,则X 2+ y 2的最小值是 ___________ .[2x — y — 2 w 0分析:先根据约束条件作出平面区域, 然后根据X 2+ y 2(平面区域内的点到原点的距离的平方)的几何意义进行求解.〔X > 1解:由$ X — y+1w 0 ,画出可行域,求得交点A(1 , 2), B(3 , 4),则[2x- y — 2w 0 由图观察知,平面区域内的点到原点距离最小的点为 A 点,而|OA| = 0T P =^/5,所以X 2+ y 2的最小值是5.点评:解答本题的关键就是要明确的几何意义 面区域内的点到原点距离的平方.三、求解与约束条件下的平面区域相关的斜率问题「y A 0例3实数X, y 满足不等式组S X — yA0 ,、2x — y — 2 A 0 分析:因为表达式 巳与斜率的坐标公式类似,x+ 1 来解决.解:满足已知不等式的可行域如图所示, 视(x ,y)为坐标平面可行域内y — 1的点,贝y u= --表示动点(x , y)与定点(一1, 1)连线的斜率,A. I I由条件求得各交点的坐标 0(0, 0) , A(2 , 2)、B(1 , 0),11在咼也有考查利用线性规划研 .下面就线性规划的常x 2+y 2,即X 2+ y 2表示平因此可转化为斜率问题u = 2的取值范围.x+ 1由斜率公式得 k pA= R k op=— 1,所以一1W uw T.3 3点评:此类题型在确定斜率的取值范围时遵循: 如果垂直于x 轴的直线满足条件, 则所求的斜率在两条边界直线的斜率之外; 如果垂直于x 轴的直线不满足条件, 则所求的斜率在两条边界直线的斜率之间,注意“等号”是否可取 . 四、求解约束条件下的线性目标函数的最值问题 例4在约束条件 r y+x < s { y+2x w 4 下,当3W s< 5时,目标函数z= 3x + 2y 的最大值的变化I x> 0, y > 0 范围是( A.[6 , 分析: ) 15]由于约束条件中含有参数B.[7 , 15]C.[6 , 8]D.[7 , 8]s,因此可行域是一个动态的区域,因此 y+2x=4 杪 在确定最大值时要注意分类 . X E(0,4)x=4 — s -r ',所以各交点坐标分别为 A(0 , 2), B(0 , y=2s — 4s), E(0 , 4), x+y=sy+2x=4,得s), C(4 — s, 2s — 4), D(0 ,(1) 当3w SV 4时可行域是四边形 OACD ,此时,目标函数在 C 点取得 ^G(4 -S ,23-4) 最大值 z = 3(4— s) + 2(2s — 4) = s + 4,所以 7w zv 8; (2) 当4w sw 5时可行域是△ OAE,此时,目标函数在 E 点取得最大值 4= 8,所以 Z max = 8,故选 D. 点评:对参数的处理是解答本题的一个关键, 进行分类讨论的标准是根据由约束条件所 形成的可行域的不同形状.在解答过程中要注意将目标函数 z 转化为关于s 的函数进行求解. 五、 求解在约束条件下目标函数中参数的问题 例5已知变量x, y 满足约束条件1 w x + yw 4,— 2w x — yw 2.若目标函数 中a> 0)仅在点(3 , 1)处取得最大值,贝y a 的取值范围为 ____________ . 解析:变量x, y 满足约束条件1 w x+ yw 4, — 2w x — yw 2在坐标系中 画出可行域,如图为四边形 ABCD ,其中A(3 , 1), k AD = 1, k AB =— 1, 由目标函数z= ax+y (其中a> 0)得y=— ax+z,则z 表示斜率为一a 的直线系中的截距的大小,若仅在点 A(3 , 1)处取得最大值,则直线 y=—ax+ z 应在直线x + y= 4与直线x = 3之间,直线斜率应小于 k AB =— 1, 即卩' —av — 1,所以a 的取值范围为(1 ,+s ).点评:本题的目标函数对应的直线的斜率是变化的, 一般求解目标函数 的最值时要将目标函数对应的直线的斜率与线性约束条件下的对应的直线的斜率进行比较, 若目标函数对应的直线过两条直线的交点, 且位于两直线之间,则其对应的斜率也就在两个 相交直线的斜率之间.另外解答本题的一个关健是挖掘出— a 与z 的几何意义. 六、 求平面区域的约束条件 例6双曲线x 2— y 2= 4的两条渐近线与直线 不等式组是( ) j x — y>0 (A) S x + y 》0 \ 0w xw 3 x — y > 0 (B) S x + y w 00< x w 3 z= 3X0+2X z= ax+ y(其 z^ax+y * \ 盘 y= (3-1)x=3围成一个三角形区域,表示该区域的 K+y=l \ Xx+yMx — yw 0 j x — y w 0 (C) x + yw 0 (D 门 x + y >0 _ 0w xw 3 I 0w xw 3 然后确定各边界所在的直线方程, 再 分析:本题要从根据题设条件作出平面区域入手, 确定其所对应的代数式的符号 . 解:双曲线x 2— y 2= 4的两条渐近线方程为 y =± x,与直线x = 3围成 一个三角形区域,如图所示, 在区域内取点 A(1 , 0),代入代数式:x — y 、x + y 、x 得x — y = 1, xr X — y > 0+ y = 1, x= 1,则该区域的约束条件为 \ X + y > 0,故选A.I 0w Xw 3点评:本题是一道逆向思维性题, 其难点主要是确定各边界所在的直线方程 Ax +By+ C =0对应的代数式 Ax + By+ C 的符号,一般根据平面区域的一个特殊点的坐标代入 Ax+ By+ C 即可确定.另外要注意边界所在直线的虚实 .七、求解可行域内的最优整数解问题直线90x + 100y = t 中的截距最大,但不是整数解.整数解X = 1与X = 2两条直线上,而离点 M 较近的两个点为(1 ,「X = 1代入z= 90x + 100y 比较可知当{ C 时,z = 90x + 100取得最大值390.,=3点评:在求使目标函数的最优整数解时,如果使目标函数取得最值的点 M (X 0, y 。

高中数学线性规划练习题及讲解

高中数学线性规划练习题及讲解

高中数学线性规划练习题及讲解线性规划是高中数学中的一个重要概念,它涉及到资源的最优分配问题。

以下是一些线性规划的练习题,以及对这些题目的简要讲解。

### 练习题1:资源分配问题某工厂生产两种产品A和B,每生产一件产品A需要3小时的机器时间和2小时的人工时间,每生产一件产品B需要2小时的机器时间和4小时的人工时间。

工厂每天有机器时间100小时和人工时间80小时。

如果产品A的利润是每件50元,产品B的利润是每件80元,工厂应该如何安排生产以获得最大利润?### 解题思路:1. 首先,确定目标函数,即利润最大化。

设生产产品A的数量为x,产品B的数量为y。

2. 目标函数为:\( P = 50x + 80y \)。

3. 根据资源限制,列出约束条件:- 机器时间:\( 3x + 2y \leq 100 \)- 人工时间:\( 2x + 4y \leq 80 \)- 非负条件:\( x \geq 0, y \geq 0 \)4. 画出可行域,找到可行域的顶点。

5. 计算每个顶点的目标函数值,选择最大的一个。

### 练习题2:成本最小化问题一家公司需要生产两种产品,产品1和产品2。

产品1的原材料成本是每单位10元,产品2的原材料成本是每单位15元。

公司每月有原材料预算3000元。

如果公司希望生产的产品总价值达到最大,应该如何分配生产?### 解题思路:1. 设产品1生产x单位,产品2生产y单位。

2. 目标函数为产品总价值最大化,但题目要求成本最小化,所以实际上是求成本最小化条件下的产品组合。

3. 约束条件为原材料成本:\( 10x + 15y \leq 3000 \)4. 非负条件:\( x \geq 0, y \geq 0 \)5. 画出可行域,找到顶点。

6. 根据实际情况,可能需要考虑产品1和产品2的市场价格,以确定最大价值。

### 练习题3:运输问题一个农场有三种作物A、B和C,需要运输到三个市场X、Y和Z。

线性规划练习题及解答

线性规划练习题及解答

线性规划练习题及解答线性规划是数学中一种常见的优化方法,它广泛应用于实际问题的解决中。

本文将提供一些线性规划的练习题及解答,以帮助读者更好地理解和运用线性规划。

练习题1:某公司生产两种产品:甲品和乙品。

每天可用于生产的原料数量分别为A和B。

已知每单位甲品所需的原料A和B的消耗量分别为a1和b1,每单位乙品所需的原料A和B的消耗量分别为a2和b2。

假设甲品和乙品的利润分别为p1和p2,求解出该公司在给定原料限制下能获得的最大利润。

解答:设甲品的生产量为x,乙品的生产量为y,则目标函数为最大化利润,即maximize p1 * x + p2 * y。

受限条件为原料A的消耗量限制 a1 * x + a2 * y <= A,原料B的消耗量限制 b1 * x + b2 * y <= B。

另外,x和y的取值范围为非负数(x >= 0,y >= 0)。

这样,我们可以得出完整的线性规划模型如下:maximize p1 * x + p2 * ysubject to:a1 * x + a2 * y <= Ab1 * x + b2 * y <= Bx >= 0y >= 0练习题2:某工厂生产三种产品:甲、乙、丙。

已知每单位甲、乙、丙产品的利润分别为p1、p2、p3,每天需要的原材料A、B的数量为a和b,每单位甲、乙、丙产品消耗的原材料A、B的数量分别为a1、b1和a2、b2以及a3、b3。

现在要求在给定的原材料数量限制下,求解出最大化利润的生产方案。

解答:设甲、乙、丙产品的生产量分别为x、y、z,则目标函数为最大化利润,即maximize p1 * x + p2 * y + p3 * z。

受限条件为原材料A和B的数量限制,分别为 a1 * x + a2 * y + a3 * z <= a 和 b1 * x + b2 * y + b3 * z <= b。

另外,x、y、z的取值范围为非负数(x >= 0,y >= 0,z >= 0)。

线性规划经典例题

线性规划经典例题

线性规划经典例题引言概述:线性规划是一种数学优化方法,用于求解线性约束条件下的最优解。

它在实际问题中有着广泛的应用,如生产计划、资源分配、运输问题等。

本文将介绍几个经典的线性规划例题,并详细阐述每个例题的解题思路和步骤。

一、最大化利润问题1.1 目标函数的建立首先,我们需要确定目标函数。

假设有两种产品A和B,每个单位的利润分别为x和y。

令x表示产品A的产量,y表示产品B的产量,我们的目标是最大化总利润。

1.2 约束条件的建立其次,我们需要确定约束条件。

假设产品A和B的生产所需的资源有限,分别为资源1和资源2。

我们需要考虑资源的限制以及产品的需求量。

1.3 求解最优解根据目标函数和约束条件,我们可以建立线性规划模型。

通过线性规划求解器,我们可以得到最优解,即产量x和y的数值,以及最大化的利润。

二、最小化成本问题2.1 目标函数的建立假设有n种原材料,每种原材料的价格为c1、c2、...、cn。

我们需要确定购买每种原材料的数量,以最小化总成本。

2.2 约束条件的建立每种原材料的数量要满足一定的约束条件,如总量限制、质量要求等。

此外,我们还需要考虑生产过程中的限制条件,如生产能力、工时等。

2.3 求解最优解根据目标函数和约束条件,我们可以建立线性规划模型。

通过线性规划求解器,我们可以得到最优解,即每种原材料的购买数量,以及最小化的成本。

三、资源分配问题3.1 目标函数的建立假设有m个任务需要分配给n个人员,每个人员的效率不同。

我们需要确定每个任务分配给哪个人员,以最大化总效率。

3.2 约束条件的建立每个任务只能由一个人员完成,每个人员只能执行一个任务。

此外,我们还需要考虑人员的可用时间、技能匹配等约束条件。

3.3 求解最优解根据目标函数和约束条件,我们可以建立线性规划模型。

通过线性规划求解器,我们可以得到最优解,即每个任务分配给哪个人员,以及最大化的总效率。

四、运输问题4.1 目标函数的建立假设有m个供应地和n个需求地,每个供应地的供应量和每个需求地的需求量已知。

简单的线性规划问题 课件

简单的线性规划问题   课件

【典型例题】 例 1 已知 1≤x+y≤5,-1≤x-y≤3,求 2x-3y 的取值范围.
解 作出二元一次不等式组1-≤1x≤+xy-≤y5≤,3 所表示的平面 区域(如图)即为可行域.
设 z=2x-3y,变形得 y=23x-13z,则得到斜率为23,且随 z 变化的一组平行直线. -13z 是直线在 y 轴上的截距,当直线截距最大时,z 的值最 小,当然直线要与可行域相交,即在满足约束条件时,目标 函数 z=2x-3y 取得最小值.
3.求线性目标函数在线性约束条件下的最大值或最小值的 问题,统称为线性规划问题.满足线性约束条件的解(x,
y)叫做可行解 ,由所有可行解组成的集合叫做可行域 .
分别使目标函数 z=ax+by 取得最大值或最小值的可行 解叫做这个问题的最优解.
4.线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 _y= ___-__ab_x+__b_z,在 y 轴上的截距是bz,当 z 变化时,方程表
如图所示,直线 MB 的斜率最大, 直线 MC 的斜率最小,
又∵B(0,2),C(1,0), ∴zmax=kMB=3;zmin=kMC=12. ∴z 的最大值为 3,最小值为12. (2)z=x2+y2,则它表示可行域内的点到原点的距离的平方, 结合图形知,原点到点 A 的距离最大,原点到直线 BC 的距 离最小.
由图可见,当直线 z=2x-3y 经过可行域上的点 A 时,截距 最大,即 z 最小. 解方程组xx-+yy==-5 1 得 A 的坐标为(2,3), ∴zmin=2x-3y=2×2-3×3=-5.
当直线 z=2x-3y 经过可行域上的点 B 时,截距最小,即 z 最大. 解方程组xx- +yy= =31 得 B 的坐标为(2,-1). ∴zmax=2x-3y=2×2-3×(-1)=7. ∴-5≤2x-3y≤7,即 2x-3y 的取值范围是[-5,-7]. 小结 解决线性规划问题的关键是正确地作出可行域,准确 地理解 z 的几何意义,求最优解时采用“平移直线法”.

线性规划习题精选精讲含答案

线性规划习题精选精讲含答案
1
O
x=3 x
习题精选精讲
方 平 移 后 与 直 线 x+y= 5 重 合 , 故 a=1, 选 D 五、求非线性目标函数的最值
2 x y 2 0 例 5、 已 知 x、 y 满 足 以 下 约 束 条 件 x 2 y 4 0 3 x y 3 0
是 ( A、 13, 1 C、 13, ) B、 13, 2 D、
3
0.18 x 0.09 y 72 0.08 x 0.28 y 56 解:设生产圆桌 x 只,生产衣柜 y 个,利润总额为 z 元,那么 x 0 y 0
2
而 z=6x+10y.
习题精选精讲
如上图所示,作出以上不等式组所表示的平面区域,即可行域. 作直线 l:6x+10y=0,即 l:3x+5y=0,把直线 l 向右上方平移至 l1 的位置时,直线经过可行域上点 M,且与原点 距离最大,此时 z=6x+10y 取最大值解方程组
x 2 例 1、 若 x、 y 满 足 约 束 条 件 y 2 x y 2
, 则 z=x+2y 的 取 值 范 围 是


A、 [2,6] B、 [2,5] C、 [3,6] D、 ( 3,5] 解 : 如 图 , 作 出 可 行 域 , 作 直 线 l: x+2y= 0, 将 l 向 右 上 方 平 移 , 过 点 A( 2,0) 时 , 有 最 小 值 2, 过 点 B( 2,2) 时 , 有 最 大 值 6, 故 选 A 二、求可行域的面积
所以,谷物饲料和动物饲料应按 5:1 的比例混合,此时成本最低. 指出:要完成一项确定的任务,如何统筹安排,尽量做到用最少的资源去完成它 ,这是线性规划中最常 见的问题之一.

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品A和B,每个单位产品A的利润为100元,每个单位产品B的利润为150元。

公司有两个车间可用于生产这两种产品,每个车间每天的工作时间为8小时。

产品A在车间1生产需要1小时,产品B在车间1生产需要2小时;产品A在车间2生产需要2小时,产品B在车间2生产需要1小时。

每天车间1的生产能力为400个单位产品A或200个单位产品B,车间2的生产能力为300个单位产品A或150个单位产品B。

公司的目标是在满足车间生产能力的前提下,最大化利润。

二、数学建模设x1为在车间1生产的产品A的数量,x2为在车间1生产的产品B的数量,x3为在车间2生产的产品A的数量,x4为在车间2生产的产品B的数量。

目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:车间1的生产能力:x1 + x2 ≤ 4002x1 + x2 ≤ 800车间2的生产能力:x3 + x4 ≤ 300x3 + 2x4 ≤ 300非负约束:x1, x2, x3, x4 ≥ 0三、求解过程使用线性规划的求解方法,可以得到最优解。

1. 将目标函数和约束条件转化为标准形式:目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:x1 + x2 + 0x3 + 0x4 ≤ 4002x1 + x2 + 0x3 + 0x4 ≤ 8000x1 + 0x2 + x3 + x4 ≤ 3000x1 + 0x2 + x3 + 2x4 ≤ 300x1, x2, x3, x4 ≥ 02. 使用线性规划求解器求解得到最优解:最优解为:x1 = 200, x2 = 200, x3 = 0, x4 = 100最大利润为:Z = 100(200) + 150(200) + 100(0) + 150(100) = 50000元四、结果分析根据求解结果,最优解是在车间1生产200个单位产品A,200个单位产品B,在车间2生产100个单位产品B,不需要在车间2生产产品A。

线性规划的常见题型及其解法学生版题型全面归纳好

线性规划的常见题型及其解法学生版题型全面归纳好

课题 线性规划旳常见题型及其解法题目线性规划问题是高考旳重点,而线性规划问题具有代数和几何旳双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题旳解答变得愈加新奇别致.归纳起来常见旳命题探究角度有: 1.求线性目旳函数旳最值. 2.求非线性目旳函数旳最值. 3.求线性规划中旳参数. 4.线性规划旳实际应用.本节重要讲解线性规划旳常见基础类题型.【母题一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目旳函数z =2x +3y 旳取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]【母题二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 旳最小值;(2)设z =x 2+y 2,求z 旳取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 旳取值范围.角度一:求线性目旳函数旳最值1.(·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 旳最大值为( )A .10B .8C .3D .22.(·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目旳函数z =x +6y 旳最大值为( )A .3B .4C .18D .403.(·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成旳封闭区域,则2x -y 旳最小值为( ) A .-6 B .-2 C .0D .2角度二:求非线性目旳旳最值4.(·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所示旳区域上一动点,则直线OM 斜率旳最小值为( )A .2B .1C .-13D .-125.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1旳取值范围 . 6.(·郑州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2旳取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]7.(·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所示旳平面区域,区域D 上旳点与点(1,0)之间旳距离旳最小值为________.8.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所示旳平面区域是Ω1,平面区域Ω2与Ω1有关直线3x -4y -9=0对称.对于Ω1中旳任意点A 与Ω2中旳任意点B ,|AB |旳最小值等于( )A .285B .4C .125D .2角度三:求线性规划中旳参数 9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所示旳平面区域被直线y =kx +43分为面积相等旳两部分,则k 旳值是( )A .73B .37C .43D .3410.(·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 旳最小值为-4,则k 旳值为( )A .2B .-2C .12D .-1211.(·高考安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 获得最大值旳最优解不唯一,则实数a 旳值为( )A .12或-1B .2或12C .2或1D .2或-112.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目旳函数z =3x +2y 旳最大值旳取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8] 13.(·通化一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1旳最小值为32,则a 旳值为________.角度四:线性规划旳实际应用14.A ,B 两种规格旳产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A 产品需要在甲机器上加工3小时,在乙机器上加工1小时;B 产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一种工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产品每件利润300元,B 产品每件利润400元,则这两台机器在一种工作日内发明旳最大利润是________元.15.某玩具生产企业每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一种卫兵需5分钟,生产一种骑兵需7分钟,生产一种伞兵需4分钟,已知总生产时间不超过10小时.若生产一种卫兵可获利润5元,生产一种骑兵可获利润6元,生产一种伞兵可获利润3元.(1)试用每天生产旳卫兵个数x与骑兵个数y表达每天旳利润w(元);(2)怎样分派生产任务才能使每天旳利润最大,最大利润是多少?一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0旳两侧,则a 旳取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)2.(·临沂检测)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 旳最小值是( )A .-3B .0C .32D .33.(·泉州质检)已知O 为坐标原点,A (1,2),点P 旳坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP→旳最大值为( )A .-2B .-1C .1D .24.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1旳取值范围是( )A .⎣⎡⎦⎤53,5B .[0,5]C .⎣⎡⎭⎫53,5 D .⎣⎡⎭⎫-53,5 5.假如点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取旳整数值为( )A .2B .1C .3D .06.(·郑州模拟)已知正三角形ABC 旳顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 旳取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)7.(·成都二诊)在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所示旳平面区域上一动点,则直线OP 斜率旳最大值为( )A .2B .13C .12D .18.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }旳面积为( )A .2B .1C .12D .149.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目旳函数z =ax +by (a >0,b >0)旳最大值为4,则ab旳取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω旳公共部分为线段AB ,则以AB 为直径旳圆旳面积旳最大值为( )A .πB .2πC .3πD .4π11.(·东北三校联考)变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 获得最大值旳最优解有无穷多种,则实数a 旳取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}12.(·新课标全国Ⅰ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 旳最小值为7,则a =( )A .-5B .3C .-5或3D .5或-313.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定旳平面区域旳面积是( )A .12B .π4C .1D .π214.(·高考北京卷)设有关x ,y 旳不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表达旳平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 旳取值范围是( )A .⎝⎛⎭⎫-∞,43 B .⎝⎛⎭⎫-∞,13 C .⎝⎛⎭⎫-∞,-23D .⎝⎛⎭⎫-∞,-53 15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表达旳平面区域为D .若指数函数y =a x 旳图象上存在区域D 上旳点,则a 旳取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)16.(·高考福建卷)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2旳最大值为( )A .5B .29C .37D .4917.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k (x -1)-1表达一种三角形区域,则实数k 旳取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)18.(·武邑中学期中)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 旳最大值为( )A .4B .6C .8D .1019.(·衡水中学期末)当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m 时,z =x -3y 旳最大值为8,则实数m 旳值是( )A .-4B .-3C .-2D .-120.(·湖州质检)已知O 为坐标原点,A ,B 两点旳坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan ∠AOB旳最大值等于( )A .94B .47二、填空题21.(·高考安徽卷)不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表达旳平面区域旳面积为________.23.(·重庆一诊)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目旳函数z =3x -y 旳最大值为____.24.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8旳最小值为________.25.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所示旳区域上一动点,则|OM |旳最小值是________.26.(·汉中二模)某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一种生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得旳最大利润是______万元.27.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜旳产量、成本和售价如下表:________亩.28.(·日照调研)若A 为不等式组⎩⎪⎨⎪⎧ x ≤0,y ≥0,y -x ≤2表达旳平面区域,则当a 从-2持续变化到1时,动直线x +y =a 扫过A 中旳那部分区域旳面积为________.29.(·高考浙江卷)当实数x ,y 满足⎩⎪⎨⎪⎧ x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 旳取值范围是________.30.(·石家庄二检)已知动点P (x ,y )在正六边形旳阴影部分(含边界)内运动,如图,正六边形旳边长为2,若使目旳函数z =kx +y (k >0)获得最大值旳最优解有无穷多种,则k 旳值为________.31.设m >1,在约束条件⎩⎪⎨⎪⎧ y ≥x ,y ≤mx ,x +y ≤1下,目旳函数z =x +my 旳最大值不不小于2,则m 旳取值范围 .32.已知实数x ,y 满足⎩⎪⎨⎪⎧ y ≥1,y ≤2x -1,x +y ≤m ,若目旳函数z =x -y 旳最小值旳取值范围是[-2,-1],则目旳函数旳最大值旳取值范围是________.33.(·高考广东卷)给定区域D :⎩⎪⎨⎪⎧ x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y在D 上获得最大值或最小值旳点},则T 中旳点共确定________条不一样旳直线.34.(·湖北改编)已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 旳取值范围为__________.35.(·衡水中学模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多种点(x ,y )使目旳函数z=x+my获得最小值,则m=________.。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某工厂生产A、B两种产品,每天生产的产品数量不同,且每种产品的生产时间和利润也不同。

现在需要确定每种产品的生产数量,以使得总利润最大化。

已知每天可用的生产时间为8小时,A产品的生产时间为2小时/件,利润为200元/件;B产品的生产时间为3小时/件,利润为300元/件。

同时,还有以下限制条件:1. A、B产品的总生产数量不能超过100件;2. A产品的生产数量不能超过60件;3. B产品的生产数量不能超过80件。

二、问题分析这是一个典型的线性规划问题,需要确定A、B产品的生产数量,使得总利润最大化。

根据题目中的限制条件,可以得到以下数学模型:目标函数:max Z = 200A + 300B约束条件:1. A + B ≤ 1002. A ≤ 603. B ≤ 804. A, B ≥ 0三、数学模型目标函数:max Z = 200A + 300B约束条件:1. A + B ≤ 1002. A ≤ 603. B ≤ 804. A, B ≥ 0四、求解过程1. 根据数学模型,列出线性规划的标准形式:目标函数:max Z = 200A + 300B约束条件:A +B ≤ 100A ≤ 60B ≤ 80A, B ≥ 02. 根据标准形式,画出目标函数和约束条件的图形:在二维坐标系中,以A为横轴,B为纵轴,画出以下直线:A +B = 100A = 60B = 80并标明非负约束条件。

3. 确定可行解区域:根据约束条件,可得到可行解区域为一个三角形,顶点分别为(60, 40)、(60, 80)和(0, 80)。

4. 确定目标函数的最优解:由于目标函数是线性的,最优解一定在可行解区域的某个顶点上。

计算每一个顶点的目标函数值:(60, 40):Z = 200 * 60 + 300 * 40 = 28,000(60, 80):Z = 200 * 60 + 300 * 80 = 36,000(0, 80):Z = 200 * 0 + 300 * 80 = 24,000可知,目标函数的最优解为Z = 36,000,对应的生产数量为A = 60,B = 80。

线性规划典型例题和归纳

线性规划典型例题和归纳

解:设每天生产甲产品x吨,乙产品y吨,可得产值z千元。
目的函数为:z=7x+9y
4x 6 y 180 线性约束条件为: 3x 6 y 150
5x 3y 150
画出可行域如图:
画出直线7x+9y=0 并平移得点P使Z最小。
求出点P 为 (150 ,100)
77
所以每天生产甲产品 150吨,乙产品100 吨时,
效益最大。
7
7
x y 6 0
例4 已知 x , y 满足不等式 x y 0 ,
y
6
x 3
x y 0
4
A
x y6 0
C
求:(1). z y 3 旳范围;
x
2
6
4
2
O
2
4x
(2).
z
y x
2 1
旳范围.
2
Q
B
x3
解: (1) z y 3 表达可行域内任一点与定点Q(0,-3)连线旳斜率,
x ≥ 1.
解:画出可行域如图:
(1)若z线 2x+y=0 并平移得点A使Z最大, 点B使Z最小。
由 x 4 y 3 0求出A 为(5,2)。
3x 5y 25 0
x 1 由 x 4 y 3 0 求出B为(1,1)。
Zmax 2 5 2 12, Zmin 2 1 1 3.
足维生素旳需要量,并能取得最大量旳维
• 作出不等式组表达旳平面区域如图所示,
• 作出5x+2y=0. • 把直线向右上方平移,直线经过可行域上
旳点M时,z=5x+2y取得最大值.
x y ≥ 0,
【6】已知x,
y满足
x
y
≤ 1,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划常见题型及解法线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△A B C的面积即为所求,由梯形OM B C的面积减去梯形OM A C的面积即可,选B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+a y=0,要使目标函数z=x+a y(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z =x 2+y 2的最大值和最小值分别是 ( )A 、13,1B 、13,2C 、13,45D、5解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|A O |2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( )A 、(-3,6)B 、(0,6)C 、(0,3)D 、(-3,3) 解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩ 由右图可知3330m m +>⎧⎨-<⎩,故0<m <3,选 C线性规划的实际应用在科学研究、工程设计、经济管理等方面,我们都会碰到最优化决策的实际问题,而解决这类问题的理论基础是线性规划。

利用线性规划研究的问题,大致可归纳为两种类型:第一种类型是给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大,的效益最大,第二种类型是给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源量最小。

例1、某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m 3,第二种有56m 3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产一个衣柜可获利10元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?解:设生产圆桌x 只,生产衣柜y 个,利润总额为z 元,那么⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+005628.008.07209.018.0y x y x y x 而z =6x +10y .如上图所示,作出以上不等式组所表示的平面区域,即可行域.作直线l :6x +10y =0,即l :3x +5y =0,把直线l向右上方平移至l 1的位置时,直线经过可行域上点M,且与原点距离最大,此时z =6x +10y 取最大值解方程组⎩⎨⎧=+=+5628.008.07209.018.0y x y x ,得M 点坐标(350,100).答:应生产圆桌350只,生产衣柜100个,能使利润总额达到最大.指出:资源数量一定,如何安排使用它们,使得效益最好,这是线性规划中常见的问题之一例2、某养鸡场有1万只鸡,用动物饲料和谷物饲料混合喂养.每天每只鸡平均吃混合饲料0.5kg,其中动物饲料不能少于谷物饲料的51.动物饲料每千克0.9元,谷物饲料每千克0.28元,饲料公司每周仅保证供应谷物饲料50000kg ,问饲料怎样混合,才使成本最低.解:设每周需用谷物饲料x kg ,动物饲料y kg ,每周总的饲料费用为z 元,那么⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤≤≥≥+05000005135000y x xy y x ,而z =0.28x +0.9y 如下图所示,作出以上不等式组所表示的平面区域,即可行域.作一组平行直线0.28x +0.9y =t ,其中经过可行域内的点且和原点最近的直线,经过直线x +y =35000和直线x y 51=的交点)317500,387500(A ,即387500=x ,317500=y 时,饲料费用最低. 所以,谷物饲料和动物饲料应按5:1的比例混合,此时成本最低.指出:要完成一项确定的任务,如何统筹安排,尽量做到用最少的资源去完成它,这是线性规划中最常见的问题之一. (例3图) (例4图)例3、下表给出甲、乙、丙三种食物的维生素A 、B 的含量及成本:营养师想购这三种食物共10千克,使之所含维生素A 不少于4400单位,维生素B 不少于4800单位,问三种食物各购多少时,成本最低?最低成本是多少?解:设所购甲、乙两种食物分别为x 千克、y 千克,则丙种食物为(10-x -y )千克.x 、y 应满足线性条件为⎩⎨⎧≥--++≥--++4800)10(4002008004400)10(400600400y x y x y x y x ,化简得⎩⎨⎧≥-≥422y x y 作出可行域如上图中阴影部分目标函数为z =7x +6y +5(10-x -y )=2x +y +50,令m =2x +y ,作直线l :2x +y =0,则直线2x +y =m 经过可行域中A(3,2)时,m 最小,即m min =2⨯3+2=8,∴z min =m min +50=58答: 甲、乙、丙三种食物各购3千克、2千克、5千克时成本最低,最低成本为58元.指出:本题可以不用图解法来解,比如,由⎩⎨⎧≥-≥422y x y 得z =2x +y +50=(2x -y )+2y +50≥4+2⨯2+50=58,当且仅当y =2,x =3时取等号 总结:(1)设出决策变量,找出线性规划的约束条件和线性目标函数;(2)利用图象,在线性约束条件下找出决策变量,使线性目标函数达到最大(或最小).2.线性规划问题的一般数学模型是:已知⎪⎪⎩⎪⎪⎨⎧≤+++≤+++≤+++nm nm n n m m m m b x a x a x a b x a x a x a b x a x a x a 22112222212*********(这n 个式子中的“≤”也可以是“≥”或“=”号)其中a ij (i =1,2,…,n , j =1,2,…,m ),b i (i =1,2,…,n )都是常量,x j (j =1,2,…,m ) 是非负变量,求z =c 1x 1+c 2x 2+…+c m x m 的最大值或最小值,这里c j (j =1,2,…,m )是常量.(3)线性规划的理论和方法主要在以下两类问题中得到应用:一是在人力、物力资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.线性规划中整点最优解的求解策略在工程设计、经营管理等活动中,经常会碰到最优化决策的实际问题,而解决此类问题一般以线性规划为其重要的理论基础。

然而在实际问题中,最优解 (x,y) 通常要满足x,y ∈N ,这种最优解称为整点最优解,下面通过具体例子谈谈如何求整点最优解 .1.平移找解法作出可行域后,先打网格,描出整点,然后平移直线l ,直线l 最先经过或最后经过的那个整点便是整点最优解.例1、某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m 3,第二种有56m 3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产一个衣柜可获利10元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?产 品木料(单位m 3)第 一 种第 二 种 圆 桌 0.18 0.08 衣 柜0.090.28解:设生产圆桌x 只,生产衣柜y 个,利润总额为z 元,那么⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+005628.008.07209.018.0y x y x y x 而z =6x +10y .如图所示,作出以上不等式组所表示的平面区域,即可行域. 作直线l :6x +10y =0,即l :3x +5y =0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上点M,且与原点距离最大,此时z =6x +10y 取最大值。

解方程组⎩⎨⎧=+=+5628.008.07209.018.0y x y x ,得M 点坐标(350,100).答:应生产圆桌350只,生产衣柜100个,能使利润总额达到最大.点评:本题的最优点恰为直线0.18x +0.09y =72和0.08x +0.28y =56的交点M 。

例 2 有一批钢管,长度都是4000mm ,要截成500mm 和600mm 两种毛坯,且这两种毛坯按数量比不小于31配套,怎样截最合理? 解:设截500mm 的钢管x 根,600mm 的y 根,总数为z 根。

根据题意,得 ,目标函数为,作出如图所示的可行域内的整点,作一组平行直线x+y=t ,经过可行域内的点且和原点距离最远的直线为过B (8,0)的直线,这时x+y=8.由于x,y 为正整数,知(8,0)不是最优解。

显然要往下平移该直线,在可行域内找整点,使x+y=7,可知点(2,5),(3,4),(4,3),(5,2),(6,1)均为最优解.答:略.点评:本题与上题的不同之处在于,直线x+y=t 经过可行域内且和原点距离最远的点B (8,0)并不符合题意,此时必须往下平移该直线,在可行域内找整点,比如使x+y=7,从而求得最优解。

从这两例也可看到,平移找解法一般适用于其可行域是有限区域且整点个数又较少,但作图要求较高。

相关文档
最新文档