空间立体几何图形的截面1
北师版高考总复习一轮理科数精品课件 第8章 立体几何 指点迷津(八) 空间几何体的截面问题
因为 4
>
2 3
3
>
3 2
4
>
1
S=6·2
3
,选项
2
·
2
3 3
·sin 60° = 4 .
B,C,D 错误,故选 A.
(方法2)B1A1,B1B,B1C1与平面A1BC1所成的角都相等,如图所示,
在AB,BC,CC1,C1D1,D1A1,A1A上分别取点E,F,G,H,K,L.
设BE=BF=C1G=C1H=A1K=A1L=x,则CF=CG=D1H=D1K
第八章
指点迷津(八) 空间几何体的截面问题
空间几何体的截面问题
用平面去截一个几何体,所截出的面叫作截面.我们可以想象,类似于用刀
去切(截)几何体,把几何体分成两部分,刀在几何体上留下的痕迹就是截面
的形状,截面是一个平面图形.空间几何体的截面问题涉及平面的基本事实、
空间线面的位置关系、点线共面、线共点等问题,综合性较强,对直观想象
2
则 S=
2+ 2
2
2
·h2.点 E 到 LG 的距离 h1= [ 2(1-)] -
H 到 LG 的距离
6
2(1-)+ 2
· 2 (1-x)+
2
2- 2
2
6
h2= 2 x,
6
3
· 2 x= 2 (-2x2+2x+1).当
1
3 3
x=2时,Smax= 4 .
2
解题心得作出截面的关键是找到截线,作出截线的主要根据有:(1)确定平
=AE=AL=1-x,易证点E,F,G,H,K,L共面.因为BE=BF,
立体几何中的截面(解析版)
立体几何中的截面(解析版)在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱、圆锥、球、棱柱、棱锥、长方体、正方体等),得到的平面图形。
总共有三种截面方式,分别为横截、竖截、斜截。
我们需要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。
正六面体的基本斜截面不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。
圆柱体的基本截面也有其特殊性质。
我们可以运用线、面平行的判定定理与性质求截面问题,或者结合线、面垂直的判定定理与性质定理求正方体中截面问题。
此外,我们还可以灵活运用一些特殊图形与几何体的特征,“动中找静”,如正三角形、正六边形、正三棱锥等。
建立函数模型也是求最值问题的一种方法。
在一个透明的塑料制成的长方体内灌进一些水,固定底面一边于地面上,再将倾斜,有四个命题。
其中,水的部分始终呈棱柱状,棱AD始终与水面平行,当倾斜到如图5(2)时,BE·BF是定值。
水面的面积在转动过程中会改变,而BC//FG//A1D1,所以A1D1//面EFGH。
因此,正确的命题序号为①③④。
一个容积为1立方单位的正方体,在棱AB、BB1及对角线B1C的中点各有一小孔E、F、G。
若此可以任意放置,则该可装水的最大容积是多少?分析本题,不能用一个平面去截一个正方体,使得截面为五边形。
进一步地,截面也不能为正五边形。
这是因为正方体的每个面都是正方形,而五边形无法与正方形相切。
因此,无论如何调整平面的位置,都不能得到五边形的截面。
而且OE=OC是抛物线的直线准线,所以焦点F在OC上,且OF=OC=1.故选:D二、完形填空在数学课上,老师讲到一个有趣的问题:如何用一个平面去截一个正方体所得截面不能是一个正五边形。
这个问题引起了我的思考,我开始想象一个平面在正方体中穿过的情景。
我发现,如果截面是一个正五边形,那么这个五边形的五条边必须分属于正方体的五个不同的面。
但是,正方体的每两个相对的面是平行的,所以这五条边中必有两条边是平行的。
立体几何中的截面(解析版)
专题13 立体几何中的截面【基本知识】1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。
其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。
最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。
2、正六面体的基本斜截面:3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。
【基本技能】技能1.结合线、面平行的判定定理与性质性质求截面问题;技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。
例1 一个正方体接于一个球,过这个球的球心作一平面,则截面图形不可能...是( )分析 考虑过球心的平面在转动过中,平面在球的接正方体上截得的截面不可能是大圆的接正方形,故选D 。
例2 如图,在透明的塑料制成的长方体ABCD-A 1B 1C 1D 1容器灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题:① 水的部分始终呈棱柱状; ② 水面EFGH 的面积不改变; ③ 棱A 1D 1始终与水面EFGH 平行;④ 当容器倾斜到如图5(2)时,BE·BF 是定值; 其中正确的命题序号是______________分析 当长方体容器绕BC 边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG ,但EH 与FG 的距离EF 在变,所以水面EFGH 的面积在改变,故②错误;在转动过程中,始终有BC//FG//A 1D 1,所以A 1D 1//面EFGH ,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为BC BF BE V ⋅⋅=21水是定值,又BC 是定值,所以BE·BF 是定值,即④正确。
立体几何中的 截面问题
立体几何中的截面问题立体几何中的截面问题⒈引言立体几何是研究空间之中各种几何体的形态、位置、运动和性质的数学学科。
在立体几何中,截面问题是一个重要的研究方向。
本文将介绍截面问题的基本概念、解题方法以及应用领域。
⒉基本概念⑴截面的定义截面是指将一个立体体积由一个或多个平面切割所得到的平面图形。
⑵截面的种类常见的截面包括平行截面、垂直截面、倾斜截面等。
平行截面是指与立体体积的底面平行的截面,垂直截面是指与立体体积的底面垂直的截面,倾斜截面是指与立体体积的底面既不平行也不垂直的截面。
⒊解题方法⑴平行截面的求解方法平行截面与底面平行,因此可以通过计算底面的面积和位于底面高度上的平行截面与底面的比例关系来求解平行截面的面积。
⑵垂直截面的求解方法垂直截面与底面垂直,因此可以通过计算底面的面积和垂直截面的高度来求解垂直截面的面积。
⑶倾斜截面的求解方法倾斜截面与底面既不平行也不垂直,因此求解倾斜截面的面积需要考虑其与底面的夹角以及截面的形状。
可以通过投影的方法或截面形状的几何关系来求解倾斜截面的面积。
⒋应用领域⑴建筑设计在建筑设计中,截面问题常常用于计算建筑物的横截面积,从而确定建筑物的结构稳定性和负荷承受能力。
⑵工程力学在工程力学中,截面问题常常用于计算结构件的截面形状和尺寸,从而确定结构件的刚度和强度。
⑶生物学在生物学中,截面问题常常用于计算生物体的截面积,从而确定生物体的体积和表面积,进而研究生物体的生理功能和生物学特性。
附件:本文档涉及的附件包括:⒈示例图片:包括平行截面、垂直截面和倾斜截面的示意图。
⒉计算表格:包括计算平行截面、垂直截面和倾斜截面面积的示例表格。
法律名词及注释:⒈立体几何:是数学学科中研究空间中各种几何体的形态、位置、运动和性质的学科。
⒉截面:把立体体积由一个或多个平面切割所得到的平面图形。
立体几何中的截面(解析版)
专题13 立体几何中的截面【基本知识】1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。
其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。
最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。
2、正六面体的基本斜截面:3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。
【基本技能】技能1.结合线、面平行的判定定理与性质性质求截面问题;技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。
例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能...是()分析考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D。
例2 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题:①水的部分始终呈棱柱状;②水面EFGH的面积不改变;③棱A1D1始终与水面EFGH平行;④当容器倾斜到如图5(2)时,BE·BF是定值;其中正确的命题序号是______________分析当长方体容器绕BC边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EHA CBDBC BF BE V ⋅⋅=21水例3 有一容积为1 立方单位的正方体容器ABCD-A 1B 1C 1D 1,在棱AB 、BB 1及对角线B 1C 的中点各有一小孔E 、F 、G ,若此容器可以任意放置,则该容器可装水的最大容积是( )A .21 B .87 C .1211 D .4847 分析 本题很容易认为当水面是过E 、F 、G 三点的截面时容器可装水的容积最大图(1),最大值为8712121211=⋅⋅⋅-=V 立方单位,这是一种错误的解法,错误原因是对题中“容器是可以任意放置”的理解不够,其实,当水平面调整为图(2)△EB 1C 时容器的容积最大,最大容积为1211112121311=⋅⋅⋅⋅-=V ,故选C 。
立体几何中的 截面问题
立体几何中的截面问题本文档旨在介绍立体几何中的截面问题,包括截面的定义、性质、计算方法等方面的内容。
通过对截面问题的介绍和详细解析,读者可以更好地理解和应用相关知识。
1、截面的定义在立体几何中,截面是指一个平面和立体图形相交而形成的曲线或平面部分。
截面可以是二维的曲线,也可以是三维的平面。
截面问题主要研究在不同情况下的截面形状、面积、体积等性质。
2、截面的性质截面的性质取决于所截图形的性质以及截面的位置和方向。
主要包括以下几个方面:2.1 几何形状:截面可以是点、线段、圆、椭圆、抛物线等各种几何形状。
2.2 面积:截面的面积可能是有限的,也可能是无限的。
2.3 体积:截面可以用来计算图形的体积,从而解决与立体几何有关的问题。
2.4 位置和方向:不同位置和方向的截面可以得到不同的结果,需要根据具体问题进行分析和计算。
3、截面的计算方法根据截面的性质和具体问题的要求,有多种不同的计算方法可以用来求解截面问题。
常用的计算方法包括以下几种:3.1 几何分析法:通过几何分析截面的形状和性质,利用几何定理和方法计算截面的面积、体积等。
3.2 数学建模法:将截面问题转化为数学模型,利用数学方法和计算机技术进行计算和求解。
3.3 数值模拟法:通过数值模拟和计算机仿真,模拟和计算截面问题的解答。
3.4 实验测量法:通过实际测量和实验,获取截面的相关数据和性质进行计算和分析。
附件:本文档无附件。
法律名词及注释:1、立体几何:研究三维空间中点、线、面等几何图形的性质和变换的数学学科。
2、截面:一个平面和立体图形相交而形成的曲线或平面部分。
立体几何中的截面问题 教学设计
《立体几何中的截面问题》教学设计一、引言立体几何是数学中一个重要的分支,它研究的是三维空间中的图形和体积。
在立体几何中,截面问题是一个非常有趣的话题,它涉及到了平面和立体图形的相互作用,对于学生来说是一个较为抽象的概念,但又是非常重要的。
在本次教学设计中,我们将以立体几何中的截面问题为主题,通过深入浅出的教学方式,帮助学生全面理解这一概念。
二、知识点介绍1.截面的定义在几何学中,截面是指一个几何图形在确定条件下与另一个几何图形交叠的部分。
在立体几何中,我们通常讨论的是平面与立体的交点部分,这些交点形成的图形称为截面。
2.截面与立体图形的关系通过对截面的研究,我们可以更加深入地理解立体图形的形状、体积和特性。
截面不仅可以帮助我们了解一个立体图形的内部结构,还能够将抽象的立体图形转化为平面图形来进行研究。
3.截面问题的应用在工程、建筑、艺术等领域,截面问题都有着广泛的应用。
通过对截面问题的研究,我们可以更好地理解和利用立体图形,从而应用到实际的生活和工作中。
三、教学目标1.了解截面的基本定义和特性。
2.掌握不同立体图形的截面求解方法。
3.能够应用截面问题解决实际生活中的问题。
4.培养学生分析和解决问题的能力。
四、教学内容与逻辑安排1.引入:通过展示一些真实生活中的立体图形,引出截面问题的概念,激发学生的兴趣。
2.理论知识讲解:首先介绍截面的定义和基本特性,然后分别针对不同的立体图形(如长方体、球体、圆柱体等)详细讲解其截面求解方法和特点。
3.实例演练:给出一些具体的例题,让学生通过实际计算和画图来掌握截面问题的求解方法。
4.拓展应用:结合实际生活中的案例,让学生应用截面问题来解决一些实际问题,培养学生的应用能力。
5.总结回顾:总结截面问题的求解方法和应用,强调理论与实际的联系,让学生对本次教学内容有一个全面的回顾和总结。
五、个人观点和理解在我看来,立体几何中的截面问题不仅是一个重要的知识点,更是一个非常有趣和实用的概念。
强基专题--立体几何中的截面问题
强基专题3 立体几何中的截面问题
[跟进训练]
1.(2021·重庆模拟)在三棱锥 P-ABC 中,PA,PB,PC 两两垂直,
PA=3,PB=4,PC=5,点 E 为线段 PC 的中点,过点 E 作该三棱
锥外接球的截面,则所得截面圆的面积不可能为( )
A.6π
B.8π
C.10π
D.12π
1234 5
(2)当π2<θ<π时,0<α<θ<π,此时sin θ<1,sin α可以取到最 大值1,
此时过圆锥母线的截面面积最大,最大值为S=12l2.
1234 5
强基专题3 立体几何中的截面问题
综上所述,过圆锥母线的截面面积的最大值与轴截面顶角θ的范 围有关,
当0<θ≤π2时,轴截面面积最大,最大值为S=12l2sin θ. 当π2<θ<π时,过圆锥母线的截面面积最大,最大值为S=12l2.
同理 FG∥EH,所以四边形 EFGH 为平行四边形,又 AD⊥BC, 所以四边形 EFGH 为矩形.
1234 5
强基专题3 立体几何中的截面问题
由相似三角形的性质得BECF=AACF,FACC=AFDG, 所以BECF+FAGD=AACF+FACC,BC=AD=2, 所以 EF+FG=2,所以四边形 EFGH 的周长为定值 4,S 四边形 EFGH =EF×FG≤EF+2 FG2=1, 所以四边形 EFGH 的面积有最大值 1.故选 B.]
1 2
l2sin θ.截面VCD的面积S′=12l2sin α.在△V强基专题3 立体几何中的截面问题
(1)当0<θ≤π2时,0<α<θ≤π2,sin α<sin θ⇒S′<S,此时过圆 锥母线的截面面积最大为轴截面面积S=12l2sin θ.
截面形状及相应面积的求法 (1)结合线、面平行的判定定理与性质定理求截面问题; (2)结合线、面垂直的判定定理与性质定理求正方体中截面问题; (3)猜想法求最值问题:“要灵活运用一些特殊图形与几何体的 特征,“动中找静”,如正三角形、正六边形、正三棱锥等; (4)建立函数模型求最值问题:①设元;②建立二次函数模型; ③求最值.
(整理)空间立体几何图形的截面
空间立体几何图形的截面江苏省前黄高级中学许云峰教学背景本课为以立体几何的截面图为核心,让学生借助《几何画板》的实际模拟和探索功能进行学习,由学生自我探究,进行知识迁移,通过类比,自己去尝试并最终解决问题。
教师在此过程中进行必要的总结和在学生出现困难时进行指导,由此培养学生思维的独立和发散性,使学生真正成为学习的主体。
教学目标:1.认知目标:整合几何体的截面情况,形成完整的认知体系。
2.能力目标:学生利用《几何画板》探索问题的能力,以培养学生知识迁移能力,发散思维和类比思维能力。
3.情感目标:培养学生探索创新能力,激发学生学习的热情和积极性。
重点与难点重点:空间几何体的截面图的作法;空间旋转体的截面作法。
难点:空间几何图形的交点的作法;由极限思想作出空间旋转体的截面图的作法。
教学策略与教法设计策略:教师提出问题,然后逐层展开,分步进行研究(需学生进行探索和分析),然后学生进行分组讨论和实际操作,通过自主学习、探究学习、合作学习达到认知的意义建构。
教法1.演示法:把制作的课件展示给学生,便于学生对知识的深层次的把握,并从中获得启发,从而解决问题。
这同时也给学生制作作品提供了模板,让学生明白作品需达到的要求。
2.谈话法:在教师指导下,由全班或小组成员围绕某一中心问题发表自己的看法,从而进行相互学习、合作学习,集思广益。
3.成果展示法:将学生制作的作品有选择的展示(以小组为单位进行制作,每个小组推荐1~2个进行演示),让学生获得成功的喜悦和认同,从而激发学生后续学习的热情。
4.讨论法:就学生探索所得成果,各小组可自由提问,或者师生共同评价,最后总结成整体观点。
教学过程设计先期准备在《几何画板》中建立立体几何的图形工具包,方便学生在最快的时间内作出准确的立体几何图形,以方便学生进行探究性学习,避免在作图上花费过多时间和精力;同时可以给学生以示范,让学生学会如何作出形象的立体几何直观图。
教学目标提出探究空间几何图形上过任意三点的截面1.分三个小组对多面体进行协作探究:第一小组:柱体;第二小组:锥体;第三小组:台体。
立体几何中截面问题重难考点归纳总结
高三二轮专题复习立体几何中截面问题重难考点归纳总结作空间几何体截面的常见方法:(1)直接连接法:有两点在几何体的同一个面上,连接该两点即为几何体与截面的交线,找截面就是找交线的过程;(2)作平行线法:过直线与直线外一点作截面,若直线所在的平面与点所在的平面平行,可以通过过点找直线的平行线找到几何体与截面的交线;(3) 作延长线找交点法:若直线相交但是立体图形中未体现,可通过作延长线的方法先找到交点,然后借助交点找到截面形成的交线;(4)辅助平面法:若三个点两两都不在一个侧面或者底面中,则在作截面时需要作一个辅助平面.考点一:截面形状的判断1.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面.平面以任意角度截正方体,所截得的截面图形不可能为() A .等腰梯形B .非矩形的平行四边形C .正五边形D .正六边形2.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面,如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别是棱B 1B 、B 1C 中点,点G 是棱CC 1的中点,则过线段AG 且平行于平面A 1EF 的截面图形为( )A .矩形B .三角形C .正方形D .等腰梯形3.如图所示的几何体是由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个垂直于圆柱底面的平面去截这个组合体﹐则截面图形可能是______(填序号).4.(多选题)一个正方体内有一个内切球,用一个平面去截,所得截面图形可能是图中的( )A .AB .BC .CD .D5.在正方体中,M ,N ,Q 分别为棱AB ,的中点,过点M ,N ,Q 作该正方体的截面,则所得截面的形状是() A .三角形B .四边形C .五边形D .六边形考点二:求截面面积6.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为16的正方形,则该圆柱的表面积为() A . B . C . D . 7.已知球O 的表面积为,则过球Q 一条半径的中点,且与该半径垂直的截面圆的面积为___________. 8.已知圆锥的侧面积为,若其过轴的截面为正三角形,则该圆锥的母线的长为___________. 9.已知正四棱柱中、的交点为,AC 、BD 的交点为,连接,点为的中点.过点且与直线AB 平行的平面截这个正四棱柱所得截面面积的最小值和最大值分别为1,则正四棱柱的体积为______________.111-ABCD A B CD 111,B B C D 1O 2O 12O O 24π20π8π29π11A C 11B D 1O 2O 12O O O 12O O O 1111ABCD A B C D -10.已知正四棱柱中,,,则该四棱柱被过点,C ,E 的平面截得的截面面积为______. 11.已知圆锥的侧面积为20π,底面圆O 的直径为8,当过圆锥顶点的平面截该圆锥所得的截面面积最大时,则点O 到截面的距离为______________.12.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面. 如图,在棱长为1的正方体中,点分别是棱的中点,点是棱的中点,则过线段且平行于平面的截面的面积为A . B. C . D13.已知棱长为的正四面体,,,分别是棱,,的中点,则正四面体的外接球被三角形所在的平面截得的截面面积是( )A .B .C .D . 14.已知三棱锥的所有棱长均相等,四个顶点在球的球面上,平面经过棱,,的中点,若平面截三棱锥和球所得的截面面积分别为,,则( ) ABC .D . 15.已知正方体的长为2,直线平面,下列有关平面截此正方体所得截面的结论中,说法正确的序号为______.①截面形状一定是等边三角形:②截面形状可能为五边形;③截面面积的最大值为④存在唯一截面,使得正方体的体积被分成相等的两部分.16.已知某圆锥轴截面的顶角为,过圆锥顶点的平面截此圆锥所得截面面积的最大值为,则该圆锥的1111ABCD A B C D -1124BE BB ==143AB AA =1A 1111ABCD A B C D -,E F 111,B B B C G 1CC AG 1A EF 198894ABCD E F N AB AC AD ABCD EFN 73π83π103π163πA BCD -O αAB AC AD αA BCD -O 1S 2S 12S S =38π364π1111ABCD A B C D -1AC ⊥αα120 2底面半径为() ABC .D .17.在长方体中,已知,,分别为,的中点,则平面被三棱锥外接球截得的截面圆面积为___________.考点三:求截面周长18.如图,在正方体中,,为棱的中点,为棱的四等分点(靠近点),过点作该正方体的截面,则该截面的周长是___________.19.已知在棱长为6的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱C 1D 1,B 1C 1的中点,过A ,E ,F 三点作该正方体的截面,则截面的周长为________.20.正三棱柱ABC ﹣A 1B 1C 1中,所有棱长均为2,点E ,F 分别为棱BB 1,A 1C 1的中点,若过点A ,E ,F 作一截面,则截面的周长为( )1111ABCD A B C D -122AA AB AD ===E F 1BB 11D C 11A BCD 1C CEF -1111ABCD A B C D -4AB =E BC F 11A D 1D ,,A E FA .B .C .D .21.在三棱锥中,,截面与,都平行,则截面的周长等于( )A .B .C .D .无法确定考点四:截面最值问题22.已知三棱锥的四个顶点在球的球面上,,的正三角形,三棱锥的体积为,为的中点,则过点的平面截球所得截面面积的取值范围是( ) A . B . C . D . 23.正四面体ABCD 的棱长为4,E 为棱AB 的中点,过E 作此正四面体的外接球的截面,则该截面面积的取值范围是( ) A . B . C . D . 24.已知球O 是正三棱锥A -BCD (底面是正三角形,顶点在底面的射影为底面中心)的外接球,BC =3,AB =E 在线段BD 上,且BD =3BE .过点E 作球O 的截面,则所得截面面积的最小值是( ) A . B. C . D .25.如图,四边形为四面体的一个截面,若四边形为平行四边形,,,则四边形的周长的取值范围是___________.26.如图,设正三棱锥的侧棱长为,,分别是上的点,过作三棱锥的截面,则截面周长的最小值为________.+A BCD -AB CD a ==MNPQ AB CD MNPQ 2a 4a a P ABC -O PA PB PC ==ABC ∆P ABC -16Q BC Q O 13,24ππ⎡⎤⎢⎥⎣⎦12,23ππ⎡⎤⎢⎥⎣⎦13,44ππ⎡⎤⎢⎥⎣⎦12,43ππ⎡⎤⎢⎥⎣⎦[]46ππ,[]412ππ,[]4ππ,[]6ππ,2π3π4π5πEFGH ABCD EFGH 4AB =6CD =EFGH P ABC -240APB ∠=︒,E F ,BP CP ,,A E F AEF27.正三棱锥,点在棱上,且,已知点都在球的表面上,过点作球的截面,则截球所得截面面积的最小值为___________.考点五:有关截面的综合问题28.如图,在正方体中,点P 为线段上的动点(点与,不重合),则下列说法不正确的是( )A .B .三棱锥的体积为定值C .过,,三点作正方体的截面,截面图形为三角形或梯形D .DP 与平面所成角的正弦值最大为 29.(多选题)在棱长为2的正方体中,以下结论正确的有()A .三棱锥外接球的体积是B .当点在直线上运动时,的最小值是P ABC -AB ==E PA 3PE EA =P A B C 、、、O E O ααO 1111ABCD A B C D -11A C P 1A 1C BD CP ⊥C BPD -P C 1D 1111D C B A 131111ABCD A B C D -11B A DC -Q 1BC 1A Q QC +8+C .若棱,,的中点分别是,,,过,,三点作正方体的截面,则所得截面面积为D .若点是平面上到点和距离相等的点,则点的轨迹是直线30.(多选题)如图,正方体的棱长为1,P 为的中点,Q 为线段上的动点,过点A ,P ,Q 的平面截该正方体所得的截面多边形记为S ,则下列命题正确的是( )A .当时,S 为等腰梯形B .当时,S 与的交点R 满足C .当时,S 为六边形D .当时,S31.(多选题)在正方体中,,点E ,F 分别为,中点,点P 满足,,则( )A .当时,平面截正方体的截面面积为B .三棱锥体积为定值 AB 1AA 11CDEFG E F G M 1111D C B A D 1C M 11A D 1111ABCD A B C D -BC 1CC 12CQ =34CQ =11C D 113C R =314CQ <<1CQ =1111ABCD A B C D -2AB =AB BC 1AP AA λ= [0,1]λ∈1λ=PEF 941P ECC -C .当时,平面截正方体的截面形状为五边形D .存在点P ,二面角为45°10,3λ⎛⎤∈ ⎥⎝⎦PEF P EF A --Word 版见:高考高中资料无水印无广告word 群559164877详细解析1.C 【详解】画出截面图形如图:可以画出等腰梯形,故A 正确;在正方体中,作截面(如图所示)交,,,分别于点,,,,根据平面平行的性质定理可得四边形中,,且,故四边形是平行四边形,此四边形不一定是矩形,故B 正确;经过正方体的一个顶点去切就可得到五边形.但此时不可能是正五边形,故C 错误;正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,且可以画出正六边形,故D 正确. 故选:C1111ABCD A B C D EFGH 11C D 11A B AB CD E F G H EFGH //EF HG //EH FGEFGH高中数学教研群 QQ 群号929518278 精品资料每天更新2.D 【详解】取的中点,如图连接、、、,由题意得:,, 不在平面内,平面内,∴平面.不在平面内,平面内,∴平面.,平面,平面平面,过线段且平行于平面的截面图形为等腰梯形.故选:.3.①⑤【详解】由题意,当截面过旋转轴时,圆锥的轴截面为等腰三角形,此时①符合条件; 当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时⑤符合条件, 综上可知截面的图形可能是①⑤.故答案为:①⑤4.AB 【详解】由组合体的结构特征可知:当截面过球与正方体切点时可知A 正确、C 错误;当截面过正方体的对角面时可知B 正确;此题是正方体的内切球,可知D 错误.故选:AB5.D 【详解】如图所示:分别为中点,M ,N ,Q 确定平面, 且,故,,故,同理可得,,,故截面为六边形.故选:D. BC H AH GH 1D G 1AD //GH EF 1//AH A F GH 1A EF EF ⊆1A EF ||GH 1A EF AH 1A EF 1A F ⊆1A EF ||AH 1A EF GH AH H = ,GH AH ⊆1AHGD ∴1//AHGD 1A EF AG AEF 1AHGDD ,,EF H 111,,AD DD B C αNH MQ ∥N α∈NH α⊂,Q H αα∈∈QH α⊂FQ α⊂EF α⊂EM α⊂6.B 【详解】根据题意,所得截面是边长为4的正方形,结合圆柱的特征,可知该圆柱的底面是半径为的圆,且高为4,所以其表面积.故选:B. 7.【详解】 设球的半径为,则,解得.设截面圆的半径为,由题知:, 所以截面圆的面积.故答案为: 8.【详解】 设圆锥的底面半径为r ,圆锥的母线为l ,又圆锥过轴的截面为正三角形,圆锥的侧面积为, ∴, ∴.故答案为:. 9.3【详解】设正四棱柱的底面边长为a ,高为h ,由题知当截面平行于平面时,截面面积最小;当截面为平面时,截面面积最大,2()22222424S =⨯+⨯⨯=πππ32ππR 248R ππ=R =r r ==232S ππ==32π2329π22,9l r rl ππ==23l =23ABCD 11A B CD因为过点且与直线AB 平行的平面截这个正四棱柱所得截面面积的最小值和最大值分别为1,所以, 于是正四棱柱的体积为.故答案为:3.10.由题意,正四棱柱中,,, 可得,在上取点,使得,连接,则有, 所以四边形是平行四边形,由勾股定理可得,所以所以, 所以四边形是平行四边形的面积为, 故答案为:O 21a ⎧=⎪⎨=⎪⎩13a h =⎧⎨=⎩1111ABCD A B C D -23a h =1111ABCD A B C D -1124BE BB ==143AB AA =1118,2AA BB CC BE ====1DD F 12D F =1,A F CF 11,//A F CE A F CE =1A ECF 11A E CE A C ====2221111cos 2A E CE A C A EC A E CE +-∠===⨯1sin A EC ∠=1A ECF 11sin A E EC A EC ⨯⨯∠==11设圆锥的底面圆的半径为r ,高为h ,母线长为l ,则,∴,h =3,由于h<r ,所以圆锥的轴截面为钝角三角形,所以过圆锥顶点的平面截该圆锥所得的截面为直角三角形时面积最大,如图,△SAB 为截面三角形,SO 为圆锥的高,设点O 到截面的距离为d ,则∴,即, ∴,即点O. 12.B 【详解】取BC 的中点H ,连接,4,20r rl ππ==5l =25,2SAB AB S == 14,2AOB OA OB S ===⨯= 1133SAB AOB S d S h ⋅=⋅ 12513323d ⨯⋅=d =,AH GH因为面AHGD1,面AHGD1,面AHGD1,同理,面AHGD1,又,则平面AHGD1∥平面A1EF,等腰梯形AHGD1,,故选B.13.D【详解】过点作平面的垂线,垂足为,交平面于点,设该四面体外接球球心为,连接,作图如下所示:因为四面体为正四面体,且面,故点为△的外心,则该四面体的球心一定在上,不妨设外接球球心为;因为分别为的中点,则//,//,又,且面,面,故平面//平面,故面,又为中点,故也为中点.因为正四面体的所有棱长为,故1,EF BC GH EF⊄GH⊂EF∴∥1A E∥1A E EF E⋂=98A BCD H EFN'O O,OB BHABCD AH⊥BCDH BCD AH O,,E F N,,AB AC AD EF BC FN CD,EF FN F BC CD C⋂=⋂= ,EF FN⊂EFN,BC CD⊂BCD EFN BCDAO'⊥EFN E AB'O AHABCD4243BH==则设该四面体的外接球半径为,即,则, 在△中,,即, 解得即外接球球心到平面, 设平面截外接球所得圆的半径为,则,解得,故截面圆的面积为.故选:D. 14.B 【详解】设平面截三棱锥所得正三角边长为a ,截面圆的半径为r ,则, 由正弦定理可得, ,故选:B15.④【详解】如图可知,截面形状可以是等边三角形、六边形、正六边形,∴①②明显错误;截面面积的最小值可以趋向于零,故③错误;当截面为正六边形时,截面过正方体的中心,此时正方体的体积被分成相等的两部分.故④正确.故答案为:④AH ===12O H AH ='=R OA OB R ==OH AH R R =-=Rt OHB 222OH BH OB +=222R R ⎫+=⎪⎪⎭R =OO R AO =-==''O EFN EFN r 222r +=2163r =163παA BCD -21S =sin 60a r ==︒22243πa S πr ∴==12S S =∴16.A 【详解】如图,由题可知,,又过圆锥顶点的平面截此圆锥所得截面面积的最大值为,∴,即, 在中,.故选:A. 17.【详解】 以点为原点建立空间直角坐标系如图所示:120APB ∠= 30ABP ∠= 22122l =2l =Rt POB cos302r l === 98πD依题意得:,,,则,,所以,则;设为中点,因为则,所以点为三棱锥外接球的球心,则设球心到平面的距离为,又因为为中点,所以点到平面的距离为,由于,所以故截面圆的半径为,所以截面圆面积为. 故答案为:18如图,取的中点,取上靠近点的三等分点,()0,2,0C ()1,2,1E ()0,1,2F ()1,0,1EC =-- ()111EF ,,=-- 1010EC EF ⋅=+-= EF EC ⊥O CF EF EC ⊥1EO OC FO C O ===O 1C CEF -12R CF ==O 11A BCD h O CF F 11A BCD 2h 111244h C D ==⨯=h =r ==98π98π11C D H 1CC 1C G连接,易证,则五边形为所求截面.因为,所以, 则, 故该截面的周长是.19.如图,延长EF ,A 1B 1,相交于点M ,连接AM ,交BB 1于点H ,延长FE ,A 1D1,相交于点N ,连接AN,交DD 1于点G ,连接FH,EG,可得截面为五边形AHFEG .因为ABCD-A 1B 1C 1D1是棱长为6的正方体,且E ,F 分别是棱C 1D 1,B 1C 1的中点,由中位线定理易得:EF =:AG =AH =EG =FH AH +HF +EF +EG +AG =故答案为:20.B 【详解】如图,在正三棱柱中,延长AF 与CC 1的延长线交于M ,连接EM 交B 1C 1于P ,连接FP ,则四边形AEPF 为所求截面.,,,,AE EG GH HF FA //,//AE HF AF EG AEGHF 4AB =111182,3,1,3BE CE C H D H A F D F CG =======143C G =103AE EG ==5,GH HF AF ===AE EG GH HF AF ++++=+111ABC A B C -过E 作EN 平行于BC 交CC 1于N ,则N 为线段CC 1的中点,由相似于可得MC 1=2,由相似于可得:, 在中,,则,在中,,则在中,,则在中,, 由余弦定理:,则故选:B.21.A 【详解】 设,因为平面,平面平面,平面,所以,同理可得,,,故四边形为平行四边形, 所以,. 因为,所以,, 1MFC MAC △1MPC △MEN 111242,2333PC PC B P =⇒==1Rt AA F 112,1AA A F ==AF ==Rt ABE △2,1AB BE ==AE ==1Rt B EP 1121,3B E B P ==PE ==1C FP 11141,,603C F C P FC P ==∠=︒2224413121cos 60339PF ⎛⎫=+-⨯⨯⨯︒= ⎪⎝⎭PF ==AM k CM=//AB MNPQ ABC MNPQ MN =AB ÌABC //MN AB //PQ AB //MQ CD //NP CD MNPQ 11MN PQ AB AB k ==+1MQ NP k CD CD k==+AB CD a ==1a MN PQ k ==+1ak MQ NP k==+所以四边形的周长为. 故选:A.22.A 【详解】设在底面上的射影为,因为,所以为的中心,由题可知,,由,解得 在正中,可得.从而直角在中解得. 进而可得,,,因此正三棱锥可看作正方体的一角, 正方体的外接球与三棱锥的外接球相同,正方体对角线的中点为球心. 记外接球半径为,则所以过的平面截球所得截面的面积最大为; 又为中点,由正方体结构特征可得 由球的结构特征可知,当垂直于过的截面时, MNPQ 2211a ak MN PQ MQ NP a k k ⎛⎫+++=+= ⎪++⎝⎭P ABC M PA PB PC ==M ABC ∆ABC S ∆1136P ABC ABC V PM S -∆=⨯⨯=PM =ABC ∆AM =ABC 1PA =PA PB ⊥PB PC ⊥PC PA ⊥P ABC -P ABC -O R R Q O 2max 34S R ππ==Q BC 1122OQ PA ==OQ Q截面圆半径最小为. 因此,过的平面截球所得截面的面积范围为. 故选:A.23.A 【详解】如图,将正四面体补为边长是ABCD 的外接球为正方体 的外接球,球心O在体对角线的中点,且球的半径;当OE 垂直于截面时,截面面积最小,截面圆的半径为面积为;当截面过球心O 时,截面面积最大,截面圆的半径为,面积为故选:A24.A【详解】解:如图,O 1是A 在底面的射影,由正弦定理得,△BCD 的外接圆半径r ==2min 12S r ππ==Q O 13,24ππ⎡⎤⎢⎥⎣⎦R =12r ==4π1r R =6π1031sin 602r =⨯=由勾股定理得棱锥的高AO 1;设球O 的半径为R ,则,解得,所以OO 1=1;在△BO 1E 中,由余弦定理得 所以O 1E =1;所以在△OEO 1中,OE;当截面垂直于OE. 故选:A25.【详解】解:四边形为平行四边形,;平面,平面, 平面;又平面,平面平面,,同理可得;设,, ,, ; 又,,, ,且; 四边形的周长为 ,;四边形周长的取值范围是.故答案为:26.将正三棱锥的三个侧面展开如图,由图可知,为使的周长最小,只需让四点共线即可,则当为与交点时,的周长最小,由题意,,∴,得的周长3==()223R R =-2R =2113211,O E =+-⨯==2π(8,12) EFGH //EH FG ∴EH ⊂/ ABD FG ⊂ABD //EH ∴ABD EH ⊂ ABC ABC ABD AB =//EH AB ∴//EF CD EH x =EF y =∴EH CE AB CA =EF AE CD AC =∴1EH EF CE AE AC AB CD CA AC AC+=+==4AB =Q 6CD =∴146x y +=614x y ⎛⎫∴=- ⎪⎝⎭04x <<∴EFGH 2()2[6(1)]4xl x y x =+=+-12x =-81212x ∴<-<∴EFGH (8,12)(8,12)AEF 1,,,A E F A ,E F 1AA ,BP CP AEF 140BPC CPA APB ∠=∠=∠=︒1120APA ∠=︒1AA ===AEF的最小值为故答案为:27.【详解】,,, 同理,故可把正三棱锥补成正方体(如图所示),其外接球即为球,直径为正方体的体对角线,故,设的中点为,连接,则.所以,当平面时,平面截球O 的截面面积最小,,故截面的面积为.故答案为:28.D 【详解】由题可知平面,所以,故A 正确; 由等体积法得为定值,故B 正确; 设的中点为,当时,如下图所示:3π4PA PC PB === AB AC BC ===222PA PC AC ∴+=2CPA π∴∠=2CPB BPA π∠=∠=O 2R =PA F OF OF =OF PA ⊥3OE ==OE ⊥αα=3π3πBD ⊥11ACC A BD CP ⊥113C BPD P BCD BCD V V S AA --==⋅⋅ 11A C M 1P MC ∈此时截面是三角形,当时,如下图所示:此时截面是梯形,故C 正确;选项D ,在正方体中,连接,则为在平面上的射影,则为与平面所成的角,设正方体的棱长为1,,则当取得最小值时,的值最大,即时,, 所以D 不正确. 故选:D.29.ACD 【详解】对于A :三棱锥的外接球即为正方体的外接球,因为正方体的外接球的直径即为正方体的体对角线,即所以外接球的体积是,故选项A 正确;1D QC 1PMA ∈1D QRC 1D P 1D P DP 1111D C B A 1D PD ∠DP 1111D C B A 1PD x =DP =1sin D PD ∠x 1sin D PD ∠111D P A C ⊥x 1sin D PD ∠11B A DC -1111ABCD A B C D -2R =R 34π3V =´=对于B :把沿翻折到与在同一个平面(如图所示),连接,则是的最小值,其中是边长为的等边三角形,是直角边为的等腰直角三角形,所以, 即故选项B 错误;对于C :分别取棱,,的中点,,,连接,,,,,,则易知过,,三点的截面是正六边形,1BCC 1BC 11A C B △1A C 1A C 1A Q QC +11A C B △1BCC 211A C A Q QC =+==1A Q QC +11A D 1CC BC H M N EF FH HG GM MN NE E F G EFHGMN所以截面面积为故选项C 正确;对于D :因为是平面上到点和距离相等的点,所以点的轨迹是平面与线段的垂直平分平面的交线,即点的轨迹是平面与平面的交线,所以点的轨迹是直线,即选项D 正确.故选:ACD.30.ABD 【详解】解:过点A ,P ,Q 的平面截正方体,当时,其截面形状为梯形如图1,特别地当时,截面形状为等腰梯形, 当时,其截面形状为五边形如图2. 若,则,所以. 当时,与重合,其截面形状为四边形如图3,此时,因为P 为的中点,且,所以为的中点,所以,同理,所以四边形为平行四边形,所以四边形为菱形,其面积为ABD 正确. 故选:ABD.31.BCD 【详解】A 选项中,当时,与重合,则截面为等腰梯形,其面积为,故A 选项错误; 1(62⨯=M 1111D C B A D 1C M 1111D C B A 1DC 11A BCD M 1111D C B A 11A BCD 11A D M 11A D 102CQ <≤12CQ =112CQ <<34CQ =1113C Q C R QC CM ==113C R =1CQ =Q 1C PQ AP =BC CP AD ∕∕Q MN PC AE ∕∕QE AP ∕∕APQE APQE 112AC PE ⋅==1λ=P 1A 92B 选项中,因为平面,故P 到平面的距离不变,故三棱锥体积为定值.故B 选项正确:C 选项中,当时,其截面刚好为五边形,时,截面为五边形;故C 选项正确;D 选项中,当点P 与重合时,其二面角正切值为,此时二面角大于45°, 所以存在点P ,二面角为45°,D 选项正确;故选:BCD .1//AA 1ECC 1ECC 1P ECC -13λ=103λ<<1A P EF A --。
立体几何体的截面及三视图
立体几何专题(部分内容)一.圆柱的截面用一个平面去截(分三种情形:①用与圆柱的底面平行的平面去截;②用与圆柱的底面垂直的平面去截;③用与圆柱的底面不垂直的平面去截.),观察图1,很容易得出它们分别是:圆、长方形、椭圆.图1二.圆锥的截面用一个平面去截一个圆锥体,圆、三角形、椭圆.图2三.球的截面用一个平面去截一个球体图3四.三棱锥的截面请同学们尝试用一个平面去截一个三棱锥,试判断所截得的平面图形是什么?观察图4图4五.正方体的截面(需补充两面截图)补充:三视图或投影经典考题公式:空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2Srl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24SR π=扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积 柱体的体积 :VS h =⨯底锥体的体积 :13V S h =⨯底 台体的体积 : 1)3V S S S S h =++⨯下下上上( 球体的体积:343V R π=空间几何体的三视图和直观图:正俯长相等、正侧高相同、俯侧宽一样正视图:光线从几何体的前面向后面正投影,得到的投影图。
侧视图:光线从几何体的左边向右边正投影,得到的投影图。
俯视图:光线从几何体的上面向右边正投影,得到的投影图。
1、线线平行的判断:(1)、平行于同一直线的两直线平行。
(3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(12)、垂直于同一平面的两直线平行。
2、线线垂直的判断:(7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
立体几何中的截面问题
线段DD1上靠近D的三等分点,若正四棱柱ABCD-A1B1C1D1被过点A1,M,N的平
面所截,则所得截面的周长为
(B)
A.10+8 2
B.10+7 2
C.9+8 2
D.9+7 2
【解析】 如图,延长 C1C 至 Q,使得 CQ=1,连接 MQ,NQ, 则四边形 A1MQN 为平行四边形.记 MQ 与 BC 交于点 R,NQ 与 CD 交于点 P,则截面为五边形 A1NPRM.易得 A1N=4 2,A1M =5,MR= 32+32=3 2,NP= 22+832=130,PR= 12+432 =53,故所得截面的周长为 A1M+MR+PR+PN+A1N=5+3 2 +53+130+4 2=10+7 2.
球心
O
到平面
MNPQ
的距离
d
=
EG
=
1 2
EC1
.
设
正
方
体
ABCDA1B1C1D1 的棱长为 2 2,则 R=12EF= 2,d=EG=12EC1=1,所以球 O 被平面 MNPQ 所截的小圆半径 r= R2-d2= 2-1=1,所以球 O 被平面 MNPQ 所截的小
圆面积为 πr2=π.又易知 NM=2,PN=2 2,所以该正方体被平面 MNPQ 所截得的
图(1)
PQ⊂底面A1B1C1D1,所以PQ⊥CC1.因为A1C1,CC1⊂平面A1C1CA,A1C1∩CC1= C1,所以PQ⊥平面A1C1CA.因为CE⊂平面A1C1CA,所以PQ⊥CE,即l⊥CE.
1 (2023·汕头二模节选)如图,在正方体ABCDA1B1C1D1中, 直线l⊂平面A1B1C1D1,l∩A1C1=E,A1E=3EC1. (2)设点A与(1)中所作直线l确定平面α.请在图中作出平面α截正方 体ABCDA1B1C1D1所得的截面,并写出作法.
立体几何中的截面(解析版)
专题13 立体几何中的截面【基本知识】1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。
其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。
最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。
2、正六面体的基本斜截面:3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。
【基本技能】技能1.结合线、面平行的判定定理与性质性质求截面问题;技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。
例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能...是( )分析 考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D 。
例2 如图,在透明的塑料制成的长方体ABCD -A 1B 1C 1D 1容器内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题:① 水的部分始终呈棱柱状; ② 水面EFGH 的面积不改变; ③ 棱A 1D 1始终与水面EFGH 平行;④当容器倾斜到如图5(2)时,BE·BF 是定值; 其中正确的命题序号是______________分析 当长方体容器绕BC 边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG ,但EH 与FG 的距离EF 在变,所以水面EFGH 的面积在改变,故②错误;在转动过程中,始终有BC//FG//A 1D 1,所以A 1D 1//面EFGH ,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为BC BF BE V ⋅⋅=21水是定值,又BC 是定值,所以BE·BF 是定值,即④正确。
【数学】立体几何中的截面问题(六大题型) 2023-2024学年高一数学人教A版2019必修第二册
【答案】 3
【解析】设正方体 − 1 1 1 1 的棱长为 2 ,体积为 ,
则 = 2 × 2 × 2 = 8 3 ,
因为 E 是棱 1 1 的中点,所以 1 = ,
( 2 ) 过 M , N , P 三 点作 正方 体的 截面 为 , 如图 所示 :
则 截 面 的 周 长 为: + + + + = + + ,
因 为 正 方 体 棱 长为 1 , 则
= =
=
故选:ACD.
3
2
3
2
(2 − )2,ℎ2 =
( 2)2 − [
2 = − 3 2 + 2 3 + 2 3
2 ( 2 − ) − 2 2 2
]
2
=
3 2 ,
2
题型二:截面周长
【例 2 】( 2024·高三 ·四川成都 ·开学考试)如图,正方体 − 1 1 1 1 的棱长为 4 , E 是侧棱 1 的中
A.1∶ 2
B.1∶4
C.1∶( 2+1)
D.1∶( 2﹣1)
【答案】 D
【解析】设截后棱锥的高为 h ,原棱锥的高为 H ,
由于截面与底面相似,一个正棱锥被平行于底面的平面所截,
若截得的截面面积与底面面积的比为 1 ∶ 2 , ℎ =
则此正棱锥的高被分成的两段之比:
故选:D
ℎ
−ℎ
=
1
.
2−1
设 1 = , 则 0 ≤ ≤ 1,
立体几何中的截面(解析版)
专题13 立体几何中的截面【基本知识】1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。
其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。
最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。
2、正六面体的基本斜截面:3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。
【基本技能】技能1.结合线、面平行的判定定理与性质性质求截面问题;技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。
例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能...是()分析考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D。
例2 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题:①水的部分始终呈棱柱状;②水面EFGH的面积不改变;③棱A1D1始终与水面EFGH平行;④当容器倾斜到如图5(2)时,BE·BF是定值;其中正确的命题序号是______________分析当长方体容器绕BC边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG,但EH与FG的距离EF在变,所以水面EFGH的面积在改变,故②错误;在转动过程中,始终有BC//FG//A1D1,所以A1D1//面EFGH,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为BCBFBEV⋅⋅=21水是定值,又BC是定值,所以BE·BF是定值,即④正确。
立体几何中的截面问题
立体几何中的截面问题一.基本原理:过正方体(长方体)上三点做截面.1.三点中有两点共面例1.如图,在正方体ABCD-A 1B 1C 1D 1中,E,F,G 分别在AB,BC,DD 1上,求作过E,F,G 三点的截面.思路:当三点中有两点共面时,做截面的思路就是先找共面两点所在直线与该平面所有的棱交点,而这些交点由同时在另外一个平面中,即该截面和正方体某个侧面的交点,这样利用公理1,逐次相连找到所有的交点,即可得到截面.解析:作法:①.由于F E ,共面,在底面AC 内,过F E ,作直线EF ,与DA 于L ,显然,此时L 即在侧面D A 1内,又在欲求截面内,而该截面与侧面D A 1又交于点G ,根据公理1,截面与侧面D A 1交于L .同理,过F E ,作直线EF 与DC 的延长线交于M ,此时M 即在侧面1DC 内,又在欲求截面内,根据公理1,截面与侧面1DC 交于M .②在侧面D A 1内,连接LG 交1AA 于K .③在侧面1DC 内,连接GM 交1CC 于H .④连接FH KE ,.则五边形EFHGK EFHGK 即为所求的截面.练习1.(三点两两共面)P,Q,R 三点分别在直四棱柱AC 1的棱BB 1,CC 1和DD 1上,试画出过P,Q,R 三点的截面作法.解析:作法:(1)连接QP,QR 并延长,分别交CB,CD 的延长线于E,F.(2)连接EF 交AB 于T,交AD 于S.(3)连接RS,TP.则五边形PQRST 即为所求截面.例2.(三点所在的棱两两异面)如图,长方体1111D C B A ABCD -中,R Q P ,,分别为111,,CC AB D A 上三点,求过这三点的截面.分析:此题的难点在于R Q P ,,三点均不在同一个侧面(底面)中,这样我们就暂时无法通过侧面(底面)中连线与棱的交点来找到截面的边界点,于是需要先做出一个平面来,让上面三点RQ P ,,中有两点共面,这就转化成例1的情形,从而解决问题.解:如图,作1//BB QE 交11B A 与E ,则1,RC QE 确定一个平面,转化为例1的情形.连接QR EC ,1,交于点F ;连接PF 交1111,B A D C 延长线于H G ,;连接HQ 交11,BB AA 延长线于J I ,;连接JR 交BC 于K .则KRGPIQK 为所作截面.例3.利用平行关系确定截面在三棱锥A BCD -中,AB CD a ==,截面MNPQ 与AB ,CD 都平行,则截面MNPQ 的周长等于()A.2a B.4a C.a D.无法确定解析:设AM k CM=,因为//AB 平面MNPQ ,平面ABC 平面MNPQ MN =,AB Ì平面ABC ,所以//MN AB ,同理可得//PQ AB ,//MQ CD ,//NP CD ,故四边形MNPQ 为平行四边形,所以11MN PQ AB AB k ==+,1MQ NP k CD CD k ==+.因为AB CD a ==,所以1a MN PQ k==+,1ak MQ NP k ==+,所以四边形MNPQ 的周长为2211a ak MN PQ MQ NP a k k ⎛⎫+++=+= ⎪++⎝⎭.故选:A.二.截面的的画法小结1.确定截面的主要依据有(1)平面的四个公理及推论.(2)直线和平面平行的判定和性质.(3)两个平面平行的性质.2.作截面的几种方法(1)直接法:有两点在几何体的同一个面上,连接该两点即为几何体与截面的交线,找截面实际就是找交线的过程。
立体几何截面问题专题总结
立体几何截面问题专题总结前言在立体几何截面问题专题的学习中,我深入研究了这一领域的知识,积累了丰富的经验。
在本文中,我将总结我对立体几何截面问题的理解和方法,并分享一些解决这类问题的技巧。
正文什么是立体几何截面问题立体几何截面问题是指在三维空间中,通过一个封闭曲面与另一个几何体相交,求得相交部分的形状、面积、体积等相关问题。
常见的立体几何截面问题包括求圆柱与平面的截面、球与平面的截面等。
解决立体几何截面问题的方法解决立体几何截面问题可以采用以下方法:1.几何推导法:通过几何知识进行推导,得到截面形状和相关参数。
可以使用几何证明、相似三角形等方法来推导。
2.代数方程法:将截面问题转化为几何方程,通过代数方法解方程得到结果。
常用的代数方程包括二元一次方程、二次方程等。
3.平面几何投影法:将立体物体投影到一个平面上,通过对投影图形的分析得出截面形状和相关参数。
4.立体几何体积法:通过计算立体几何体积的方法得到截面的面积或体积。
常见的计算公式包括圆柱的体积公式、球的体积公式等。
解决立体几何截面问题的技巧解决立体几何截面问题时,可以运用以下技巧:•画图辅助:通过画图来理清问题的思路,将立体物体和截面形状清晰地表示出来,有助于理解问题和找出解决方法。
•寻找几何相似:在推导过程中,可以尝试找出几何相似的部分,通过相似三角形或相似比例来得到所需的截面形状或参数。
•利用几何关系:在立体几何中,不同几何形状之间存在着特定的关系,例如平行、垂直关系等。
利用这些关系可以简化问题的求解过程。
•积极总结经验:在解决立体几何截面问题的过程中,积累并总结经验是非常重要的。
经验的积累可以帮助我们更快地解决类似的问题,并提高解题的效率。
结尾通过学习立体几何截面问题专题,我对这一领域有了更深入的了解。
在解决立体几何截面问题时,适当地运用几何推导法、代数方程法、平面几何投影法和立体几何体积法等方法,并结合绘图和几何关系,我们可以更好地解决这类问题。
立体几何找截面方法
立体几何找截面方法立体几何是数学中的一个重要分支,它研究的是三维空间中的几何形体。
在立体几何中,我们经常需要找到一个几何体的截面,以便更好地理解它的性质和特征。
本文将介绍几种常见的找截面方法。
我们来看平行截面法。
这种方法是指将一个几何体沿着一个平面切割成两个部分,从而得到一个截面。
这个平面可以是任意方向的,但必须与几何体平行。
例如,我们可以将一个长方体沿着一条平行于底面的平面切割,得到一个长方形的截面。
这种方法常用于研究几何体的体积、表面积等性质。
我们来看垂直截面法。
这种方法是指将一个几何体沿着一个垂直于它的平面切割成两个部分,从而得到一个截面。
这个平面可以是任意方向的,但必须与几何体垂直。
例如,我们可以将一个圆柱体沿着一条垂直于底面的平面切割,得到一个圆形的截面。
这种方法常用于研究几何体的截面形状、面积等性质。
第三,我们来看旋转截面法。
这种方法是指将一个几何体沿着一个轴线旋转,从而得到一系列平面截面。
这个轴线可以是任意方向的,但必须与几何体相交。
例如,我们可以将一个圆锥体沿着它的轴线旋转,得到一系列圆形的截面。
这种方法常用于研究几何体的旋转对称性、截面形状等性质。
我们来看投影截面法。
这种方法是指将一个几何体沿着一个方向投影到一个平面上,从而得到一个截面。
这个方向可以是任意方向的,但必须与几何体相交。
例如,我们可以将一个立方体沿着一个垂直于它的方向投影到一个平面上,得到一个正方形的截面。
这种方法常用于研究几何体的投影形状、投影面积等性质。
找截面是立体几何中的一个重要问题,它可以帮助我们更好地理解几何体的性质和特征。
以上介绍的几种方法只是其中的一部分,实际上还有很多其他的方法,需要根据具体情况选择合适的方法。
立体几何截面画法
例1:如图正方体ABCD-A1B1C1D1中,点M、E分别为棱C1C、
D1D上的点,且C1M=2MC1,DE=2D1E.作过A、M、E三点的截面.
D1
C1
A1
B1
E
D A
M C B
二、立体几何截面画法
方法一:平行线法
例2:如图,点A、B、C、D、M、N为正方体的顶点或所在棱上的
中点,则下列各图中,不满足直线MN∕∕平面ABC的是( )
立体几何画截面画法
教学目标:
1.会判断截面是否完整
2.会画截面
平行线法 延长线法
一、复习回顾
1.在立体几何中,什么是截面?
用一个平面去截一个几何体得到的平面图形.
2.如何判断截面是否完整?
截面轮廓均线均在几何体表面(不在几何体内部).
D1
A1 E
C1 B1
A1
D1 E B1
C1
D A
C B
D A
)
D.平面PMN截该正三棱柱,所 得截面图形为五边形
A1
B1
M
C1
N
A
P
B
C
三、课堂练习
练习2:如图,在正四棱台ABCD-A1B1C1D1中,AB=2,A1B1=1,侧
棱AA1与底面所成角为60◦.E、F、G分别为棱AD、AB、BB1中点,
则下列说法正确的是(
)
C.平面EFG截该棱台,所得截 面图形为六边形;
A N
M
A.
M
B
A
N A
B
D C
N C
B.
C.
A
B B
M
C
C
N
D
M
《立体几何》微专题3 空间中的截面
《立体几何》微专题3 空间中的截面一、内容解析在立体几何中,截面是指用一个平面去截一个几何体(如圆柱、圆锥、球、棱柱、棱锥、长方体等)所得的平面图形.高考中涉及空间几何体截面的地方较多,如:判断截面图形的形状,判断截面与其他直线(平面)的位置关系,计算截面的边长、周长和面积(或者求相关几何体的表面积、体积)等.在破解较复杂的综合问题的过程中,要把握好“定位”、“定形”、“定量”这三个环节.首先,由已知条件作出截面与空间几何体的交线;其次,根据线面位置关系相关定理确定截面的基本特征;再次,运用平面几何的有关知识计算截面的边长、周长、面积等.其中,作出空间几何体的截面图形是解决问题的关键.现将空间几何体中截面作图的主要原理(三个公理+两个定理)梳理如下:1.三个公理ABPPA唯一的注:平面的三公理说明了三个问题:(1)平面是平的,平面是无限延展的;(2)要确定两平面交线,可以找两个两平面的交点;(3)确定一个平面的4种方法.【应用举例】如图所示,G是正方体ABCD-A1B1C1D1的棱DD1延长线上的一点,E,F是棱AB,BC的中点.试分别画出过下列各点、直线的平面与正方体表面的交线.(1)过点G及AC;(2)过三点E,F,D1.【分析】我们可以将截面与空间几何体表面的交集(交线)叫做截线,将截面与空间几何体的棱的交集(交点)叫做截点.本题的关键在于确定截点,有了位于多面体同一表面上的两个截点即可连接成截线,从而得到截面.【作法】(1)连接GA交A1D1于点M,连接GC交C1D1于点N;连接MN,AC,则MA,CN,MN,AC为所求平面与正方体表面的交线.如图①所示.(2)连接EF交DC的延长线于点P,交DA的延长线于点Q;连接D1P交CC1于点M,连接D1Q交AA1于点N;连接MF,NE,则D1M,MF,FE,EN,ND1为所求平面与正方体表面的交线.如图②所示.2.两个定理则过这条直线的任一平面与此平面的交【应用举例】(1)在三棱锥P-ABC中,G为△PAC的重心,过点G作三棱锥的截面α,使其平行于PB 和AC,请画出截面α与三棱锥表面的交线.【分析】若截面α与PB和AC平行,则交线分别与PB和AC中的一条平行.【作法】如图,过G作EF∥AC,分别交PA,PC于点E,F,过点F作FM∥PB交BC于点M,过点E作EN∥PB交AB于点N,连接MN,可知EN∥FM,所以E、F、M、N四点共面,且MN∥AC∥EF,EN∥PB∥FM,则EF,FM,MN,EN即为截面α与三棱锥表面的交线.(2)如图,一个四面体木块ABCD,在△ABC的面内有一点P,过点P作一个截面α,使其垂直于直线AD,请画出截面α与四面体表面的交线.【分析】若截面α与AD垂直,则交线与AD垂直.由于在平面ABD和平面ACD内垂直于AD的直线有无数条,故根据面面平行的性质定理,可采用平移法,先作出AD的一个垂面,再平移至点P.【作法】如图,在AD上任取异于A,D的一点Q,过点Q分别在平面ABD和平面ACD 内作QR⊥AD,QS⊥AD,分别交AB,AC于R,S两点.连接RS,过点P在平面ABC内作EF∥RS交AB,AC于E,F两点.过F在平面ACD内作FG∥SQ交AD于G,连接EG,可先证明平面QRS∥平面EFG,再由面面平行的性质定理证明RQ∥EG,从而可证直线AD垂直于平面EFG,则EF,FG,GE即为截面α与四面体表面的交线.【注】截面问题中与平行有关的定理不仅可以用于在截面作图的过程中确定截面的交线,还可以判断截面图形的形状.有关线面、面面垂直的定理在解题时主要用于确定截面的位置关系,故不再专门列出.通过上述分析,可以将空间几何体中截面作图方法小结如下:① 若已知两点在同一平面内,只要连接这两点,就可以得到截面与多面体的一个面的截线; ② 若面上只有一个已知点,应设法在同一平面内再找出第二个确定的点; ③ 若已知两个点分别在两个相邻的面上,应找出这两个平面的交线与截面的交点; ④ 若所做截面要求与多面体的某一条棱平行,则由一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行的性质,可得截面与平面的交线; ⑤ 若两平行平面中的一个平面与截面有交线,另一个面上只有一个已知点,则由平行平面与第三个平面相交,那么它们的交线互相平行的性质,可得截面与平面的交线; ⑥ 若有一个点在面上而不在棱上,则可通过作辅助平面转化为棱上的点的问题;同理,若已知点在体内,则可通过辅助平面使它转化为面上的点,再转化为棱上的点的问题来解决.下面以正方体为例,列举其基本斜截面图形如下(横截面和竖截面均为正方形): ① 三角形(锐角三角形) (等腰三角形) (等边三角形)注:可以分别用反证法和余弦定理证明,不可能出现直角三角形和钝角三角形截面. ② 四边形(梯形) (平行四边形) (菱形) (矩形) 注:可以用反证法证明,不可能出现直角梯形截面. ③ 五边形1A1A1A1A1A1A1A(普通五边形)注:可以用反证法证明,不可能出现正五边形截面. ④ 六边形(普通六边形) (正六边形)其他空间多面体和旋转体的截面也可以类似作出,并进行分类研究. 二、典型例题题型一、判断截面图形的形状例1 过正方体ABCD -A 1B 1C 1D 1的棱AB ,BC 的中点E ,F 作一个截面使截面与底面所成的角为45o ,则此截面的形状为( )A .三角形或五边形B .三角形或六边形C .六边形D .三角形 【分析】此题中可以直接去找与底面成45o 角的截面,也可以找一些特殊位置的截面,通过计算其与底面所成角得出所求截面的相对位置,体现了运动变化的动态探究. 【答案】B 【解析】如图,显然,本题中的截面有两个,其中一个与线段B 1B 相交,截面为三角形,故只需判断另一个截面的位置和形状.111A1A A连接BD 交EF 于G ,设上下底面中心分别为O 1,O ,设过点D 1的截面与底面的所成角为α,易得tan α=tan ∠D 1GD =223<1, 故α<45o ;设过棱A 1C 1的截面与底面的所成角为β,易得tan β=tan ∠O 1GO =22>1,故α>45o , 故所求截面应与A 1D 1,C 1D 1都相交(不过其端点),为六边形. 故选B .【注】若截面与棱D 1D 相交,则截面为五边形;若截面与棱A 1D 1,C 1D 1都相交(不过其端点),则截面为六边形;若截面与棱A 1B 1,B 1C 1都相交(不过点B 1),则截面为四边形.题型二、判断截面与其他直线(平面)的位置关系例2 如图,在下列三个正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 均为所在棱的中点,过E ,F ,G 作正方体的截面.在各正方体中,直线BD 1与平面EFG 的位置关系描述正确的是( )① ② ③ A . BD 1∥平面EFG 的有且只有①;BD 1⊥平面EFG 的有且只有② B . BD 1∥平面EFG 的有且只有②;BD 1⊥平面EFG 的有且只有① C . BD 1∥平面EFG 的有且只有①;BD 1⊥平面EFG 的有且只有②③ D . BD 1∥平面EFG 的有且只有②;BD 1⊥平面EFG 的有且只有③【分析】无论是线面位置关系,还是面面位置关系,归根结底都应转化为对线线位置关系的探求.在判断截面与其他直线(平面)的位置关系的问题中,可以借助截面图形中现有的直线探寻位置关系,也可以将截面进行延展,作出与空间几何体的交线,通过交线(也可以是截面中的其他直线)探寻位置关系. 【答案】C【解析】若从图①研究起,取A 1D 1中点H ,通过截面EFHG 与对角面BDD 1B 1平行,可得BD 1∥面EFG ,从而排除B ,D 选项;1A1A1A若从图②研究起,可通过证明BD 1⊥EF ,BD 1⊥EG ,得证BD 1⊥平面EFG ,从而排除B ,D 选项;对比A ,C 选项,只需考查图③对应的结论:取AA 1中点M ,连EM ,FM ,仿图②,可证BD 1⊥平面EFM ,故BD 1⊥EF ;类似可证得BD 1⊥GF (BD 1⊥EG ) .从而BD 1⊥平面EFG ,排除A . 故选C .题型三、计算截面的面积和周长例3 有一正三棱柱(底面为正三角形的直棱柱)木料ABC -A 1B 1C 1,各棱长都为2.已知O 1,O 2分别为上,下底面的中心,M 为O 1O 2的中点,过A ,B ,M 三点的截面把该木料截成两部分,则截面面积为( )A . 7B . 1639C . 3194D . 2【分析】本题中构造截面并发现截面的特征是解决问题的关键,而构造截面的过程需运用面面平行的性质定理. 【答案】 B【解析】如图,在正三棱柱ABC -A 1B 1C 1中,各棱长都为2,M 为O 1O 2的中点, 由面面平行的性质定理,可知过A ,B ,M 三点的截面为等腰梯形ABEF , 则EF =13A 1B 1=23,梯形的高为PD =22+(233)2=433,则截面面积为S =12×(23+2)×433=1639. 故选B .例4 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 为CC 1的中点,若AM ⊥平面α,且B ∈平面α,则平面α截正方体所得截面的周长为( )1AA . 32+2 5B . 4+4 2C . 22+2 5D . 6 2【分析】本题中构造与AM 垂直的截面是解决问题的关键,而构造截面的过程需运用线面垂直的判定定理(定义)和面面平行的性质定理. 【答案】A【解析】如图,取BB 1中点N ,A 1B 1中点E ,连接MN ,AN ,BE ,可证AM ⊥面DBE , 由面面平行的性质定理可知截面α与正方体的上下底面的交线平行.由E 为A 1B 1中点可取A 1D 1中点F ,则α即为截面BEFD ,易求周长为32+25,故选A .三、反馈练习A 组(一)单选题:1.截一个几何体,所得各截面都是圆面,则这个几何体一定是( )A. 圆柱B. 圆锥C. 球D. 圆台【答案】C【解析】A.圆柱的轴截面是一个矩形,此选项错误; B.圆锥的轴截面是一个三角形,此选项错误; C.球的截面是一个圆面,此选项正确; D.圆台的轴截面一个梯形,此选项错误. 故选C .2.如图,在四棱锥P -ABCD 中,AD 与BC 相交.若平面α截此四棱锥得到的截面是一个平行四边形,则这样的平面α的个数是( )A .不存在B .恰有1个C .恰有5个D .有无数个1A【答案】D【解析】 在平面ABCD 中作直线MN ∥AB ,交AD 、BC 于点M 、N ,在平面PAB 中作EF ∥AB ,交PA 、PB 于点E 、F ,使MN =EF ,由线面平行的性质定理可知四边形EFNM 为平行四边形,这样的平行四边形显然可以做无数个,且平行四边形所在平面即为所求的平面α. 故选D .(二)多选题:3. (多选题)过正方体中心的截面图形可以是( )A .三角形B .四边形C .五边形D .六边形 【答案】BD【解析】过正方体中心的截面图形至少与正方体的四个面相交,所以不可能是三角形.又因为截面是五边形时不过正方体的中心.过正方体一面上相邻两边的中点及正方体的中心的截面形状为正六边形. 故答案为BD .4.(多选题)用一个平面截正四面体,下列结论中正确的是( ) A .正四面体的截面不可能是正方形; B .正四面体的截面可能是等腰梯形; C .正四面体的截面可能是直角三角形;D .若正四面体的截面是三角形,一定是等腰三角形. 【答案】BC【解析】利用正四面体的性质,分析4个选项,取正四面体各条棱的中点连接而成的截面图形是正方形,故选项A 错误;当截面只与正四面体对棱中的一条平行时,截面为等腰梯形,故选项B 正确;对于选项C 、D ,正四面体的截面可以是三角形,但不一定为等腰三角形,A如下图,过点A 作AO ⊥平面BCD ,要构造截面直角三角形APQ ,只需先在底面BCD 内构造直角三角形OPQ ,故选项C 正确,选项D 错误,故答案为BC .(三)填空题:5.过正方体ABCD -A 1B 1C 1D 1的顶点A 1,C 1,B 的平面与底面ABCD 所在的平面的交线为l ,则l 与A 1C 1的位置关系是________. 【答案】平行【解析】由于平面ABCD ∥平面A 1B 1C 1D 1,平面A 1B 1C 1D 1∩平面A 1C 1B =A 1C 1,平面ABCD ∩平面A 1C 1B =l ,所以l ∥A 1C 1.6.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,平面α与正方体每条棱所成的角均相等,则平面α截正方体所形成的三角形截面中,截面面积的最大值为_____________;平面α与正方体每条棱所成的角的正弦值为_____________. 【答案】32,33 【解析】如图,在正方体ABCD -A 1B 1C 1D 1中,与A 1B 1,A 1D 1, A 1A 平行的直线各有4条, ∵A 1B 1=A 1D 1=A 1A ,∴三棱锥A 1-AB 1D 1是正三棱锥,∴A 1B 1,A 1D 1,A 1A 与平面AB 1D 1所成角相等,∴与正方体的12条棱所在直线所成角均相等的一个平面α是平面A 1BD 1(或平面AB 1C 或平面ACD 1),且截面面积最大,1A由棱长为1,故AB 1=2,再由三角形AB 1D 1为正三角形,其面积为34×(2)2=32,故答案为32. 由顶点A 1到平面AB 1D 1的距离为体对角线的13,则平面α与正方体每条棱所成的角的正弦值为33a a =33.(四)解答题:7.如图所示,在正方体ABCD −A 1B 1C 1D 1中,试作出过AC 且与直线D 1B 平行的截面,并说明理由.【解答】如图,连接DB 交AC 于点O ,取D 1D 的中点M ,连接MA ,MC ,MO ,则截面MAC 即为所求作的截面.证明:∵MO 为△D 1DB 的中位线,∴D 1B ∥MO .∵D 1B ⊄平面MAC ,MO ⊂平面MAC ,∴D 1B ∥平面MAC ,则截面MAC 为过AC 且与直线D 1B 平行的截面.8.下图表示以AB =4,BC =3的矩形ABCD 为底面的长方体被一平面斜截所得的几何体,其中四边形EFGH 为截面.已知AE =5,BF =8,CG =12,1A A1A(1)截面四边形EFGH 是否为菱形?证明你的结论;(2) 求DH 的长. 【解答】(1)截面EFGH 为菱形.证明如下:∵平面ABFE ∥平面DCGH ,且平面EFGH 分别截平面ABFE 与平面DCGH 得直线EF 与直线GH ,∴EF ∥GH .同理,FG ∥EH ,∴四边形EFGH 为平行四边形.又∵EF 2=AB 2+(BF -AE )2=25,FG 2=BC 2+(CG -BF )2=25,∴EF =FG =5, ∴四边形EFGH 为菱形.(2) ∵几何体是长方体被一平面斜截所得的,∴AE +CG =BF +DH ,将AE =5,BF =8,CG =12代入得,DH 的长为9.B 组填空题:9.各面均为等边三角形的四面体ABCD 的外接球的表面积为12π,过棱AB 作球的截面,则截面面积的最小值为________. 【答案】2π【解析】根据题意,球的半径为3,面积最小的截面是以AB 为直径的截面,将四面体ABCD 放置于正方体中,可得正方体的外接球就是四面体ABCD 的外接球,设AB =a ,则△ABC 的外接圆半径为32a ×23=33a ,可求得三棱锥的高为a 2-13a 2=63a 2,则63a -32+33a 2=32,解得a =2,进而截面面积的最小值为π×22=2π.故答案为2π.10.如图,已知球O 是棱长为1的正方体ABCD -A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为________.AE【答案】π6 【解析】根据题意知,平面ACD 1是边长为2的正三角形,且球与以点D 为公共点的三个面的切点恰为三角形ACD 1三边的中点,故所求截面的面积是该正三角形的内切圆的面积,则由上图得,△ACD 1内切圆的半径是22×tan30o =66, 则所求的截面圆的面积是π×(66)2=π6.故答案为66.11. 如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,动点P 在对角线BD 1上,过点P 作垂直于BD 1的平面γ,记这样得到的截面多边形(含三角形)的周长为y ,设BP=x ,则当x ∈[33a ,233 a ]时,函数y=f (x )的值域为________.【答案】{32a } 【解析】1AA1A如图,当x ∈[33a ,233 a ]时,截面多边形为六边形HIJKLM , 设11111B I HIA CBC λ==,则11111C I IJ B C B C λ==-,故HI+IJ=2a 为定值,从而截面多边形(含三角形)的周长为32a .12.如图,在四面体ABCD 中,AB =CD =2,AC =BD =3,AD =BC =5,E ,F 分别是AD ,BC 的中点.若用一个与直线EF 垂直,且与四面体的每个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积的最大值为________.【答案】62 【解析】将四面体补成长、宽、高分别为3,2,1的长方体,如图,∵EF ⊥α,∴截面为平行四边形MNKL ,可得KL +KN =5,G 1A ABGHDA设异面直线BC 与AD 所成的角为θ,则sin θ=sin ∠HFB =sin ∠LKN ,可得sin θ=265, S MNKL =NK ·KL sin ∠NKL ≤62(NK +KL 2)2=62,当且仅当KL =KN 时取等号,故该多边形截面面积的最大值为62.四、真题再现1. (2015全国2文 19)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由); (Ⅱ)求平面α把该长方体分成的两部分体积的比值. 【解答】(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8.因为EHGF 为正方形,所以EH =EF =BC =10.于是MH =EH 2-EM 2=6,AH =10,HB =6. 因为长方形被平面α分成两个高为10的直棱柱,所以其体积的比值为97(79也正确).2. (2016年全国1文 11)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为A .32 B .22 C .33 D .13【答案】A1A AAA 1【解析】因为过点A 的平面α与平面CB 1D 1平行,平面ABCD ∥平面A 1B 1C 1D 1,所以m ∥B 1D 1∥BD ,又A 1B ∥平面CB 1D 1,所以n ∥A 1B ,则BD 与A 1B 所成的角为所求角,所以m ,n 所成角的正弦值为32,选A .3. (2018全国1理 12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A .334B .233C .324D .32【答案】A【解析】记该正方体为ABCD -A'B'C'D',正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A'A ,A'B',A'D'与平面α所成的角都相等,如图,连接AB',AD',B'D',因为三棱锥A'-AB'D'是正三棱锥,所以A'A ,A'B',A'D'与平面AB'D'所成的角都相等,分别取C'D',B'C',BB',AB ,AD ,DD'的中点E ,F ,G ,H ,I ,J ,连接EF ,FG .GH ,IH ,IJ ,IE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面AB'D'平行,且截正方体所得截面的面积最大,又EF =FG =GH =IH =IJ =JE =22,所以该正六边形的面积为6×34×(23)2=334,所以α截此正方体所得截面面积的最大值为334,故选A .4.(2019全国2文 16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】26,2-1.【解析】如图,依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,故该半正多面体共有18+8=26个面,或者逐层计算得8+8+8+2=26个面.关注到该半正多面体的俯视图(或水平截面、竖直截面)的轮廓是一个正八边形,设该半正多面体的棱长为x,则x+22x+22x=1,解得x=2-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学过程设计 先期准备 在《几何画板》中建立立体几何的图形工具包,方便学生在最快的 时间内作出准确的立体几何图形,以方便学生进行探究性学习,避免在 作图上花费过多时间和精力;同时可以给学生以示范,让学生学会如何 作出形象的立体几何直观图。 教学目标提出 探究空间几何图形上过任意三点的截面 1.分三个小组对多面体进行协作探究:第一小组:柱体;第二小 组:锥体;第三小组:台体。主要探究任意三点的位置和截面的形状。 2.探究圆锥的截面。 分组探究,层层推进,把问题推向纵深 通过发挥学生自主学习的特点,并根据几何体的特征可以分类,故 我们采取分组进行自我探索,相互协作,小组讨论,师生共同总结等方 法进行教学。在此过程中,老师作为主导者,主要为学生提供必要的帮 助和方向指引,而学习的过程主要靠学生自我完成。 学生进行分组协助学习。 每小组的探索活动都可分为三个层次进行: 以最简单的图形出发,即三棱柱、三棱锥、三棱台研究任意三点的 位置的取法。 随后作出过三点的截面(作法依据:公理及其推论),并拖动三 点,观察截面的变化情况,从而得出结论,并进行组内交流,形成小组 统一观点。 对几何体作广度延伸:把底面边数增加,类比的作出截面,并归纳 出截面变化情况。最后统一制作成作品,准备交流。 在小组探索中,充分发挥学生的自主性,使学生真正成为学习的主 人。 各小组进行作品展示。 各小组可以对展示作品进行讨论,可以对作品提问,讨论(可以应 用网络的讨论板块进行或直接的讨论),师生共同评价(或者先学生讨 论,教师再总结)。学生在老师的帮助下,加深对知识的理解,从而得 到启发,进行知识建构。 发散与推广 运用极限的逼近思想,来解决圆锥曲线的截面问题,使截面问题达
空间立体几何图形的截面
江苏省前黄高级中学 许云峰 教学背景 本课为以立体几何的截面图为核心,让学生借助《几何画板》的实 际模拟和探索功能进行学习,由学生自我探究,进行知识迁移,通过类 比,自己去尝试并最终解决问题。教师在此过程中进行必要的总结和在 学生出现困难时进行指导,由此培养学生思维的独立和发散性,使学生 真正成为学习的主体。 教学目标: 1.认知目标:整合几何体的截面情况,形成完整的认知体系。 2.能力目标:学生利用《几何画板》探索问题的能力,以培养学 生知识迁移能力,发散思维和类比思维能力。 3.情感目标:培养学生探索创新能力,激发学生学习的热情和积 极性。 重点与难点 重点:空间几何体的截面图的作法;空间旋转体的截面作法。 难点:空间几何图形的交点的作法;由极限思想作出空间旋转体的 截面图的作法。 教学策略与教法设计 策略:教师提出问题,然后逐层展开,分步进行研究(需学生进行 探索和分析),然后学生进行分组讨论和实际操作,通过自主学习、探 究学习、合作学习达到认知的意义建构。 教法 1.演示法:把制作的课件展示给学生,便于学生对知识的深层次 的把握,并从中获得启发,从而解决问题。这同时也给学生制作作品提 供了模板,让学生明白作品需达到的要求。 2.谈话法:在教师指导下,由全班或小组成员围绕某一中心问题 发表自己的看法,从而进行相互学习、合作学习,集思广益。 3.成果展示法:将学生制作的作品有选择的展示(以小组为单位 进行制作,每个小组推荐1~2个进行演示),让学生获得成功的喜悦和 认同,从而激发学生后续学习的热情。 4.讨论法:就学生探索所得成果,各小组可自由提问,或者师生共同 评图6
四棱台:截面可为六边形,五边形,四边形,三角形。 五棱台:截面可为七边形,六边形,五边形,四边形,三角形。
各小组可以对展示作品进行讨论,可以对作品提问,讨论(可以应 用网络的讨论板块进行或直接的讨论),师生共同评价(或者先学生讨 论,教师再总结)。学生在老师的帮助下,加深对知识的理解,从而得 到启发,进行知识建构。
图1
2.类似探究四棱柱,五棱柱……(图2)
图2 四棱柱:截面可为六边形,五边形,四边形,三角形。 五棱柱:截面可为七边形,六边形,五边形,四边形,三角形。 第二小组:探究锥体上过棱上任意三点的截面。1.由三棱锥开
始,研究其过棱棱上任意三点的截面,探究:(1)任意三点的取法, (2)每种取法下,截面有几种形状,最后总结三棱锥截面情况。
极性。 重点与难点 重点:空间几何体的截面图的作法;空间旋转体的截面作法。 难点:空间几何图形的交点的作法;由极限思想作出空间旋转体的
截面图的作法。 教学对象分析 教学对象:高二及高二以上年级学生 学生特点: (1)在操作方面:高二年级的学生有一定的电脑操作基础,可以
自己操作电脑。但学生的操作水平参差不齐,特别是对数学软件《几何 画板》不够熟悉,还不能熟练地操作,所以在上这节课之前要上预备 课,主要教学生软件的使用。要做到能独立操作软件且能较熟练地完成 一定的学习任务。
教学过程设计 先期准备 在《几何画板》中建立立体几何的图形工具包,方便学生在最快的 时间内作出准确的立体几何图形,以方便学生进行探究性学习,避免在 作图上花费过多时间和精力;同时可以给学生以示范,让学生了解如何 作出形象的立体几何直观图。 教学目标提出 探究空间几何图形上过任意三点的截面 1.分三个小组对多面体进行协作探究:第一小组:柱体;第二小 组:锥体;第三小组:台体。主要探究任意三点的位置和截面的形状。 2.探究圆锥的截面。 分组探究,层层推进,把问题推向纵深 第一小组:探究柱体上过棱上任意三点的截面。1.由三棱柱开 始,研究其过棱棱上任意三点的截面,探究:(1)任意三点的取法, (2)每种取法下,截面有几种形状,最后总结三棱柱截面情况; 学生首先给出取点位置:(图1)三点都在侧棱上;三点都在底面 上(一面上两个,另一面上一个);棱上一个,底面上两个(一上,一 下或两个在同一底面);侧棱上两个,底面上一个。 作出三棱柱,分别画出上述情况,并拖动原始点观察截面图的变化 情况,最终得出三棱柱截面的情况:当截面与三棱柱的侧棱不相交时, 截面为四边形;当截面与三棱柱的侧棱相交时,截面为四边形或三角 形。
以圆锥为例,作出圆锥截面,并探究截面的情形。并把圆柱和圆台 的问题留在课后,使学生继续进行探究活动。
本课教学的主题是学生,这使学生在如何加工信息、怎样推理验证 等方面得到锻炼,利于培养学生探索能力,使学生既学到了知识,学到 了科学的思想方法,又提高了能力;让学生从整个知识体系中去掌握知 识点的来龙去脉,也就是把它的逻辑锁链搞清楚,并尝试从知识体系中 寻找新的知识生长点!对同学们的表现进行评价,要及时表扬一些表现 好的同学,同时鼓励其他同学,以提高同学们学习的积极性并知道他们 进行新的探索,使学生产生后继学习的激情。
发散与推广 把问题向纵深推广:伴随正棱柱、正棱锥、正棱台底面边数的增 加,多面体逼近旋转体,我们能够通过逼近的思想把旋转体的截面作出 来呢? 旋转体,是母线饶轴旋转而来,故截面与旋转体侧面的交线即为母 线与截面交点饶轴旋转而来,由此我们可以作出过母线上任意三点的旋 转体的截面了。 我们以圆锥为例,作出圆锥截面,并探究截面的情形。
始,研究其过棱棱上任意三点的截面,探究:(1)任意三点的取法, (2)每种取法下,截面有几种形状,最后总结三棱台截面情况。
学生首先给出取点位置:(图5)三点都在侧棱上;三点都在底面 上(一面上两个,另一面上一个);棱上一个,底面上两个(一上,一 下或两个在同一底面);侧棱上两个,底面上一个。
图5
作出三棱台,分别画出上述情况,并拖动原始点观察截面图的变化 情况,最终得出三棱台截面的情况。当截面与三棱柱的侧棱不相交时, 截面为四边形;当截面与三棱柱的侧棱相交时,截面为四边形或三角 形。
本课教学的主题是学生,这使学生在如何加工信息、怎样推理验证 等方面得到锻炼,利于培养学生探索能力,使学生既学到了知识,学到 了科学的思想方法,又提高了能力;让学生从整个知识体系中去掌握知 识点的来龙去脉,也就是把它的逻辑锁链搞清楚,并尝试从知识体系中 寻找新的知识生长点!对同学们的表现进行评价,要及时表扬一些表现 好的同学,同时鼓励其他同学,以提高同学们学习的积极性并知道他们 进行新的探索,使学生产生后继学习的激情。
空间立体几何图形的截面
江苏省前黄高级中学 许云峰 教学背景 本课为以立体几何的截面图为核心,让学生借助《几何画板》的实 际模拟和探索功能进行学习,由学生自我探究,进行知识迁移,通过类 比,自己去尝试并最终解决问题。教师在此过程中进行必要的总结和在 学生出现困难时进行指导,由此培养学生思维的独立和发散性,使学生 真正成为学习的主体。 教学目标: 1.认知目标:整合几何体的截面情况,形成完整的认知体系。 2.能力目标:学生利用《几何画板》探索问题的能力,以培养学 生知识迁移能力,发散思维和类比思维能力。 3.情感目标:培养学生探索创新能力,激发学生学习的热情和积
教学流程
正确
给出学习目标
结束 正确
师生共同小结形成共识 对所研究的问题提出更深层次的研究目标
教师判断
教师组织学生进小组间交流
教师判断
学生利用软件分小组进行协作学习,共同研究问题并完成研究目标
课堂准备(起用立体工具包) 开始
学生找出点的取法(图3):两个在侧棱上,一个在底面;两个在 底面,一个在侧棱;三个在侧棱。
图3 作出三棱锥,分别画出上述情况,并拖动原始点观察截面图的变化
情况,最终得出三棱柱截面的情况。有点在底面上时(不包括顶点),
截面为四边形,否则为三角形。 2.类似探究四棱柱,五棱柱……(图4)
图4 四棱柱:截面可为五边形,四边形,三角形。 五棱柱:截面可为六边形,五边形,四边形,三角形。 第三小组:探究台体上过棱上任意三点的截面。1.由三台锥开
(2)在知识方面:高二的学生通过对立体集合内容的学习,对空 间立体几何有较为全面的认识,但是空间想象能力还有待进一步提高。 本节课让学生自己操作软件,通过同学之间的相互协作及通过网络的交 流来发现规律,实现知识的整合。
教学策略与教法设计 策略:教师提出问题,然后逐层展开,分步进行研究(需学生进行 探索和分析),然后学生进行分组讨论和实际操作,通过自主学习、探 究学习、合作学习达到认知的意义建构。 教法 1.演示法:把制作的课件展示给学生,便于学生对知识的深层次 的把握,并从中获得启发,从而解决问题。这同时也给学生制作作品提 供了模板,让学生明白作品需达到的要求。 2.谈话法:在教师指导下,由全班或小组成员围绕某一中心问题 发表自己的看法,从而进行相互学习、合作学习,集思广益。 3.成果展示法:将学生制作的作品有选择的展示(以小组为单位 进行制作,每个小组推荐1~2个进行演示),让学生获得成功的喜悦和 认同,从而激发学生后续学习的热情。 4.讨论法:就学生探索所得成果,各小组可自由提问,或者师生 共同评价,最后总结成整体观点。 网络环境分析: 一人一机的网络教室和网络控制软件《TOP2000》等