实验二 MATLAB语言矩阵运算

合集下载

matlab 符号矩阵运算

matlab 符号矩阵运算

matlab 符号矩阵运算摘要:1.引言2.Matlab 符号矩阵介绍3.符号矩阵的创建4.符号矩阵的基本操作5.符号矩阵的运算6.符号矩阵的转置与逆7.总结正文:Matlab 是一种广泛应用于科学计算和数据分析的编程语言,其内置的符号计算功能可以方便地进行符号矩阵运算。

本文将详细介绍Matlab 中符号矩阵的运算方法。

首先,我们需要了解什么是符号矩阵。

符号矩阵是具有符号(例如+、-、*、/等)元素的矩阵。

在Matlab 中,符号矩阵用大写字母表示,如A、B 等。

接下来,我们来看一下如何创建符号矩阵。

在Matlab 中,可以使用`sym`函数创建符号矩阵。

例如:```matlabA = sym("A", [2, 3]);B = sym("B", [3, 2]);```上述代码创建了两个2x3 的符号矩阵A 和B。

创建符号矩阵后,可以进行一些基本操作,如访问元素、修改元素等。

访问符号矩阵的元素时,需要使用圆括号,如:```matlabA(1, 1) = sym("a");B(2, 3) = sym("b");```此外,还可以通过`eval`函数对符号矩阵的元素进行修改:```matlabeval(A(1, 1)) = 2;eval(B(2, 3)) = 3;```在Matlab 中,符号矩阵可以进行加、减、乘、除等运算。

这些运算可以通过`+`、`-`、`*`、`/`等符号进行。

例如:```matlabC = A + B;D = A * B;E = A / B;```需要注意的是,在进行除法运算时,除数不能为零。

符号矩阵还可以进行转置操作,转置后的矩阵具有与原矩阵相同的行数和列数,但元素的排列顺序相反。

可以使用`transpose`函数进行转置:```matlabA_transpose = transpose(A);```此外,如果符号矩阵A 是非奇异的,还可以求其逆矩阵。

matlab第二章矩阵运算基础

matlab第二章矩阵运算基础

南京信息工程大学
4
例2.1 创建矩阵
>>x=[1 2 3;4 5 6;7 8 9] >>x=[1 2 3 456 7 8 9] >>x=[a b c;e f g;u v w] >>x=[1 2 3;4 5 6]; y=[2 3 4;5 6 7] >>Q=x*y >>a=2;b=3 >>x=a*b
2010-12-29
2010-12-29 南京信息工程大学 6
2.1 矩阵的创建
2、 赋值语句 MATLAB赋值语句有两种格式:
变量=表达式(或数) 表达式
2010-12-29
南京信息工程大学
7
【例2.2】 x=[1,2,3;4,5,6;7,8,9] 与[1,2,3;4,5,6;7,8,9]。
5 + cos 47
【例2.3】计算
2010-12-29
南京信息工程大学
25
§2.2 矩阵和数组的算术运算 六、点运算
C=A.*B C=A.\B
C=A./B C=A.^B
2010-12-29
南京信息工程大学
26
§2.2 矩阵和数组的算术运算 七、幂运算
C=A^B C=A.^B
2010-12-29
南京信息工程大学
27
例2.12 例2.13 例2.14 例2.15
find(x)
检查x是 否全为1
南京信息工程大学 42
2010-12-29
例2.20 建立矩阵A,然后找出大于4的元素位置 (1)建立A >>A=[4 -6 5 -54 0 6 56 0 67 -45 0] (2)找出大于4的元素位置 >>find(A>4)

matlab实验二

matlab实验二

北京工业大学Matlab实验报告**: ***学号: ************: **实验二、Matlab 的基本计算(一)实验目的1.掌握建立矩阵的方法。

2.掌握Matlab 各种表达式的书写规则以及常用函数的使用。

3.能用Matlab 进行基本的数组、矩阵运算。

4.掌握矩阵分析的方法以及能用矩阵运算或求逆法解线性方程组。

5.掌握Matlab 中的关系运算与逻辑运算。

(二)实验环境1.计算机2.MATLAB7.0集成环境(三)实验内容及要求1、熟练操作MATLAB7.0运行环境;2、自主编写程序,必要时参考相关资料;3、实验前应写出程序大致框架或完整的程序代码;4、完成实验报告。

(四)实验程序设计1.利用diag 等函数产生下列矩阵。

⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=032570800a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=804050702b2.利用reshape 函数将1题中的a 和b 变换成行向量。

3.产生一个均匀分布在(-5,5)之间的随机矩阵(10×2),要求精确到小数点后一位。

4.已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=76538773443412A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=731203321B求下列表达式的值:(1) B A K *611+=和I B A K +-=12(其中I 为单位矩阵)(2) B A K *21=和B A K *.22=(3) 331^A K =和3.32^A K =(4) B A K /41=和A B K \42=(5) ],[51B A K =和]2:);],3,1([[52^B A K = 5.下面是一个线性方程组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡52.067.095.03216/15/14/15/14/13/14/13/12/1x x x(1)求方程的解(矩阵除法和求逆法)(2)将方程右边向量元素3b 改为0.53,再求解,并比较3b 的变化和解的相对变化。

matlab 矩阵运算平均值

matlab 矩阵运算平均值

一、概述矩阵运算是矩阵理论中的重要部分,而矩阵的平均值是其中的一项重要概念。

在 MATLAB 中,我们可以通过一系列的操作来计算矩阵的平均值,本文将介绍这一过程。

二、矩阵的平均值的概念矩阵的平均值是指矩阵中所有元素的平均数。

在数学上,矩阵的平均值可以通过将矩阵元素相加然后除以矩阵的元素个数来得到。

三、MATLAB 中的矩阵运算在 MATLAB 中,矩阵运算非常方便。

我们可以使用一系列的内置函数来进行矩阵的各种运算操作,包括矩阵的加法、减法、乘法、转置以及求逆等。

四、MATLAB 中计算矩阵的平均值在 MATLAB 中,我们可以使用 mean 函数来计算矩阵的平均值。

该函数可以接受一个矩阵作为输入,并返回该矩阵的平均值。

如果我们有一个 3x3 的矩阵 A:A = [1 2 3; 4 5 6; 7 8 9]我们可以使用 mean 函数来计算矩阵 A 的平均值:avg_A = mean(A)通过执行上述操作,我们将得到矩阵 A 的平均值 avg_A。

五、MATLAB 中计算矩阵每行或每列的平均值除了计算整个矩阵的平均值外,我们还可以使用 mean 函数来计算矩阵中每行或每列的平均值。

在 MATLAB 中,mean 函数可以接受一个额外的参数来指定计算平均值的维度。

如果我们有一个 3x3 的矩阵 A:A = [1 2 3; 4 5 6; 7 8 9]我们可以使用 mean 函数来计算矩阵 A 中每一列的平均值:avg_col_A = mean(A, 1)同样地,我们也可以使用 mean 函数来计算矩阵 A 中每一行的平均值:avg_row_A = mean(A, 2)六、总结矩阵的平均值是矩阵理论中的重要概念,而在 MATLAB 中,计算矩阵的平均值非常简单。

通过使用 mean 函数,我们可以轻松地计算矩阵的平均值,以及矩阵每行或每列的平均值。

这些操作在实际的数据分析和科学计算中都具有重要的意义。

希望本文能够帮助读者更加深入地了解 MATLAB 中矩阵运算的相关知识。

(完整word版)含答案《MATLAB实用教程》

(完整word版)含答案《MATLAB实用教程》

第二章 MATLAB 语言及应用实验项目实验一 MATLAB 数值计算三、实验内容与步骤1.创建矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a(1(2)用(3)用(42.矩阵的运算(1)利用矩阵除法解线性方程组。

⎪⎪⎩⎪⎪⎨⎧=+++=-+-=+++=+-12224732258232432143214321421x x x x x x x x x x x x x x x 将方程表示为AX=B ,计算X=A\B 。

(2)利用矩阵的基本运算求解矩阵方程。

已知矩阵A 和B 满足关系式A -1BA=6A+BA ,计算矩阵B 。

其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=7/10004/10003/1A ,Ps: format rata=[1/3 0 0;0 1/4 0;0 0 1/7];b=inv(a)*inv(inv(a)-eye(3))*6*a(3)计算矩阵的特征值和特征向量。

已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=1104152021X ,计算其特征值和特征向量。

(4)Page:322利用数学函数进行矩阵运算。

已知传递函数G(s)=1/(2s+1),计算幅频特性Lw=-20lg(1)2(2w )和相频特性Fw=-arctan(2w),w 的范围为[0.01,10],按对数均匀分布。

3.多项式的运算(1)多项式的运算。

已知表达式G(x)=(x-4)(x+5)(x 2-6x+9),展开多项式形式,并计算当x 在[0,20]内变化时G(x)的值,计算出G(x)=0的根。

Page 324(2)多项式的拟合与插值。

将多项式G(x)=x 4-5x 3-17x 2+129x-180,当x 在[0,20]多项式的值上下加上随机数的偏差构成y1,对y1进行拟合。

对G(x)和y1分别进行插值,计算在5.5处的值。

Page 325 四、思考练习题1.使用logspace 函数创建0~4π的行向量,有20个元素,查看其元素分布情况。

Ps: logspace(log10(0),log10(4*pi),20) (2) sort(c,2) %顺序排列 3.1多项式1)f(x)=2x 2+3x+5x+8用向量表示该多项式,并计算f(10)值. 2)根据多项式的根[-0.5 -3+4i -3-4i]创建多项式。

MATLAB实验报告

MATLAB实验报告

v1.0 可编辑可修改实验一 MATLAB 环境的熟悉与基本运算一、实验目的及要求1.熟悉MATLAB 的开发环境; 2.掌握MATLAB 的一些常用命令;3.掌握矩阵、变量、表达式的输入方法及各种基本运算。

二、实验内容1.熟悉MATLAB 的开发环境: ① MATLAB 的各种窗口:命令窗口、命令历史窗口、工作空间窗口、当前路径窗口。

②路径的设置:建立自己的文件夹,加入到MATLAB 路径中,并保存。

设置当前路径,以方便文件管理。

2.学习使用clc 、clear ,了解其功能和作用。

3.矩阵运算:已知:A=[1 2;3 4]; B=[5 5;7 8]; 求:A*B 、A.*B ,并比较结果。

4.使用冒号选出指定元素:已知:A=[1 2 3;4 5 6;7 8 9]; 求:A 中第3列前2个元素;A 中所有列第2,3行的元素; 5.在MATLAB 的命令窗口计算: 1) )2sin(π2) 5.4)4.05589(÷⨯+ 6.关系及逻辑运算1)已知:a=[5:1:15]; b=[1 2 8 8 7 10 12 11 13 14 15],求: y=a==b ,并分析结果 2)已知:X=[0 1;1 0]; Y=[0 0;1 0],求: x&y+x>y ,并分析结果 7.文件操作1)将0到1000的所有整数,写入到D 盘下的文件 2)读入D 盘下的文件,并赋给变量num8.符号运算1)对表达式f=x 3-1 进行因式分解2)对表达式f=(2x 2*(x+3)-10)*t ,分别将自变量x 和t 的同类项合并 3)求3(1)xdz z +⎰三、实验报告要求完成实验内容的3、4、5、6、7、8,写出相应的程序、结果实验二 MATLAB 语言的程序设计一、实验目的1、熟悉 MATLAB 程序编辑与设计环境2、掌握各种编程语句语法规则及程序设计方法3、函数文件的编写和设计4、了解和熟悉变量传递和赋值二、实验内容1.编写程序,计算1+3+5+7+…+(2n+1)的值(用input 语句输入n 值)。

MATLAB矩阵及运算

MATLAB矩阵及运算

点乘——元素对元素乘法 叉乘——矩阵对矩阵乘法
对比举例
矩阵的右除、左除
MATLAB的基本处理单元是复数矩阵(标量是一 个1*1的矩阵)。而在《线性代数》理论中没有除 法运算。所以定义了除法为乘法的逆运算。
注意:因为矩阵乘法不满足交换律,即一般 A*B≠B*A,所以除法要考虑“右除”、“左 除”。
2.1.2 变量
变量的命名规则: 1)变量名、函数名对字母的大、小写敏感。 2)变量名由字母、数字和下划线构成。第一个
字母必须是英文字母。 3)有字符个数限制(版本5.0 :最多31个字符)
2.1.2 变量
MATLAB系统默认变量
重点
(注意大小写!)
i或j:
虚单元 正确:5+7j 错误:5+j7
2.1表达式
表达式 (即语句):将变量、数值、函数 用操作符连接起来,就构成了表达式 。
例如:a=(10j+sqrt(10))/2; %注释 ☆行末的“;”用于抑制结果在屏幕上显示
例如: sin(a),sin(b) ,a+b ☆同在一行的表达式,必须用“,”分开
2.2 矩阵的产生与操作
矩阵的产生:
A./Baa31//b b1 3
a2/b2 a4/b4
B.\A
A.\Bbb31//aa13 bb42//aa42B./A
分析:
K/N=K*inv(N)
因为N不是方阵,没有逆 阵,所以报告错误。
K\N=inv(K)*N
因为K的逆阵尺寸2×2, N的尺寸2×3,所以结 果矩阵2×3。
矩阵元素的指数运算
这种战略取得了成功:使人们不在编程细节上化 精力,把注意力集中到科学计算的方法和建模合理性等 大问题上。

matlab矩阵运算与元素群运算实验总结

matlab矩阵运算与元素群运算实验总结

matlab矩阵运算与元素群运算实验总结matlab矩阵运算与元素群运算实验总结1. 引言在数学和工程学科中,矩阵与元素群的运算是非常重要的基础知识。

Matlab作为一种强大的数学计算工具,提供了丰富的矩阵运算与元素群运算功能。

在本次实验中,我们对Matlab中的矩阵运算与元素群运算进行了深入的研究和实践,以便更好地理解和掌握这些运算方法。

2. 矩阵运算矩阵作为一种重要的数学对象,广泛应用于各个学科领域。

在Matlab 中,我们可以方便地进行矩阵运算,包括加法、减法、乘法、转置等。

2.1 加法矩阵的加法是指将两个矩阵对应位置的元素相加,得到一个新的矩阵。

在Matlab中,我们可以使用"+"符号进行矩阵的加法运算。

假设有两个矩阵A和B,它们的大小都为n×m,则它们的加法运算结果C可以表示为C = A + B。

2.2 减法矩阵的减法是指将两个矩阵对应位置的元素相减,得到一个新的矩阵。

在Matlab中,我们可以使用"-"符号进行矩阵的减法运算。

假设有两个矩阵A和B,它们的大小都为n×m,则它们的减法运算结果C可以表示为C = A - B。

2.3 乘法矩阵的乘法是指将两个矩阵按照一定的规则进行运算,得到一个新的矩阵。

在Matlab中,我们可以使用"*"符号进行矩阵的乘法运算。

假设有两个矩阵A和B,它们的大小分别为n×m和m×p,则它们的乘法运算结果C可以表示为C = A * B。

2.4 转置矩阵的转置是指将矩阵的行与列进行互换,得到一个新的矩阵。

在Matlab中,我们可以使用"'"符号进行矩阵的转置运算。

假设有一个矩阵A,它的大小为n×m,则它的转置运算结果B可以表示为B = A'。

3. 元素群运算元素群是指集合上定义的一种二元运算,它满足结合律、封闭性、存在单位元素和存在逆元素等性质。

matlab 变量、矩阵基本运算代码

matlab 变量、矩阵基本运算代码

matlab 变量、矩阵基本运算代码详解
MATLAB是一种高效的编程语言和环境,主要用于数值计算和数据分析。

它支持多种数据类型,其中矩阵是最基本的数据结构之一。

下面是一些关于MATLAB变量和矩阵基本运算的代码示例。

1.变量定义
在MATLAB中,变量不需要提前声明,可以直接赋值。

例如:
2.矩阵基本运算
MATLAB支持多种矩阵基本运算,包括加法、减法、乘法和转置等。

例如:
注意,在MATLAB中,矩阵乘法需要用*符号表示,而不是普通的乘号x。

此外,MATLAB还支持一些特殊的矩阵运算,例如逆矩阵、行列式和特征值等。

例如:
3.变量替换和循环结构
MATLAB还支持变量替换和循环结构,可以方便地进行批量计算和数据处理。

例如:
以上是一些关于MATLAB变量和矩阵基本运算的代码示例,希望能对您有所帮助。

matlab矩阵运算实验报告

matlab矩阵运算实验报告

matlab矩阵运算实验报告Matlab矩阵运算实验报告一、引言矩阵运算是数学和工程领域中的重要概念之一,它在各个领域中都有广泛的应用。

Matlab作为一种强大的数学软件工具,提供了丰富的矩阵运算功能,可以帮助我们进行高效的数值计算和数据处理。

本实验报告将介绍Matlab中的矩阵运算功能,并通过实例展示其在实际问题中的应用。

二、矩阵运算的基本概念矩阵是由若干个数按照行和列排列形成的一个矩形阵列,它是线性代数中的基本工具。

在Matlab中,矩阵可以通过直接输入数值或使用内置函数生成。

矩阵运算包括加法、减法、乘法、转置等操作,这些操作可以对矩阵的每个元素进行运算,也可以对整个矩阵进行运算。

三、矩阵运算的实例分析1. 矩阵的创建与赋值在Matlab中,可以使用以下命令创建一个矩阵,并对其进行赋值操作:A = [1, 2, 3; 4, 5, 6; 7, 8, 9];这样就创建了一个3行3列的矩阵A,并对其进行了赋值。

可以通过输入A来查看矩阵A的内容。

2. 矩阵的加法与减法矩阵的加法和减法是按照对应元素进行运算的。

例如,对于两个3行3列的矩阵A和B,可以使用以下命令进行加法运算:C = A + B;同样地,可以使用以下命令进行减法运算:D = A - B;这样就得到了矩阵C和D。

3. 矩阵的乘法矩阵的乘法是按照行乘以列的方式进行的。

例如,对于一个3行2列的矩阵A和一个2行4列的矩阵B,可以使用以下命令进行乘法运算:C = A * B;这样就得到了一个3行4列的矩阵C。

4. 矩阵的转置矩阵的转置是将矩阵的行和列进行交换的操作。

例如,对于一个3行2列的矩阵A,可以使用以下命令进行转置操作:B = A';这样就得到了一个2行3列的矩阵B。

四、矩阵运算的应用实例矩阵运算在实际问题中有着广泛的应用。

以下是一个简单的实例,通过矩阵运算来解决线性方程组的问题。

假设有一个线性方程组:2x + y = 4x + 3y = 6可以将其表示为矩阵形式:A = [2, 1; 1, 3];B = [4; 6];通过矩阵运算可以求解出未知数x和y的值:X = A \ B;这样就得到了未知数x和y的值。

控制系统仿真 实验二

控制系统仿真 实验二

实验二Matlab的数值运算及绘图1.试验目的(1)学习Matlab语言的基本矩阵运算;(2)学习Matlab语言的点运算;(3)学习多项式运算;(4)学习Matlab语言的各种二维绘图;2.试验内容在下面的试验操作中,认真记录每项操作的作用和目的;(1)基本矩阵运算1)创建数值矩阵。

键入a=[1 2 3;4 5 6;7 8 9];观察aa(3,2)a(:,1)键入t=0:10u=0:0.1:10观察矩阵变量t,u的值。

键入a(:,3)=[2;3;4]a观察矩阵a的变化。

键入b=[1 1+2i ;3+4i 3]观察复数矩阵。

2)创建特殊矩阵;键入a=ones(3,3)b=zeros(2,2)c=eye(4)观察特殊矩阵。

3)练习矩阵运算;键入a=[0 1 0;0 0 1;-6 -11 -6]; b=[1 2;3 4;5 6];c=[1 1 0;0 1 1];作矩阵乘运算v1=c*av2=a*bv3=c*a*bv4=b*cv5=c*b矩阵乘方运算a^2a^(1/2)矩阵加减运算a1=a+b*ca2=c*b-a(1:2,1:2)a3=a(1:2,2:3)+c*b矩阵右除(矩阵右除为四则运算的除运算,必须满足矩阵维数的要求)ar=c/a矩阵左除(矩阵左除等价于逆乘运算a\c=a-1*c,a-1为矩阵a的逆运算)al=a\b4)练习矩阵特征运算完成以下矩阵特征运算。

a'inv(a)rank(a)det(a)eig(a)(2)Matlab语言的点运算1)练习点乘与点除。

a1=[1 2;3 4]a2=0.2*a1观察[a1 a2][a1.*a2 a1./a2]2)由点运算完成标量函数运算与作图。

正、余弦函数的点运算。

t=0:2*pi/180:2*pi;y1=sin(t);y2=cos(t);y=y1.*y2;plot(t,[y' y1' y2']);(3)多项式运算1)建立多项式向量;ap=[1 3 3 1];b=[-1 -2 -3];bp=poly(b)2)练习多项式乘与求根。

实验二MATLAB的矩阵操作_参考答案

实验二MATLAB的矩阵操作_参考答案
k =
1
5
>> A(k)
ans =
23
10
(2)取出A前3行构成矩阵B,前两列构成矩阵C,右下角 子矩阵构成矩阵D,B与C的乘积构成矩阵E.
>> B=A([1,2,3],:)
B =
23.0000 10.0000 -0.7780 0
41.0000 -45.0000 65.0000 5.0000
32.0000 5.0000 0 32.0000
y =
-128.4271
2.已知 ,
求下列表达式的值:
(1) , (其中I为单位矩阵)
A=[-1,5,-4;0,7,8;3,61,7]
B=[8,3,-1;2,5,3;-3,2,0]
>> A+6*B
ans =
47 23 -10
12 37 26
-15 73 7
&
ans =
-1.2768 -0.4743 0.2411
2.1229 1.3173 -0.2924
3.已知
完成下列操作
(1)输出A在[10,25]范围内的全部元素
A=[23,10,-0.778,0;41,-45,65,5;32,5,0,32;6,-9.54,54,3.14]
>> k=find(A>=10&A<=25)
(2)
(3)
2.已知 ,
求下列表达式的值:
(1) , (其中I为单位矩阵)
(2)A*B、A.*B和B*A
(3)A/B及B/A
3.已知
完成下列操作
(1)输出A在[10,25]范围内的全部元素
(2)取出A前3行构成矩阵B,前两列构成矩阵C,右下角 子矩阵构成矩阵D,B与C的乘积构成矩阵E.

第2章 MATLAB矩阵及其运算

第2章  MATLAB矩阵及其运算
要求作出以w为自变量的复变函数曲线(且w的取值范围 为0.1:0.01:10):
2.3 常用的数学函数(可以通过help elfun命令查 看)
例: 二阶欠阻尼系统的超调量计算公式为:
总结: 在matlab中,引入矩阵的方式有以下几种: 1、直接从键盘输入; 2、通过M文件的方式键入; 3、通过冒号的方式得到矩阵; 4、通过matlab中的函数得到一些特殊矩阵;
2.1.1 变量与赋值语句
在matlab中,变量定义为矩阵是最基本的变量定
义之一,因此,matlab语言的运算是基于矩阵的
对于永久变量:
1)永久变量不能用clear清除,所以称为永久变量;
2)永久变量不响应who、whos命令; 用于绘图时,起到屏蔽数据的作用;
3)无穷变量Inf、非数变量NaN可以用于编程;但是NaN
2.2 MATLAB运算
1.基本算术运算 MATLAB的基本算术运算有:+(加)、 -(减)、*(乘)、/(右除)、\(左除)、^(乘方)。 注意,运算是在矩阵意义下进行的,单个 数据的算术运算只是一种特例。
1.通用的特殊矩阵 常用的产生通用特殊矩阵的函数有: zeros:产生全0矩阵(零矩阵) 使用格式:
A=zeros(n)
A=zeros(m,n) A=zeros(size(B))
返回一个n*n阶零矩阵;
返回一个m*n阶零矩阵;
返回一个大小与B一样的零矩阵;
ones:产生全1矩阵(1矩阵) 格式: A=ones(n) 返回一个n*n阶1矩阵; A=ones(m,n)
(2) 矩阵乘法 假定有两个矩阵A和B,若A为m×n矩阵, B为n×p矩阵,则C=A*B为m×p矩阵。
要求:A矩阵的列数与B矩阵的行数必须相同,否则出错

matlab实验指导答案详解(非常详细正确)

matlab实验指导答案详解(非常详细正确)

matlab实验指导答案详解(⾮常详细正确)实验⼀ MATLAB ⼯作环境熟悉及简单命令的执⾏⼀、实验⽬的:熟悉MATLAB 的⼯作环境,学会使⽤MATLAB 进⾏⼀些简单的运算。

⼆、实验内容:MATLAB 的启动和退出,熟悉MATLAB 的桌⾯(Desktop ),包括菜单(Menu )、⼯具条(Toolbar )、命令窗⼝(Command Window)、历史命令窗⼝、⼯作空间(Workspace)等;完成⼀些基本的矩阵操作;学习使⽤在线帮助系统。

三、实验步骤:1、启动MATLAB ,熟悉MATLAB 的桌⾯。

2、在命令窗⼝执⾏命令完成以下运算,观察workspace 的变化,记录运算结果。

(1)(365-52?2-70)÷3 >>(365-52*2-70)/3 ans = 63.6667(2)>>area=pi*2.5^2 area = 19.6350(3)已知x=3,y=4,在MATLAB 中求z :()232y x y x z -= >>x=3 >>y=4>>z = x ^2 * y ^3 / (x - y) ^2 z = 576(4)将下⾯的矩阵赋值给变量m1,在workspace 中察看m1在内存中占⽤的字节数。

m1=11514412679810115133216 执⾏以下命令>>m1 =[16 2 3 13 ; 5 11 10 8 ; 9 7 6 12 ; 4 14 15 1 ] >>m1( 2 , 3 ) ans = 10 >>m1( 11 ) ans = 6>>m1( : , 3 ) ans =3 10 6 15>>m1( 2 : 3 , 1 : 3 ) ans =5 11 10 9 7 6>>m1( 1 ,4 ) + m1( 2 ,3 ) + m1( 3 ,2 ) + m1( 4 ,1) ans = 34(5)执⾏命令>>help abs查看函数abs 的⽤法及⽤途,计算abs( 3 + 4i ) (6)执⾏命令>>x=0:0.1:6*pi; >>y=5*sin(x); >>plot(x,y)(6)运⾏MATLAB 的演⽰程序,>>demo ,以便对MATLAB 有⼀个总体了解。

Matlab实验2 矩阵的基本运算

Matlab实验2 矩阵的基本运算

实验二、矩阵的基本运算一、 问题已知矩阵A 、B 、b 如下:⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-------------=031948118763812654286174116470561091143A ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡------=503642237253619129113281510551201187851697236421B[]1187531=b应用Matlab 软件进行矩阵输入及各种基本运算。

二、 实验目的:熟悉Matlab 软件中的关于矩阵运算的各种命令三、 预备知识1、线性代数中的矩阵运算。

2、本实验所用的Matlab 命令提示:(1)、矩阵输入格式:A =[a 11, a 12; a 21, a 22];b =初始值:步长:终值;(2)、求A 的转置:A';(3)、求A 加B :A +B ;(4)、求A 减B :A -B ;(5)、求数k 乘以A :k*A ;(6)、求A 乘以B :A*B ;(7)、求A 的行列式:det (A );(8)、求A 的秩:rank (A );(9)、求A 的逆:inv (A )或(A )-1;(10)、B 右乘A 的逆:B/A ;(11)、B 左乘A 的逆:A \B ;(12)、求A 的特征值:eig (A );(13)、求A 的特征向量矩阵X 及对角阵D :[X ,D ]=eig (A );(14)、求方阵A 的n 次幂:A ^n ;(15)、A 与B 的对应元素相乘:A.*B ;(16)、存储工作空间变量:save '文件名' '变量名';(17)、列出工作空间的所有变量:whos ;四、实验内容与要求1、输入矩阵A,B,b;>> A=[3,4,-1,1,-9,10;6,5,0,7,4,-16;1,-4,7,-1,6,-8;2,-4,5,-6,12,-8;-3,6,-7,8,-1,1;8,-4,9,1,3,0] B=[1 2 4 6 -3 2;7 9 16 -5 8 -7;8 11 20 1 5 5;10 15 28 13 -1 9;12 19 36 25 -7 23;2 4 6 -3 0 5]b=[1,3,5,7,8,11]A =3 4 -1 1 -9 106 5 07 4 -161 -4 7 -1 6 -82 -4 5 -6 12 -8-3 6 -7 8 -1 18 -4 9 1 3 0B =1 2 4 6 -3 27 9 16 -5 8 -78 11 20 1 5 510 15 28 13 -1 912 19 36 25 -7 232 4 6 -3 0 5b =1 3 5 7 8 112、作X21=A'、X22=A+B、X23=A-B、X24=AB;>> X21=A'X22=A+BX23=A-BX24=A*BX21 =3 6 1 2 -3 84 5 -4 -4 6 -4-1 0 7 5 -7 91 7 -1 -6 8 1-9 4 6 12 -1 310 -16 -8 -8 1 0X22 =4 6 3 7 -12 1213 14 16 2 12 -239 7 27 0 11 -312 11 33 7 11 19 25 29 33 -8 2410 0 15 -2 3 5X23 =2 2 -5 -5 -6 8-1 -4 -16 12 -4 -9-7 -15 -13 -2 1 -13-8 -19 -23 -19 13 -17-15 -13 -43 -17 6 -226 -8 3 4 3 -5X24 =-55 -85 -180 -245 80 -175127 174 348 250 -13 5275 110 220 194 -41 15482 129 260 283 -91 23953 76 138 21 21 -2998 151 284 165 -33 1673、作X31=|A|、X32=|B|;>> X31=det(A)X32=det(B)X31 =245295X32 =4、作X41=R(A)、X42=R(B);>> X41=rank(A)X42=rank(B)X41 =6X42 =45、作X5=A-1;>> X5=eye(6)/AX5 =-0.0737 0.0604 -0.2297 0.0067 -0.0804 0.10420.3142 0.0036 0.2408 0.1605 0.1259 -0.14360.2099 -0.0395 0.3155 0.0364 0.0834 -0.0663-0.0827 -0.0123 0.0088 -0.0777 0.0779 0.08780.0134 -0.0335 -0.0159 0.1129 0.1061 0.03370.0377 -0.0525 -0.0110 0.0469 0.0698 0.0411>> inv(A)X5 =-0.0737 0.0604 -0.2297 0.0067 -0.0804 0.10420.3142 0.0036 0.2408 0.1605 0.1259 -0.14360.2099 -0.0395 0.3155 0.0364 0.0834 -0.0663-0.0827 -0.0123 0.0088 -0.0777 0.0779 0.08780.0134 -0.0335 -0.0159 0.1129 0.1061 0.03370.0377 -0.0525 -0.0110 0.0469 0.0698 0.04116、求满足矩阵方程XA=C的解矩阵X6,其中C为A的第i列乘以列标i所得矩阵;>> C=A.*[1,2,3,4,5,6;1,2,3,4,5,6;1,2,3,4,5,6;1,2,3,4,5,6;1,2,3,4,5,6;1,2,3,4,5,6]X6=C/AC =3 8 -34 -45 606 10 0 28 20 -961 -8 21 -4 30 -482 -8 15 -24 60 -48-3 12 -21 32 -5 68 -8 27 4 15 0X6 =2.9937 -1.3602 0.3790 -1.3862 0.2409 0.6621-2.9686 4.4209 2.0166 -2.7720 -1.6217 -1.61970.7423 0.7632 4.4879 0.9367 0.1844 -1.45171.4636 0.3018 1.7126 5.6670 1.2292 -1.6950-2.9029 0.1517 -2.7542 -1.6300 2.3827 2.24512.4342 -1.1655 4.5517 1.1351 2.5048 1.04787、求满足方程AX=b的解向量X7;>> X7=A\b'X7 =-0.49102.08031.86120.96921.84321.16338、作X6的特性向量X8、X6的特征向量组X及对角阵D;>> X8=eig(X6)X8 =1.00002.00006.00003.00004.00005.0000>> [X,D]=eig(X6)X =-0.2705 0.3578 -0.4541 -0.0698 0.0811 -0.5313-0.5410 0.4472 0.7265 0.0000 0.5678 0.2361-0.0902 -0.3578 0.3633 0.4889 -0.0811 0.3542-0.1803 -0.3578 0.3633 0.3492 -0.4867 0.70830.2705 0.5367 -0.0454 -0.4889 0.6489 -0.0590-0.7213 -0.3578 0.0000 0.6286 0.0811 0.1771D =1.0000 0 0 0 0 00 2.0000 0 0 0 00 0 6.0000 0 0 00 0 0 3.0000 0 00 0 0 0 4.0000 00 0 0 0 0 5.00009、作X9=B2 (A-1)2;>> X9=B^2*(inv(A))^2X9 =4.8329 1.1095 4.3899 2.1612 3.5801 6.101016.7262 1.3541 15.0714 9.5847 13.0914 18.507122.0322 3.1761 19.5899 11.9050 17.4229 27.629331.6981 5.3951 28.3698 16.2275 24.5831 39.831241.8370 8.3265 37.2783 20.7091 32.4948 55.05442.1785 1.3564 1.8128 0.6693 2.2719 5.588510、创建从2开始公差为4的等差数列前15项构成的行向量X10。

matlab矩阵实验报告

matlab矩阵实验报告

matlab矩阵实验报告
《MATLAB矩阵实验报告》
摘要:
本实验报告利用MATLAB软件进行了一系列矩阵实验,包括矩阵的创建、运算、特征值分解和矩阵方程的求解等。

通过实验,我们深入了解了矩阵在MATLAB
中的操作方法,掌握了矩阵运算的基本原理和技巧。

1. 实验目的
本实验旨在通过MATLAB软件进行矩阵实验,掌握矩阵的基本操作和运算方法,加深对矩阵特征值分解和矩阵方程求解的理解,提高MATLAB软件的应用能力。

2. 实验内容
(1)矩阵的创建和赋值
(2)矩阵的运算:加法、减法、乘法
(3)矩阵的特征值分解
(4)矩阵方程的求解
3. 实验过程
首先,我们在MATLAB软件中创建了若干个矩阵,并对其进行了赋值操作。

然后,我们进行了矩阵的加法、减法和乘法运算,观察了不同矩阵之间的运算结果。

接着,我们利用MATLAB自带的函数对矩阵进行了特征值分解,并分析了
特征值分解的意义和应用。

最后,我们利用MATLAB解决了一些矩阵方程,验
证了矩阵方程求解的正确性。

4. 实验结果
通过实验,我们成功创建了各种矩阵,并对其进行了各种运算。

特征值分解和
矩阵方程的求解也得到了满意的结果,验证了MATLAB在矩阵操作方面的强大功能。

5. 实验结论
通过本次实验,我们进一步加深了对矩阵操作的理解,掌握了MATLAB软件在矩阵实验方面的应用技巧。

矩阵在数学和工程领域有着广泛的应用,MATLAB 软件的矩阵操作功能为矩阵相关问题的研究和解决提供了便利和支持。

综上所述,本次实验取得了圆满成功,为我们进一步学习和应用矩阵知识奠定了良好的基础。

MATLAB 语言及其用 实验(答案)

MATLAB 语言及其用 实验(答案)

《MATLAB 语言及其用》实验指导书目录实验一Matlab 使用方法和程序设计........................实验二控制系统的模型及其转换.............................实验三控制系统的时域、频域和根轨迹分析...........实验四动态仿真集成环境-Simulink.........................实验一Matlab使用方法和程序设计一、实验目的1、掌握Matlab软件使用的基本方法;2、熟悉Matlab的数据表示、基本运算和程序控制语句3、熟悉Matlab绘图命令及基本绘图控制4、熟悉Matlab程序设计的基本方法二、实验内容:1、帮助命令使用help命令,查找 sqrt(开方)函数的使用方法;在 CommandWindowL里输入help,接在在search里输入sqr即可。

sqrtSquare rootSyntaxB = sqrt(X)DescriptionB = sqrt(X) returns the square root of each element of the array X. For the elements of X that are negative or complex, sqrt(X) produces complex results.TipsSee sqrtm for the matrix square root. Examplessqrt((-2:2)')ans =0 + 1.4142i0 + 1.0000i1.00001.4142See Alsonthroot | realsqrt | sqrtm2、矩阵运算(1)矩阵的乘法已知A=[1 2;3 4]; B=[5 5;7 8];求A^2*BA=[1 2;3 4];B=[5 5;7 8];C=A^2*B>> format compactC =105 115229 251(2)矩阵除法已知 A=[1 2 3;4 5 6;7 8 9];B=[1 0 0;0 2 0;0 0 3];A\B,A/BA=[1 2 3;4 5 6;7 8 9];B=[1 0 0;0 2 0;0 0 3];C=A\B,D=A/BC =1.0e+016 *0.3152 -1.2609 0.9457-0.6304 2.5218 -1.89130.3152 -1.2609 0.9457D =1.0000 1.0000 1.00004.0000 2.5000 2.00007.0000 4.0000 3.0000(3)矩阵的转置及共轭转置已知A=[5+i,2-i,1;6*i,4,9-i];求A.', A'A=[5+i,2-i,1;6*i,4,9-i];B=A.', C=A'B =5.0000 + 1.0000i 0 +6.0000i2.0000 - 1.0000i 4.00001.0000 9.0000 - 1.0000iC =5.0000 - 1.0000i 0 -6.0000i2.0000 + 1.0000i 4.00001.0000 9.0000 + 1.0000i(4)使用冒号表达式选出指定元素已知: A=[1 2 3;4 5 6;7 8 9];求A中第3列前2个元素;A中所有列第2,3行的元素;A=[1 2 3;4 5 6;7 8 9];B1=A([1,2],[3])B2=A([2,3],:)B1 =36B2 =4 5 67 8 9方括号[]用magic函数生成一个4阶魔术矩阵,删除该矩阵的第四列A=magic(4)B=A(:,[1,2,3])或A=magic(4)A(:,4)=[]A =16 2 3 135 11 10 89 7 6 124 14 15 1B =16 2 35 11 109 7 64 14 153、多项式(1)求多项式4xxp的根=x)2(3--Y=[1 0 -2 -4];S=roots(Y)S =2.0000-1.0000 + 1.0000i-1.0000 - 1.0000i(2)已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征多项式;把矩阵A作为未知数代入到多项式中;A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4]P=poly(A)polyval(P,A)A =1.2000 3.0000 5.0000 0.90005.0000 1.7000 5.00006.00003.0000 9.0000 0 1.00001.00002.00003.00004.0000P =1.0000 -6.9000 -77.2600 -86.1300 604.5500ans =1.0e+003 *0.3801 -0.4545 -1.9951 0.4601-1.9951 0.2093 -1.9951 -2.8880-0.4545 -4.8978 0.6046 0.43530.4353 0.0840 -0.4545 -1.16174、基本绘图命令(1)绘制余弦曲线 y=cos(t),t∈[0,2π](2)在同一坐标系中绘制余弦曲线y=cos(t-0.25)和正弦曲线y=sin(t-0.5),t∈[0,2π](1)t=[0:0.05:2*pi];y=cos(t);plot(t,y)-1-0.8-0.6-0.4-0.20.20.40.60.81(2)t=[0:0.05:2*pi];y1=cos(t-0.25);y2=sin(t-0.5);plot(t,y1)hold onplot(t,y2)5、基本绘图控制绘制[0,4π]区间上的x1=10sint曲线,并要求:(1)线形为点划线、颜色为红色、数据点标记为加号;(2)坐标轴控制:显示范围、刻度线、比例、网络线(3)标注控制:坐标轴名称、标题、相应文本;t=[0:0.1:4*pi];x1=10*sin(t);plot(t,x1,'r-.+'); %画图,显示红色、点划线、标记加号;axis([0,15,-10,10]); %定义显示范围,横轴为[0,15],纵轴为[-10,10];title('曲线x1=10sint'); %显示标题;xlabel('T轴');ylabel('X1轴'); %显示坐标轴名称;set(gca,'xminortick','on');set(gca,'yminortick','on'); %显示刻度线;grid on %显示网络线T 轴X 1轴6、基本程序设计(1)编写命令文件:计算1+2+…+n<2000 时的最大n 值; (2)编写函数文件:分别用for 和while 循环结构编写程序,求2的0到n 次幂的和。

矩阵运算与Malab命令

矩阵运算与Malab命令

实验二 矩阵运算与Matlab 命令一、实验目的1、熟悉matlab 的向量、数组或矩阵的创建、访问和基本运算;2、熟悉matlab 的运算符及优先级;3、熟悉matlab 的字符串处理;4、熟悉matlab 的数据类型;二、 数学概念线性代数中的矩阵运算(以下讨论的矩阵均为实数域中的数的运算):()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==⨯mn m m n n n m ij a a a a a a a a a a A 212222111211 ()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==⨯mn m m n n nm ij b b b b b b b b b b B 212222111211 1、 加法运算:()()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++++++++=+=+==⨯⨯mn mn m m m m n n n n nm ij ij n m ij b a b a b a b a b a b a b a b a b a b a B A c C 2211222222212111121211112、 乘法运算:()s m ij a A ⨯= ()n s ij b B ⨯= ()n m ij c C ⨯=其中sj is j i j i ij b a b a b a c ++++++= 22113、 数量乘法:数k 与矩阵的乘积就是把矩阵的每个元素都乘以k ,满足如下规律:()()()()()kB A B kA AB k A A kBkA B A k lA kA A l k ===+=++=+ 14、 转置运算:将矩阵的行列互换,就得到矩阵的转置。

满足如下规律:()()()()A k kA A B AB B A B A A A '='''=''+'='+=''5、 矩阵逆运算如果存在矩阵B 满足AB=BA=E ,B 为A 的逆矩阵。

6、 矩阵秩的计算:矩阵的行向量或列向量的秩都叫做矩阵的秩。

中国矿业大学 实验二 MATLAB语言基础

中国矿业大学 实验二  MATLAB语言基础

实验二MATLAB语言基础一、实验目的基本掌握MATLAB向量、矩阵、数组的生成及其基本运算(区分数组运算和矩阵运算)、常用的数学函数。

了解字符串的操作。

二、实验内容1.向量的生成与运算;2.矩阵的创建、引用和运算;3.多维数组的创建及运算;4.字符串的操作。

三、实验步骤1.向量的生成与运算①向量的生成向量的生成有三种方法:直接输入法:生成行向量、列向量;冒号表达式法:变量=初值:间隔(可正可负):终值函数法:使用linspace线性等分函数,logspace对数等分函数。

格式为:linspace(初值,终值,个数)Logspace(初值,终值,个数), 初值及终值均为10的次幂。

②向量的运算A=[1 2 3 4 5],b=3:7,计算两行向量的转置,两行向量人加、减,两列向量的加、减;向量的点积与叉积。

a=[1 2 3 4 5];b=3:7;at=a',bt=b'e1=a+b,e2=a-bf1=at+bt,f2=at-btg1=dot(a,b),g2=a*btg4=a.*bA=1:3;B=4:6;g3=cross(A,B)注意:g1和g2的结果是否相同,为什么?g4的结果与g1和g2人结果是否一样,为什么?2.矩阵的创建、引用和运算矩阵是由n×m元素构成的矩阵结构。

行向量和列向量是矩阵的特殊形式。

①矩阵的创建矩阵的创建可由以下方法进行操作:直接输入法、抽取法、函数法、拼接法。

具体步骤为:建立两个矩阵,利用已学过的函数,对此进行所述四种方法进行操作。

a=[1 2 3;4 5 6];b=[1 4 72 5 83 6 9];a(1)a(4:end)b(:,1)b(:)b(5)a=fix(rand(3)*100)%建立一个两位有效整的随机矩阵b=a(1:3,2:3)c=a([1 3],[2 4])d=a([1 3 ;2 4])a=ones(3,3)b=zeros(3)c=eye(3)d=magic(3)%建立一个行、列、对角线上的和为一相同的数的魔术矩阵c=eye(3)d=[a b]f=[a;c]②矩阵的运算矩阵的运算有基本运算(加、减、乘、左除、右除)等,还有矩阵函数运算(求逆inv、秩rank、矩阵的翻转、矩阵的转置)等。

如何利用MATLAB进行矩阵运算

如何利用MATLAB进行矩阵运算

如何利用MATLAB进行矩阵运算概述在科学和工程领域,矩阵运算是一项非常重要的技能。

MATLAB作为一种高级数值计算和数据可视化软件,提供了丰富的功能和工具来处理矩阵运算。

本文将介绍如何使用MATLAB进行矩阵运算,包括矩阵的创建、矩阵的运算、矩阵的转置和逆矩阵等。

1. 矩阵的创建在MATLAB中,矩阵可以通过不同的方式进行创建。

最常见的方法是使用"["和"]"符号。

例如,以下命令将创建一个3x3的零矩阵:A = [0 0 0; 0 0 0; 0 0 0]除了手动创建矩阵外,MATLAB还提供了一些内置的函数来创建特殊类型的矩阵。

例如,下面的代码将创建一个单位矩阵:I = eye(3)2. 矩阵的运算使用MATLAB进行矩阵运算非常简单。

可以使用标准的数学运算符来执行加法、减法、乘法和除法等操作。

以下是一些示例代码:A = [1 2 3; 4 5 6; 7 8 9]B = [9 8 7; 6 5 4; 3 2 1]C = A + B % 矩阵加法D = A - B % 矩阵减法E = A * B % 矩阵乘法除了标准的数学运算符,MATLAB还提供了一些特殊的函数来执行矩阵运算。

例如,使用"inv"函数可以计算矩阵的逆矩阵:A = [1 2; 3 4]B = inv(A) % 计算A的逆矩阵3. 矩阵的转置矩阵的转置是指将矩阵的行和列互换。

在MATLAB中,可以使用"'"符号来实现矩阵的转置。

以下是一个示例:A = [1 2 3; 4 5 6; 7 8 9]B = A' % 矩阵A的转置4. 矩阵的逆矩阵逆矩阵是指对于一个方阵A,存在一个方阵B,使得AB=BA=I,其中I是单位矩阵。

在MATLAB中,可以使用"inv"函数来计算矩阵的逆矩阵。

以下是一个示例:A = [1 2; 3 4]B = inv(A) % 计算A的逆矩阵然而需要注意的是,并非所有的矩阵都有逆矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档