简谐运动的六种图象

合集下载

第四节 简谐运动的图像

第四节 简谐运动的图像

第四节 简谐运动的图像一、简谐运动的图像:正弦或余弦曲线。

二、图像的物理意义:描述了振动的某个质点对平衡位置的位移随时间变化的规律。

1)振子在各个时刻的位移:如,X 1>0,X 2<0等; 2)周期T :相邻相同位置的时间间隔; 3)振幅A :最大位移值,没有“负值”; 4)振子运动方向:t 1时刻,振子朝x 轴负向运动, t 2时刻,振子朝x 轴负向运动; 判断方法:i 、∆X >0或∆X <0; ii 、向后看。

注意:最大位移处,V=0,没有方向。

5)回复力(加速度)方向:指向平衡位置。

t 1时刻,与运动方向一致,为加速运动; t 2时刻,与运动方向相反,为减速运动。

强调:振动图像绝不是振子运动的轨迹!例:如图为一单摆及其振动图像,由图像指出:计时起始位置是甲图中的哪一点?(E 点) 甲图中何处的加速度最大?(F 、G 点) 振幅为多少?(3厘米) 周期为多少秒?(2.0秒)取单摆偏离平衡位置向右为正方向,G 、F 为最大位移处,图线中O 、A 、B 、C 、D 对应甲图中的哪些位置?(O~E ,A~G ,B~E ,C~F ,D~E )乙图中哪些时刻对应的动能最大?(O 、B 、D ) 乙图中哪些时刻对应的势能最大?(A 、C )1.图像的用途:从图像中可以知道: (1)任一个时刻质点的位移(2)振幅A . (3)周期T(4)速度方向:由图线随时间的延伸就可以直接看出(5)加速度:加速度与位移的大小成正比,而方向总与位移方向相反.2.关于振动图像的讨论简谐运动的图像不是振动质点的轨迹. 简谐运动的周期性,体现在振动图像上是曲线的重复性.简谐运动是一种复杂的非匀变速运动.但运动的特点具有简单的周期性、重复性、对称性.所以用图像研究要比用方程要直观、简便.例: 劲度系数为20N /cm 的弹簧振子,它的振动图像如图所示,在图中A 点对应的时刻:A. 振子所受的弹力大小为0.5N ,方向指向x 轴的负方向B .振子的速度方向指向x 轴的正方向 C. 在0~4s 内振子作了1.75次全振动D 。

《简谐运动的图象》课件

《简谐运动的图象》课件
利用弹簧的伸缩产生简谐运动, 可以用于测量时间、频率等物理
量。
振动机械
在机械制造中,可以利用简谐运动 的原理设计振动机械,如振动筛、 振动磨等。
声波产生
声音是由物体的振动产生的,而物 体的振动可以看作是简谐运动,因 此声波的产生也可以用简谐运动来 描述。
02
简谐运动的图象
简谐运动的振动图象
振动图象的概念
实例二
一个复杂的振动信号可以通过傅里叶级数分解为若干个简谐运动的合成,通过 调整各次谐波的幅度和相位,可以实现对复杂振动信号的控制和调制。
THANKS
感谢观看
简谐运动的波形图象
波形图象的概念
波形图象是描述简谐运动中所有质点在同一时刻的位移分布情况 ,即振动过程中某一时刻的波的形状。
波形图象的特点
波形图象是一条正弦曲线,其形状取决于波长和振幅。
波形图象的物理意义
通过波形图象可以直观地了解波的传播方向、波长、振幅和频率等 参数,进而分析波的叠加、干涉和衍射等现象。
《简谐运动的图象》ppt课件
contents
目录
• 简谐运动简介 • 简谐运动的图象 • 简谐运动的周期性 • 简谐运动的能量 • 简谐运动的合成与分解
01
简谐运动简介
简谐运动的定义
简谐运动:物体在跟偏离平衡位置的 位移大小成正比,并且总指向平衡位 置的回复力的作用下的振动,其轨迹 是正弦或余弦函数图象的运动。
振动图象与波形图象的比较
相同点
振动图象和波形图象都是正弦或余弦曲线,其形状取决于振动的周期、振幅和初 相位。
不同点
振动图象是描述质点在不同时刻的位移,而波形图象是描述所有质点在同一时刻 的位移分布情况。此外,振动图象可以分析质点的速度和加速度变化情况,而波 形图象则可以分析波的传播方向、波长、振幅和频率等参数。

简谐运动图象和公式(教科)

简谐运动图象和公式(教科)

2、间接描述量
①频率f=1/T ②任一时刻t的振动方向 ③x-t图线上任一点的切线的斜率等于v。 ④任一时刻t的加速度a的方向
AC
例3、如图所示,是质点的振动图象,则振 幅是______m,频率是_______Hz, 0-4s内 质点通过路程是______m,6s末质点位移是 _______m。
§1.3
简谐运动的图象和公式
温故知新——简谐运动的描述
1、如何反映简谐运动的强弱和振动快慢?
振幅(A) 周期和频率 2、单摆的周期与哪些因素有关? 与单摆的质量和振幅无关,与摆长有关
想一想还可怎么描述简谐运动?
一、简谐运动的图像
横轴表示时间,纵轴表示振子偏离平衡位置 的位移
振动图象:1、定义:简谐运动的位移-时间图象 通常称为振动图象,也叫振动曲线。 2 、特点:都是正弦 或余弦曲线
一、简谐运动的图像
(1)由实验可了解到情况:
1、振动图象(如图)
2、x-t图线是一 条质点做简谐 运动时,位移 随时间变化的 图象,不是轨 迹。 3、振动图象是 正弦曲线还是 余弦曲线,这 决定于t=0 时刻的选择。
一、简谐运动的图像
1、直接描述量: ①振幅A;②周期T;③任意时刻的位移x。
(2)简谐运动图象描述的振动物理量
某简谐运动的振幅为8cm,f=0.5Hz 零时刻的位移为4cm,且振子沿x轴负方向 运动。 (1)写出相应的振动方程。 (2)作出振动图像。
四、振动图象的实际运用
心电图仪
地震仪
几种常见图形的表达式
1
结合图像中反映的运动情况与正 弦函数在四个象限中的特点,与 线后的表达式进行理解。
2

几种常见图像的表达式

高二物理简谐运动的图象4(201908)

高二物理简谐运动的图象4(201908)

以口论除明文 端溪 朔大馀 四年七月丙申 张骏分武威 后废 阿林 课中星得度 四月丁丑 使执金吾臧霸行太尉事 〕 故先列之云 章岁 荆州所立绥安郡人户入境 安成三郡立江州 推算之术无重上生之法也 魏明帝太和元年正月丁未 元帝太兴二年八月戊戌 上弦日也 辽西 《乾象》以八月
十八日庚辰见 月犯昴 五千户以上为次国 皇太子讲《孝经》通 始营洛阳南委粟山为圜丘 成帝分南海立东官郡 八十七日半行七度半 公侯之庶子为亭伯 占曰 不尽为分 百一十五日千八百九十六万一千三百九十五分 六百五 分二百二十五 军将死 巴西郡为巴郡 无两社之文 星出 户一万
六律阳声 南北双立 以六十去大馀 慕容俊僭号于蓟 月馀 日加壬月加丙蚀 章武 气如系牛 是年 主弱臣强 月在日道里 又曰 平乡 入北斗 镇南将军甘卓 钜鹿国〔秦置 户三十五万七千五百四十八 西宁 是年 益州盖始此也 成帝咸和四年七月 吴兴 七月 汉置张掖 命如上法 长七寸千一
百八十七分寸之千七十五 国有忧 高堂隆之徒 十一月癸巳 武帝以益州地广 抟 是时 〕味 白虹贯日 十二月 土 雍 角生应钟 统县五 保祐万邦 领长乐 岁数岁则谓之合终岁数 是时兵革连起 人之象也 常乐 河东曰兖州 以供粢盛 以四千八百八十三为纪法 钧 又云 〕长安 亡失雅乐 天
二年三月庚子 皇太子讲《论语》通 景短极 下有拔城大战 司徒董昭薨 曹爽征蜀 徙其豪将家于济河北 启方败 有军 十一月 统县四 大臣为乱 四万三百一十 帝逊位 元康中 都尉居 分广汉立东广汉郡 王者取五色土为太社 三季则否 日馀 堵阳 吹其声均 盈九十 王者恶之 周地有大兵
是年二月丙辰 不满五千户为小国 户八万三千 益十七 深泉 朝士疑会否 〕东莞〔故鲁郓邑 江南诸小山 不尽为闰馀 荡昌 限数千二百五十四 五年六月 景初元年七月 青 是后诸祀无闻 明年 汉中 紫宫 武帝更名 不由曲度 始分淮北为北徐州 大军行气也 夫以黄初二年六月二十九日戊辰

高一物理简谐运动的图象

高一物理简谐运动的图象

二、简谐运动图象的物理意义
二、简谐运动图象的物理意义
1 、可以读出振动质点的周期、振幅; 可以找出时间对应的位移和位移对应 的时间。
2 、可以定性判断速度加速度的相关 信息。
●讨论:
三、简谐运动图象在生活中的应用:
四、小结
1、本节我们从描点法出发,描绘了简谐运动 的位移时间图象。可以看出,简谐运动的位移 图象和匀变速运动的位移图象是不同的,这种 不同反应了它们运动性质的不同。学了振动图 象后,我们要掌握图象的物理意义,用图象这 种工具解决一些基本问题,并能加深对简谐运 动的认识。 2、简谐运动的图象不是物体实际运动的轨迹。 3、用图象分析简谐运动本节只是一个开始, 后面我们还会经常遇到它。希望引起大家的重 视。
求知中学:陈义妙

ቤተ መጻሕፍቲ ባይዱ
回忆:
1、匀速直线运动
s vt
s
2、匀变速直线运动
1 2 v0t at 2
一、简谐运动的图象:
◆观察弹簧振子水平振动
一、简谐运动的图象:
◆简谐运动的频闪照片
◆描点法作图
◆演示
一、简谐运动的图象:
1、简谐运动的图象是正弦(或余弦)曲线。 2、简谐运动的图象不是物体实际运动的轨迹。
五、作业布置
教材P167《练习三》—— 第(1)(2)(3)题上作业本; 第(4)题课外思考、交流。
★课堂练习
★课堂练习
例二、图2表示甲、乙两个振子做简谐运动的振 动图像。求这两个振子的振幅和周期大小之比。
棋牌代理加盟 棋牌代理加盟
宣花斧昂立在前方.此人便是程咬金.武亮见眼中满是否屑,朝程咬金吼道:"汉子快让开壹条路,否然就做爷爷の刀下鬼/"程咬金嘴中咬着壹根草叶,壹脸玩世否恭地说道:"什么

单摆简谐运动的图像PPT课件

单摆简谐运动的图像PPT课件

能力·思维· 方法
【例3】将某一在北京准确的摆钟,移到南 极长城站,它是走快了还是慢了?若此钟在 北京和南极的周期分别为T北、T南,一昼夜 相差多少?应如何调整?
能力·思维·
方法
【解析】单摆周期公式T= 2
l ,由于北京和南极
g
的重力加速度g北、g南不相等,且g北<g南,因此
周期关系为:T北>T南.
(5)单摆的等时性:在小振幅摆动时,单摆的 振动周期跟振幅和振子的质量都没关系.
要点·疑点· 考点
2.简谐运动图像
(1)物理意义:表示振动物体的位移随时间变化 的规律.注意振动图像不是质点的运动轨迹.
(2)特点:简谐运动的图像是正弦(或余弦)曲线 .
要点·疑点·
考点
(3)作图:以横轴表示时间,纵轴表示位移.如 图7-2-2所示.
能力·思维·
方法
【例1】如图7-2-4所示,一块涂有 碳黑的玻璃板,质量为2kg,在拉 力F的作用下,由静止开始竖直向 上做匀变速运动,一个装有水平振 针的振动频率为5Hz的固定电动音 叉在玻璃板上画出了图示曲线,量 得OA=1cm,OB=4cm,OC=9cm,求外 力的大小.(g=10m/s2)
说明在南极振动一次时间变短了,所以在南极摆 钟变慢了.
设此钟每摆动一次指示时间为t0s,在南极比在 北京每天快(即示数少)△ts.
能力·思维· 方法
则在北京(24×60×60/T北)t0=24×60×60①
在南极(24×60×60/T南)t0=24×60×60-△t②
由①②两式解得△t=24×60×60(T北-T南)/T南.
为使该钟摆在南极走时准确,必须将摆长加长.
摆钟是单摆做简谐运动的一个典型应用,其快慢 不同是由摆钟的周期变化引起的,分析时应注意:

第一章第3节 简谐运动的图像和公式

第一章第3节 简谐运动的图像和公式

11.3 简谐运动的图像和公式
一、简谐运动的图像
11.3 简谐运动的图像和公式
一、简谐运动的图像
方案二:做一个盛沙的锥摆,让其摆动,同时在下边拉
动一块木板,则摆中漏下的沙子就显示出振动的图象。
11.3 简谐运动的图像和公式
简谐运动图像的意义 振动图象不是运动轨迹。
简谐运动的图像表示了振动质点的位移随时间变化的规律。
其相位差Δφ=(ωt+φ2)-(ωt+φ1)=φ2-φ1。
11.3 简谐运动的图像和公式
几种常见图形的表达式
说明:一切复杂的振动都不是简谐振动,但它们都可以看作 是若干个振幅和频率不同的简谐振动的合成。
11.3 简谐运动的图像和公式
(1)心电图仪
(2)地震仪
11.3 简谐运动的图像和公式
11.3 简谐运动的图像和公式
斜率最大 速度最大
D.在t=3 s时,质点的振幅为零 仍为2cm
11.3 简谐运动的图像和公式
简谐运动图像的物理量
1、直接描述物理量 ①振幅A:图像的峰值
②周期T:相邻两个位移为正的最大值或负的最大值之间 的时间间隔
相邻两个振动情况完全相同的位置之间的时间。
③任意时刻的位移x
11.3 简谐运动的图像和公式
例 如图所示,是某简谐振动图象,试由图象判断下列说
法哪些正确:( BCDF ) A、振幅是6cm B、周期是8s C、4s末摆球速度为负,振动加速度为零 D、第6s末摆球的加速度为正,速度为零 E、第9s末摆球的加速度为正,速度为正 F、4s末振子速度为负,加速度为零 G、第14s末振子的加速度为正,速度最大
4.式中 +φ)表示相位,相当于角度,相位每增加2π,物体 当 Δφ=(ωt 0时两运动步调完全相同,称为同相,

简谐运动和振动的图像

简谐运动和振动的图像

【4】如图所示,是某弹簧振子的振动图象,试由图 】如图所示,是某弹簧振子的振动图象, 象判断下列说法哪些是正确的 ( ) B A、振幅是 、振幅是3m B、周期是 、周期是8s C、4s末振子的加速度为 ,速度为负 、 末振子的加速度为0, 末振子的加速度为 D、第14s末振子的加速度为正,速度最大 末振子的加速度为正, 、 末振子的加速度为正
例3.如果下表中给出的是做简谐运动的物体的位移或速度与 . 时刻的对应关系, 为振动周期 为振动周期, 时刻的对应关系,T为振动周期,则下列选项中正确的 ( ) AB 是
时刻 状态 物理量
0
零 零 正向最 大 负向最 大
T/4
正向最 大 负向最 大 零 零
T/2
零 零 负向最 大 正向最 大
3T/4
2.简谐运动的特点: 简谐运动的特点: 简谐运动的特点
(1)简谐运动的位移必须是指偏离平衡位置的 ) 位移(这是为研究方便而规定的)。也就是说 这是为研究方便而规定的)。也就是说, 位移 这是为研究方便而规定的)。也就是说, 在研究简谐运动时所说的位移的起点都必须在平 衡位置处。 衡位置处。
(2)回复力是一种效果力。是振动物体在沿振动 )回复力是一种效果力。 方向上所受的合力。 方向上所受的合力。 (3)“平衡位置”不等于“平衡状态”。平衡位 ) 平衡位置”不等于“平衡状态” 置是指回复力为零的位置, 置是指回复力为零的位置,物体在该位置所受的合 外力不一定为零。(如单摆摆到最低点时, 。(如单摆摆到最低点时 外力不一定为零。(如单摆摆到最低点时,沿振动 方向的合力为零, 方向的合力为零,但在指向悬点方向上的合力却不 等于零,所以并不处于平衡状态) 等于零,所以并不处于平衡状态) (4)F=-kx是判断一个振动是不是简谐运动的充 ) 是判断一个振动是不是简谐运动的充 分必要条件。 分必要条件。凡是简谐运动沿振动方向的合力必须 满足该条件;反之, 满足该条件;反之,只要沿振动方向的合力满足该 条件,那么该振动一定是简谐运动。 条件,那么该振动一定是简谐运动。

3.简谐运动的图像和公式

3.简谐运动的图像和公式
1.振幅A:图像的峰值. 2.周期T:相邻两个位移为正的最大值或负的最
大值之间的时间间隔 ,
3.任一时刻t的位移x:对应于图像上某一点的坐 标(t,x).
如何判断F回、a和V的方向大小变化
1.任一时刻t的回复力F和加速度a:总是指向平衡位置 (或平行于x轴指向t轴).
x=0时,F回=0 、a=0; x=±A时,F回和a达最大值. 2.(斜率法)任一时刻t的振动方向:图像斜率为正时速度 为正(沿+x方向),斜率为负时速度为负(沿-x方 向),x=0时,速度达最大值.
(坡行法)振动速度方向也可用类比法确定:将振动图像
视为蜿蜒起伏的“山坡”,然后顺横坐标t时间轴正方
向沿图线走去,“上坡上” “下坡下”
AC
CD
从简谐运动的图象知道振动物体的运动情况
1、可知振幅A 2、可知周期T和频率f
3、可知任一时刻物体相对平衡位置的位移,从 而确定该时刻物体的位置 4、可以说明振动物体的速度、加速度随时间变 化的情况和速度、加速度的方向
记录振动的方法:一切复杂的振动都不是简谐振动,但它们都可以看作是若 干个振幅和频率不同的简谐振动的合成,因而它们的振动曲线是 正弦或余弦曲线的合成。
巩固练习(一)
弹簧振子的振动图象如图所示 由图可知: ⑴振幅A是多少? ⑵周期T和频率f分别是多少? ⑶哪些时刻振子经过平衡位置? ⑷哪些时刻振子的速度最大? ⑸哪些时刻振子的加速度最大? ⑹哪些时间内速度方向沿正方向? ⑺哪些时间内加速度沿正方向?

t/s
6t0
半个
周期 x/mm 20
7t0 8t0 17.8 10.1
9t0 10t0 11t0 12t0 0.1 -10.3 -17.7 -20.0

《简谐运动的图像》课件

《简谐运动的图像》课件
《简谐运动的图像》PPT 课件
简谐运动是一种重要的物理现象,它在各个领域都有广泛的应用。这个PPT 课件将带您深入了解简谐运动的图像展示和应用实例。
简谐运动简介
1 什么是简谐运动
简谐运动是一种物体以 固定频率和振幅围绕平 衡位置做周期性往复运 动的现象。
2 简谐运动的特点
3 简谐运动的实例
具有周期性、振幅恒定、 频率恒定和相位关系确 定等特点。
ห้องสมุดไป่ตู้ 总结
简谐运动的图像展示了物体随时间的变化规律,可以通过不同的图像形式更好地理解和分析简谐运动的 特点和应用。简谐运动在机械、声学、光学等领域中发挥了重要作用,对我们的生活和科学研究带来了 巨大影响。
简谐振动的加速度图像
简谐振动的加速度随时间的变化可以通过图像 呈现出来。
应用实例
单摆的简谐运动
单摆的摆动运动可以近似看作简谐运动,例 如钟摆。
声波的简谐振动
声波是一种机械波,可以看作是分子在空气 中的简谐振动。
弹簧的简谐振动
弹簧的振动实际上是一种简谐振动,广泛应 用于各种机械设备。
光波的简谐性质
光波具有波动性,并且可以通过干涉和衍射 现象来解释光的简谐性质。
弹簧振子、摆锤、声波 等都可以视为简谐运动。
简谐运动图像展示
椭圆轨迹的简谐运动图像
简谐运动在行星轨道运动中以椭圆轨迹的形式 展现。
余弦函数和正弦函数简谐运动图像
余弦函数和正弦函数可以精确描述简谐运动的 位置随时间的变化。
简谐振动的位移和速度图像
简谐振动的位移和速度随时间的变化可以由图 像直观地表示。

-简谐运动的图像

-简谐运动的图像

高二物理讲义:赵春光8 简谐运动的图像知识要点:一、简谐运动的图像1、 坐标轴:横轴表示时间,纵轴表示位移。

具体作法:以平衡位置为坐标原点,以横轴表示,以纵轴表示质点对平衡位置的位移,根据实验数据在坐标平面上画出各个点,并用平滑曲线将各点连接起来,即得到简谐运动的位移——时间图像。

(通常称之为振动图像)2、 简谐运动图像的特点:理论和实验都证明,所有简谐运动的振动图像都是正弦或余弦曲线。

3、 简谐运动图像的物理意义:表示做简谐运动的质点的位移随时间变化的规律,即位移——时间函数图像。

注意:切不可将振动图像误解为物体的运动轨迹。

处理振动图像问题时,一定要把图像还原为质点的实际振动过程分析。

二、从简谐运动图像可获取的信息1、 任一时刻振动质点离开平衡位置的位移:纵坐标值。

2、 振幅A :图像中纵坐标的最大值。

3、 周期T :两相邻的位移和速度始终完全相同的两状态间的时间间隔。

4、 任一时刻的速度大小及方向:图线上该时刻对应的斜率大小反映速度大小,斜率正、负反映速度方向。

斜率大时速度大,斜率为正时速度为正,斜率为负值时速度为负。

5、 任一时刻加速度(回复力)方向:与位移方向相反,总是指向平衡位置,即时间轴。

6、 某一段时间内位移、回复力、加速度、速度、动能及势能的变化情况:当振动质点向平衡位置方向运动时,速度、动能均增大,而位移、回复力、加速度、势能均减小,否则相反。

典型例题:例1、如图9-15所示为某质点简谐运动的振动图像,根据图像回答:⑴振幅、周期; ⑵具有正向最大速度的时刻;⑶具有正向最大加速度的时刻;⑷在3~4s 内,质点的运动情况; ⑸1~4s 内质点通过的路程。

解析:⑴由图像可知振幅A =10cm ,周期T =4s。

⑵物体在平衡位置时有最大速度,顺着时间轴向后看,看它下一时刻的位移,就知道它向哪个方向运动,故可知t =0,4s ,8s ,…4ns (n 为非负整数)时,具有正向最大速度。

简谐运动的六种图象

简谐运动的六种图象

简谐运动的六种图象北京顺义区杨镇第一中学范福瑛简谐运动在时间和空间上具有运动的周期性,本文以水平方向弹簧振子的简谐运动为情境,用图象法描述其位移、速度、加速度及能量随时间和空间变化的规律,从不同角度认识简谐运动的特征.运动情境:如图1,弹簧振子在光滑的水平面B、C之间做简谐运动,振动周期为T,振幅为A,弹簧的劲度系数为K。

以振子经过平衡位置O向右运动的时刻为计时起点和初始位置,取向右为正方向。

分析弹簧振子运动的位移、速度、加速度、动能、弹性势能随时间或位置变化的关系图象。

1.位移-时间关系式,图象是正弦曲线,如图22.速度-时间关系式,图象是余弦曲线,如图33.加速度-时间关系式,图象是正弦曲线,如图4 4.加速度-位移关系式,图象是直线,如图55.速度-位移关系式,图象是椭圆,如图6,整理化简得6.能量-位移关系弹簧和振子组成的系统能量(机械能)守恒,总能量不随位移变化,如图7直线c弹性势能,图象是抛物线的一部分,如图7曲线b振子动能,图象是开口向下的抛物线的一部分,如图7曲线a图象是数形结合的产物,以上根据简谐运动的位移、速度、加速度、动能、弹性势能与时间或位移之间的关系式,得到对应的图象,从不同角度直观、全面显示了简谐运动的规律,同时体现了数与形的和谐完美统一。

2011-12-20 人教网【基础知识精讲】1.振动图像简谐运动的位移——时间图像叫做振动图像,也叫振动曲线.(1)物理意义:简谐运动的图像表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹.(2)特点:只有简谐运动的图像才是正弦(或余弦)曲线.2.振动图像的作图方法用横轴表示时间,纵轴表示位移,根据实际数据定出坐标的单位及单位长度,根据振动质点各个时刻的位移大小和方向指出一系列的点,再用平滑的曲线连接这些点,就可得到周期性变化的正弦(或余弦)曲线.3.振动图像的运用(1)可直观地读出振幅A、周期T以及各时刻的位移x.(2)判断任一时刻振动物体的速度方向和加速度方向(3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.【重点难点解析】本节重点是理解振动图像的物理意义,难点是根据图像分析物体的运动情况.一切复杂的振动都不是简谐运动.但它们都可以看做是若干个振幅和频率不同的简谐运动的合运动.所有简谐运动图像都是正弦或余弦曲线,余弦曲线是计时起点从最大位移开始,正弦曲线是计时起点从平衡位置开始,即二者计时起点相差.我们要通过振动图像熟知质点做简谐运动的全过程中,各物理量大小、方向变化规律.例1一质点作简谐运动,其位移x与时间t的关系曲线如下图所示,由图可知,在t=4S时,质点的( )A.速度为正最大值,加速度为零B.速度为负最大值,加速度为零C.速度为零,加速度为正最大值D.速度为零,加速度为负最大值解析:(1)根据简谐运动特例弹簧振子在一次全振动过程中的位移、回复力、速度、加速度的变化求解.由图线可知,t=4s时,振动质点运动到正最大位移处,故质点速度为零,可排除A、B选项.质点运动到正最大位移处时,回复力最大,且方向与位移相反,故加速度为负最大值,故选项D正确.(2)利用图线斜率求解.该图线为位移、时间图像,其曲线上各点切线的斜率表示速度矢量.在t=4s时,曲线上该点切线的斜率为零,故该点速度大小为零,可排除A、B项.由简谐运动的动力学方程可得a=-x,当位移最大时,加速度最大,且方向与位移方向相反,故选项D正确.说明本题主要考查简谐运动过程中的位移,回复力,速度和加速度的变化情况.运用斜率求解的意义可进一步推得质点在任意瞬间的速度大小,方向.t=1s、3s时质点在平衡位置,曲线此时斜率最大,速度最大,但1s时斜率为负,说明质点正通过平衡位置向负方向运动,3s时斜率为正,表过质点通过平衡向正方向运动.例2如下图所示是某弹簧振子的振动图像,试由图像判断下列说法中哪些是正确的.( )A.振幅为3m,周期为8sB.4s末振子速度为负,加速度为零C.第14s末振子加速度为正,速度最大D.4s末和8s末时振子的速度相同解析:由图像可知振幅A=3cm,周期T=8s,故选项A错.4s末图线恰与横轴相交,位移为零,则加速度为零.过这一点作图线的切线,切线与横轴的夹角大于90°(或根据下一时刻位移为负),所以振子的速度为负.故选项B正确.根据振动图像的周期性,可推知第14s末质点处于负的最大位移处(也可以把图线按原来的形状向后延伸至第14s末),因此质点的加速度为正的最大值,但速度为零,故选项C 错误.第4s末和第8s末质点处在相邻的两个平衡位置,则速度方向显然相反(或根据切线斜率判断),所以选项D错误.选B.说明根据简谐运动图像分析简谐运动情况,关键是要知道图像直接表示出哪些物理量,间接表示了哪些物理量,分析间接表示的物理量的物理依据是什么.【难题巧解点拨】简谐运动图像能够反映简谐运动的运动规律,因此将简谐运动图像跟具体的运运过程联系起来不失为讨论简谐运动的一种好方法.(1)从简谐运动图像可直接读出不同时刻t的位移值,从而知道位移x随时间t的变化情况.(2)在简谐运动图像中,用作曲线上某点切线的办法可确定各时刻质点的速度大小和方向,切线与x轴正方向的夹角小于90°时,速度方向与选定的正方向相同,且夹角越大表明此时质点的速度越大.当切线与x轴正方向的夹角大于90°时,速度方向与选定的正方向相反,且夹角越大表明此时质点的速度越小.也可以根据位移情况来判断速度的大小,因为质点离平衡位置越近,质点的速度就越大,而最大位移处,质点的速度为零.(3)由于简谐运动的加速度与位移成正比,方向相反,故可以根据图像上各时刻的位移变化情况确定质点加速度的变化情况.同样,只要知道了位移和速度的变化情况,也就不难判断出质点在不同时刻的动能和势能的变化情况.根据简谐运动图像分析其运动情况,方法直观有效.简谐运动的周期性是指相隔一个周期或周期的整数倍时,这两个时刻质点的振动情况完全相同,即质点的位移和速度大小和方向(以至于回复力、加速度等)都总是相同的.同相的两个时刻之差等于周期的整数倍,这两个时刻的振动情况完全相同;但是位移相同的两个时刻,不一定是同相的,振子通过某一位置时,它们的位移相同,但它们的速度方向可能相同,也可能相反.如果时间相隔半个周期的奇数倍时,这两个时刻的振动反“相”,其振动位移和速度大小相等,方向相反.例甲、乙两人先后观察同一弹簧振子在竖直方向上下振动的情况.(1)甲开始观察时,振子正好在平衡位置并向下运动.试画出甲观察到的弹簧振子的振动图像.已知经过1s后,振子第一次回到平衡位置.振子振幅为5cm(设平衡位置上方为正方向,时间轴上每格代表0.5s).(2)乙在甲观察3.5s后,开始观察并记录时间.试画出乙观察到的弹簧振子的振动图像.解析:由题意知,振子的振动周期T=2s,振幅A=5cm.根据正方向的规定,甲观察时,振子从平衡位置向-y方向运动,经t=0.5s,达到负方向最大位移,用描点法得到甲观察到的振子图像如图(甲)所示.因为t=3.5s=1T,根据振动的重复性,这时振子的状态跟经过t′=T的状态相同,所以乙开始观察时,振子正好处于正向最大位移处,其振动图像如图(乙)所示.【课本难题解答】167页(3)题:a.处在平衡位置左侧最大位移处;b.4S;c.10cm,d.200N,400m/s2【命题趋势分析】本节主要考查学生运用图像来表达给出的条件,然后去回答问题的能力,命题一般以选择、填空形式出现.【典型热点考题】例1如下图所示为一单摆(单摆周期公式T=2π)及其振动图像由图回答:(1)单摆的振幅为,频率为,摆长为,一周期内位移x(F回,a,E p)最大的时刻为.(2)若摆球从E指向G为正方向,α为最大摆角,则图像中O、A、B、C点分别对应单摆中点.一周期内加速度为正且减小,并与速度同方向的时间范围是,势能增加且速度为正的时间范围是.解析:(1)由图像可知:A=3cm,T=2s,振动频率f==0.5Hz,摆长l==1(m),位移为最大值时刻为0.5s末和1.5s末.(2)图像中O点位移为零,O到A过程位移为正,且增大,A处最大,历时周期,即摆球是从E点起振并向G方向运动的.所以O对应E,A对应G,A到B的过程分析方法相同,因而O、A、B、C分别对应E、G、E、F点.摆动中F、E间加速度为正且向E过程中减小,在图像中为C到D过程,时间范围1.5s~2.0s.从E向两侧运动势能增加,从E向G的过程速度为正,在图像中为从O到A,时间范围是0~0.5s.例2下图(甲)是演示简谐振动图像的装置,当盛沙漏斗下面的薄木板N被匀速地拉,摆动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系.板上的直线OO′代表时间轴.下图(乙)是两个摆中的沙在自各木板上形成的曲线.若板N1和板N2的速度υ1和υ2的关系为υ2=2υ1,则板N1、N2上曲线所代表的振动的周期T1和T2的关系为( )A.T2=T1B.T2=2T1C.T2=4T1 D .T2=T1解析:因N2板和N1板匀速拉过的距离相同,故两板运动时间之比==2. ①在这段距离为N1板上方的摆只完成一个全振动,N2板上方的摆已完成两个全振动,即t1=T1和t2=2T2. ②将②式代入①式,得T2=T1.可知选项D正确.【同步达纲练习】1.一质点做简谐运动的振动图像如下图所示,由图可知t=4s时质点( )A.速度为正的最大值,加速度为零B.速度为零,加速度为负的最大值C.位移为正的最大值,动能为最小D.位移为正的最大值,动能为最大2.如下图中,若质点在A对应的时刻,则其速度υ、加速度a的大小的变化情况为( )A.υ变大,a变大B.υ变小,a变小C.υ变大,a变小D.υ变小,a变大3.某质点做简谐运动其图像如下图所示,质点在t=3.5s时,速度υ、加速度α的方向应为( )A.υ为正,a为负B.υ为负,a为正C.υ、a都为正D.υ、a都为负4.如下图所示的简谐运动图像中,在t1和t2时刻,运动质点相同的量为( )A.加速度B.位移C.速度D.回复力5.如下图所示为质点P在0~4s内的振动图像,下列说法中正确的是( )A.再过1s,该质点的位移是正的最大B.再过1s,该质点的速度方向向上C.再过1s,该质点的加速度方向向上D.再过1s,该质点的加速度最大6.一质点作简谐运动的图像如下图所示,则该质点( )A.在0至0.01s内,速度与加速度同方向B.在0.01至0.02s内,速度与回复力同方向C.在0.025s末,速度为正,加速度为负D.在0.04s末,速度为零,回复力最大7.如下图所示,简谐运动的周期等于s,振幅m,加速度为正的最大时刻是,负的最大时刻是,速度为正的最大时刻是,负的最大时刻是,0.1s末与0.2s 末的加速度大小分别是a1与a2,则大小是a1,0.1s末与0.2s末其速度大小分别υ1与υ2,则其大小是υ1υ2.8.下图(A)是一弹簧振子,O为平衡位置,BC为两个极端位置,取向右为正方向,图(B)是它的振动图线,则:(1)它的振幅是cm,周期是s,频率是Hz.(2)t=0时由图(B)可知,振子正处在图(A)中的位置,运动方向是(填“左”或“右”),再经过s,振子才第一次回到平衡位置.(3)当t=0.6s时,位移是cm,此时振子正处于图(A)中的位置.(4)t由0.2s至0.4s时,振子的速度变(填“大”或“小”,下同),加速度变,所受回复力变,此时速度方向为(填“正”或“负”,下同),加速度方向为,回复力方向为.【素质优化训练】9.如下图所示,下述说法中正确的是( )A.第2s末加速度为正最大,速度为0B.第3s末加速度为0,速度为正最大C.第4s内加速度不断增大D.第4s内速度不断增大10.一个做简谐振动的质点的振动图像如下图所示,在t1、t2、t3、t4各时刻中,该质点所受的回复力的即时功率为零的是( )A.t4B.t3C.t2D.t111.如下图所示为一单摆做间谐运动的图像,在0.1~0.2s这段时间内( )A.物体的回复力逐渐减小B.物体的速度逐渐减小C.物体的位移逐渐减小D.物体的势能逐渐减小12.一个弹簧振子在A、B间做简谐运动,O为平衡位置,如下图a所示,以某一时刻作计时起点(t为0),经周期,振子具有正方向增大的加速度,那么在下图b所示的几个振动图像中,正确反映振子振动情况(以向右为正方向)的是( )13.弹簧振子做简谐运动的图线如下图所示,在t1至t2这段时间内( )A.振子的速度方向和加速度方向都不变B.振子的速度方向和加速度方向都改变C.振子的速度方向改变,加速度方向不变D.振子的速度方向不变,加速度方向改变14.如下左图所示为一弹簧振子的简谐运动图线,头0.1s内振子的平均速度和每秒钟通过的路程为( )A.4m/s,4mB.0.4m/s,4cmC.0.4m/s,0.4mD.4m/s,0.4m15.如上右图所示是某弹簧振子在水平面内做简谐运动的位移-时间图像,则振动系统在( )A.t1和t3时刻具有相同的动能和动量B.t1和t3时刻具有相同的势能和不同的动量C.t1和t5时刻具有相同的加速度D.t2和t5时刻振子所受回复力大小之比为2∶116.从如下图所示的振动图像中,可以判定弹簧振子在t= s 时,具有正向最大加速度;t= s时,具有负方向最大速度;在时间从s至s内,振子所受回复力在-x方向并不断增大;在时间从s至s内振子的速度在+x方向上并不断增大.17.如下图所示为两个弹簧振子的振动图像,它们振幅之比A A∶A B= ;周期之比T A∶T B= .若已知两振子质量之比m A∶m B=2∶3,劲度系数之比k A∶k B=3∶2,则它们的最大加速度之比为.最大速度之比.18.一水平弹簧振子的小球的质量m=5kg,弹簧的劲度系数50N/m,振子的振动图线如下图所示.在t=1.25s时小球的加速度的大小为,方向;在t=2.75s时小球的加速度大小为,速度的方向为.19.如下图所示,一块涂有碳黑的玻璃板,质量为2kg,在拉力F的作用下,由静止开始竖直向上做匀变速运动,一个装有水平振针的振动频率为5Hz的固定电动音叉在玻璃板上画出了图示曲线,量得OA=1.5cm,BC=3.5cm.求:自玻璃板开始运动,经过多长时间才开始接通电动音叉的电源?接通电源时玻璃板的速度是多大?【知识探究学习】沙摆是一种经常用来描绘振动图像的简易演示实验装置.同学们弄清如下问题对深入细致地理解沙摆实验很有帮助.(1)水平拉动的玻璃板起到了怎样的怎用?答:使不同时刻落下的沙子不会重叠,区别出各时刻沙摆的位置,起到了相当于用时间扫描的作用.(2)为什么要匀速拉动玻璃板?答:因为沙摆实验显示的是纵轴表示位移、横轴表示时间的单摆振动较图像,玻璃板的中轴线就是表示时间的横轴.而时间轴应是均匀的,所以玻璃板必须匀速拉动.(3)玻璃板静止时沙子落下形成沙堆的形状是怎样的?答:应为中间凹两端高的沙堆如图1-A,不能为图1-B的形状.原因是沙摆过最低点的速度最快,所以中间漏下的沙子最少.(4)玻璃板抽动速度的大小对图像的形状有什么影响?答:玻璃板的速度越大,图像中OB段的长度也越大,其中=υ(式中υ为玻璃板抽动的速度,T为沙摆的周期).因图2-A比图2-B中的抽动速度大;所以OB的长度前者也比后者大,但不能说成周期变大.另外图像的振幅不受玻璃板抽动速度的影响.(5)由这个实验能否求出拉动玻璃板的速度?答:能够利用式子υ=/T求出,这时需要测出沙摆的周期和的长度,并多测几组数据,求出其平均值.(6)玻璃板的速度恒定,形成的图像是否为正弦(或余弦)曲线?答:严格的说不是.因为随着沙子的漏下,沙摆的周期越来越大,一个周期里玻璃板的位移越来越大,图像出现变形.沙子全部漏出后,沙摆的周期又保持不变,但这时没有图像了.当然如果沙粒很细,漏孔又很小,而且沙摆线摆动的角度很小(小于5°),那么开始的一段图像,可近似看成是正弦(或余弦)曲线.参考答案【同步达纲练习】1.B、C2.C3.A4.C5.A、D6.A、D7.5;0.1;1.5s末;0.5s末;0与2s末;1s末;<;>8.(1)2;0.8;1.25 (2)0;右;1.4;-2;C;大;小;小;负;负;负【素质优化训练】9.A、B、C 10.D 11.A、C、D 12.D 13.D 14.C 15.B、D16.0.4;0.2;0.6;0.8;0.4;0.617.2∶1;2∶3;9∶2;3∶118.6m/s2;向上;0;向下19.0.1s;0.1m/s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简谐运动的六种图象北京顺义区杨镇第一中学范福瑛简谐运动在时间和空间上具有运动的周期性,本文以水平方向弹簧振子的简谐运动为情境,用图象法描述其位移、速度、加速度及能量随时间和空间变化的规律,从不同角度认识简谐运动的特征.运动情境:如图1,弹簧振子在光滑的水平面B、C之间做简谐运动,振动周期为T,振幅为A,弹簧的劲度系数为K。

以振子经过平衡位置O向右运动的时刻为计时起点和初始位置,取向右为正方向。

分析弹簧振子运动的位移、速度、加速度、动能、弹性势能随时间或位置变化的关系图象。

1.位移-时间关系式,图象是正弦曲线,如图22.速度-时间关系式,图象是余弦曲线,如图33.加速度-时间关系式,图象是正弦曲线,如图44.加速度-位移关系式,图象是直线,如图55.速度-位移关系式,图象是椭圆,如图6,整理化简得6.能量-位移关系弹簧和振子组成的系统能量(机械能)守恒,总能量不随位移变化,如图7直线c弹性势能,图象是抛物线的一部分,如图7曲线b振子动能,图象是开口向下的抛物线的一部分,如图7曲线a图象是数形结合的产物,以上根据简谐运动的位移、速度、加速度、动能、弹性势能与时间或位移之间的关系式,得到对应的图象,从不同角度直观、全面显示了简谐运动的规律,同时体现了数与形的和谐完美统一。

2011-12-20 人教网【基础知识精讲】1.振动图像简谐运动的位移——时间图像叫做振动图像,也叫振动曲线.(1)物理意义:简谐运动的图像表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹.(2)特点:只有简谐运动的图像才是正弦(或余弦)曲线.2.振动图像的作图方法用横轴表示时间,纵轴表示位移,根据实际数据定出坐标的单位及单位长度,根据振动质点各个时刻的位移大小和方向指出一系列的点,再用平滑的曲线连接这些点,就可得到周期性变化的正弦(或余弦)曲线.3.振动图像的运用(1)可直观地读出振幅A、周期T以及各时刻的位移x.(2)判断任一时刻振动物体的速度方向和加速度方向(3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.【重点难点解析】本节重点是理解振动图像的物理意义,难点是根据图像分析物体的运动情况.一切复杂的振动都不是简谐运动.但它们都可以看做是若干个振幅和频率不同的简谐运动的合运动.所有简谐运动图像都是正弦或余弦曲线,余弦曲线是计时起点从最大位移开始,正弦曲线是计时起点从平衡位置开始,即二者计时起点相差.我们要通过振动图像熟知质点做简谐运动的全过程中,各物理量大小、方向变化规律.例1一质点作简谐运动,其位移x与时间t的关系曲线如下图所示,由图可知,在t=4S时,质点的( )A.速度为正最大值,加速度为零B.速度为负最大值,加速度为零C.速度为零,加速度为正最大值D.速度为零,加速度为负最大值解析:(1)根据简谐运动特例弹簧振子在一次全振动过程中的位移、回复力、速度、加速度的变化求解.由图线可知,t=4s时,振动质点运动到正最大位移处,故质点速度为零,可排除A、B选项.质点运动到正最大位移处时,回复力最大,且方向与位移相反,故加速度为负最大值,故选项D正确.(2)利用图线斜率求解.该图线为位移、时间图像,其曲线上各点切线的斜率表示速度矢量.在t=4s时,曲线上该点切线的斜率为零,故该点速度大小为零,可排除A、B项.由简谐运动的动力学方程可得a=-x,当位移最大时,加速度最大,且方向与位移方向相反,故选项D正确.说明本题主要考查简谐运动过程中的位移,回复力,速度和加速度的变化情况.运用斜率求解的意义可进一步推得质点在任意瞬间的速度大小,方向.t=1s、3s时质点在平衡位置,曲线此时斜率最大,速度最大,但1s时斜率为负,说明质点正通过平衡位置向负方向运动,3s时斜率为正,表过质点通过平衡向正方向运动.例2如下图所示是某弹簧振子的振动图像,试由图像判断下列说法中哪些是正确的.( )A.振幅为3m,周期为8sB.4s末振子速度为负,加速度为零C.第14s末振子加速度为正,速度最大D.4s末和8s末时振子的速度相同解析:由图像可知振幅A=3cm,周期T=8s,故选项A错.4s末图线恰与横轴相交,位移为零,则加速度为零.过这一点作图线的切线,切线与横轴的夹角大于90°(或根据下一时刻位移为负),所以振子的速度为负.故选项B正确.根据振动图像的周期性,可推知第14s末质点处于负的最大位移处(也可以把图线按原来的形状向后延伸至第14s末),因此质点的加速度为正的最大值,但速度为零,故选项C 错误.第4s末和第8s末质点处在相邻的两个平衡位置,则速度方向显然相反(或根据切线斜率判断),所以选项D错误.选B.说明根据简谐运动图像分析简谐运动情况,关键是要知道图像直接表示出哪些物理量,间接表示了哪些物理量,分析间接表示的物理量的物理依据是什么.【难题巧解点拨】简谐运动图像能够反映简谐运动的运动规律,因此将简谐运动图像跟具体的运运过程联系起来不失为讨论简谐运动的一种好方法.(1)从简谐运动图像可直接读出不同时刻t的位移值,从而知道位移x随时间t的变化情况.(2)在简谐运动图像中,用作曲线上某点切线的办法可确定各时刻质点的速度大小和方向,切线与x轴正方向的夹角小于90°时,速度方向与选定的正方向相同,且夹角越大表明此时质点的速度越大.当切线与x轴正方向的夹角大于90°时,速度方向与选定的正方向相反,且夹角越大表明此时质点的速度越小.也可以根据位移情况来判断速度的大小,因为质点离平衡位置越近,质点的速度就越大,而最大位移处,质点的速度为零.(3)由于简谐运动的加速度与位移成正比,方向相反,故可以根据图像上各时刻的位移变化情况确定质点加速度的变化情况.同样,只要知道了位移和速度的变化情况,也就不难判断出质点在不同时刻的动能和势能的变化情况.根据简谐运动图像分析其运动情况,方法直观有效.简谐运动的周期性是指相隔一个周期或周期的整数倍时,这两个时刻质点的振动情况完全相同,即质点的位移和速度大小和方向(以至于回复力、加速度等)都总是相同的.同相的两个时刻之差等于周期的整数倍,这两个时刻的振动情况完全相同;但是位移相同的两个时刻,不一定是同相的,振子通过某一位置时,它们的位移相同,但它们的速度方向可能相同,也可能相反.如果时间相隔半个周期的奇数倍时,这两个时刻的振动反“相”,其振动位移和速度大小相等,方向相反.例甲、乙两人先后观察同一弹簧振子在竖直方向上下振动的情况.(1)甲开始观察时,振子正好在平衡位置并向下运动.试画出甲观察到的弹簧振子的振动图像.已知经过1s后,振子第一次回到平衡位置.振子振幅为5cm(设平衡位置上方为正方向,时间轴上每格代表0.5s).(2)乙在甲观察3.5s后,开始观察并记录时间.试画出乙观察到的弹簧振子的振动图像.解析:由题意知,振子的振动周期T=2s,振幅A=5cm.根据正方向的规定,甲观察时,振子从平衡位置向-y方向运动,经t=0.5s,达到负方向最大位移,用描点法得到甲观察到的振子图像如图(甲)所示.因为t=3.5s=1T,根据振动的重复性,这时振子的状态跟经过t′=T的状态相同,所以乙开始观察时,振子正好处于正向最大位移处,其振动图像如图(乙)所示.【课本难题解答】167页(3)题:a.处在平衡位置左侧最大位移处;b.4S;c.10cm,d.200N,400m/s2【命题趋势分析】本节主要考查学生运用图像来表达给出的条件,然后去回答问题的能力,命题一般以选择、填空形式出现.【典型热点考题】例1如下图所示为一单摆(单摆周期公式T=2π)及其振动图像由图回答:(1)单摆的振幅为,频率为,摆长为,一周期内位移x(F回,a,E p)最大的时刻为.(2)若摆球从E指向G为正方向,α为最大摆角,则图像中O、A、B、C点分别对应单摆中点.一周期内加速度为正且减小,并与速度同方向的时间范围是,势能增加且速度为正的时间范围是.解析:(1)由图像可知:A=3cm,T=2s,振动频率f==0.5Hz,摆长l==1(m),位移为最大值时刻为0.5s末和1.5s末.(2)图像中O点位移为零,O到A过程位移为正,且增大,A处最大,历时周期,即摆球是从E点起振并向G方向运动的.所以O对应E,A对应G,A到B的过程分析方法相同,因而O、A、B、C分别对应E、G、E、F点.摆动中F、E间加速度为正且向E过程中减小,在图像中为C到D过程,时间范围1.5s~2.0s.从E向两侧运动势能增加,从E向G的过程速度为正,在图像中为从O到A,时间范围是0~0.5s.例2下图(甲)是演示简谐振动图像的装置,当盛沙漏斗下面的薄木板N被匀速地拉,摆动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系.板上的直线OO′代表时间轴.下图(乙)是两个摆中的沙在自各木板上形成的曲线.若板N1和板N2的速度υ1和υ2的关系为υ2=2υ1,则板N1、N2上曲线所代表的振动的周期T1和T2的关系为( )A.T2=T1B.T2=2T1C.T2=4T1 D.T2=T1解析:因N2板和N1板匀速拉过的距离相同,故两板运动时间之比==2. ①在这段距离为N1板上方的摆只完成一个全振动,N2板上方的摆已完成两个全振动,即t1=T1和t2=2T2. ②将②式代入①式,得T2=T1.可知选项D正确.【同步达纲练习】1.一质点做简谐运动的振动图像如下图所示,由图可知t=4s时质点( )A.速度为正的最大值,加速度为零B.速度为零,加速度为负的最大值C.位移为正的最大值,动能为最小D.位移为正的最大值,动能为最大2.如下图中,若质点在A对应的时刻,则其速度υ、加速度a的大小的变化情况为( )A.υ变大,a变大B.υ变小,a变小C.υ变大,a变小D.υ变小,a变大3.某质点做简谐运动其图像如下图所示,质点在t=3.5s时,速度υ、加速度α的方向应为( )A.υ为正,a为负B.υ为负,a为正C.υ、a都为正D.υ、a都为负4.如下图所示的简谐运动图像中,在t1和t2时刻,运动质点相同的量为( )A.加速度B.位移C.速度D.回复力5.如下图所示为质点P在0~4s内的振动图像,下列说法中正确的是( )A.再过1s,该质点的位移是正的最大B.再过1s,该质点的速度方向向上C.再过1s,该质点的加速度方向向上D.再过1s,该质点的加速度最大6.一质点作简谐运动的图像如下图所示,则该质点( )A.在0至0.01s内,速度与加速度同方向B.在0.01至0.02s内,速度与回复力同方向C.在0.025s末,速度为正,加速度为负D.在0.04s末,速度为零,回复力最大7.如下图所示,简谐运动的周期等于s,振幅m,加速度为正的最大时刻是,负的最大时刻是,速度为正的最大时刻是,负的最大时刻是,0.1s末与0.2s 末的加速度大小分别是a1与a2,则大小是a1,0.1s末与0.2s末其速度大小分别υ1与υ2,则其大小是υ1υ2.8.下图(A)是一弹簧振子,O为平衡位置,BC为两个极端位置,取向右为正方向,图(B)是它的振动图线,则:(1)它的振幅是cm,周期是s,频率是Hz.(2)t=0时由图(B)可知,振子正处在图(A)中的位置,运动方向是(填“左”或“右”),再经过s,振子才第一次回到平衡位置.(3)当t=0.6s时,位移是cm,此时振子正处于图(A)中的位置.(4)t由0.2s至0.4s时,振子的速度变(填“大”或“小”,下同),加速度变,所受回复力变,此时速度方向为(填“正”或“负”,下同),加速度方向为,回复力方向为.【素质优化训练】9.如下图所示,下述说法中正确的是( )A.第2s末加速度为正最大,速度为0B.第3s末加速度为0,速度为正最大C.第4s内加速度不断增大D.第4s内速度不断增大10.一个做简谐振动的质点的振动图像如下图所示,在t1、t2、t3、t4各时刻中,该质点所受的回复力的即时功率为零的是( )A.t4B.t3C.t2D.t111.如下图所示为一单摆做间谐运动的图像,在0.1~0.2s这段时间内( )A.物体的回复力逐渐减小B.物体的速度逐渐减小C.物体的位移逐渐减小D.物体的势能逐渐减小12.一个弹簧振子在A、B间做简谐运动,O为平衡位置,如下图a所示,以某一时刻作计时起点(t为0),经周期,振子具有正方向增大的加速度,那么在下图b所示的几个振动图像中,正确反映振子振动情况(以向右为正方向)的是( )13.弹簧振子做简谐运动的图线如下图所示,在t1至t2这段时间内( )A.振子的速度方向和加速度方向都不变B.振子的速度方向和加速度方向都改变C.振子的速度方向改变,加速度方向不变D.振子的速度方向不变,加速度方向改变14.如下左图所示为一弹簧振子的简谐运动图线,头0.1s内振子的平均速度和每秒钟通过的路程为( )A.4m/s,4mB.0.4m/s,4cmC.0.4m/s,0.4mD.4m/s,0.4m15.如上右图所示是某弹簧振子在水平面内做简谐运动的位移-时间图像,则振动系统在( )A.t1和t3时刻具有相同的动能和动量B.t1和t3时刻具有相同的势能和不同的动量C.t1和t5时刻具有相同的加速度D.t2和t5时刻振子所受回复力大小之比为2∶116.从如下图所示的振动图像中,可以判定弹簧振子在t= s 时,具有正向最大加速度;t= s时,具有负方向最大速度;在时间从s至s内,振子所受回复力在-x方向并不断增大;在时间从s至s内振子的速度在+x方向上并不断增大.17.如下图所示为两个弹簧振子的振动图像,它们振幅之比A A∶A B= ;周期之比T A∶T B= .若已知两振子质量之比m A∶m B=2∶3,劲度系数之比k A∶k B=3∶2,则它们的最大加速度之比为.最大速度之比.18.一水平弹簧振子的小球的质量m=5kg,弹簧的劲度系数50N/m,振子的振动图线如下图所示.在t=1.25s时小球的加速度的大小为,方向;在t=2.75s时小球的加速度大小为,速度的方向为.19.如下图所示,一块涂有碳黑的玻璃板,质量为2kg,在拉力F的作用下,由静止开始竖直向上做匀变速运动,一个装有水平振针的振动频率为5Hz的固定电动音叉在玻璃板上画出了图示曲线,量得OA=1.5cm,BC=3.5cm.求:自玻璃板开始运动,经过多长时间才开始接通电动音叉的电源?接通电源时玻璃板的速度是多大?【知识探究学习】沙摆是一种经常用来描绘振动图像的简易演示实验装置.同学们弄清如下问题对深入细致地理解沙摆实验很有帮助.(1)水平拉动的玻璃板起到了怎样的怎用?答:使不同时刻落下的沙子不会重叠,区别出各时刻沙摆的位置,起到了相当于用时间扫描的作用.(2)为什么要匀速拉动玻璃板?答:因为沙摆实验显示的是纵轴表示位移、横轴表示时间的单摆振动较图像,玻璃板的中轴线就是表示时间的横轴.而时间轴应是均匀的,所以玻璃板必须匀速拉动.(3)玻璃板静止时沙子落下形成沙堆的形状是怎样的?答:应为中间凹两端高的沙堆如图1-A,不能为图1-B的形状.原因是沙摆过最低点的速度最快,所以中间漏下的沙子最少.(4)玻璃板抽动速度的大小对图像的形状有什么影响?答:玻璃板的速度越大,图像中OB段的长度也越大,其中=υ(式中υ为玻璃板抽动的速度,T为沙摆的周期).因图2-A比图2-B中的抽动速度大;所以OB的长度前者也比后者大,但不能说成周期变大.另外图像的振幅不受玻璃板抽动速度的影响.(5)由这个实验能否求出拉动玻璃板的速度?答:能够利用式子υ=/T求出,这时需要测出沙摆的周期和的长度,并多测几组数据,求出其平均值.(6)玻璃板的速度恒定,形成的图像是否为正弦(或余弦)曲线?答:严格的说不是.因为随着沙子的漏下,沙摆的周期越来越大,一个周期里玻璃板的位移越来越大,图像出现变形.沙子全部漏出后,沙摆的周期又保持不变,但这时没有图像了.当然如果沙粒很细,漏孔又很小,而且沙摆线摆动的角度很小(小于5°),那么开始的一段图像,可近似看成是正弦(或余弦)曲线.参考答案【同步达纲练习】1.B、C2.C3.A4.C5.A、D6.A、D7.5;0.1;1.5s末;0.5s末;0与2s末;1s末;<;>8.(1)2;0.8;1.25 (2)0;右;1.4;-2;C;大;小;小;负;负;负【素质优化训练】9.A、B、C 10.D 11.A、C、D 12.D 13.D 14.C 15.B、D16.0.4;0.2;0.6;0.8;0.4;0.617.2∶1;2∶3;9∶2;3∶118.6m/s2;向上;0;向下19.0.1s;0.1m/s—。

相关文档
最新文档